Graduation Semester and Year

2021

Language

English

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Electrical Engineering

Department

Electrical Engineering

First Advisor

Venkat Devarajan

Abstract

Requirement of significant amount of labeled training data is a major drawback in training deep neural networks (DNNs), due to the presence of mislabeled examples in these datasets. This label noise is shown to have an adverse effect on the generalization performance of DNNs. Thus, reducing the consequences of label noise is of much research value. In this dissertation, we focus on improving our understanding of label noise and, achieving better generalization performance. Due to the lack of ground truth with real world noisy datasets, most researchers create synthetic noisy datasets to develop robust training methods. Among these methods, stopping the training in the early stages is shown to achieve better generalization performance with label noise. However, identifying such training stop point without ground truth is a demanding problem. We propose novel training methods to identify training stop point when noise rate is known and unknown. We further identify that the significance of stopping the training in the early stages and the effectiveness of several existing training methods are reduced with complex label noisy datasets. Thus, complex realistic noisy datasets that additionally provide ground truth are necessary to study and develop robust training methods. Therefore, we propose novel Pseudo noisy datasets that resemble complex noisy datasets.

Keywords

Label noise, Deep neural networks

Disciplines

Electrical and Computer Engineering | Engineering

Comments

Degree granted by The University of Texas at Arlington

29794-2.zip (2977 kB)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.