Document Type

Article

Source Publication Title

Mathematical Biosciences

First Page

183

Last Page

201

DOI

http://dx.doi.org/10.1016/S0025-5564(00)00003-1

Abstract

A simple two-dimensional SIS model with vaccination exhibits a backward bifurcation for some parameter values. A two-population version of the model leads to the consideration of vaccination policies in paired border towns. The results of our mathematical analysis indicate that a vaccination campaign φ meant to reduce a disease's reproduction number R(φ) below one may fail to control the disease. If the aim is to prevent an epidemic outbreak, a large initial number of infective persons can cause a high endemicity level to arise rather suddenly even if the vaccine-reduced reproduction number is below threshold. If the aim is to eradicate an already established disease, bringing the vaccine-reduced reproduction number below one may not be sufficient to do so. The complete bifurcation analysis of the model in terms of the vaccine-reduced reproduction number is given, and some extensions are considered.

Disciplines

Mathematics | Physical Sciences and Mathematics

Publication Date

1-1-2000

Language

English

Comments

JXVH acknowledges support from a CONACYT grant 1998 and UAM-I internal grant. CMKZ research was partially supported by an REP grant from the University of Texas at Arlington during the summer of 1998.

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.