Document Type

Article

Source Publication Title

ISRN Applied Mathematics

DOI

http://dx.doi.org/10.5402/2012/980153

Abstract

This paper introduces the Tukey family of symmetric h and asymmetric hh-distributions in the contexts of univariate L-moments and the L-correlation. Included is the development of a procedure for specifying nonnormal distributions with controlled degrees of L-skew, L-kurtosis, and L-correlations. The procedure can be applied in a variety of settings such as modeling events 9e.g., risk analysis, extreme events) and Monte Carlo or simulation studies. Further, it is demonstrated that estimates of L-skew, L-kurtosis, and L-correlation are substantially superior to conventional product-moment estimates of skew, kurtosis, and Pearson correlation in terms of both relative bias and efficiency when heavy-tailed distributions are of concern.This paper introduces the Tukey family of symmetric h and asymmetric hh-distributions in the contexts of univariate L-moments and the L-correlation. Included is the development of a procedure for specifying nonnormal distributions with controlled degrees of L-skew, L-kurtosis, and L-correlations. The procedure can be applied in a variety of settings such as modeling events 9e.g., risk analysis, extreme events) and Monte Carlo or simulation studies. Further, it is demonstrated that estimates of L-skew, L-kurtosis, and L-correlation are substantially superior to conventional product-moment estimates of skew, kurtosis, and Pearson correlation in terms of both relative bias and efficiency when heavy-tailed distributions are of concern.

Disciplines

Curriculum and Instruction | Education

Publication Date

1-1-2012

Language

English

Available for download on Wednesday, January 01, 3000

Share

COinS