Document Type
Article
Abstract
Cloud applications are increasingly moving away from monolithic services to agile microservices-based deployments. However, efficient resource management for microservices poses a significant hurdle due to the sheer number of loosely coupled and interacting components. The interdependencies between various microservices make existing cloud resource autoscaling techniques ineffective. Meanwhile, machine learning (ML) based approaches that try to capture the complex relationships in microservices require extensive training data and cause intentional SLO violations. Moreover, these ML-heavy approaches are slow in adapting to dynamically changing microservice operating environments. In this paper, we propose PEMA (Practical Efficient Microservice Autoscaling), a lightweight microservice resource manager that finds efficient resource allocation through opportunistic resource reduction. PEMA's lightweight design enables novel workload-aware and adaptive resource management. Using three prototype microservice implementations, we show that PEMA can find efficient resource allocation and save up to 33% resources compared to the commercial rule-based resource allocations.
Publication Date
6-27-2022
Language
English
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Hossen, Md Rajib; Islam, Mohammad A.; and Ahmed, Kishwar, "Practical Efficient Microservice Autoscaling with QoS Assurance" (2022). Association of Computing Machinery Open Access Agreement Publications. 18.
https://mavmatrix.uta.edu/utalibraries_acmoapubs/18