ORCID Identifier(s)

0000-0003-4054-7994

Graduation Semester and Year

2019

Language

English

Document Type

Thesis

Degree Name

Master of Science in Aerospace Engineering

Department

Mechanical and Aerospace Engineering

First Advisor

Atilla Dogan

Second Advisor

Manfred Huber

Abstract

Recent advancements on the unmanned systems manifest the potential of these technologies to impact our daily life. In particular, the unmanned aircraft systems (UAS) become ordinary for people in almost any area from aerial photography to emergency responses, from agricultural services to even autonomous deliveries. Increased autonomy and advancements in low-cost high-computing technologies made these compact autonomous solutions accessible to any party with ease. Easiness and affordability to access these systems accelerated the innovations and the novel ideas for the solution of diverse real-life problems. Despite its benefits, however, this widespread availability also resulted in the safety and regulatory concerns in general. In an autonomous flight task over a public space, besides the mission objectives and the benefits, concerns regarding the public safety, privacy, and the regulations have to be addressed systematically during the planning and considered in the decision-making process. Therefore, there is a need for a comprehensive framework that can properly quantify and assess the risks incurred by the UAS operations to these concerns. This thesis presents the development of a probabilistic risk assessment framework and a path planning implementation of a concept of Safe Task-Aware Autonomous Resilient Systems (STAARS) to address the safety concerns. STAARS is conceptualized to consider the safety by quantifying and assessing the risks, task-awareness by adapting different tasks and environments, and resiliency by withstanding and making decisions in adversarial conditions. As a result, a multi-objective decision-making capability is introduced in this concept. The aim of the thesis is to establish a framework that could be used for the path planning of UAS operations to quantify, assess and compare the risks incurred by these operations as well as the profits of the mission objectives such that a multi-objective optimization can be achieved with a task-level decision-making capability. The proposed framework consists of the risk assessment part where a probabilistic risk exposure concept and the UAS failure mode analysis are utilized, and a generic utility-based approach for the multi-objective optimization part. In the next step, a commonly used path planning algorithm, which is rapidly-exploring random trees (RRT), is introduced. Finally, the implementation of the proposed framework for a couple of simple UAS scenarios are demonstrated using the path planner.

Keywords

Probabilistic Risk Assessment Framework, UAS failure modes, UAS ground safety analysis, Safe path planning, Risk exposure modeling, Multi-objective utility optimization

Disciplines

Aerospace Engineering | Engineering | Mechanical Engineering

Comments

Degree granted by The University of Texas at Arlington

28110-2.zip (3166 kB)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.