ANALYZING THE THERMOMECHANICAL PERFORMANCE OF TG400G MATERIAL SUBSTRATE CORE UNDER IMMERSION COOLING
Graduation Semester and Year
2023
Language
English
Document Type
Thesis
Degree Name
Master of Science in Mechanical Engineering
Department
Mechanical and Aerospace Engineering
First Advisor
Dereje Agonafer
Abstract
The relentless surge in demand for seamless information exchange through consumer electronics, driven by the indispensable role of the Internet, has given rise to an unprecedented need for data centres. Yet, the energy consumption of conventional data centres, where a significant one-third of energy usage is attributed solely to cooling, has triggered an urgent quest for energy-efficient solutions. Immersion cooling technology appears as a promising contender due to its exceptional prowess in managing thermal energy. However, its potential impact on the reliability of IT equipment needs a more profound exploration before widespread adoption can be realized. This study embarks on a focused mission: to unravel the intricate effects of thermal aging on the thermo-mechanical attributes of low loss printed circuit boards (PCBs), specifically homing in on the TerraGreen 400G variant, within ambient air conditions. The investigation subjects these low-loss PCBs to varying temperatures (85°C and 125°C) and durations (720 hours) of thermal aging, both within EC100 and PAO6 environments. By meticulously scrutinizing alterations in complex modulus and Glass Transition Temperature (Tg) before and after aging, the study endeavours to unearth any shifts in the material's fundamental properties. Anticipated outcomes of this research stand to give invaluable insights into the dependability and adaptability of TerraGreen 400G PCBs within immersion cooling scenarios. Such insights hold profound implications for the relentless pursuit of energy-efficient and environmentally considerate data centres. Moreover, the study's findings promise to cast a luminous beam on the terrain of electronics mechanical design by illuminating material behaviour amidst the rigors of thermal aging. In a world propelled by digital expansion, this investigation serves as a beacon, illuminating pathways to both greener data infrastructure and a more profound comprehension of materials under demanding thermal conditions.
Keywords
TG400G, DMA, DSC, Thermomechanical properties, Immersion cooling
Disciplines
Aerospace Engineering | Engineering | Mechanical Engineering
License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
Recommended Citation
Tirupati Venkatachal, Venkateswar Vishnu, "ANALYZING THE THERMOMECHANICAL PERFORMANCE OF TG400G MATERIAL SUBSTRATE CORE UNDER IMMERSION COOLING" (2023). Mechanical and Aerospace Engineering Theses. 836.
https://mavmatrix.uta.edu/mechaerospace_theses/836
Comments
Degree granted by The University of Texas at Arlington