Graduation Semester and Year

2018

Language

English

Document Type

Thesis

Degree Name

Master of Science in Aerospace Engineering

Department

Mechanical and Aerospace Engineering

First Advisor

Donald R Wilson

Abstract

The objective of this research is to simulate normal detonation combustion which is a mode of operation for a Pulsed Detonation Engine (PDE). A supersonic flow with stoichiometric hydrogen-air mixture is made to impinge on a wedge, thus resulting in increasing the temperature and pressure across a shock wave leading to the formation of detonation wave. Different modes of the operations can be simulated by varying the incoming Mach number, pressure, temperature and equivalence ratio. For the case of normal detonation wave mode which is an unsteady process, after the detonation being initiated due to the shock induced by the wedge, the detonation wave propagates upstream in the flow as the combustion chamber Mach number is lower than the C-J Mach number. The concept of detonation wave moving upstream and downstream is controlled by changing the incoming flow field properties. By this method the unsteady normal detonation wave is made to oscillate in the combustion chamber leading to a continuous detonation combustion. The intention of this research is to simulate two cycles of detonation combustion in order to determine the frequency and to obtain the variation of flow properties at the exit plain with respect to time.

Keywords

Detonation, Numerical simulation

Disciplines

Aerospace Engineering | Engineering | Mechanical Engineering

Comments

Degree granted by The University of Texas at Arlington

27549-2.zip (1697 kB)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.