Author

Kashish Dhal

ORCID Identifier(s)

0000-0003-0589-9214

Graduation Semester and Year

2018

Language

English

Document Type

Thesis

Degree Name

Master of Science in Mechanical Engineering

Department

Mechanical and Aerospace Engineering

First Advisor

Panayiotis S Shiakolas

Abstract

Commonly used additive manufacturing platforms have a single extrusion module based on Fused Filament Fabrication (FFF) and their processing software generates G-Codes for this FFF module using defined process parameters. These platforms and software do not accommodate different processing modules such as viscous extruders or Direct Ink Writing (DIW). This research is focused on the development of a Pneumatic Extrusion Module (PEM) capable of dispensing viscous materials such as gels or slurries controlled through a digital pneumatic valve. A PEM is developed, integrated and its performance is evaluated on a multi-modality additive manufacturing platform in the MARS Lab. The operation of PEM is controlled through an FPGA that communicates with the traditional G-Code for 3D printing in real-time. A methodology is developed for characterizing 3D printed strand width of a poly-urethane based photocurable resin based on process parameters, namely print speed and extrusion pressure using an Artificial Neural Network (ANN) model. During the additive manufacturing process, in real-time and as instructed from the G-code, the PEM control pressure is evaluated using another ANN model. Using this methodology and the developed hardware tools 3D constructs have been successfully fabricated. The results of this research show that PEMs module can be successfully and seamlessly integrated on a multi-modality platform for the fabrication of multi-material constructs using different processing.

Keywords

Machine learning, FPGA, Artificial neural networks, Additive manufacturing, 3D printing

Disciplines

Aerospace Engineering | Engineering | Mechanical Engineering

Comments

Degree granted by The University of Texas at Arlington

28303-2.zip (13319 kB)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.