Graduation Semester and Year
2010
Language
English
Document Type
Thesis
Degree Name
Master of Science in Aerospace Engineering
Department
Mechanical and Aerospace Engineering
First Advisor
Brian Dennis
Abstract
This paper outlines the aerodynamics shape optimization process of a 3D VKI gas turbine blade using Computational Fluid Dynamics (CFD) and differential evolution optimization method. The main objective of this work is to improve outlet total pressure for better aerodynamic performance. This benefit is achieved by optimizing the stacking line path of the turbine blade in 3D annular cascade for which higher exit total pressure is achieved. The optimization process starts with generating a 3D annular cascade with a boundary domain and meshing it using GAMBIT and is then solved in FLUENT using viscous flow analysis. The original stacking line is defined as a B -spline with its end points fixed and middle points free to move in translational direction. These middle points work as design variables whose position needs to be changed for improved exit total pressure which is a desired parameter.. The turbine blade cascade is analyzed for only aerodynamic performance. The optimization analysis is an iterative process using a parallel computing system. The shape optimization process runs iteratively with the CFD and DE code until the higher total pressure at outlet is achieved by optimizing the stacking line path of the turbine blade cascade. Here the optimization process of the 3D turbine blade cascade is presented
Disciplines
Aerospace Engineering | Engineering | Mechanical Engineering
License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
Recommended Citation
Joshi, Darshak, "Aerodynamic Shape Optimization Of 3D Gas Turbine Blade Using Differerential Evolution Method" (2010). Mechanical and Aerospace Engineering Theses. 260.
https://mavmatrix.uta.edu/mechaerospace_theses/260
Comments
Degree granted by The University of Texas at Arlington