Author

Darshak Joshi

Graduation Semester and Year

2010

Language

English

Document Type

Thesis

Degree Name

Master of Science in Aerospace Engineering

Department

Mechanical and Aerospace Engineering

First Advisor

Brian Dennis

Abstract

This paper outlines the aerodynamics shape optimization process of a 3D VKI gas turbine blade using Computational Fluid Dynamics (CFD) and differential evolution optimization method. The main objective of this work is to improve outlet total pressure for better aerodynamic performance. This benefit is achieved by optimizing the stacking line path of the turbine blade in 3D annular cascade for which higher exit total pressure is achieved. The optimization process starts with generating a 3D annular cascade with a boundary domain and meshing it using GAMBIT and is then solved in FLUENT using viscous flow analysis. The original stacking line is defined as a B -spline with its end points fixed and middle points free to move in translational direction. These middle points work as design variables whose position needs to be changed for improved exit total pressure which is a desired parameter.. The turbine blade cascade is analyzed for only aerodynamic performance. The optimization analysis is an iterative process using a parallel computing system. The shape optimization process runs iteratively with the CFD and DE code until the higher total pressure at outlet is achieved by optimizing the stacking line path of the turbine blade cascade. Here the optimization process of the 3D turbine blade cascade is presented

Disciplines

Aerospace Engineering | Engineering | Mechanical Engineering

Comments

Degree granted by The University of Texas at Arlington

Share

COinS