Graduation Semester and Year
2016
Language
English
Document Type
Dissertation
Degree Name
Doctor of Philosophy in Aerospace Engineering
Department
Mechanical and Aerospace Engineering
First Advisor
Bernd Chudoba
Abstract
The focus of this study is to improve R&D effectiveness towards aerospace and defense planning in the early stages of the product development lifecycle. Emphasis is on: correct formulation of a decision problem, with special attention to account for data relationships between the individual design problem and the system capability required to size the aircraft, understanding of the meaning of the acquisition strategy objective and subjective data requirements that are required to arrive at a balanced analysis and/or “correct” mix of technology projects, understanding the meaning of the outputs that can be created from the technology analysis, and methods the researcher can use at effectively support decisions at the acquisition and conceptual design levels through utilization of a research and development portfolio strategy. The primary objectives of this study are to: (1) determine what strategy should be used to initialize conceptual design parametric sizing processes during requirements analysis for the materiel solution analysis stage of the product development lifecycle when utilizing data already constructed in the latter phase when working with a generic database management system synthesis tool integration architecture for aircraft design , and (2) assess how these new data relationships can contribute for innovative decision-making when solving acquisition hardware/technology portfolio problems. As such, an automated composable problem formulation system is developed to consider data interactions for the system architecture that manages acquisition pre-design concept refinement portfolio management, and conceptual design parametric sizing requirements. The research includes a way to: • Formalize the data storage and implement the data relationship structure with a system architecture automated through a database management system. • Allow for composable modeling, in terms of level of hardware abstraction, for the product model, mission model, and operational constraint model data blocks in the pre-design stages. • Allow the product model, mission model, and operational constraint model to be cross referenced with a generic aircraft synthesis capability to identify disciplinary analysis methods and processes. • Allow for matching, comparison, and balancing of the aircraft hardware portfolio to the associated developmental and technology risk metrics. • Allow for visualization technology portfolio decision space. The problem formulation architecture is finally implemented and verified for a generic hypersonic vehicle research demonstrator where a portfolio of technology hardware are measured for developmental and technology risks, prioritized by the researcher risk constraints, and the data generated delivered to a novel aircraft synthesis tool to confirm vehicle feasibility.
Keywords
Aircraft design, Vehicle synthesis, Technology acquisition
Disciplines
Aerospace Engineering | Engineering | Mechanical Engineering
License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
Recommended Citation
Oza, Amit R., "Integration of a Portfolio-based Approach to Evaluate Aerospace R&D Problem Formulation Into a Parametric Synthesis Tool" (2016). Mechanical and Aerospace Engineering Dissertations. 306.
https://mavmatrix.uta.edu/mechaerospace_dissertations/306
Comments
Degree granted by The University of Texas at Arlington