Document Type

Report

Source Publication Title

Technical Report 153

Abstract

We are interested in obtaining an analysis of the bifurcating periodic orbits arising in the generalized Hopf bifurcation problems in Rn. The existence of these periodic orbits has often been obtained by using such techniques as the Lyapunov-Schmidt method or topological degree arguments (see Marsden and McCracken [8] and Hale [6] and their references). Our approach, on the other bend, is based upon stability properties of the equilibrium point of the unperturbed system. Andronov et. al. [1] showed the fruitfulness of this approach in studying bifurcation problems in R2 (for more recent papers see Negrini and Salvadori [9] and Bernfeld and Salvadori [2]). In the case of R2, in contrast to that of Rn, n > 2, the stability arguments can be effectively applied because of the Poincaré-Bendixson theory. Bifurcation problems in Rn can be reduced to that of R2 when two dimensional invariant manifolds are known to exist. The existence of such manifolds occurs, or example when the unperturbed system contains only two purely imaginary eigenvalues.

Disciplines

Mathematics | Physical Sciences and Mathematics

Publication Date

3-1-1981

Language

English

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.