Document Type
Report
Source Publication Title
Technical Report 3
Abstract
Consider the equation (1.1) [see pdf for notation] on a Hilbert space H. Here n is a scalar and [see pdf for notation] is a linear Fredholm operator. That is: (a) L is closed; (b) The domain, D(L) is dense in H; (c) The range, R(L) is closed in H; (d) The dimension of the null space, dim n(L) <= (e) The dimension of the null space of the adjoint dim n(L*) <= The operator N, which may be nonlinear, is defined for sufficiently small and appropriately restricted [see pdf for notation], and [see pdf for notation] Using the method of Lyapunov-Schmidt (cf., e.g. [4] or [5]) we express w in the form (1.2) [see pdf for notation] where [see pdf for notation] denotes the orthogonal complement of n(L) in H. Suppose (u,v) satisfy the simultaneous equations (1.3) [see pdf for notation] (1.4) [see pdf for notation] where P is the orthogonal projection operator of H onto R(L), I is the identity operator on H, and J is a right inverse of L on R(L), i.e.
Disciplines
Mathematics | Physical Sciences and Mathematics
Publication Date
12-1-1973
Language
English
License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
Recommended Citation
Eisenfeld, Jerome and Lakshmikantham, V., "Existence MD Estimates for Solutions of Nonlinear Equations Near a Branch Point" (1973). Mathematics Technical Papers. 40.
https://mavmatrix.uta.edu/math_technicalpapers/40