Authors

Dan Butnariu

Document Type

Report

Source Publication Title

Technical Report 277

Abstract

In this paper we study the behavior of a class of iterative algorithms for solving feasibility problems, that is finite systems of inequalities [see pdf for notation], where each [see pdf for notation] is a locally Lipschitz functional on a Hilbert space X. We show that, under quite mild conditions, the algorithms studied in this note, if converge, then they approximate a solution of the feasibility given problem, provided that the feasibility problem is consistent. We prove several convergence criteria showing that, when the envelope of the functionals [see pdf for notation], is sufficiently "regular", then the algorithms converge. The class of algorithms studied in this note contains, as special cases, many of the subgradient and projection methods of solving convex feasibility problems discussed in the literature.

Disciplines

Mathematics | Physical Sciences and Mathematics

Publication Date

12-1-1990

Language

English

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.