Document Type

Report

Source Publication Title

Technical Report 122

Abstract

The prevalent approach to the Hopf bifurcation problem is to prove directly the existence of the bifurcating periodic orbits by using such standard procedures as the implicit function theorem, the LiapunovSchmidt method and its known variants, and topological degree arguments (see [7]). The phenomenon of Hopf bifurcation often occurs because of exchange of stability properties of the equilibrium under perturbations (see for instance, Chafee in [7] p. 85-88,Andronov et. al. [1], Marchetti et. al. [6] and Negrini and Salvadori [8]). This connection between the exchange of stability of the equilibrium and the appearance of bifurcating periodic orbits can be carefully investigated in order to develop a different approach for obtaining existence results and qualitative properties of these orbits. Now we want to provide a systematic development of the procedure sketched in [6] and [8] by considering the generalized Hopf bifurcation as was studied by Chafee [3] who used the alternative method as described by Hale [4]. In particular consider an n dimensional system of differential equations [see pdf for notation]. Assume the Jacobian matrix if [see pdf for notation] has a complex conjugate pair of eigenvalues ±i and that all other eigenvalues [see pdf for notation].

Disciplines

Mathematics | Physical Sciences and Mathematics

Publication Date

11-1-1979

Language

English

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.