Document Type

Report

Source Publication Title

Technical Report 336

Abstract

The following problem about a tennis match is well—known. See Halmos [1, 2]. Consider 2n tennis players playing a single elimination match. Ask the question: what are the number of games played? The answer can be obtained in two ways. First using the geometric progression 2n-1 + 2n-2 + • • • -2+1 we find that the answer is 2n — 1. We can also explain the answer as follows: for each game played there is a loser. Thus the total number of games played is equal to the number of losers. Since there is only one winner the total number of games played is equal to 2n — 1, the number of losers.

Disciplines

Mathematics | Physical Sciences and Mathematics

Publication Date

3-1-1999

Language

English

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.