Document Type

Article

Source Publication Title

Computational and Mathematical Methods in Medicine

DOI

http://dx.doi.org/10.1155/2017/6102494

Abstract

Developing technologies have made significant progress towards linking the brain with brain-machine interfaces (BMIs) which have the potential to aid damaged brains to perform their original motor and cognitive functions. We consider the viability of such devices for mitigating the deleterious effects of memory loss that is induced by neurodegenerative diseases and/or traumatic brain injury (TBI). Our computational study considers the widely used Hopfield network, an autoassociative memory model in which neurons converge to a stable state pattern after receiving an input resembling the given memory. In this study, we connect an auxiliary network of neurons, which models the BMI device, to the original Hopfield network and train it to converge to its own auxiliary memory patterns. Injuries to the original Hopfield memory network, induced through neurodegeneration, for instance, can then be analyzed with the goal of evaluating the ability of the BMI to aid in memory retrieval tasks. Dense connectivity between the auxiliary and Hopfield networks is shown to promote robustness of memory retrieval tasks for both optimal and nonoptimal memory sets. Our computations estimate damage levels and parameter ranges for which full or partial memory recovery is achievable, providing a starting point for novel therapeutic strategies. [© 2017 M. Morrison et al. This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. DOI: https://doi.org/10.1155/2017/6102494]

Disciplines

Mathematics | Physical Sciences and Mathematics

Publication Date

9-5-2017

Language

English

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.