Graduation Semester and Year

2009

Language

English

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Mathematics

Department

Mathematics

First Advisor

David A Jorgensen

Abstract

In this paper, we discuss conditions for uniqueness among minimal acyclic complexes of finitely generated free modules over a commutative local ring which share a common syzygy module. Although such uniqueness occurs over Gorenstein rings, the question has been asked whether two minimal acyclic complexes in general can be isomorphic to the left and non-isomorphic to the right. We answer the question in the negative for certain cases, including periodic complexes, sesqui-acyclic complexes, and certain rings with radical cube zero. In particular, we investigate the question for graded algebras with Hilbert series $H_R(t)=1+et+(e-1)t^2$, and such monomial algebras possessing a special generator.

Disciplines

Mathematics | Physical Sciences and Mathematics

Comments

Degree granted by The University of Texas at Arlington

1783-2.tex (146 kB)

Included in

Mathematics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.