Graduation Semester and Year
2020
Language
English
Document Type
Dissertation
Degree Name
Doctor of Philosophy in Materials Science and Engineering
Department
Materials Science and Engineering
First Advisor
Yaowu Hao
Abstract
Since the emergence of diffraction gratings containing periodic unit cells, innumerable advances in theoretical studies and practical applications have emerged. Recently, these classic structures have been categorized as subsets of “meta-surfaces” or “meta-materials” in which periodically aligned wavelength-scale features manipulate all key properties of the electromagnetic waves in a desired manner for a wide variety of applications. This includes manipulating of amplitude, phase, spectral distribution, polarization state, and local mode structure of light in the various available spectral expressions. Among the significant characteristic properties of metasurfaces is the coupling of incident light to laterally propagating leaky Bloch modes in the subwavelength regime when the periodicity of the unit cell is moderately smaller than the free-space wavelength. This property, which manifests itself as a resonance at certain wavelengths, is called “guided mode resonance (GMR)” or “leaky mode resonance (LMR)”. These structures offer novel properties and functionalities in ultra-thin device dimensions which make them potential replacements for conventional and bulky optical devices. Extensive studies have been conducted to realize the periodic structures in different materials (metals, dielectric, and semiconductors or their hybrid compositions) employing various fabrication methods for different wavelength ranges in 1D or 2D configuration. Thus, on account of the wide variety of material compositions and lattice architectures, the design space is vast. Various numerical techniques such as rigorous coupled-wave analysis (RCWA), finite element method (FEM), and finite-difference time-domain (FDTD) can be used to implement simulations and obtain the precise optical responses of the metasurfaces. In addition, inverse optimization methods, efficiently provide optimized physical parameters in order to obtain a particular desired spectral response. However, these computational methods which are based on solving heavy and complicated equations and do not always provide comprehensive insight into underlying physics of the numerically obtained optical spectra. In this dissertation, we present a comprehensive physical description of resonant metasurfaces based on exact solutions of the Rytov formulation. We define a clear transition wavelength between the resonance subwavelength region and the deep-subwavelength region. This transition point, analytical in a special case, is not available presently in the literature. In addition, we design, fabricate, and characterize various novel GMR-based optical devices such as metamaterial polarizers, nanoimprinted nanocomposite filters, multipart unit-cell metasurfaces, ultrahigh-Q resonant dual-grating metamembranes, and fiber-facet integrated optical filters and sensors.
Keywords
Nanophotonics, Metasurfaces, Guided-mode resonances, Photolithography, Polarizers, Sensors, Bound states in the continuum, Optical fibers, Nanocomposites
Disciplines
Engineering | Materials Science and Engineering
License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.
Recommended Citation
Hemmati, Hafez, "PRINCIPLES, DESIGN, FABRICATION, AND CHARACTERIZATION OF SUBWAVELENGTH PERIODIC RESONANT METASURFACES" (2020). Material Science and Engineering Dissertations. 110.
https://mavmatrix.uta.edu/materialscieng_dissertations/110
Comments
Degree granted by The University of Texas at Arlington