Graduation Semester and Year

2011

Language

English

Document Type

Thesis

Degree Name

Master of Science in Electrical Engineering

Department

Electrical Engineering

First Advisor

Venkat Devarajan

Abstract

Computer vision aided automatic hand gesture recognition system plays a vital role in real world human computer interaction applications such as sign language recognition, game controls, virtual reality, intelligent home appliances and assistive robotics. In such systems, when input with a video sequence, the challenging task is to locate the gesturing hand (spatial segmentation) and determine when the gesture starts and ends (temporal segmentation). In this thesis, we use a framework which at its principal has a dynamic space time warping (DSTW) algorithm to simultaneously localize gesturing hand, to find an optimal alignment in time domain between query-model sequences and to compute a matching cost (a measure of how well the query sequence matches with the model sequence) for the query-model pair. Within the context of DSTW, the thesis proposes few novel cost measures to improve the performance of the framework for robust recognition of hand gesture with the help of translation and scale invariant feature vectors extracted at each frame of the input video. The performance of the system is evaluated in a real world scene with cluttered background and in presence of multiple moving skin colored distractors in the background.

Disciplines

Electrical and Computer Engineering | Engineering

Comments

Degree granted by The University of Texas at Arlington

9530-2.docx (14930 kB)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.