ORCID Identifier(s)


Graduation Semester and Year




Document Type


Degree Name

Doctor of Philosophy in Electrical Engineering


Electrical Engineering

First Advisor

Venkat Devarajan


Airborne light detection and ranging (LiDAR) can generate co-registered elevation and intensity map over large terrain. The co-registered 3D map and intensity information can be used efficiently for different feature extraction application. In this dissertation, we developed two algorithms for feature extraction, and usages of features for practical applications. One of the developed algorithms can map still and flowing waterbody features, and another one can extract building feature and estimate solar potential on rooftops and facades. Remote sensing capabilities, distinguishing characteristics of laser returns from water surface and specific data collection procedures provide LiDAR data an edge in this application domain. Furthermore, water surface mapping solutions must work on extremely large datasets, from a thousand square miles, to hundreds of thousands of square miles. National and state-wide map generation/upgradation and hydro-flattening of LiDAR data for many other applications are two leading needs of water surface mapping. These call for as much automation as possible. Researchers have developed many semi-automated algorithms using multiple semi-automated tools and human interventions. This reported work describes a consolidated algorithm and toolbox developed for large scale, automated water surface mapping. Geometric features such as flatness of water surface, higher elevation change in water-land interface and, optical properties such as dropouts caused by specular reflection, bimodal intensity distributions were some of the linear LiDAR features exploited for water surface mapping. Large-scale data handling capabilities are incorporated by automated and intelligent windowing, by resolving boundary issues and integrating all results to a single output. This whole algorithm is developed as an ArcGIS toolbox using Python libraries. Testing and validation are performed on a large datasets to determine the effectiveness of the toolbox and results are presented. Significant power demand is located in urban areas, where, theoretically, a large amount of building surface area is also available for solar panel installation. Therefore, property owners and power generation companies can benefit from a citywide solar potential map, which can provide available estimated annual solar energy at a given location. An efficient solar potential measurement is a prerequisite for an effective solar energy system in an urban area. In addition, the solar potential calculation from rooftops and building facades could open up a wide variety of options for solar panel installations. However, complex urban scenes make it hard to estimate the solar potential, partly because of shadows cast by the buildings. LiDAR-based 3D city models could possibly be the right technology for solar potential mapping. Although, most of the current LiDAR-based local solar potential assessment algorithms mainly address rooftop potential calculation, whereas building facades can contribute a significant amount of viable surface area for solar panel installation. In this paper, we introduce a new algorithm to calculate solar potential of both rooftop and building facades. Solar potential received by the rooftops and facades over the year are also investigated in the test area.


LiDAR, Waterbody mapping, Hydrobreakline, Solar potential


Electrical and Computer Engineering | Engineering


Degree granted by The University of Texas at Arlington