ORCID Identifier(s)

0000-0002-4582-8800

Graduation Semester and Year

2020

Language

English

Document Type

Thesis

Degree Name

Master of Science in Computer Science

Department

Computer Science and Engineering

First Advisor

Ramez Elmasri

Abstract

Spectral Convolutions and B-Spline Graph Neural Network techniques have been used in past to learn embeddings in various complex, multidimensional structured knowledge graphs like genetics, social networks, geometric shapes and more. Spectral graphs provide a way to apply fast and localized filters on graph data. B-Spline kernels provides a way to keep the computation time independent by due to the local support property of B-spline basis functions. This thesis aims at using each of these models to test their viability for solving the Unit Commitment (UC) and Economic Dispatch (ED) problem for the energy market. There have been multiple attempts of solving the UC ED problem from linear regression to neural networks and complex mathematics models. Everyone has their own set of advantages and disadvantages. Currently, industry uses Power System Optimizer (PSO), a MILP based solution which is extremely precise, but is extremely reluctant to scale in both time and compute. Some models fail to precisely represent the complex structure of the networks. This thesis focuses to use Graph Neural Network (GNN) which gives us the ability to represent the complex structure of the energy network and learn the energy market and use tools that will help to scale the modes for larger datasets.

Keywords

Graph neural networks, Unit commitment, Economic dispatch

Disciplines

Computer Sciences | Physical Sciences and Mathematics

Comments

Degree granted by The University of Texas at Arlington

29117-2.zip (2017 kB)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.