ORCID Identifier(s)

0000-0001-6165-2385

Graduation Semester and Year

2016

Language

English

Document Type

Thesis

Degree Name

Master of Science in Computer Engineering

Department

Computer Science and Engineering

First Advisor

Junzhou Huang

Abstract

Pedestrian Detection in real time has become an interesting and a challenging problem lately. With the advent of autonomous vehicles and intelligent traffic monitoring systems, more time and money are being invested into detecting and locating pedestrians for their safety and towards achieving complete autonomy in vehicles. For the task of pedestrian detection, Convolutional Neural Networks (ConvNets) have been very promising over the past decade. ConvNets have a typical feed-forward structure and they share many properties with the visual system of the human brain. On the other hand, Recurrent Neural Networks (RNNs) are emerging as an important technique for image based detection problems and they are more closely related to the visual system due to their recurrent connections. Detecting pedestrians in a real time environment is a task where sequence is very important and it is intriguing to see how ConvNets and RNNs handle this task. This thesis hopes to make a detailed comparison between ConvNets and RNNs for pedestrian detection, how both these techniques perform on sequential pedestrian data, their scopes of research and what are their advantages and disadvantages. The comparison is done on two benchmark datasets - TUD-Brussels and ETH Pedestrian Datasets and a comprehensive evaluation is presented to see how research on these topics can be taken forward.

Keywords

Convolutional neural networks, Recurrent neural networks, Pedestrian detection

Disciplines

Computer Sciences | Physical Sciences and Mathematics

Comments

Degree granted by The University of Texas at Arlington

26394-2.zip (9620 kB)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.