Graduation Semester and Year

2013

Language

English

Document Type

Thesis

Degree Name

Master of Science in Civil Engineering

Department

Civil Engineering

First Advisor

Hyeok Choi

Abstract

Advanced oxidation technologies have gained tremendous attention for water treatment purposes after demonstration of insufficient efficiency of conventional systems for removal of many emerging chemicals of concern. Among AOTs, a TiO2-UV system is one of the most promising approaches due to its green properties and its effectiveness in generation of extremely oxidizing species such as hydroxyl radicals. However it has been demonstrated that non-selectivity of HRs in decomposition of organic compounds results in parallel decomposing of naturally abundant organic matter (NOM) along with toxic target contaminant, which significantly decreases the decomposition rate of target contaminants. Despite a great amount of researches conducted on TiO2 photocatalysts, limited success has been achieved in enhancing selectivity of TiO2 photocatalytic oxidation. In this study. a novel approach for suppressing the adverse effect of co-existing organics such as NOM has been proposed. Physical access of competing compounds was restrained through manipulation of the porous structure of TiO2 photocatalysts. An advanced templating method was employed to create a porous structure across TiO2 nanoparticles. In this study Ibuprofen as a target contaminant was decomposed in the presence of humic acid as competing NOM. Porous particles demonstrated significant improvement in selective decomposition of ibuprofen in the presence of humic acid as competing species. In the second phase of the study, a comprehensive study was conducted through changing the porous structure and size of co-existing organics in competing and non-competing conditions. The photocatalytic results, in correlation with material characterization demonstrated beneficial role of the controlled porous structure on adsorption followed by decomposition of organic species onto TiO2 photocatalysts.

Disciplines

Civil and Environmental Engineering | Civil Engineering | Engineering

Comments

Degree granted by The University of Texas at Arlington

Share

COinS