Document Type

Article

Source Publication Title

Transport in Porous Media

DOI

http://dx.doi.org/10.1007/s11242-016-0654-6

Abstract

The interactions between turbulent free flow and flow in a porous medium are of key interest in different fields, e.g., meteorology, agriculture, building physics, and aerospace engineering. Properly understanding the strongly coupled exchange processes between the two domains is crucial to describing these interactions. In (Mosthaf et al. in Water Resources Research 47(10):W10522, 2011. doi:10.1029/2011WR010685), a concept for coupling laminar compositional single-phase free flow to compositional two-phase porous-medium flow under non-isothermal conditions was presented. In this study, the existing coupling concept is first extended to turbulent free-flow conditions. This includes the interface conditions between a Reynolds-averaged Navier–Stokes free flow using algebraic turbulence models and a Darcy porous-medium flow. Second, eddy viscosity and boundary layer models for a rough interface are integrated into this model concept. Results from laboratory evaporation experiments are used for comparison of the developed model concept. A sensitivity analysis of the evaporation rate and porous-medium quantities on different model setups, boundary conditions, Beavers–Joseph coefficients, and roughness lengths is performed. Results demonstrate how including turbulence, either with eddy viscosity or boundary layer models, affects the evaporation rate. The model concept is able to predict early stage-I and intermediate to later stage-II evaporation rates. Sand-grain roughness concepts are successfully included into the model and show the desired qualitative effect.

Disciplines

Civil and Environmental Engineering | Civil Engineering | Engineering

Publication Date

3-9-2016

Language

English

Comments

© The Author(s) 2016.

Share

COinS