Graduation Semester and Year

2021

Language

English

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Civil Engineering

Department

Civil Engineering

First Advisor

Mohammad Najafi

Abstract

Sanitary sewer pipes infrastructure system in good condition is essential in providing safe conveyance of the wastewater from homes, businesses, and industries to the wastewater treatment plants. For sanitary sewer pipes to deliver the wastewater to the treatment plants, they must be in good condition. Most of the water utilities have aged sanitary sewer pipes. Water utilities inspect sewer pipes to decide which segments of the sanitary sewer pipes need rehabilitation or replacement. The process of inspecting the sewer pipes is described as condition assessment. This condition assessment process is costly and necessitates developing a model that predicts the condition rating of sanitary sewer pipes. The objective of this dissertation is to develop Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) models to predict sanitary sewer pipes condition rating using inspection and condition assessment data. MLR and ANN models are developed from the City of Dallas' data. The MLR model is built using 80% of randomly selected data and validated using the remaining 20% of data. Similarly, the ANN model is trained, validated, and tested. The results of this research reveal that MLR and ANN models are acceptable. The significant physical factors influencing sanitary pipes condition rating include diameter, age, pipe material, and segment length. Soil type is the most important environmental factor that influences sanitary sewer pipes condition rating. The accuracy of the performance of the MLR and ANN is found to be 75% and 85%, respectively. This dissertation contributes to the body of knowledge by developing models to predict sanitary sewer pipes condition rating that enables policymakers and sanitary sewer utilities managers to prioritize the sanitary sewer pipes to be rehabilitated and/or replaced.

Keywords

Prediction model, Sanitary sewer pipes, Condition assessment, Multinomial logistic regression, Artificial neural network

Disciplines

Civil and Environmental Engineering | Civil Engineering | Engineering

Comments

Degree granted by The University of Texas at Arlington

30017-2.zip (3457 kB)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.