Graduation Semester and Year

2015

Language

English

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Civil Engineering

Department

Civil Engineering

First Advisor

Melanie L Sattler

Second Advisor

Michael T Manry

Abstract

A comprehensive neural network daily maximum 8 hour-ozone forecasting model was developed based on five years of data (2010-2014) collected from 50 monitoring sites from the Dallas Fort Worth, Houston-Galveston-Brazoria, Los Angeles, San Joaquin and San Diego regions. This work represents the first neural network developed to forecast ozone in multiple regions, as well as multiple sites in the same region. Previous studies have developed separate neural network models to forecast ozone at each location. Two stages of feature selection were applied to reduce input vector dimension and redundancy. These are Piecewise Linear Orthonormal Floating Search (PLOFS), and Karhunen - Loève Transform (KLT). Two possible approaches for organizing the data were tried. These are a tall file approach and a median file approach. Results showed better performance of the tall file approach. The Multilayer Perceptron (MLP) neural network used in this study showed better prediction performance compared to other existing MLP neural network approaches.

Keywords

Ground level ozone, Artificial neural networks, Feature selection, Forecasting

Disciplines

Civil and Environmental Engineering | Civil Engineering | Engineering

Comments

Degree granted by The University of Texas at Arlington

25445-2.zip (1368 kB)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.