Document Type


Source Publication Title

Proceedings of The American Society for Composites


Our community has a widespread knowledge on the damage tolerance and durability of the composites, developed over the past few decades by various experimental and computational efforts. Several methods have been used to understand the damage behavior and henceforth predict the material states such as residual strength (damage tolerance) and life (durability) of these material systems. Electrochemical Impedance Spectroscopy (EIS) and Broadband Dielectric Spectroscopy (BbDS) are such methods, which have been proven to identify the damage states in composites. Our previous work using BbDS method has proven to serve as precursor to identify the damage levels, indicating the beginning of end of life of the material. As a change in the material state variable is triggered by damage development, the rate of change of these states indicates the rate of damage interaction and can effectively predict impending failure. The Data-Driven Discovery of Models (D3M) [1] aims to develop model discovery systems, enabling users with domain knowledge but no data science background to create empirical models of real, complex processes. These D3M methods have been developed severely over the years in various applications and their implementation on real-time prediction for complex parameters such as material states in composites need to be trusted based on physics and domain knowledge. In this research work, we propose the use of data-driven methods combined with BbDS and progressive damage analysis to identify and hence predict material states in composites, subjected to fatigue loads. [This article appeared in its original form in the "Proceedings of the American Society for Composites—Thirty-sixth Technical Conference. 2021". Lancaster, PA: DEStech Publications, Inc]


Engineering | Materials Science and Engineering

Publication Date