Document Type


Source Publication Title

Journal of Computational Neuroscience


Axonal swellings are almost universal in neurodegenerative diseases of the central nervous system, including Alzheimer’s and Parkinson’s disease. Concussions and traumatic brain injuries can also produce cognitive and behavioral deficits by compromising neuronal morphology. Using a spike metric analysis, we characterize computationally the effects of such axonal varicosities on spike train propagation by comparing Poisson spike train classes before and after propagation through a prototypical axonal enlargement, or focused axonal swelling. Misclassification of spike train classes and low-pass filtering of firing rate activity increases with more pronounced axonal injury. We show that confusion matrices and a calculation of the loss of transmitted information provide a very practical way to characterize how injured neurons compromise the signal processing and faithful conductance of spike trains. The method demonstrates that (i) neural codes encoded with low firing rates are more robust to injury than those encoded with high firing rates, (ii) classification depends upon the length of the spike train used to encode information, and (iii) axonal injuries reduce the variance of spike trains within a given stimulus class. The work introduces a novel theoretical and computational framework to quantify the interplay between electrophysiological dynamics with focused axonal swellings generated by injury or other neurodegenerative processes. It further suggests how pharmacology and plasticity may play a role in recovery of neural computation. Ultimately, the work bridges vast experimental observations of in vitro morpho-logical pathologies with post-traumatic cognitive and behavioral dysfunction. [This is a post-peer-review, pre-copyedit version of an article published in Journal of Computational Neuroscience . The final authenticated version is available online at:]


Mathematics | Physical Sciences and Mathematics

Publication Date




Available for download on Wednesday, January 01, 3000

Included in

Mathematics Commons