Document Type


Source Publication Title

Technical Report 3


Consider the equation (1.1) [see pdf for notation] on a Hilbert space H. Here n is a scalar and [see pdf for notation] is a linear Fredholm operator. That is: (a) L is closed; (b) The domain, D(L) is dense in H; (c) The range, R(L) is closed in H; (d) The dimension of the null space, dim n(L) <= (e) The dimension of the null space of the adjoint dim n(L*) <= The operator N, which may be nonlinear, is defined for sufficiently small and appropriately restricted [see pdf for notation], and [see pdf for notation] Using the method of Lyapunov-Schmidt (cf., e.g. [4] or [5]) we express w in the form (1.2) [see pdf for notation] where [see pdf for notation] denotes the orthogonal complement of n(L) in H. Suppose (u,v) satisfy the simultaneous equations (1.3) [see pdf for notation] (1.4) [see pdf for notation] where P is the orthogonal projection operator of H onto R(L), I is the identity operator on H, and J is a right inverse of L on R(L), i.e.


Mathematics | Physical Sciences and Mathematics

Publication Date




Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.