Document Type


Source Publication Title

Technical Report 328


Let N be a finite set of players, |N| = n; a cooperative TU game in coalitional form is a function v : P(N) -> R, with v(ø) = 0. It is well known that the set of all games with the set of players N, denoted below G(N), is a space of dimension 2n - 1. Let S be any coalition in v E G(N) and denote by G(S) the space of games with the set of players S. If v E G(N), then the restriction of v to S is a game in G(S). To avoid a notation like vs, we shall denote the game v by (N, v), and its restriction to S by (S, v). Denote by GN the union of all spaces G(S), for all [see pdf for notation]. Then, a value on GN is a functional ^ on GN with values in R8 for all w E G(S) and all S C N. In particular, for v E G(N) the value ^ gives s-vectors ^(S, v) for all subgames of v. Obviously, for i E S we have in general ^i (5, v) ^ ^i (N, v) when S N. This agrees with the game theoretic meaning of the value as a payoff: the win of player i in the subgame (S, v) is, in general, different of the win of the same player in the game (N, v), when S N. A value ^ on GN is a linear value if for any game v E G(N) which is a linear combination v = av1 + bv2, with v1, v2 E G(N) and a, b E R, we have for all [see pdf for notation], the equality [see pdf for notation]. We intend to give recursive definitions for the Shapley value (see [13]), the Banzhaf value (see [1] and [10]), the Least Square values (see [12]) and the Semivalues (see [8]). As it will be shown below, the proofs for these characterizations are using different tools, and auxiliary results interesting by themselves.


Mathematics | Physical Sciences and Mathematics

Publication Date




Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.