Document Type


Source Publication Title

Technical Report 135


In this paper we continue our recent development [1] of the theory of fixed point theorems of nonlinear operators whose domain and range are different Banach spaces. In particular we consider the analogues of recent results of Caristi and Kirk [5,6,8] where "inwardness conditions" are used to obtain fixed points. More precisely "inwardness conditions" on a mapping T whose domain K is a proper subspace of its range have been imposed to ensure that T maps points x of K "towards" K. Caristi and Kirk, for example, have considered two different conditions, metrically inward and weakly inward (this is the tangential boundary condition used in studying, for example, differential equations on closed sets [9]). These conditions are much weaker than the simple inwardness condition that T map the boundary of K into K.


Mathematics | Physical Sciences and Mathematics

Publication Date




Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.