Document Type


Source Publication Title

Technical Report 78


In this paper we investigate the theory of parabolic differential inequalities in arbitrary cones. After discussing the fundamental results concerning parabolic inequalities in cones, we prove a result on flow-invariance which is then used to obtain a comparison theorem. This comparison result is useful in deriving upper and lower bounds on solutions of parabolic differential equations in terms of the solutions of ordinary differential equations. We treat the Dirichlet problem in this paper since its theory follows the general pattern of ordinary differential equations and requires less restrictive assumptions. The treatment of Neumann problem, on the other hand, demands stronger smoothness assumptions and depends heavily on strong maximum principle. The study of the corresponding results relative to Newmann problem is discussed elsewhere.


Mathematics | Physical Sciences and Mathematics

Publication Date




Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.