Document Type


Source Publication Title

Technical Report 154


Suppose (X,d) is a metric space, h > 0 and T: X -> X. We shall use the notation T E E(h) to mean [see pdf for notation] for each x,y E X. If h > 1, then T will be called an expanding map. Clearly T E E(h) implies T is a 1-1 function and [see pdf for notation] for each x,y E T(X). In this paper some conditions are found to insure that an expanding map will have a fixed point. It is shown that each finite dimensional Banach space X has the following property: each continuous and expanding map from X into X has a fixed point. It is also shown that not all infinite dimensional Banach spaces have the above property.


Mathematics | Physical Sciences and Mathematics

Publication Date




Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.