Document Type


Source Publication Title

Technical Report 75


Recently there has been a growing interest in the study of nonlinear reaction-diffusion equations [2,3,4,7] because of the fact examples of such equations occur in population genetics [2,5,12,13], nuclear and chemical reactors [2,7,8], conduction of nerve impulses [1,7,15], and several other biological models [1,6,15]. As is the case of ordinary differential equations [9,10], it is natural to expect that the theory of reaction-diffusion inequalities and comparison theorems will play a prominent role in this study. In this paper, we consider reaction-diffusion equations which are weakly coupled relative to an arbitrary cone. We prove a result on flow-invariance which is then utilized to obtain a useful comparison theorem and a theorem on differential inequalities. The results obtained are applied to simple reaction diffusion equations to derive positivity of solutions, upper and lower bounds and stability properties. Finally we demonstrate by means of a simple example that working with a suitable cone other than [see pdf for notation] is more advantageous in the investigation of equations of reaction-diffusion.


Mathematics | Physical Sciences and Mathematics

Publication Date




Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.