Document Type


Source Publication Title

Technical Report 5


It is known [2,3] that in proving uniform boundedness of a differential system by means of Lyapunov functions, it is sufficient to impose conditions in the complement of a compact set in [see pdf for notation], whereas, in the case of equiboundedness, the proofs demand that the assumptions hold everywhere in [see pdf for notation]. We wish to present, in this paper, a new idea which permits us to discuss nonuniform properties of solutions of differential equations under weaker assumptions. Our results will show that the equiboundedness can be proved without assuming conditions everywhere in [see pdf for notation] (as in the case of uniform boundedness), provided we appropriately perturb the Lyapunov functions. Our results also imply that in those situations when the Lyapunov function found does not satisfy all the desired conditions, it is fruitful to perturb that Lyapunov function rather than discard it. We also discuss the corresponding situation relative to equistability. We feel that the idea of perturbing Lyapunov functions introduced in this paper is a useful and important tool in the study of nonuniform properties of solutions as well as the preservation of those properties under constantly acting perturbations and therefore deserves further investigation.


Mathematics | Physical Sciences and Mathematics

Publication Date




Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.