Document Type


Source Publication Title

Technical Report 217


The development of neural population modeling as it relates to psychology is traced from the early 1940s to the present. The evolution of the field has been from descriptions of randomly connected neurons transmitting all-or-none signals to analyses of structured multi-level net-works whose dynamics involve several different spatial and temporal scales. The cybernetic revolution of the 1940s led to the incorporation into digital neural models of such concepts as linear threshold logic, redundant computation. and information. Each of these concepts has more recently been synthesized with learning to generate a set of adaptive neural models. Concurrently, a variety of data from neurophysiology and from experimental psychology suggested models that incorporated continuous and nonlinear effects. Since the late 1960s there has been much activity in the design of rules for modifiable synapses in models of learning or conditioning. There has also been much activity in the design of lateral inhibitory networks that model sensory pattern storage. The development of models of these effects is outlined. together with that of multi-level networks that combine modifiable synapses and lateral inhibitory anatomies. These multilevel networks model such psychological effects as reinforcement attention, coding of feature detectors, and interactions between short-term and long-term memory.


Mathematics | Physical Sciences and Mathematics

Publication Date




Included in

Mathematics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.