Author

Fatma Arslan

ORCID Identifier(s)

0000-0002-2386-9951

Graduation Semester and Year

2021

Language

English

Document Type

Dissertation

Degree Name

Doctor of Philosophy in Computer Science

Department

Computer Science and Engineering

First Advisor

Chengkai Li

Abstract

As social media sites have become major channels for the quick dissemination of news, misinformation has become a significant challenge for our society to tackle. Today fact-checking rests primarily on the shoulders of human fact-checkers who laboriously sift through various trustworthy sources, interview subject experts, and check references before reaching a verdict regarding the degree of truthfulness of a factual claim. Compounded with the speed and scale at which misinformation spreads, the demanding process may leave many harmful factual claims unchecked. In the fight to curb the spread of misinformation, researchers from various disciplines have come forward to assist fact-checkers by creating several automated fact-checking tools and apps. In this dissertation, we focus on studying factual claims and make the following contributions to assist the automated fact-checking efforts: (1) Understanding a factual claim and parsing the content of the claim to extract its attributes are challenging. We propose a way to represent claims in a structured format to capture various aspects of claims, such as entities involved, their relationships, quantities, points and intervals in time, comparisons, and aggregate structures. We use semantic frames for the representation of factual claims. We create a set of new semantic frames, a dataset of frame-annotated claims, and a publicly available web-based annotation tool. (2) To verify a factual claim over a relational database, it is necessary to translate it into a SQL query. However, automatically translating claims to SQL queries is hard. We conduct a preliminary investigative study: (a) to reveal challenges in claim translations and (b) to assess the efficacy of applying a state-of-the-art text-to-SQL parser in translation. (3) The problem of unchecked claims is exacerbated on social media. We build ClaimPortal, a web-based platform that enables users to monitor, search, and check English factual claims on Twitter. We further demonstrate a semantic-frame-based model to categorize tweets based on the type of factual claims they promote. (4) One of the critical components in the fact-checking process is automatically assessing the check-worthiness of a piece of information. It is crucial to have a carefully annotated ground-truth dataset that can feed a machine-learning algorithm to predict the check-worthiness of a statement. To bridge this gap, we create a large dataset of claims from all U.S. presidential debates (1960 to 2016) along with the human-annotated check-worthiness label.

Keywords

Modeling factual claims, Fact-checking, Frame semantic

Disciplines

Computer Sciences | Physical Sciences and Mathematics

Comments

Degree granted by The University of Texas at Arlington

30765-2.zip (2967 kB)

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.