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Abstract 
 

 

Thermal management and energy storage problems often utilize extended surfaces, also known 

as fins for enhanced heat transfer. Today fins are used in a wide range of devices including but 

not limited to microelectronic components and large heat exchanger. Traditional fins as well as 

porous fins with flow orthogonal to fin direction have been subject of past research. There is very 

few academic literature available on porous fins with pressure driven flow along fin direction. 

While thermal conduction is usually the dominant mode of heat transfer in a solid fin, the use of 

porous fins that include advective thermal transport due to porous fluid flow has also been 

investigated. In particular, the steady state and transient thermal performance of a porous fin with 

pressure-driven radially outwards flow has been studied. It is shown that the transient temperature 

field in the fin is governed by a convection-diffusion-reaction (CDR) equation, the solution for 

which is based in the form of Bessel functions. Fin performance is classified for both steady state 

as well as transient cases with the help of various performance parameters. The steady state case 

shows that thermal properties of the fin as well as ambient convective conditions strongly impact 

the relationship between fin porosity and fin performance. While in some cases, it is found that 

an optimum porosity exists that maximizes heat removal, in other cases, the use of a porous fin is 

found to be not desirable at all. The analysis presented here helps fully understand these trade-

offs and provides useful guidelines for porous fin design for maximum heat removal. Since fin 

porosity improves advective thermal transport but suppresses diffusive transport at different rates 

at different times, therefore, it is shown that the impact of fin porosity on heat removal rate 

depends on the total time over which the fin operates. Consequently, it is important to consider 

transient effects in determining whether the use of a porous is beneficial at all, and, if so, the 
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optimal fin porosity. This work contributes towards porous fin theory and offers practical design 

guidelines for improving and optimizing the performance of porous fins. 
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CHAPTER 1: INTRODUCTION  

Fins play a crucial role in enhancing heat transfer and energy storage in various engineering 

devices and systems. While conventional fins are typically composed of non-porous materials, 

recent studies have investigated porous fins with natural convection porous flow perpendicular to 

the fin direction. However, there is a lack of research on porous fins with fluid flow occurring 

along the direction of the fin. In such fins, porosity can potentially improve advective heat removal 

by increasing the flow rate, but it may also hinder conductive heat removal by reducing the 

effective thermal conductivity. Thus, a comprehensive analysis of the thermal performance of 

such porous fins is warranted. 

This thesis presents a solution for the steady-state and transient temperature distribution in a 

porous fin with advection along the fin direction. The temperature distribution in such a fin is 

governed by a convection-diffusion-reaction equation, and a solution is derived in the form of 

modified Bessel functions of non-zero order. Two distinct parameters are introduced to 

characterize the performance of porous fins and derived accordingly. The analysis reveals that the 

thermal properties of the fin and the convective conditions in the surrounding environment 

strongly influence the relationship between fin porosity and fin performance. 

The results demonstrate that, in certain cases, an optimum porosity exists that maximizes heat 

removal. However, in other scenarios, the use of a porous fin may not be desirable at all. This 

analysis provides valuable insights into the trade-offs associated with porous fin design and offers 

practical guidelines for achieving maximum heat removal through porous fins. 
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By combining the transient thermal analysis of a porous fin with radial porous fluid flow and the 

steady-state temperature distribution in a porous fin with advection along the fin direction, this 

work contributes to the understanding of porous fin theory and provides comprehensive design 

guidelines for improving the transient and steady-state performance of porous fins in thermal 

management and energy storage applications. 
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CHAPTER 2: STEADY STATE THERMAL ANALYSIS 
OF A POROUS FIN WITH RADIALLY OUTWARDS 

FLUID FLOW 

 

Problem Definition  

The problem of interest in this work pertains to heat removal from the outer wall of a hot 

cylindrical body by a radial fin. The fin is made of a porous material that permits radially outwards 

fluid flow from the wall towards the tip, as shown schematically in Fig. 1 (a). The lateral surfaces 

of the fin are assumed to be sealed, so that only radially outwards porous flow is possible. The 

hot cylindrical body is assumed to be hollow and thin walled, and carrying a fluid within, so that 

a pressure difference between the inside of the cylindrical body and the tip of the fin results in 

radially out- wards fluid flow through the fin material.  

Heat transfer in the porous fin described above occurs both due to diffusion in the solid and due 

to advection by fluid flow through the pores of the porous material. This is in contrast with 

traditional non-porous fins, in which diffusion is the only heat transfer mechanism within the fin. 

Note that the radial porous fin configuration being analyzed here is distinct from previously 

studied porous fin configurations, in which, buoyancy-driven fluid flow occurs in a di- rection 

orthogonal to the fin direction [7, 8, 12 ,13], as opposed to advection-driven flow along the fin in 

the present work.  

The interest here is to derive expressions for the steady state temperature distribution in the porous 

fin and thus determine its heat transfer performance. Understanding the contributions of diffusion 
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and advection towards overall heat removal may help identify scenarios where such a porous fin 

may be particularly effective or ineffective.  

The inner and outer radii of the fin are 𝑅! and, where L is the fin length. The height of the fin is 

w. Uniform porosity and permeability of the fin material are denoted by φ and κ, respectively. 

Thermal conductivity, density and heat capacity of the fluid are taken to be 𝑘", 𝜌"and 𝑐", 

respectively. A similar nomenclature is followed for solid component of the fin, with subscripts.  

 
Figure 1.(a) Schematic of the geometry of a porous radial fin with outwards, pressure-driven flow 
through the pores of the fin material, (b) Schematic of energy balance for an infinitesimal element 
of the porous fin, showing advective and diffusive transport through the fin as well as convective 
heat loss to the surrounding medium. 

 

Fluid viscosity is denoted by μ. The effective thermal conductivity of the porous medium is taken 

to be 𝑘#"". The pressure difference between the base (𝑟 = 𝑅!) and tip (𝑟 = 𝑅! + 𝐿)  of the fin is 

taken to be Δ𝑝. Temperature at the base of the fin is denoted by 𝑇$ . Freestream temperature of 

the medium surrounding the fin is taken to be 𝑇%. Thermal interactions between the outer surface 

of the fin and the surrounding ambient are assumed to be represented by a convective heat transfer 

coefficient ℎ&'(. In addition, a convective heat trans- fer coefficient h tip along with an external 
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freestream temperature 𝑇%, 𝑡𝑖𝑝 is assumed at the tip of the fin. Note that in many cases, 𝑇%, 𝑡𝑖𝑝  = 

𝑇%, although this assumption is not needed/made in this work.  

A number of other assumptions are made in order to carry out a thermal analysis of a porous fin. 

Axisymmetry of the temperature field is assumed. The velocity field is assumed to be only radial, 

as the fin surfaces are sealed to prevent fluid leakage normal to the fin direction. All transport 

properties are assumed to be independent of temperature. Radiative heat transfer and natural 

convection effects around the fin are neglected, due to a reasonably small temperature difference 

between the fin base and ambient. Note that radiative effects may be modeled approximately by 

an effective heat transfer coefficient [25], but this is not investigated in de- tail in the present 

work. The porous flow is assumed to be Newtonian and laminar, and, therefore, governed by the 

Darcy equation. A constant permeability is assumed. Based on these assumptions, a governing 

differential equation for the radial temperature distribution in the porous fin may be derived by 

considering energy conservation in an infinitesimal element at radial location r and of radial 

dimension dr. As shown in Fig. 1 (b), thermal energy flows in and out of this element include 

thermal conduction, advection due to radial fluid flow and heat loss/gain from the ambient due to 

the imposed convective heat transfer coefficient. By carrying out a balance between these energy 

flow terms in steady state, the following governing energy equation may be derived [1, 2]:  

𝑘#""
𝑟

𝜕
𝜕𝑟 E𝑟

𝜕𝑇
𝜕𝑟F −

𝜙𝜌"𝑐"
𝑟

𝜕
𝜕𝑟
(𝑟 ∙ 𝑇 ∙ 𝑈(𝑟)) −

ℎ
𝑤
(𝑇 − 𝑇%) = 0 (1) 

where T(r) and U(r) are the temperature and velocity fields, respectively, within the porous fin. 

𝑘#"" is the effective thermal conductivity of the medium that accounts for thermal conduction 
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through both solid and fluid constituents. Compared to the standard fin equation [1], Eq. (1) 

contains an additional term that models advective thermal transport.  

Appendix A shows that, based on the Darcy equation for porous flow in radial coordinates, the 

radial velocity field in the porous fin is given by  

𝑈(𝑟) =
Κ ∙ Δ𝑝

𝜇 ∙ ln P𝑅! + 𝐿𝑅!
Q ∙ 𝑟

 (2) 

The 1/r dependence of the velocity field above is consistent with the requirement of mass 

conservation as the fluid flows radially outwards.  

The two boundary conditions associated with Eq. (1) are  

𝑇 = 𝑇$ (𝑟 = 𝑅!) (3) 

−𝑘#""
𝜕𝑇
𝜕𝑟 = ℎ&'(R𝑇 − 𝑇%,&'(S 

(𝑟 = 𝑅! + 𝐿) (4) 

The following non-dimensional variables and parameters are introduced:  
 

𝜉 =
𝑟
𝑅!
; 𝜃 =

𝑇 − 𝑇%
𝑇$ − 𝑇%

; 𝐴̅ =
Κ ∙ 𝜌"𝑐" ∙ Δ𝑝 ∙ 𝜙

𝜇 ∙ ln P𝑅! + 𝐿𝑅!
Q 𝑘#""

; 𝐵W =
ℎ𝑅!*

𝑘#""𝑤
;	𝐿W =

𝐿
𝑅!
; 𝐵𝑖&'(

=
ℎ&'(𝑅!
𝑘#""

; 	𝜃%,&'( =
𝑇%,&'( − 𝑇%
𝑇$ − 𝑇%

; 	𝑤Y =
𝑤
𝑅!

 

(5) 

Note that based on definitions above, 𝐴̅ may be interpreted as the ratio of advective and diffusive 

transport, i.e., a Péclet number [10]. Similarly, 𝐵W  is the ratio of the term representing heat removal 
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to the ambient and diffusive thermal transport term [1, 26], similar to the Damköhler number that 

appears in mass transfer problems [27].  

Inserting the form of the velocity field from Appendix A as well as the non-dimensional variables 

from Eq. (5) into the governing equation given by Eq. (1) results in the following non-dimensional 

governing energy conservation for the temperature field in the fin  

1
𝜉
𝜕
𝜕𝜉 E𝜉

𝜕𝜃
𝜕𝜉F −

𝐴̅
𝜉
𝜕𝜃
𝜕𝜉 − 𝐵

W𝜃 = 0 (6) 

This is a Convection-Diffusion-Reaction (CDR) equation that ap- pears in several other heat and 

mass transfer problems including drug delivery [26], reactor engineering [28] and pollution 

dispersion problems [29]. The non-dimensional boundary conditions as- sociated with this 

equation are given by  

𝜃 = 1 (𝜉 = 1) (7) 

−
𝜕𝜃
𝜕𝜉 = 𝐵𝑖&'(R𝜃 − 𝜃%,&'(S 

(𝜉 = 1 + 𝐿W) (8) 

Solution of the Problem  

In order to solve Eq. (6), one may substitute θ(ξ) = ξ
!"
#  φ(ξ), which can be shown to result in the 

following equation for φ:  
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𝜉*
𝜕*𝜙
𝜕𝜉* + 𝜉

𝜕𝜙
𝜕𝜉 − [𝐵

W𝜉* +
𝐴̅*

4 ]𝜙 = 0 (9) 

which is the modified Bessel equation [30]. Therefore, a solution for the temperature distribution 

may be written as  

 

𝜃(𝜉) = 𝜉+̅ *⁄ ^𝑐.𝐼+̅ *⁄ P`𝐵W𝜉Q + 𝑐*𝐾+̅ *⁄ P`𝐵W𝜉Qa	 (10) 

 
where 𝐼 and 𝐾 refer to modified Bessel functions of the first and second kind, respectively. 𝐴̅/2 

is the order of the modified Bessel functions. 𝑐. and 𝑐* are constants to be determined from the 

boundary conditions. 

Inserting equation (9) into the boundary conditions given by equations (7) and (8) results in the 

following two linear algebraic equations in 𝑐. and 𝑐* 

 

𝑐.𝐼+̅/* P`𝐵WQ + 𝑐*𝐾+̅/* P`𝐵WQ = 1 (10) 

`𝐵W(1 + 𝐿W)+̅/* c`𝐵W d𝑐.𝐼+̅
*0.

E`𝐵W(1 + 𝐿W)F − 𝑐*𝐾+̅
*0.

E`𝐵W(1 + 𝐿W)Fe

+ 𝐵𝑖&'( d𝑐.𝐼+̅
*
E`𝐵W(1 + 𝐿W)F + 𝑐*𝐾+̅

*
E`𝐵W(1 + 𝐿W)Fef

= 𝐵𝑖&'(𝜃%,&'( 

(11) 

from where, 𝑐. and 𝑐* may be determined as follows 
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𝑐$ =
−$𝐵&𝐾%̅

'($
($𝐵&(1 + 𝐿&). + 𝐵𝑖)*+𝐾%̅

'
($𝐵&(1 + 𝐿&). − 𝜃∞,𝑡𝑖𝑝𝐵𝑖)*+(1 + 𝐿&)(

%̅
'𝐾%̅

'
0$𝐵&1

−$𝐵& 2𝐾%̅
'($

($𝐵&(1 + 𝐿&). 𝐼%̅
'
0$𝐵&1 + 𝐼%̅

'($
($𝐵&(1 + 𝐿&).𝐾%̅

'
0$𝐵&13 + 𝐵𝑖)*+ 2𝐾%̅

'
($𝐵&(1 + 𝐿&). 𝐼%̅

'
0$𝐵&1 − 𝐼%̅

'
($𝐵&(1 + 𝐿&).𝐾%̅

'
0$𝐵&13

 

	

(12) 

 

And 

𝑐' =
$𝐵&𝐼%̅

'($
($𝐵&(1 + 𝐿&). + 𝐵𝑖)*+𝐼%̅

'
($𝐵&(1 + 𝐿&). − 𝜃∞,𝑡𝑖𝑝𝐵𝑖)*+(1 + 𝐿&)(

%̅
'𝐼%̅
'
0$𝐵&1

$𝐵& 2𝐼%̅
'($

($𝐵&(1 + 𝐿&).𝐾%̅
'
0$𝐵&1 + 𝐾%̅

'($
($𝐵&(1 + 𝐿&). 𝐼%̅

'
0$𝐵&13 + 𝐵𝑖)*+ 2𝐼%̅

'
($𝐵&(1 + 𝐿&).𝐾%̅

'
0$𝐵&1 − 𝐾%̅

'
($𝐵&(1 + 𝐿&). 𝐼%̅

'
0$𝐵&13

 

	

(13) 
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This completes the solution for the fin temperature field.  

Note that the effective thermal conductivity 𝑘#"" appearing in equation (1) combines thermal 

conduction in both solid and fluid constituents of the porous fin. In general, 𝑘#"" depends on the 

porosity of the medium. While a number of theoretical models are available to compute 𝑘#"", in 

the present work, it is computed simply as the weighted average of thermal conductivities of the 

solid and fluid constituents, i.e., 

 
𝑘#"" = (1 − 𝜙)𝑘5 + 𝜙𝑘" (10) 

where 𝑘5 and  𝑘" are the thermal conductivities of the solid and fluid, respectively. 
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Figure 2. An approximate schematic of the thermal resistance network of the porous fin showing 
conductive and advective heat removal from the base, followed by dissipation into the ambient 
through the fin surface and fin tip. 

 

In order to help understand the relative role of advective and conductive heat removal 

mechanisms, as well as the influence of various problem parameters, heat transfer in this problem 

may be represented approximately by a thermal resistance network of the porous fin shown in 

Fig. 2. Heat from the base is removed by the fin through conduction and advection, which are 

distinct mechanisms that operate in parallel as represented by the resistances R cond and R adv in 

conductive and advective heat removal from the base, as well as dissipation into the ambient 

through the fin surface and fin tip. 
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Fin Performance Parameters 

A number of performance parameters are commonly used to compare the rate of heat removal by 

the fin with idealized and baseline cases [1]. In the present porous fin analysis, two specific cases 

are of interest. Firstly, performance of the porous fin may be compared with a baseline case with 

no fin at all, in which case, heat removal occurs purely due to convective heat transfer directly 

from the base of the fin into the ambient. Another interesting comparison is between heat removal 

by the porous fin with a comparable non-porous fin. This may help understand the impact of 

porosity of the fin material and subsequent pressure-driven flow on heat removal. 

In order to carry out such comparisons, the heat removal rate from the porous fin must be 

determined first. Heat is removed from the base of the fin due to both diffusion and advection. 

Thus, the heat removal rate may be written as 

𝑞 = d−𝑘#"" E
𝜕𝑇
𝜕𝑟F678,

+ 𝜙𝜌"𝑐" ∙ U(𝑅!)(𝑇$ − 𝑇%)e2𝜋𝑅!𝑤 (16) 

 Thus, a non-dimensional heat removal rate may be defined as follows 

𝑞" =
𝑞

𝑘𝑒𝑓𝑓(𝑇% − 𝑇&)2𝜋𝑤
= −+

𝜕𝜃
𝜕𝜉/'()

+ 𝐴̅

= −3𝐵" 5𝑐)𝐼*̅
,-)

83𝐵"9 − 𝑐,𝐾*̅
,-)

83𝐵"9; + 𝐴̅ 

(17) 

where the first and second terms represent conductive and advective heat transfer rates, 

respectively. 
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Comparison with no fin case 

The ratio of heat removed by the fin and heat removed without the fin is usually referred to as the 

fin effectiveness [1]. In the present case, the rate of heat removed without the fin is simply 

ℎ(𝑇$ − 𝑇%)2𝜋𝑅!𝑤. Using this in conjunction with Equation (16), the following expression for 

fin effectiveness may be obtained 

𝜂 =
1
𝑤Y𝐵W

[−E
𝜕𝜃
𝜕𝜉F;7.

+ 𝐴̅] =
1
𝑤Y𝐵W

i𝐴̅ − `𝐵W d𝑐.𝐼+̅
*0.

P`𝐵WQ − 𝑐*𝐾+̅
*0.

P`𝐵WQej (18) 

 For a well-designed fin, 𝜂 must be larger than one, since the fin is expected to remove more 

heat than would be removed without it. 

4.2. Comparison with non-porous fin case 

In order to quantify the benefit of porous flow in the fin, one may define a porous fin effectiveness, 

𝜂(<6<=5 by comparing the heat removed by the porous fin with heat removed by a comparable 

non-porous fin of the same dimensions and in the same conditions. 𝜂(<6<=5 quantifies whether it 

is beneficial to replace a solid fin with a porous fin under the same operating conditions. On one 

hand, compared to the non-porous fin, the porous fin offers greater heat removal due to advection 

along with the radially outwards porous fluid flow. However, it may also suffer from reduced heat 

removal by conduction down the fin due to the expected reduction in effective thermal 

conductivity of the fin compared to that of the baseline non-porous fin. 
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In order to understand which of these effects may dominate, one may compute the heat removed 

by a non-porous fin using the results presented here, but with 𝐴̅ = 0 and using thermal 

conductivity of the solid material instead of the effective thermal conductivity. By doing so, the 

following expression for the porous fin effectiveness may be derived. 

𝜂(<6<=5 =
𝑘#""
𝑘5

𝐴̅ − `𝐵W d𝑐.𝐼+̅
*0.

P`𝐵WQ − 𝑐*𝐾+̅
*0.

P`𝐵WQe

−`𝐵5WWW E𝑐.,5𝐼. P`𝐵5WWWQ − 𝑐*,5𝐾. P`𝐵5WWWQF
 (19) 

where 𝐵W5 =
>8,#

?-@
 and 𝑘5 refers to thermal conductivity of the solid material. The coefficients 𝑐.,5 

and 𝑐*,5 are obtained from the boundary conditions corresponding to the zero-advection non-

porous fin problem, i.e., by setting 𝐴̅ = 0 and 𝐵W = 𝐵W5 in Equations (13) and (14). 

𝜂 and 𝜂(<6<=5 defined above are important fin performance metrics that characterize how well the 

porous fin performs compared to cases without a fin at all and with a comparable but non-porous 

fin. While 𝜂 represents how well the porous fin performs compared to no fin at all, 𝜂(<6<=5 governs 

whether the porous fin is better than an equivalent non-porous fin. These parameters also help 

understand the impact of various problem parameters, such as porosity on fin performance. 
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Special Cases 

Special cases for transport conditions 

The general problem solved in Section 2 accounts for both conduction and advection driven heat 

transfer down the fin. While both mechanisms may be important in general, two special cases in 

which one or the other mechanism dominates may be of interest in specific applications. 

Negligible diffusion 

In certain cases, diffusion may be negligible compared to advection, for example when the flow 

velocity is relatively large. In order to model this special case, the first term on the left hand of 

the governing equation, given by Equation (6) may be neglected. This results in the following 

simplified governing equation 

𝐴̅
𝜉
𝜕𝜃
𝜕𝜉 + 𝐵

W𝜃 = 0 (20) 

As expected, in the absence of diffusion, the governing equation becomes a first-order differential 

equation, for which, only the upstream boundary condition (𝜃 = 1 at 𝜉 = 0) is needed. The 

solution for the temperature distribution in the fin is given by 

𝜃(𝜉) = exp [−
𝐵W
𝐴̅
𝜉*] (21) 

 which is indeed the solution for a pure-advection problem [26]. 
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Note that 𝐵W/𝐴̅ =
>8,#∙B∙CDE

.,/0
.,

F

G∙H1I1∙J(∙K∙@
, i.e., thermal conductivity of the fin does not appear in the 

expression for the temperature distribution. This is to be expected since diffusion is assumed to 

be negligible in this special case. 

Negligible advection 

The other extreme scenario of potential interest is where advection is small or negligible. In such 

a case, the second term on the left hand of the governing energy equation may be neglected. This 

results in  

1
𝜉
𝜕
𝜕𝜉 E𝜉

𝜕𝜃
𝜕𝜉F − 𝐵

W𝜃 = 0 (22) 

which is indeed the standard governing equation for a purely diffusive fin. A general solution for 

this problem obtained by setting 𝐴̅ = 0 in the general solution, Equation (10) is 

𝜃(𝜉) = ^𝑐.𝐼! P`𝐵W𝜉Q + 𝑐*𝐾! P`𝐵W𝜉Qa (23) 

which matches with the standard solution for this pure-diffusive problem [1].. The constants 

appearing in Equation (23) may be obtained using boundary conditions, similar to the general case 

considered in Section 2. For example, for an adiabatic tip, one may derive 

𝜃(𝜉) =
𝐾1 P√𝐵W(1 + 𝐿 ̅)Q 𝐼! P`𝐵W𝜉Q + 𝐼1 P√𝐵W(1 + 𝐿̅)Q𝐾! P`𝐵W𝜉Q

𝐾1 P√𝐵W(1 + 𝐿 ̅)Q 𝐼0R√𝐵WS + 𝐼1 P√𝐵W(1 + 𝐿̅)Q 𝐾0R√𝐵WS
 (24) 
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Tip boundary special cases 

While the model presented in Section 2 assumes general convective boundary conditions at the 

tip, including a general tip ambient temperature, depending on the specific conditions encountered 

in a problem, a number of simplifications may be considered. 

A commonly encountered special case is that of an adiabatic tip. This may be relevant, for 

example, when heat transfer at the tip may be negligible due to the small tip area, or because the 

fin is very long. In either case, temperature distribution in the fin may be obtained by setting 

𝐵𝑖&'( = 0 in Equations (10), (13) and (14), resulting in 

𝜃(𝜉) = 𝜉+̅/*
𝐾𝐴̅
2
−1
P√𝐵W(1 + 𝐿 ̅)Q 𝐼+̅/* P`𝐵W𝜉Q + 𝐼𝐴̅

2
−1
P√𝐵W(1 + 𝐿̅)Q 𝐾+̅/* P`𝐵W𝜉Q

𝐾𝐴̅
2
−1
P√𝐵W(1 + 𝐿 ̅)Q 𝐼𝐴̅

2

R√𝐵WS + 𝐼𝐴̅
2
−1
P√𝐵W(1 + 𝐿 ̅)Q 𝐾𝐴̅

2

R√𝐵WS
 (25) 

While the adiabatic tip excludes any heat transfer at the tip, the opposite, best-case scenario for 

heat transfer at the tip arises when the tip is specified to be at a certain temperature 𝜃%,&'(. Results 

for this case may be obtained by setting 𝐵𝑖&'( → ∞ in Equations (10), (13) and (14), which results 

in 

𝜃(𝜉) = 𝜉%̅/'
2𝐾%̅

'
($𝐵&(1 + 𝐿&). − 𝜃3,)*+𝐾%̅

'
0$𝐵&13 𝐼%̅/' 0$𝐵&𝜉1 − 2𝐼%̅

'
($𝐵&(1 + 𝐿&). − 𝜃3,)*+𝐼%̅

'
0$𝐵&13 𝐼%̅/' 0$𝐵&𝜉1

𝐾%̅
'
($𝐵&(1 + 𝐿&). 𝐼%̅

'
0$𝐵&1 − 𝐼%̅

'
($𝐵&(1 + 𝐿&).𝐾%̅

'
0$𝐵&1

 

(26) 
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Finally, in many scenarios, the freestream temperature associated with the convective boundary 

condition at the tip is the same as the ambient temperature, i.e., 𝜃%,&'( = 0. In such a case, 

temperature distribution in the fin further simplifies to 

𝜃(𝜉) = 𝜉+̅/*
𝐾+̅
*
E`𝐵W(1 + 𝐿W)F 𝐼+̅/* P`𝐵W𝜉Q − 𝐼+̅

*
E`𝐵W(1 + 𝐿W)F 𝐼+̅/* P`𝐵W𝜉Q

𝐾+̅
*
E`𝐵W(1 + 𝐿W)F 𝐼+̅

*
P`𝐵WQ − 𝐼+̅

*
E`𝐵W(1 + 𝐿W)F 𝐾+̅

*
P`𝐵WQ

 (27) 

Expressions for fin performance parameters, including heat removal rate, fin effectiveness and 

porous fin effectiveness can be simplified similarly. 

Results and Discussion 

Impact of 𝐴̅ and 𝐵W  on fin temperature distribution 

𝐴̅ and 𝐵W  are the two key non-dimensional parameters that appear in the governing energy equation, 

and consequently in the expressions for temperature distribution and fin performance parameters. 

𝐴̅ represents heat advection due to the radial porous flow in the fin driven by the imposed pressure 

gradient, relative to diffusive heat flow, and thus, is a Péclet number. On the other hand, 𝐵W  

represents the rate of heat loss from the fin surface to the surrounding, also relative to diffusive 

heat flow, and is similar to the Damköhler number in mass transfer analysis. It is pertinent to 
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examine the impact of these key non-dimensional parameters on the fin temperature distribution 

and fin performance. 

 

Figure 3. Impact of 𝐴̅: (a) fin temperature distribution for multiple values of 𝐴̅, (b) heat transfer 
rate 𝑞W as a function of 𝐴̅.  

Figure 3 examines the impact of 𝐴̅. A number of temperature distribution curves for different 

values of 𝐴̅ are plotted in Figure 3(a). The values of other parameters are 𝐵W = 2.5, 𝐿W = 3.0, 𝑤Y =

0.5, 𝐵𝑖&'( = 0.5 and	𝜃%,&'( = 0.0. For comparison, the zero advection curve corresponding to a 

non-porous fin is also plotted. Figure 3(a) shows that the fin temperature curves shift upwards 

with increasing value of 𝐴̅, which can be attributed to greater heat removal down the fin at large 

𝐴̅ due to advection, which increases the fin temperature in general. The curves for various values 

of 𝐴̅ approach the limiting case of the traditional non-porous fin as 𝐴̅ decreases. Note that in each 

case, as expected, the temperature at the fin base (𝜉 = 1) has a value of 1, whereas the magnitude 

and gradient of the temperature distribution at the fin tip, 𝜉 = 1 + 𝐿W, is determined by the 

convective boundary condition at the tip. 
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The impact of 𝐴̅ on fin performance is further shown in Figure 3(b), in which the total heat 

removed by the fin, Equation (17), is plotted as a function of 𝐴̅. Even though conductive heat 

removal decreases with increasing 𝐴̅, as evidenced by the decreasing slope of temperature plots 

at the base seen in Figure 3(a), yet, the increased advective heat transfer at large 𝐴̅ results in 

increasing total heat removed with increasing 𝐴̅.  

Note that several dimensional parameters and properties contribute towards 𝐴̅, as defined in 

Equation (5). For example, increasing the permeability or pressure gradient, reducing the viscosity 

or reducing the fin length relative to its radius all contribute towards increasing 𝐴̅, and thus 

improving fin performance. Note that the fin porosity impacts fin performance in a more 

complicated manner, because while 𝐴̅ increases with increasing fin porosity, it also reduces the 

effective thermal conductivity 𝑘#"", thereby affecting other non-dimensional parameters such as 

𝐵W  too. This is examined in more detail in a later sub-section. 

 

Figure 4. Impact of 𝐵W: (a) fin temperature distribution for multiple values of 𝐵W , (b) heat transfer 
rate 𝑞W as a function of 𝐵W .  
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In contrast with 𝐴̅, which represents advective cooling, 𝐵W  represents heat removal due to 

convective heat transfer from the fin surface to the surrounding ambient. The impact of 𝐵W  on fin 

temperature distribution and heat removal is investigated in Figure 4. Fin temperature curves for 

multiple values of 𝐵W  are plotted in Figure 4(a), whereas total heat removal is plotted as a function 

of 𝐵W  in Figure 4(b). All other problem parameters are the same as Figure 3, along with 𝐴̅ = 2.5. 

As expected, the larger the value of 𝐵W , the greater is the heat removed from the fin, and, therefore, 

the cooler is the fin. Figure 4(a) also shows strong dependence of the slope of the temperature 

curve at the fin base on 𝐵W , which indicates greater heat removal from the base as 𝐵W  increases. This 

is also seen more directly in the heat removal plot in Figure 4(b), where the heat removed by the 

fin is seen to increase with increasing value of 𝐵W . 

Per Equation (5), the key physical quantity that appears in the expression for 𝐵W  is the convective 

heat transfer coefficient around the fin, ℎ. All other parameters being the same, the greater the 

value of ℎ, the greater is the heat removal to surroundings, and therefore, the more effective is the 

fin. This is clearly seen in Figures 4(a) and 4(b). Note that while several other dimensional 

parameters also appear in the expression for 𝐵W , most notably the effective thermal conductivity 

(as well as the porosity that appears within 𝑘#""), these parameters also influence other non-

dimensional numbers. Therefore, the influence of these parameters is analyzed separately in a 

later section. 
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Fin Performance Parameters 

Section 4 defines two key performance parameters of the fin. These parameters represent 

how much heat is removed by the porous fin relative to the no fin case, and relative to a 

comparable non-porous fin. The impact of key non-dimensional numbers appearing in the 

problem – 𝐴̅ and 𝐵W  – on these two parameters is investigated in detail.  

Fin Effectiveness, 𝜂 

 

Figure 5. Fin effectiveness as a function of 𝐵W  for multiple values of 𝐴̅. 

The fin effectiveness, 𝜂 is considered first. As defined in Equation (18), 𝜂 represents heat removal 

by the porous fin relative to the baseline case without any fin at all. Figure 5 plots 𝜂 as the function 
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of the non-dimensional convective heat transfer coefficient 𝐵W . Curves are presented for multiple 

values of 𝐴̅. In each case, fin effectiveness reduces with increasing 𝐵W , rapidly at first, followed by 

a plateau at larger values of 𝐵W . Also, the curves in Figure 5 shift upwards with increasing value 

of 𝐴̅. This is because the larger than value of 𝐵W , the greater is the amount of conductive heat 

removed from the fin. In contrast, 𝐴̅ simply appears as an additional term in the fin effectiveness 

expression given in Equation (18), and, therefore simply shifts the curves upwards. 

The impact of 𝐵W	is also confirmed from Figure 4(a) that shows increasing magnitude of the slope 

of the temperature curve at 𝜉 = 1 at increasing value of 𝐵W . Since convective heat removal is not 

influenced by 𝐵W , this explains the trend in the curves in Figure 5. Further, Figure 4(a) shows that 

the slope of the temperature curve does not change at larger values as rapidly as at smaller values, 

which explains the plateauing out of the curves in Figure 5.  

These results indicate that when the non-dimensional convective heat transfer coefficient is 

relatively large, increasing the advective heat removal, for example, by making the fin more 

porous does not significantly improve fin performance. This is because the rate-limiting step is 

the conductive heat removal from the fin. The impact of porosity on performance of the porous 

fin is likely to be significant when the convective heat removal from the fin surface is not very 

strong, for example, in conditions approaching natural convection around the fin. 

The fin effectiveness plotted in Figure 5 is found to be greater than one throughout the parameter 

space considered here, indicating that more heat is removed by the fin than without, which is 

desirable. It is found that the fin effectiveness flattens out at large values of 𝐵W . This is because 
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when the convective heat transfer coefficient around the fin is very large, then the effect of 

increased surface area of the fin is not very significant any more. 

 

Figure 6. Fin effectiveness as a function of 𝐴̅ for multiple values of 𝐵W .  

In contrast with Figure 5, fin effectiveness is plotted as a function of 𝐴̅ in Figure 6. As expected, 

fin effectiveness increases monotonically with 𝐴̅, which is because 𝐴̅ appears as an independent 

term in the expression of 𝜂, given by Equation (18). As expected, the larger the value of 𝐵W , the 

lower are the effectiveness curves in Figure 6. This is mainly because, as shown and discussed in 

Figure 5, fin effectiveness reduces with increasing 𝐵W . 
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Porous Fin Effectiveness, 𝜂(<6<=5 

 

Figure 7. Porous fin effectiveness as a function of 𝐵W  for multiple values of 𝐴̅.  

The porous fin effectiveness, 𝜂&'(')* which compares performance of the porous fin with that of a 

comparable non-porous fin is considered next. Similar to Figures in the previous sub-section, 𝜂&'(')* 

is plotted as a function of  𝐵W  for multiple values of  𝐴̅ in Figure 7, and as a function of 𝐴̅ for 

multiple values of 𝐵W  in Figure 8. These curves show strong dependence of		𝜂𝑝𝑜𝑟𝑜𝑢𝑠	on 𝐴̅, and 

relatively weaker dependence on 𝐵W , particularly at small 𝐴̅. This is mainly because the key 

difference between the porous fin and the non-porous fin is the porous convective term 𝐴̅. The 

greater the value of 𝐴̅, the greater is the heat removal by the porous fin compared to the non-

porous fin, which is completely unaffected by 𝐴̅. This can also be confirmed mathematically from 
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the expression of 𝑞W, given by Equation (17). Therefore, the porous fin becomes more and more 

attractive compared to the non-porous fin as 𝐴̅ increases. 

 

Figure 8. Porous fin effectiveness as a function of 𝐴̅ for multiple values of 𝐵W .  

In contrast, the porous fin effectiveness is largely independent of 𝐵W , particularly for small values 

of 𝐴̅. This is because when 𝐴̅ is small, there is no particular distinction between the porous and 

non-porous fin, and no particular thermal advantage of the porous fin over the non-porous fin. 

Since 𝐵W  is expected to affect both porous and non-porous fins similarly, therefore, when 𝐴̅ is 

small, the fin performance is not significantly impacted by 𝐵W , and  𝜂&'(')* is close to one, indicating 

that the porous and non-porous fins have nearly the same performance. 
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Effect of porosity: Trade-off between conductive and advective heat removal  

The parallel placement of 𝑅I<LM and 𝑅NMO in the resistance network shown in Figure 2 presents 

interesting trade-offs and opportunities for optimization of fin performance. Specifically, it is of 

interest to examine how these two components change as the porosity of the fin is changed since 

changing the porosity of the fin material is an important design question. In general, increasing 

the porosity is expected to reduce the effective thermal conductivity, per Equation (15), since the 

solid material comprising the fin is likely to have greater thermal conductivity than the fluid. This 

is expected to lead to reduced conductive heat removed by the fin. On the other hand, greater 

porosity also results in greater area available for porous fluid flow, and, thus, greater advective 

heat removal. Mathematically, this can be seen in the 𝐴̅ term that increases with increasing 

porosity due to the 𝜙 and 𝑘#"" terms in the numerator and denominator, respectively, and that 

results in greater fin heat removal, per Equation (5). Moreover, the porosity 𝜙 appearing in the 

advection term in the energy conservation equation given by Equation (1) also shows the 

enhancement in advective heat removal due to increased porosity. The opposing effects of 

porosity on conductive and advective heat removal pose an interesting theoretical question about 

whether an optimal porosity exists that maximizes or minimizes total heat removal. This is also a 

question of much practical relevance, and, therefore, is investigated in more detail. 
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Figure 9. Heat removal rate as a function of fin porosity for a baseline set of design parameters. 
Total heat removed as well as the conductive and advective components are plotted. 

To begin with, heat removed by a representative porous fin is considered. The baseline solid 

material is assumed to be aluminum, and the fluid is assumed to be air, with constant properties 

corresponding to room temperature. Permeability of the fin is taken to be Κ=5.7×10-9 m2. The 

inner radius fin length and fin width are taken to be 𝑅!=5 cm, 𝐿=15 cm and 𝑤=5 cm, respectively. 

The pressure difference driving the porous flow is taken to be ∆𝑝=100 Pa. The convective heat 

transfer coefficient, both around the fin and at the tip is taken to be ℎ=50 Wm-2K-1. Under these 

conditions, Figure 9 presents the total heat removed as well as the conductive and advective 

components as functions of porosity, corresponding to 20 °C temperature difference between the 

base and ambient. As expected from the discussion above, the conductive and advective 
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components of heat removed decrease and increase, respectively, with increasing porosity. While 

the advective component increases nearly linearly, the advective component has a more 

complicated, non-linear reduction. This is because porosity increases the advective term in the 

governing energy equation (𝐴̅) linearly, whereas the impact of porosity on conductive heat transfer 

is more complicated, driven by the slope of the temperature distribution at the base, as given by 

the solution involving modified Bessel functions. Interestingly, in this case, the total heat removed 

changes non-monotonically with porosity and exhibits a maxima at a porosity of around 0.65. 

This shows the importance of careful design of the porous fin, particularly its porosity in order to 

maximize the effectiveness of the fin and the benefit of the porous flow.  

 

Figure 10. Heat removal rate as a function of fin porosity for (a) h=10  𝑊.𝑚0*. 𝐾0. and (b) 
h=150  𝑊.𝑚0*. 𝐾0.. Other parameters are the same as Figure 9. Total heat removed as well as 
the conductive and advective components are plotted. 

Note that the impact of porosity of fin effectiveness is highly complicated due to the number of 

ways in the porosity affects heat removal rate, depending on the values of various problem 

parameters and non-dimensional numbers that appear in the analysis presented above. While an 

optimal porosity is found for the set of parameters considered above, the location of the optimal 
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porosity, or even the existence of an optimal porosity itself is not universal. For example, the 

impact of the convective heat transfer on these curves is examined. Figures 10(a) and 10(b) plot 

the total heat removed as well as the conductive and advective components as functions of 

porosity for ℎ=12 Wm-2K-1 and ℎ=150 Wm-2K-1, respectively. All other parameters remain the 

same. It is found that changing the convective heat transfer coefficient completely changes the 

nature of the heat removal curves. The non-monotonic behavior of total heat removed seen in 

Figure 9 is not seen any longer in Figures 10(a) and 10(b). It is found instead that the total heat 

removed increases (Figure 10(a)) or decreases (Figure 10(b)) monotonically with porosity when 

the convective heat transfer coefficient is lower or higher, respectively, than the value considered 

in Figure 9. This is mainly because increasing ℎ reduces the convective resistance at the fin 

surface, 𝑅5=6", as shown in Figure 2 without impacting the advective resistance 𝑅NMO. As a result, 

more heat is drawn conductively through while the advective component remains the same. As a 

result, the total heat removed becomes dominated by the conductive component, and, thus shows 

a decreasing trend with porosity, as seen in Figure 10(b). A similar explanation may be provided 

for the impact of reducing h on heat removal rates. 

Figure 10 shows that when the convective heat transfer is very small, such as in natural convection 

conditions around the fin, it is best to design the fin to be as porous as possible, within other 

constraints such as structural integrity. On the other hand, as shown in Figure 10(b), under forced 

convective conditions around the fin, having a porous fin is not beneficial at all, since the 

improvement in advective heat removal with increasing porosity is completely overwhelmed by 

the reduction in conductive heat removal as porosity increases.  
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Figure 11. Heat removal rate as a function of fin porosity for (a) Δp=400 Pa and (b) Δp=20 Pa. 
Other parameters are the same as Figure 9. Total heat removed as well as the conductive and 
advective components are plotted. 

As another illustration of the impact of design parameters on how the heat removal rate varies 

with porosity, the same baseline case as Figure 9 is considered again, but with different values of 

the imposed pressure gradient. In contrast with the baseline value of ∆𝑝=100 Pa, Figures 11(a) 

and 11(b) plot heat removal curves as functions of porosity for ∆𝑝=400 Pa and ∆𝑝=20 Pa, 

respectively. It is found that while the greater pressure difference results in a monotonically 

increasing heat removal rate as a function of porosity, the lower pressure difference completely 

reverses the trend, resulting in a monotonically decreasing heat removal rate as a function of 

porosity. This is mainly because changing the pressure difference affects the advective resistance 

𝑅NMO without affecting any other resistances in the problem, thereby making the total heat removal 

more dominant or less dominant by advective or conductive heat removal, respectively, at larger 

or smaller pressure differences. 

Similar to the effect of the convective heat transfer coefficient examined in Figure 10, this analysis 

shows that determining whether a porous fin is beneficial or not and, if so, selecting the best 
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porosity depends strongly on the available pressure difference that drives the porous flow. For 

very large pressure difference, the larger the porosity, the more effective is the fin. In contrast, for 

very small pressure difference, there is no benefit of using a porous fin. 

Whether an optimal value of the porosity exists, and if so, determining that value can be addressed 

by examining the derivative of the total heat removed with respect to the porosity. Differentiating 

equation (16) and setting to zero results in 

Κ ∙ 𝜌"𝑐" ∙ Δ𝑝

𝜇 ∙ ln P𝑅! + 𝐿𝑅!
Q
= R𝑘" − 𝑘5S E

𝜕𝜃
𝜕𝜉F;7.

+ 𝑘#""
𝜕
𝜕𝜙 qE

𝜕𝜃
𝜕𝜉F;7.

r (28) 

The root of equation (28), if one exists between 0 and 1 is the optimal porosity for maximizing 

heat removal by the fin. 

Effect of tip conditions 

Similar to a traditional, non-porous fin, the nature of the convective boundary conditions at the 

fin tip is expected to influence the temperature distribution in the porous fin. The two key non-

dimensional parameters that describe thermal conditions at the fin tip are the tip Biot number 𝐵𝑖&'( 

and tip temperature 𝜃%,&'(. As discussed in Section 3, specific values of these parameters 

transform the general problem considered here into special cases, such as an adiabatic tip or an 

isothermal tip. 
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Figure 12. Effect of fin tip conditions: Fin temperature distribution for (a) multiple values of 
𝐵𝑖&'(, with 𝜃%,&'( = 0.0, (b) multiple values of 𝜃%,&'( with 𝐵𝑖&'( = 1.0. Other problem parameters 
are 𝐴̅ = 2.5, 𝐵W = 0.5, 𝐿W = 3.0 and 𝑤Y = 0.5. 

In order to examine the impact of 𝐵𝑖&'( and 𝜃%,&'( on thermal response of the fin, the fin 

temperature distribution is plotted for multiple values of 𝐵𝑖&'( and 𝜃%,&'( in Figures 12(a) and 

12(b), respectively. Figure 12(a) is plotted for 𝜃%,&'( = 0.0, while Figure 12(b) is plotted for 

𝐵𝑖&'( = 1.0. Other non-dimensional parameters are 𝐴̅ = 2.5, 𝐵W = 0.5,	 𝐿W = 3.0 and	 𝑤Y = 0.5. 

Figure 12(a) shows that for 𝐵𝑖&'( = 0.0, the fin is, in general, the hottest. This, however, does not 

imply greater heat removal, since all curves in Figure 12(a) have nearly the same slope at  𝜉 = 1. 

Note that 𝐵𝑖&'( = 0.0 renders the fin tip adiabatic, resulting in no heat removal from the end of 

the fin, as confirmed by the flat nature of the 𝐵𝑖&'( = 0.0 curve at 𝜉 = 𝐿W. As 𝐵𝑖&'( increases, the 

fin temperature curves shift downwards and the slope at the fin tip becomes larger in magnitude, 

indicating increased heat loss from the fin tip. However, the effect of fin tip conditions does not 

extend throughout the fin, and, in particular, does not influence heat removal from the base.  For 

very large value of 𝐵𝑖&'(, Figure 12(a) shows that the fin tip temperature becomes very close to 

𝜃%,&'(, approaching isothermal fin tip conditions. Note that the tip temperature for both 𝐵𝑖&'( =
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10.0 and 𝐵𝑖&'( = 100.0 curves is close to 𝜃%,&'(, indicating that both values of the Biot number 

are close to isothermal conditions. 

The impact of 𝜃%,&'( is examined in Figure 12(b). In this case, 𝐵𝑖&'( = 1.0, which is a reasonably 

low value. This is the reason why the temperature curves in Figure 12(b) do not reach 𝜃%,&'( at 

the tip. Nevertheless, the lower the value of 𝜃%,&'(, the lower is the temperature curve in general. 

Note that for relatively large value of 𝜃%,&'( = 0.4, the temperature curve actually reaches a 

minima within the fin and then rises towards the fin tip, indicating the some parts of the fin may 

be cooler than the fin tip. This only occurs for large value of 𝜃%,&'(, which is likely unrealistic, 

since the fin tip is unlikely to be hotter than the ambient around the fin. In most cases, the two are 

expected to be the same, and, therefore, 𝜃%,&'( = 0.0 is the most likely scenario. 

Note in both Figures 12(a) and 12(b), changing the tip conditions, i.e., 𝐵𝑖&'( and 𝜃%,&'(, does not 

appreciably change the slope of the temperature at the base of the fin. This indicates the 

conductive heat removed by the fin is largely independent of the tip conditions. Since the 

convective heat removal also does not depend on 𝐵𝑖&'( and 𝜃%,&'(, therefore, under the conditions 

considered here, fin performance is largely independent of the fin tip. This may be because of the 

relatively large length of the fin considered here. For a shorter fin, it can be seen that increasing 

the tip Biot number significantly improves the non-dimensional fin heat removal. 

Conclusions 

The key contributions of this work include the thermal analysis of a radial porous fin in which 

heat removal is aided by radial pressure-driven flow instead of natural convection flow considered 

in past papers, and the identification of key conduction-vs-advection trade-offs in fin design. 
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Under a certain set of parameters, it is shown that there exists a fin porosity that maximizes heat 

removal rate. Under certain other set of parameters, it is shown that a porous fin may not offer 

any benefits at all over a non-porous fin of the same geometry. These insights may be helpful to 

choosing whether to use a porous fin or not in a given heat transfer problem, and if so, the correct 

porosity to choose. 

Non-dimensional curves presented in this work improve the general understanding of extended 

surface heat transfer, particularly in the context of porous fins. Such curves may be useful for the 

general design of heat transfer systems. 

It must be noted that this work analyzes only the heat transfer aspects of a porous fin. A highly 

porous fin is also light-weight. Weight reduction may be desirable for certain applications, but is 

comes at the cost of reduced ability to withstand mechanical loads. For applications where weight 

and load bearing capability are important, such mechanical considerations must also be accounted 

for in fin design and optimization, in addition to the thermal analysis presented here. In addition, 

the pumping power needed to sustain the pressure-driven flow, which is not considered here, may 

be important in certain problems.  

While the porous flow in this work is assumed to be driven by a pressure gradient, other fluid 

flow mechanisms, such as electro-osmotic flow can be easily analyzed within the same framework 

as the one presented here. The present work assumes negligible natural convection of the porous 

fluid within the fin. Radiative effects have also been neglected due to a reasonably small 

temperature difference. Thermal properties of the fin material and fluid are assumed to be 

independent of temperature. Porous fluid flow is assumed to be Newtonian and laminar, and with 

constant permeability. While these assumptions are reasonable for a wide range of applications, 

in other problems, several of these assumptions can potentially be relaxed, in which case, the use 
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of numerical techniques to solve the resulting equations may be necessary. Nevertheless, several 

important trade-offs identified here may persist in such scenarios. 
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CHAPTER 3: TRANSIENT THERMAL MANAGEMENT 
CHARACTERISTICS OF A POROUS FIN WITH 

RADIALLY OUTWARDS FLUID FLOW 

Problem Definition 

Consider the transient thermal transport problem associated with heat removal from a hot, 

constant temperature surface by a porous fin. This problem is defined in cylindrical coordinates, 

in which, a radial fin of constant thickness removes heat from a hot, annular cylinder, as shown 

in the schematic presented in Figure 13(a). In addition to conventional conductive heat removal 

through the fin, its porous nature additionally enables advective heat removal due to radially 

outwards porous flow through the fin. Such a flow could be driven by, for example, a pressure 

gradient between fluid inside the cylinder and the tip of the fin. Other flow mechanisms such as 

electro-osmotic flow may also be possible but are not explicitly considered here. Both conductive 

and advective heat removal mechanisms are closely related to the fin porosity, since porosity 

affects both effective thermal conductivity that drives conductive heat removal, as well as the 

radially outwards flow field that drives advective heat removal. 
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Figure 13. (a) Schematic and (b) Cross-section of a porous fin with pressure gradient driven 
radially outwards flow through the fin that provides an additional mechanism for heat removal 
from the fin base. 

While a previous work has analyzed this problem in steady state [22], there are several practical 

applications where heat transfer by the fin occurs only over a limited time. An example includes 

thermal management of a semiconductor chip or a Li-ion battery, where, in both cases, heat 

generation occurs only for a relatively short period of time, during which, the fin may not reach 

steady state. As another example, fin-based enhancement of latent energy storage in a phase 

change material (PCM) around a hot source is also a transient process, depending on how long 

the hot source, such as solar heat, is available. It is important to develop a transient thermal model 

to predict porous fin performance as a function of time, since previously developed steady state 

models do not address this need. 

A schematic of the porous fin is shown schematically in Figure 13(a), along with a cross-section 

view in Figure 13(b). A transverse radial fin is attached to the outer surface of a hot hollow 

cylinder of radius 𝑅!. The outer radius and width of the fin are 𝑅! + 𝐿 and 𝑤, respectively. The 

fin base is assumed to remain at a fixed temperature 𝑇!. The fin is composed of a porous material 

and sealed on the top and bottom surfaces, so that a pressure gradient driven radially outwards 
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fluid flow in established from the base of the fin, 𝑟 = 𝑅! to its tip 𝑟 = 𝑅! + 𝐿. Along the length 

of the fin, heat loss to the surroundings occurs through convective heat transfer, represented by a 

convective heat transfer coefficient ℎ along with freestream temperature 𝑇%. For generality, 

separate values of convective heat transfer coefficient ℎ&'( and freestream temperature 𝑇%,&'( are 

assumed at the fin tip. Thermal conductivity, heat capacity and density are denoted by 𝑘, 𝑐 and 𝜌, 

respectively, with subscripts 𝑠 and 𝑓 for the solid and fluid components of the fin, respectively. 

Porosity and permeability of the fin material are denoted by 𝜙 and Κ, respectively. The entire fin 

is assumed to be initially at a temperature 𝑇%. For a given time period, the interest is in 

determining the heat removed by the fin through both conductive and advective mechanisms, and 

to develop an understanding of how to design the fin, for example, how to choose the fin porosity 

in order to maximize heat removal over a given time period. Such a performance evaluation of 

the fin first requires determining the transient temperature field in the fin. 

A number of assumptions are made in order to carry out this analysis. The fin is assumed to be 

axisymmetric. All thermal and flow properties, as well as those associated with the porous 

material, such as porosity and permeability are assumed to be constant and uniform. While the 

thermal field is transient, the flow field is assumed to be steady. Assuming the flow field to be 

laminar and Darcian, an expression for the steady velocity field may be derived as follows [22, 

24] 

𝑈(𝑟) =
Κ ∙ Δ𝑝

𝜇 ∙ ln P𝑅! + 𝐿𝑅!
Q ∙ 𝑟

 (1) 

Note that the 1/𝑟 dependence of the velocity field helps conserve mass. 
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Based on the assumptions listed above, the temperature field in the porous is spatially one-

dimensional, in the radial direction only. The general energy conservation equation that governs 

the transient temperature field 𝑇(𝑟, 𝑡) may be written as 

𝑘#""
𝑟

𝜕
𝜕𝑟 E𝑟

𝜕𝑇
𝜕𝑟F −

𝜙𝜌"𝑐"
𝑟

𝜕
𝜕𝑟
(𝑟 ∙ 𝑇 ∙ 𝑈(𝑟)) −

ℎ
𝑤
(𝑇 − 𝑇%) = 𝜌"𝑐"

𝜕𝑇
𝜕𝑡  (2) 

where the three terms on the left hand side represent diffusion, advection and convective heat 

removal, respectively, in an infinitesimal fin element. The boundary conditions and initial 

condition for the temperature field are 

𝑇 = 𝑇$ (𝑟 = 𝑅!) (3) 

−𝑘#""
𝜕𝑇
𝜕𝑟 = ℎ&'(R𝑇 − 𝑇%,&'(S 

(𝑟 = 𝑅! + 𝐿) 

(4) 

𝑇 = 𝑇% (𝑡 = 0) (5) 

where 𝑘#"" is the effective thermal conductivity of the porous medium. In general, 𝑘#"" may be 

obtained based on an appropriate average of the solid and fluid thermal conductivities, in which, 

the porosity plays a key role. A commonly used weighted average based on porosity, i.e., 𝑘#"" =

𝜙𝑘" + (1 − 𝜙)𝑘5 [24] is adopted in this work.  

In order to simplify this problem and to ensure the generality of the solution derived, it is cast in 

non-dimensional form using the following variables and parameters: 
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𝜉 =
𝑟
𝑅!
; 𝜏 =

𝑘#""𝑡
𝜌"𝑐"𝑅!*

; 𝜃 =
𝑇 − 𝑇%
𝑇$ − 𝑇%

; 𝐴̅ =
Κ ∙ 𝜌"𝑐" ∙ Δ𝑝 ∙ 𝜙

𝜇 ∙ ln P𝑅! + 𝐿𝑅!
Q 𝑘#""

; 𝐵W =
ℎ𝑅!*

𝑘#""𝑤
;	𝐿W

=
𝐿
𝑅!
; 𝐵𝑖&'( =

ℎ&'(𝑅!
𝑘#""

; 	𝜃%,&'( =
𝑇%,&'( − 𝑇%
𝑇$ − 𝑇%

; 	𝑤Y =
𝑤
𝑅!

 

(6) 

This results in the following non-dimensional transient energy conservation equation 

1
𝜉
𝜕
𝜕𝜉 E𝜉

𝜕𝜃
𝜕𝜉F −

𝐴̅
𝜉
𝜕𝜃
𝜕𝜉 − 𝐵

W𝜃 =
𝜕𝜃
𝜕𝜏  (7) 

Equation (7) represents a transient Convection-Diffusion-Reaction (CDR) equation [25-27]. The 

non-dimensional temperature field is also subject to the following boundary conditions and initial 

condition 

𝜃 = 1 (𝜉 = 1) (8) 

−
𝜕𝜃
𝜕𝜉 = 𝐵𝑖&'(R𝜃 − 𝜃%,&'(S 

(𝜉 = 1 + 𝐿W) 

(9) 

𝜃 = 0 (𝜏 = 0) (10) 

Solution of the Problem 

Due to the non-homogeneity appearing in the boundary condition given by equation (8), one may 

first substitute 𝜃(𝜉, 𝜏) = 𝑣(𝜉) + 𝑢(𝜉, 𝜏), where 𝑣 and 𝑢 are the steady state and transient 

components, respectively, of the temperature distribution. By inserting this form of 𝜃 in the 
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governing equation and boundary conditions, one may write the following differential equation 

for 𝑣(𝜉): 

1
𝜉
𝜕
𝜕𝜉 E𝜉

𝜕𝑣
𝜕𝜉F −

𝐴̅
𝜉
𝜕𝑣
𝜕𝜉 − 𝐵

W𝑣 = 0 (11) 

subject to the following boundary conditions: 

𝑣 = 1 
(𝜉 = 1) 

(12) 

−
𝜕𝑣
𝜕𝜉 = 𝐵𝑖&'(R𝑣 − 𝜃%,&'(S 

(𝜉 = 1 + 𝐿W) 

(13) 

The 𝑣(𝜉) problem is indeed the steady-state problem for the porous fin with radially outwards 

flow, which has been solved in a recent paper [22]. The solution for the problem is given by [22] 

𝑣(𝜉) = 𝜉+̅/* ^𝑐.𝐼+̅/* P`𝐵W𝜉Q + 𝑐*𝐾+̅/* P`𝐵W𝜉Qa (14) 

where the coefficients 𝑐. and 𝑐* are obtained on the basis of the boundary conditions. 𝐼 and 𝐾 are 

modified Bessel functions of the first and second kind, respectively [28]. Expressions for 𝑐. and 

𝑐* are available from the recent steady-state analysis [22] and are not reproduced here for brevity. 

The differential equation governing the rest of the temperature field, 𝑢(𝜉, 𝜏) is given by 
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1
𝜉
𝜕
𝜕𝜉 E𝜉

𝜕𝑢
𝜕𝜉F −

𝐴̅
𝜉
𝜕𝑢
𝜕𝜉 − 𝐵

W𝑢 =
𝜕𝑢
𝜕𝜏  (15) 

subject to 

𝑢 = 0 (𝜉 = 1) (16) 

−
𝜕𝑢
𝜕𝜉 = 𝐵𝑖&'( ∙ 𝑢 (𝜉 = 1 + 𝐿W) 

(17) 

𝑢(𝜉, 𝜏) = −𝑣(𝜉) (𝜏 = 0) (18) 

Note that the 𝑢(𝜉, 𝜏) problem is free of non-homogeneities in the governing equation as well as 

the boundary conditions. Therefore, a solution may be derived using the method of separation of 

variables. Substituting 𝑢(𝜉, 𝜏) = 𝜉
!"
# ∙ 𝑓(𝜉) ∙ 𝑔(𝜏) and separating the equations for 𝑓(𝜉) and 𝑔(𝜏), 

one may derive the following form of the solution 

𝑢(𝜉, 𝜏) = w 𝜉
+̅
* ∙ 𝑠P d𝐽+̅

*
(𝜔P𝜉) + 𝑐*,P ∙ 𝑌+̅

*
(𝜔P𝜉)e 𝑒0Q5

# R
%

P7.

 
 (19) 

where 𝜔P = `𝜆P* − 𝐵W , and 𝐽 and 𝑌 are Bessel functions of the first and second kind, respectively. 

The order of both Bessel functions that appear in the solution is 𝐴̅/2. The eigenvalues 𝜆P and 

coefficient 𝑐*,P	may be determined by applying boundary conditions given by equations (16) and 

(17). Rearrangement of the resulting equations may be shown to result in the following 

eigenequation: 
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[`𝜆* − 𝐵W	𝑌+̅
*0.

^(1 + 𝐿W)`𝜆* − 𝐵Wa + 𝐵𝑖&'( ∙ 𝑌+̅
*
^(1 + 𝐿W)`𝜆* − 𝐵Wa] 𝐽+̅

*
^`𝜆* − 𝐵Wa

− [`𝜆* − 𝐵W	𝐽+̅
*0.

^(1 + 𝐿W)`𝜆* − 𝐵Wa + 𝐵𝑖&'(

∙ 𝐽+̅
*
^(1 + 𝐿W)`𝜆* − 𝐵Wa] 𝐽+̅

*
^`𝜆* − 𝐵Wa = 0 

 (20) 

Further, it can be found from equation (16) that  𝑐*,P = −
S!"
#
(U5)

W!"
#
(U5)

. Therefore, the solution for 

𝑢(𝜉, 𝜏) may be written as  

𝑢(𝜉, 𝜏) = ? 𝜉
*̅
, ∙ 𝑠3 B𝐽*̅

,
(𝜔𝑚𝜉) −

𝐽*̅
,
(𝜔𝑚)

𝑌*̅
,
(𝜔𝑚)

∙ 𝑌*̅
,
(𝜔𝑚𝜉)E 𝑒−𝜆𝑚

2 𝜏
&

3()

 
 (21) 

The last remaining set of coefficients, 𝑠P may be determined by using the initial condition given 

by equation (18) in conjunction with the principle of orthogonality of the eigenfunctions. Note 

that due to the appearance of the advective term in the governing equation, the principle of 

orthogonality differs slightly from that for pure-diffusion problems. Specifically, as shown in 

prior work on a CDR problem [29], a weighing function 𝜉.0
!"
#  must be included in the expression 

for orthogonality of eigenfunctions. Equation (18) is inserted into (19), followed by multiplying 

both sides by 𝜉.0
!"
# d𝐽!"

#
(𝜔P8𝜉) + 𝑐*,P8 ∙ 𝑌!"

#
(𝜔P8𝜉)e and integrating from 𝜉 = 1 to 𝜉 = 1 + 𝐿W. 

Based on orthogonality, this results in elimination of all terms except one, a formal proof for 

which is available in the literature [29]. This leads to the following expression for 𝑠P 
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𝑠P =
∫ −𝑣P(𝜉) d𝐽+̅

*
(𝜔P𝜉) + 𝑐*,P𝑌+̅

*
(𝜔P𝜉)e

.\]̂
. 𝜉.0

+̅
* 	𝑑𝜉

∫ 𝜉 d𝐽+̅
*
(𝜔P𝜉) + 𝑐*,P𝑌+̅

*
(𝜔P𝜉)e

*

𝑑𝜉.\]̂
.

 

 (22) 

Note that the denominator in equation (22) is the norm of the eigenfunctions of this problem. 

This completes the derivation of the solution of the problem. The final solution for the temperature 

distribution on the fin is given by equations (14) and (21), along with equations (20) and (22). 

Based on the temperature distribution derived here, one may write the following expression for 

the dimensional rate of heat removal from the fin base as a function of time 

𝑞(𝑡) = d−𝑘#"" E
𝜕𝑇
𝜕𝑟F678,

+ 𝜙𝜌"𝑐" ∙ U(𝑅!)(𝑇$ − 𝑇%)e 2𝜋𝑅!𝑤 (23) 

Note that the first and second terms in the expression for 𝑞(𝑡) represent conductive and advective 

rates of heat removal, respectively. 

Based on the instantaneous rate of heat removal derived above, the following expression for the 

non-dimensional heat removal rate may be written 
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𝑞"(𝜏) =
𝑞(𝑡)

𝑘𝑒𝑓𝑓(𝑇% − 𝑇&)2𝜋𝑤
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∞
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(24) 

While equation (24) represents the instantaneous rate of heat removal at any given time, an 

averaged rate of heat removal up to a given time may be of practical interest for applications in 

which a finite amount of time is available for heat transfer. One may derive  

𝑞&9:;(𝜏) =
∫ 𝑞(𝑡∗)𝑑𝑡∗)
=

𝑡

= 𝐴̅ − $𝐵& 2𝑐$𝐼%̅
'($
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'
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𝑌%̅
'
(𝜔𝑚)
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'($

(𝜔>)E
1 − 𝑒(?!" @

𝜆>' 𝜏

3

>A$

 

           (25) 

 

Fin Transient Performance Parameters 

One may define the fin effectiveness to be the ratio of total heat removal rate by the fin and total 

heat that would be removed directly from the base in the absence of the fin 
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𝜂(𝑡) =
[−𝑘#"" P

𝜕𝑇
𝜕𝑟Q678,

+ 𝜙𝜌"𝑐" ∙ U(𝑅!)(𝑇$ − 𝑇%)] 2𝜋𝑅!𝑤

2𝜋𝑅!𝑤ℎ(𝑇$ − 𝑇%)
 

(26) 

 which can be shown to result in 

𝜂(𝜏) =
1
𝐵𝑖 �𝐴

Y −`𝐵Y d𝑐1𝐼𝐴c
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(27) 

 

Note that the fin effectiveness is a function of time, since the heat removal rate by the fin changes 

over time. It is expected that the fin effectiveness will be very high at early times, owing to large 

conductive heat removal due to large temperature gradient between the base and the fin. 

In addition, it is also of interest to define a fin effectiveness on the basis of comparison of porous 

fin performance with a non-porous fin of the same geometry and operating under identical 

conditions. Such a comparison is pertinent in order to understand whether a porous fin offers 

improved thermal performance than its non-porous equivalent. While porosity in the fin offers 

advective heat removal that is absent from the non-porous fin, yet, the porous fin has lower 

effective thermal conductivity, implying that its conductive heat removal may be lower than the 

non-porous fin. Therefore, it is important to compare the total heat removal by both porous and 

non-porous fins. This may be done by defining the porous fin effectiveness as the ratio of heat 
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removal by the two fins. Similar to fin effectiveness, the porous fin effectiveness is also a function 

of time 

𝜂!"#"$%(𝜏) =

𝐴̅ −)𝐵+ ,𝑐&𝐼'̅
)*&
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(28) 

Where, in the denominator, 𝜔P,5 = �𝜆P,5* − 𝐵W5, 𝐵W5 =
>8,#

?-@
  and 𝜆P,5 are obtained from roots of 

the eigenequation given by equation (20) while using 𝐵W5 instead of 𝐵W  and 𝐴̅ = 0 in order to model 

the non-porous fin. 
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Results and Discussion 

In order to highlight key features of this transient thermal problem, the transient temperature field 

in the fin is determined first, followed by computation of heat removal and other performance 

parameters of the fin. In each case, the transient behavior of fin performance is of particular 

interest. 

Number of terms needed 

 
Figure 14.Figure 2. Effect of number of eigenvalues considered in the analytical solution: 
Temperature distribution along the fin at (a) τ=0.07, (b) τ=0.30. Curves corresponding to 
different number of eigenvalues are presented. Parameter values are 𝐴̅=1.0, 𝐵W=1 

 

Firstly, due to the infinite series nature of the transient temperature distribution derived in this 

work, it is important to determine the number of eigenvalues that must be accounted for in 

computations. This helps determine a reasonable balance between accuracy and computational 

time. In general, the greater the number of terms considered, the more accurate is the computed 

temperature, but at a greater computational cost. Once converged, increasing the number of terms 

further offers only a negligible improvement in accuracy while continuing to increase 

computational cost. Therefore, it is of interest to determine the minimum number of terms needed 



 53 

for a specific computation. This is often done in terms of convergence analysis. In the present 

case, temperature distribution along the fin is computed at two specific times, while including 

different number of eigenvalues, denoted by 𝑁. Results are presented in Figure 14, which shows 

that the computed temperature distribution with 𝑁 = 5 and 𝑁 = 10 terms are practically identical 

at both times. Therefore, the use of five terms is found to be sufficient at the two times considered 

in Figure 14. Since the number of terms needed for convergence of an eigenfunction-based series 

solution usually increases at smaller times, therefore, in the present case, all results are presented 

with a conservative value of 𝑁 = 50. It is found that the increase in computational cost between 

𝑁 = 10 and 𝑁 = 50 is not significant, and, therefore, 𝑁 = 50 is a reasonable choice. 

Typical transient temperature distribution 

 

Figure 15. Typical fin temperature field: (a) Fin temperature distribution along the fin at multiple 
times. (b) Fin temperature at multiple locations as functions of time. The steady state solution is 
also shown in (a) for reference. 

For a fixed set of problem parameters 𝐴̅ = 1.0, 𝐵W = 2.0,	𝐿W = 2.0, 𝐵𝑖&'( = 0.5, 𝜃&'(,% = 0.0, 

Figure 15(a) plots temperature distributions in the fin at different times. This is supplemented by 

plots of temperatures at different fin locations as functions of time in Figure 15(b). Figure 15(a) 
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shows that thermal transport into the fin causes temperature rise over time, first in regions next to 

the fin base and slowly encompassing the entire fin. As time passes, a balance is reached between 

advective/conductive thermal transport into the fin and convective heat removal into the ambient, 

resulting in steady state. For example, at 𝜏 = 0.005, only the region up to 𝜉 = 1.30 has heated up 

significantly, while the rest of the fin is still nearly at the initial temperature. As time passes, the 

temperature curve shifts rightwards and upwards, indicating deeper and deeper penetration of heat 

into the fin. At large times, the transient temperature field computed using the model presented 

here approaches the independently computed steady state profile [22], also shown in Figure 15(a).  

It is notable that as time passes, there is a reduction in the slope of the temperature curve at the 

fin base, which represents the conductive rate of heat removal, per equation (24), indicating 

reduction in conductive heat removal over time. Temperature curves as functions of time 

presented in Figure 15(b) show that, depending on how far a point is from the fin base, there is an 

initial period of negligible temperature rise before temperature begins to rise appreciably. This is 

mainly due to the time taken for thermal transport from its base to a given fin location. As 

expected, the closer a point is to the fin base, the shorter is this initial period, the earlier is steady 

state reached, and, finally, the greater is the temperature rise at steady state. 

Impact of advective (𝐴̅) and convective (𝐵W) thermal transport  

The two key transport-related non-dimensional parameters that appear in the transient porous fin 

problem are 𝐴̅ and 𝐵W , which represent advective thermal transport down the fin and convective 

heat removal from the fin, respectively, both expressed relative to the rate of conduction heat 
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transfer down the fin. The impact of 𝐴̅ and 𝐵W  on the transient temperature field in the fin is 

examined first, with particular interest in the time taken to reach steady state. 

 

Figure 16. Effect of 𝐴̅: (a) Fin temperature at tip as a function of time for multiple values of 𝐴̅, 
(b) Time required for 95% of temperature change up to steady state as a function of 𝐴̅ at multiple 
fin locations. 

The transient fin temperature distribution is computed using equations (14) and (22) for several 

values of 𝐴̅. All other parameters are held constant as follows: 𝐵W = 2.0, 𝐿W = 2.0, 𝐵𝑖&'( = 0.5, 

𝜃%,&'( = 0.0. Since steady state is reached only asymptotically at infinite time, therefore, the time 

taken for the temperature to reach 95% of the eventual temperature at very large time, denoted by 

𝜏de is taken to represent the time to reach steady state. Results are plotted in Figure 16, where 

Figure 16(a) plots the tip temperature as a function of time for each case and Figure 16(b) plots 

𝜏de as a function of 𝐴̅ at multiple locations on the fin. Several key features of the transient 

temperature distribution in this problem are evident from Figures 16(a) and 16(b). First of all, 

there is a small initial time during which there is no significant temperature at the fin tip. This is 

because of the finite time taken for thermal energy to reach the fin tip due to advection and 

conduction from the hot base. Following this initial period, temperature rises rapidly, and then 
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slows down as the fin approaches steady state. Figure 16(a) shows greater temperature rise for 

larger values of 𝐴̅, which is expected because 𝐴̅ represents advective transport of heat. Therefore, 

the larger the value of 𝐴̅, the more rapidly does the point of interest heat up. In addition to the 

magnitude of temperature, 𝐴̅ also influences the speed at which the fin approaches steady state. 

This is best observed in Figure 16(b), where the time taken to reach steady state, 𝜏de is found to 

decrease with increasing 𝐴̅. Finally, Figure 16(b) also shows that different locations at the fin take 

different times to reach steady state. The closer a point is to the base, the faster it reaches steady 

state due to rapid thermal transport from the base to the point. Depending on the value of 𝐴̅, the 

time to reach steady state at the fin tip may be 40-50% greater than the time to reach steady state 

at the mid-point of the fin. 

 

Figure 17. Effect of 𝐴̅: (a) Fin temperature at tip as a function of time for multiple values of 𝐴̅, 
(b) Time required for 95% of temperature change up to steady state as a function of 𝐴̅ at multiple 
fin locations. 

 

A similar analysis of the impact of 𝐵W  on the transient temperature field is presented in Figure 17. 

Temperature at the tip of the fin is plotted as a function of time for multiple values of 𝐵W  in Figure 

17(a), and the time taken to reach steady state is plotted as a function of 𝐵W  for multiple locations 
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on the fin in Figure 17(b). A few aspects of the effect of 𝐵W  on the transient temperature field are 

similar to the effect of 𝐴̅ – there is an initial period of slow temperature rise, followed by 

prolonged, rapid temperature rise, eventually leading asymptotically to steady state. Unlike 𝐴̅, the 

larger the value of 𝐵W , the lower is the temperature rise. This is because 𝐵W  represents the rate at 

which the fin convectively loses heat to the surrounding medium. A larger value of 𝐵W  implies 

greater heat loss, and, therefore, lower temperature. It is found that 𝐵W  also has a significant impact 

on the time taken to reach steady state. At any given location, a large value of 𝐵W  results in faster 

arrival of steady state. This is because large 𝐵W  implies greater convective heat removal that 

counteracts the conductive/advective heat flow from the fin base, resulting in reaching steady state 

faster. 

Heat removal rates as functions of time 

 
Figure 18. Advective, conductive and total heat removal rates through the fin as functions of time: 
(a) and (b) present instantaneous and averaged heat removal rates. 

 

The previous sub-section focuses mainly on fin temperature distribution and the time taken to 

reach steady state. In addition, it is also of much interest to examine how the rate of heat removal 

by the fin varies with time. While steady state heat removal by the porous fin has been 
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characterized in the past [22], there are several scenarios, as outlined in Section 1, where only a 

finite amount of time is available for the heat removal process, during which, the fin may not even 

reach steady state. In such scenarios, steady state performance of the porous fin is not relevant, 

and, instead, it is important to understand how heat removal by the fin changes with time prior to 

reaching steady state. For a fixed set of problem parameters (𝐴̅ = 1.04, 𝐵W = 0.11, 𝐿W = 3.0, 

𝐵𝑖&'( = 0.11, 𝜃%,&'( = 0.0), Figure 18 plots the non-dimensional fin heat removal rate as a 

function of time. In order to facilitate a fundamental understanding of this problem, both advective 

and conductive rates of heat removal, as defined by equation (24) are also plotted, in addition to 

the total heat removal rate. Figure 18(a) plots the instantaneous rates of heat removal, per equation 

(24), whereas the average rate of heat removal up to a certain time, which may be of greater 

practical importance, is plotted as a function of time in Figure 18(b). Since the advective rate of 

heat removal is simply equal to 𝐴̅, per equation (24), therefore, the advective curves in Figures 

6(a) and 6(b) are both horizontal straight lines, corresponding to the value of 𝐴̅ = 1.04 used here. 

In contrast, the conductive rate of heat removal depends strongly on time. At early times, when 

there is a large temperature gradient between the fin base and the rest of the fin, there is very large 

conductive heat removal, per equation (24). As the fin heats up, this temperature difference 

reduces, and the conductive rate of heat removal drops sharply, eventually reaching a steady value. 

Trends similar to the instantaneous heat removal rates shown in Figure 18(a) are also found in the 

average heat removal rates plotted in Figure 18(b). The reduction in conductive rate of heat 

removal over time seen in Figures 18(a) and 18(b) are consistent with Figure 15(a), where the 

slope of the temperature field at the fin base, Pfg
f;
Q
;7.

 is found to reduce and reach a steady value 

as time increases.  
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The plots in Figure 6 show that heat removal at early times is dominated by the conductive 

mechanism, whereas, there is a certain time at which the two mechanisms have equal 

contributions (around 𝜏 = 1.2, as shown in Figure 18(b)), and at later times, advective heat 

removal dominates. This shifting away of the dominating mechanism from conductive to 

advective over time is an important consideration in the design of practical systems when there is 

only finite time available for heat removal. In such cases, the time available for heat removal must 

be compared against the transition time shown in Figure 18, based on which, one must design to 

either enhance advective or conductive heat removal mechanism by changing underlying 

parameters such as the porosity of the fin or the applied pressure difference. For example, if the 

total time available is relatively small, then one must maximize conductive heat transport by 

choosing a low value of porosity, or not using a porous fin at all. In contrast, if the time available 

for heat transfer is much larger than the conduction-to-advection transition time, then it may be 

beneficial to improve advective heat removal by increasing fin porosity.  

Effect of porosity on fin performance 

Porosity is a key parameter in the design of the porous fin. The porosity of the fin material can be 

easily varied, and must be carefully chosen in order to maximize the desired objective, in most 

cases, the total heat removed by the fin. Introducing porosity into the fin may impact advective 

and conductive heat removal mechanisms in opposite directions. For example, greater porosity 

facilitates greater advective heat removal through increased porous flow down the fin. 

Mathematically, this occurs due to greater advective component of heat removal given by 

equation (24), with increasing 𝜙. On the other hand, increasing the fin porosity reduces effective 

thermal conductivity, which reduces conductive heat removal. Due to these opposing effects, it is 
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of interest to determine if the total heat removed increases or decreases with increasing porosity, 

or, if there is an optimal value of the porosity that maximizes total heat removed. Past analysis 

showed that, in steady state, an optimal value of the fin porosity exists under certain conditions, 

whereas under other conditions, making the fin porous may not be beneficial at all. It is of interest 

to extend such analysis to transient conditions, in order to facilitate the design of porous fins for 

scenarios with limited time available for heat transfer. 

 

Figure 19. Impact of porosity: Averaged heat removal rates as well as conductive and advective 
components as functions of porosity up to (a) τ=10.0, (b) τ=50.0, (c) τ=100.0 and (a) τ=140.0.  

In order to analyze this problem over a transient time period, the total heat removed as well as its 

conductive and advective components are plotted as functions of fin porosity in Figure 19. Plots 
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are presented at four different times. Values of parameters are chosen to be consistent with past 

steady state analysis [22]. In short, baseline solid and fluid materials are taken to be aluminum 

and air, with constant properties corresponding to room temperature. Additionally, 𝐾 =

5.7 × 100d m2, 𝑅! = 5 cm, 𝐿 = 15 cm, 𝑤 = 5 cm, Δ𝑝 = 100 Pa, ℎ = 50 Wm-2K-1. These plots 

use equations (14), (21) and (23). Results indicate that at early times, heat removal is dominated 

by conductive thermal transport, which is due to the large temperature gradient in the fin at small 

times. As time passes and the fin gets hotter, the temperature gradient reduces, and, therefore, the 

rate of conductive heat removal reduces sharply. In contrast, the rate of advective heat removal 

remains invariant with time. As a result of this, it is found that at early times, using a fin with 

large porosity actually reduces total heat removal, as evidenced by the monotonically reducing 

plot for the total heat removal in Figures 7(a) and 7(b). This occurs because large porosity results 

in reduced effective thermal conductivity, and thus a reduction in conductive heat removal, which 

is the dominant heat removal mechanism at small times. As time passes, the total heat removal 

curve is found to become more and more curved, as seen in Figure 19(c), and eventually become 

non-monotonic by developing a maxima at a certain value of porosity, as seen in Figure 19(d). 

This indicates that if the fin operates for a sufficiently long time, there exists an optimal value of 

the porosity at which the total heat removal is maximized. 
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Figure 20. Impact of porosity: Optimal porosity to maximize total heat removal as a function of 
total time available for heat transfer. Problem parameter are the same as Figure 18. 

The optimal porosity of the fin, 𝜙<(&, is computed and plotted in Figure 20 as a function of the 

maximum time period available for heat removal, 𝜏PNh for the same set of parameters as the 

previous Figure. Figure 20 shows an optimal value of zero porosity for short time periods, due to 

early dominance of conductive heat removal, which is exacerbated by fin porosity. Beyond a 

certain time, conductive heat removal has diminished significantly, such that making the fin 

porous is now favorable. This period in Figure 20 is characterized by a very sharp rise in the value 

of 𝜙<(&, followed by saturation at large times, as a steady state is eventually reached, and the 

optimal value of the fin porosity approaches its value in steady state operation [22]. Note that 
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porosity values above the optima shown in Figure 20 involve a significant drop in effective 

thermal conductivity, so as to negate the improvement in advective heat removal. Further, note 

that the sharpness in the curve shown in Figure 20 is simply because before a certain time period, 

it is not optimal for the fin to be porous at all, which has been indicated by a zero value for 𝜙<(& 

in the curve. 

The results presented in this sub-section are of much practical importance in the design of the 

porous fin for transient heat removal. These results indicate that the choice of how porous the fin 

is designed to be depends critically, among other factors, on the time period available for heat 

removal. For short-time heat removal processes, making the fin porous is not helpful at all, as fin 

porosity worsens thermal conductivity, which directly impacts conductive heat removal that 

dominates at early times. This loss may not be justified by the additional advective heat removal 

due to the porous flow when the heat removal time period is short.  
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Time taken to reach steady state 

 

Figure 21. Time required for 63.2% of the temperature change as a function of location along the 
fin. Parameter values are 𝐴̅=1.04, 𝐵W=0.11, 𝐿W=3.0, 𝐵𝑖&'(=0.11, 𝜃%,&'(=0.00. 

The time taken to reach steady state is an important performance parameter of interest in transient 

thermal systems. In the context of a porous fin, this is important to determine in order to ascertain 

if previously reported steady state characteristics of the porous fin [22] can be used within the 

time frame of interest. If the operating time of the porous fin is shorter than the characteristic time 

to steady state, then the transient analysis presented here must be accounted for. 
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Plots of the total heat removal rate from the fin as a function of time are already presented in 

Figure 18, from where, the time taken to reach steady state may be estimated. For example, from 

Figure 18(a), it may be inferred that the instantaneous rate of heat removal reaches within 5% of 

the eventual steady state value by around 𝜏 = 5.0.  

A more quantitative representation of time to steady state may be carried out in terms of the 

transient temperature distribution. Since the initial temperature is known, but the temperature field 

reaches steady state, in principle, only asymptotically at infinite time, therefore, the time taken to 

achieve, say, 95% of the temperature change may be used to represent the time taken to reach 

steady state. Alternately, one may use the classical definition of the thermal time constant of a 

lumped thermal mass, defined as the time to reach (1 − 1/𝑒), i.e., 63.2% of the temperature 

change. These quantities are denoted by 𝜏de and 𝜏ij, respectively. 

Figure 21 plots the time taken to reach 63.2% of the temperature change as a function of spatial 

location on the fin. Problem parameters are 𝐴̅ = 1.0, 𝐵W = 2.0, 𝐿W = 3.0, 𝐵𝑖&'( = 0.5, 𝜃%,&'( = 0.0. 

Note that since the fin is not a lumped thermal mass, therefore, different locations on the fin reach 

steady state at different rates. Figure 20 shows that fin locations close to the fin base reach steady 

state very quickly, as expected, due to the physical proximity to the fin base that is responsible 

for temperature rise. 𝜏ij then rises rapidly before reaching a plateau as one approaches the tip of 

the fin. This is mainly because once far enough from the fin base, the time taken to reach steady 

state is no longer a strong function of distance from the fin base but instead is influenced more by 

thermal conditions at the fin tip. 
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Figure 22. Time required for 95% of the temperature change as a function of porosity at three 
different fin locations. Parameter values are 𝐿W=3.0, 𝜃%,&'(=0.0. 

The time taken to reach steady state is also expected to be a function of fin porosity, because the 

fin porosity influences the rates of conductive and advective heat removals, which eventually 

contribute towards reaching steady state. Figure 22 plots 𝜏de, the time taken for 95% of the 

temperature change as a function of fin porosity. It is found that at each location on the fin, 𝜏de 

reduces with increasing porosity, slowly at first at small porosities, and more rapidly when the 

porosity is larger. 



 67 

Effect of tip conditions 

 

Figure 23. Effect of fin tip conditions: (a) Heat lost through the fin as a function of time for 
different 𝐵𝑖&'(. (b) Heat lost through the fin as a function of time for different 𝜃%,&'(.  

Finally, the effect of fin tip conditions on heat removal rate is examined in Figure 23. The two fin 

tip parameters of relevance are the fin tip Biot number, 𝐵𝑖&'(, representative of the convective 

heat transfer coefficient at the fin tip, and the fin tip temperature 𝜃%,&'(. Heat removal rate is 

plotted as a function of time for different values of these parameters in Figures 23(a) and 23(b), 

respectively, for a representative set of parameter values. Specifically, the fin length is taken to 

be 𝐿W = 0.5. Figure 23(a) shows that at early times, the heat removal rate does not depend on the 

Biot number at the tip. This is mainly because at small times, the thermal wave has not reached 

the tip, and, therefore, the convective heat transfer coefficient at the tip is not yet influential on 

the heat removal rate. At larger times, the greater the tip Biot number, the greater is the heat 

removal rate, as expected, due to increased heat removal from the fin tip. In each case, a steady 

state for the heat removal rate is reached. A large value of 𝐵𝑖&'( results in reaching steady state 

somewhat faster. 
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Similar to 𝐵𝑖&'(, 𝜃%,&'( also influences the heat removal rate. Figure 23(b) shows greater heat 

removal rate for smaller values of 𝜃%,&'(, as expected, due to the cooling effect at small 𝜃%,&'( that 

induces greater heat removal from the fin base. Similar to 𝐵𝑖&'(, heat removal is relatively 

independent of 𝜃%,&'( at small times, and a steady state is reached at large times.  

Note that the fin length is expected to play an important role in determining how influential fin 

tip conditions are on heat removal rate from the fin base. The results presented in Figure 11 are 

based on a somewhat short fin, 𝐿W = 0.5. Calculations for a longer fin, say, 𝐿W = 2.0 show that fin 

tip conditions continue to influence the heat removal rate, but not as strongly as the 𝐿W = 0.5 case 

presented in Figure 23. 

Conclusions 

The key contribution of the present work is to develop an analytical model for transient 

performance of a porous fin with radially outwards pressure gradient driven porous flow. 

Advective heat removal due to such porous flow supplements conductive heat removal. However, 

the two heat removal mechanisms are influenced differently by key porous properties of the fin, 

and, therefore, a detailed analysis of transient temperature distribution and the resulting heat 

removal rate from the fin base is necessary. The analytical solution of the transient CDR equation 

involving Bessel functions makes it possible to identify important non-dimensional parameters 

and quantitatively understand their impact on fin performance.  

While the steady state performance of such a porous fin has been presented recently, this work 

addresses the important aspect of transient performance, which may be relevant in a number of 

practical scenarios, such as battery thermal management, in which, heat removal occurs only for 
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a short, transient period. In such cases, previously available steady state results are not directly 

applicable. One interesting result of practical relevance is that the optimal porosity that maximizes 

heat removal rate depends on the time period over which heat removal by the fin occurs. Such 

considerations may be important in practical problems that are inherently transient in nature. 
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APPENDIX A 

Derivation of radial velocity field in the porous fin 

This Appendix derives an expression for the velocity field in the porous fin. Based on the 

assumptions listed in Section 2, fluid flow in the fin is driven by the pressure gradient between 

the inner pipe and the ambient at the fin tip, and is purely radial in nature. Assuming that the 

porous fluid flow is purely Darcian in nature, the following relationship exists between the 

volumetric flow rate 𝑞 and local pressure gradient at any location 𝑟: 

𝑞 =
Κ𝐴
𝜇
𝑑𝑝
𝑑𝑟 (A.1) 

Where 𝐴 = 2𝜋𝑟ℎ(1 − 𝜙) is the cross-section area for fluid flow at the radial location 𝑟, and 𝐾, 

𝜙, and 𝜇 are the permeability, porosity and viscosity, respectively. Rearranging and integrating 

equation (A.1) between 𝑟 = 𝑅! and 𝑟 = 𝑅! + 𝐿 results in 

𝑞 =
Κ𝐴

𝜇 ∙ ln P𝑅! + 𝐿𝑅!
Q

Δ𝑝
𝑟  (A.2) 

Where Δ𝑝 is the total pressure difference between the inner tube and the fin tip. Finally, since 

𝑞 = 𝐴 ∙ 𝑈(𝑟), therefore, the following expression for the velocity field may be written: 

𝑈(𝑟) =
Κ

𝜇 ∙ ln P𝑅! + 𝐿𝑅!
Q

Δ𝑝
𝑟  (2) 



 74 

This completes the derivation of the radial velocity field in the porous fin. As expected, the radial 
velocity has a 1/𝑟 dependence, due to the requirement of mass conservation as the fluid flows 
radially outwards. 
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