University of Texas at Arlington

MavMatrix

Computer Science and Engineering Theses Computer Science and Engineering Department

2023

DESIGN OF SINGLE PRECISION FLOATING POINT UNIT (32-BIT
NUMBERS) ACCORDING TO IEEE 754 STANDARD USING
VERILOG, AND CREATION OF AN EDUCATION MODEL FOR
ADVANCED DIGITAL LOGIC AND DESIGN COURSES

Kartikey Sharan

Follow this and additional works at: https://mavmatrix.uta.edu/cse_theses

b Part of the Computer Sciences Commons

Recommended Citation

Sharan, Kartikey, "DESIGN OF SINGLE PRECISION FLOATING POINT UNIT (32-BIT NUMBERS) ACCORDING
TO IEEE 754 STANDARD USING VERILOG, AND CREATION OF AN EDUCATION MODEL FOR ADVANCED
DIGITAL LOGIC AND DESIGN COURSES" (2023). Computer Science and Engineering Theses. 517.
https://mavmatrix.uta.edu/cse_theses/517

This Thesis is brought to you for free and open access by the Computer Science and Engineering Department at
MavMatrix. It has been accepted for inclusion in Computer Science and Engineering Theses by an authorized
administrator of MavMatrix. For more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu,
vanessa.garrett@uta.edu.

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/cse_theses
https://mavmatrix.uta.edu/cse
https://mavmatrix.uta.edu/cse_theses?utm_source=mavmatrix.uta.edu%2Fcse_theses%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=mavmatrix.uta.edu%2Fcse_theses%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/cse_theses/517?utm_source=mavmatrix.uta.edu%2Fcse_theses%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu

© 2023 Kartikey Sharan

DESIGN OF SINGLE PRECISION FLOATING POINT UNIT (32-BIT NUMBERS)
ACCORDING TO IEEE 754 STANDARD USING VERILOG, AND CREATION OF AN EDUCATION

MODEL FOR ADVANCED DIGITAL LOGIC AND DESIGN COURSES

BY

KARTIKEY SHARAN

N
I A

MASTER THESIS

Submitted in partial fulfilment of the requirements for the degree of
Master of Science in Computer Engineering in the Graduate College of the

University of Texas at Arlington, May 2024

Arlington, Texas

Advisor:
DR. BILL D CARROLL
The University of Texas at Arlington

Professor Computer Science and Engineering

Floating Point Processor Kartikey’s Master Thesis

Table of Contents

TADIE Of FIQUIESccuueueiieeeneiiiienniiiisiniiiissseensisssssnsnssssssssssssssnssssssssnssssssssnsssssssnnsssssssnnnns vii
VYol 4 Tod0T] =0 [1 LT 1 £ X
WY 0 X1 o o Lot RN Xl
Chapter 1: INtrodUCtiON.........cccuuciieeriiieeiiiiniiieeiisineiisisisssnsisisnessssssssnsssssssessssssssnsssssnssssnnns 1
1.1 Floating POINt NUMDEYScceeeiieeiecceeeiccrrreccreren e serrees e s s esase s s e na s ssenasssssennsssssenassssnennnes 2
1.2 The IEEE 754 STaNdardccoiiiirermuniiiiiniiininmmmiiiniiimesssmsiiiimessssssssiiimesssssssssssssssssssses 3
12,0 OVEIVIEW ittt ettt e e ettt et e e e sttt e e e e e s e aba bt e e e e e e seaaabbeeeeeesaasabeaaeeeesaaanbeteeaeesennnbbeaeaeeaanann 4

1.2.2 Binary FOrMat ENCOTINGS ...uvvvieiiiiiiiiieee ettt ettt e e e e e s ettae e e e e e s eaa v e e e e e e seanntaaeeeeesesnntraneeeseennes 5

E XD ONENE e 5

7= a1 Tt s o ISR 6

1.2.3 Examples of Floating Point Representationccocuiiiieriiieiieinie sttt 7

1.2.4 FlOating POINt ParamEters. ...cccueiiiiiiieeiiieciteeeit ettt ettt sit et sat e e sbe e s bt e e bt e e sat e e bt e e sabeesneeesaneennees 8

1.2.5 Range of FIoating-Point NUMDBEI.........coiiiiiiii ettt s 8

1.2.6 Rounding of FIoating-Point NUMDEKcoiiiiiiiieee ettt s 9

1.2.7 Data Types of 32 bit Floating-Point NUMDEIc..ciiiiiiee ettt e 10

1.3 Floating-Point ArithmetiC.......ccceueuiiieiiiiieiiiiiiic et reeereaeeereneeenenerenssensesensessnssesannenenns 11
1.3.1 EXPONENT OVEITIOW ..oiiiiiiiie ettt ettt e ettt e e e e te e e et e e e e s aba e e eeastaeesabaaeesntbeeeassaeeeansaeas 11

1.3.2 EXPONENT UNAEITIOW ettt e et et e et e e e s ta e e e e tta e e eabaaeesntbeeeessaeeeennaeas 11

1.3.3 SiNITICANT OVEIFIOW ..oueiiiiiiiiieeet ettt et be e s bt st e e sbe e e saeesbeeesaeenane 11

IO B Y P4 T or=Y o o I U 1Yo F=T o [1Y PR 11
Chapter 2: 32-bits Floating Point Adder..............eeeeueeeeeeeeeniereesineeniireesissnesessesiessesissnasenees 12
2.1 Floating Point Addition Algorithm..........cciiieeeiiiiiiiiiiininciiiiiirssesesssssessessanes 13
2.1.1 Floating-Point Addition EXamMPIE.......coiiiiiiiiiieieesiet ettt ettt ettt e aes 14

2.2 Floating Point Adder FIOWCRart.........coiiiuiiiieiicceciccrrreccseeeneerena s e e s enaseessenasesssenssanssennnes 16
2.3 Floating Point Adder HardWare.........cccceuuiiieeeierieeiccreeeceseeenessenasesssenassessensssssensssssennnes 17
2.3.1 Floating Point Adder Hardware Archit@CtUre........ccuviieeiei it rree e e e e 18

2.3.2 Floating Point Adder Hardware Implementation.........ccccooeeiiiiiiee it 19
2.3.2.1 SigN Bit CalCUIATION wuviiiei e e e e e e e e e e et e e e e e e e aarraaaaaeeeaans 19

2.3.2.2 Modular EXpoNnent SUDTIACTOrcciiiiiiiiee et ettt e e s e e e trrre e e e e e s e aataeeeeeeeeanes 20

2.3.2.3 Mantissa Shifter MURIPIEXEvee i e e e e e e e 30

2.3.2.4 Mantissa RIgt SHIfLercocuiii e e e s e e st e e e nte e e e nneeas 33

2.3.2.5 Mantissa Adder MUILIPIEXENcccviieeeceiee ettt e e e e e e s e e st e e e e ere e e entaeeenneeas 35

2.3.2.6 Mantissa Carry LOOk ANEAd AQUEruiiiieiiiiieee et e et e e e e et ae e e e e e e eeaes 36

2.3.2.7 Exponent Increment MUILIPIEXETuviiiiiii ettt e e e et e e e e e e et aeeeeeeeeeans 41

2.3.2.8 CoNtrolled INCrEMENTON . ..cii ittt st et e e et e s sbte e e sbbe e e s sabaeeseabaeesaaseeas 42

2.3.2.9 Mantissa NOIMAlIZEEuiiiiiiie ettt sttt e e st e e sbbe e e s sabe e e e sabaeeseasaeas 46

2.4 Floating Point Adder ReSUILScceuuiiiiieiiiiiicirrccrrrecereceeesreses s s e nes s s s enasssssenesssseenenes 47
2.4.1 Floating Point Adder Compilation REPOITccvuieieiiiieieiie e ctiee et e sre e sre e e e see e e e e nae e e snaeeeeas 47

2.4.2 Floating Point Adder TESTDENCH ...ccceeiiee et e s e et e e et e e e ae e e e snreaeeas 48

2.4.3 Floating Point Adder Simulation RESUIESeeiiiiiieicec e e e e e 49

(6 T T PP PP PP PUPTPPPPPPIN 49

(6 1= = H PSP PP PP PUPTPPPPPRN 50

(6= 1= O TSP PP PP PP PTPPPPPRN 51

(6= 1= LT PSP PP PUPTPPPPPRN 52

Floating Point Processor Kartikey’s Master Thesis

Chapter 3: Floating Point SUDEIACLONc..ccveeviiiveiiiineiiiensisiensisinsisisnsisssssossssssssasssssasessns 54
3.1 Floating Point Subtraction Algorithmcccceueiiiiiiirrr e s e ne s s e e nenes 55
3.1.1 Floating-Point SUDtraction EXAmMPIe......cccciiiiiiiiiiiiiee ettt s e e s s ae e e st e e s aaee s saaeeeens 56
3.2 Floating Point Subtractor FIOWchart..........c.cceuiiiieiirricccrreccrrrre e ereneee s e s ene s s e enenes 58
3.3 Floating Point Subtractor Hardware..........cccuuiiiiiiniiiiiniiniieiiniineesnesees 59
3.3.1 Floating Point Subtractor Hardware Archit@Cturecccceeeveieeeeiciiie et 60
3.3.2 Floating Point Subtractor Hardware Implementationcccceeeiviieieiiii e e 61
I T Y= o I = T @ (ol U1 = o o SRS 61
3.3.2.2 Modular EXponent SUDTIrACOr.......uuiiiiiiiiiiee ettt sraae e e s sbee e e sate e e seaneeas 62
3.3.2.3 Mantissa Shifter MURIPIEXENc...ooiiiiieeee e e st 62
3.3.2.4 Mantissa RIGHT SHIfLercc..ii i e st 64
3.3.2.5 Mantissa SUbtractor MURIPIEXEN.......cooiiiiieeiee e st s 65
3.3.2.6 Mantissa Ripple Carry SUDTIACTON.cc.uiii ettt et e e et re e e e ara e e e anaeas 66
3.3.2.7 Exponent Decrement MUIIPIEXETc..uvii ettt et tre e e et e e e s tre e e earae e eeanaeas 69
3.3.2.8 CONLrOlEd DECIEMENT ...iiiuiieiiiierieeiie et st e st e st este e s e e s ae e sbeesateesabeesaseesabeessseesateesaseesaraesaseess 70
3.3.2.9 Mantissa NOIMAlIZELueiiieiieeeiiie ettt e e et e e e s e e e e stbeeeessbaeesenteeesenseeas 75
3.4 Floating Point SUbtractor RESUILSccceuuiiiieeuiiiieeiereeeciereeeneerenaneesenasesesennsesssennnsssennnes 78
3.4.1 Floating Point Subtractor Compilation REPOIt........c.cieiieriiiiiieiiieieet et 78
3.4.2 Floating Point SUbtractor TESTDENCh.......cc.eiiiiiiie e 79
3.4.3 Floating Point Subtractor SImulation RESUILS........cocuiiiieiiiiiiee e 80
(6 1= PP PPPTPPPPN 80
(6= 1= = TP PP OPPUPPPPPN 81
(6= = O PP PRSP PPUPPPPPN 82
L0 1= OO PP PP PPPTPRPRN 83
2R3 0o T Lol [T 1o 4 PN 84
Chapter 4: 32-bits Floating Point MUIEIPIIEr..............ceeeueeeeuieeeeniieeniireerirreesirreeieseesissnaninnes 85
4.1 Floating Point Multiplication AIOrithmc...ciieieiiiiiiiiirrccr e re e re e e e e e nanes 86
4.1.1 Floating-Point Multiplication EXamMPIecccueiiiiiriieiiieeeere ettt sttt 87
4.2 Floating Point Multiplier FIOWChaArt...........coceeeeiiieeiirecccrreece s reneee s s sene s e senenesseennnes 90
4.3 Floating Point Multiplier Hardware..........cocceeciiieieiiiiieccciirececesreceeesrenenesssenesesssensnesssennnes 91
4.3.1 Floating Point Multiplier Hardware Archit@CtUre.........ooccuieiieciiie e 92
4.3.2 Floating Point Multiplier Hardware Implementation........cccccciiiiieeiicciiiieeecc e 93
N Y =g W =T A @1 (o] = o o IS UPR R 93
4.3.2.2 Data Classification MOUIE.......ccoouiiiiiiieeeee ettt st e s sbee e e s abe e e s asaeas 94
4.3.2.3 Exponent Carry LoOKahead AdEr.........uiiiiiiiie ettt e s e st e e e rtee e e s nae e e e 100
4.3.2.4 ModUlar Bias SUBTIaCOrcovuiiiiiieiee sttt ettt et st st be e s esaeeeaee
4.3.2.5 Mantissa Append Module
4.3.2.6 Mantissa 32-bit Wallace MURIPIEEeeeviiieeeeee et eee e e e s 105
4.3.2.7 Mantissa RIiGNT SNITLEIccii i e e e e e e e e e araaaeeee s 114
4.3.2.8 Mantissa Product ROUNGINGueeiiiiiiiiiiiiee ettt e e et e e e e e e s sbaa s e e e e e e s earaaaeeaa s 115
4.3.2.9 EXPONENT INCrEMEBNTOL 1. e e e s e e e e e s e se s e s e s e e e s e s e s e s e seseaeseseeeeesesaseas 117
4.3.2.10 COMPULE FIAES ... ittt et e e e e e ettt e e e e e s esaatb e e e e e e sesasbbaseeeeeeesnsaaaeeaens 118
4.3.2.11 COMPULE OUEPUL e e s e s e s e s e s e s e s e s e se s e s e se s e se s e sesesesesesesasasasnsnsns 122
4.4 Floating Point Multiplier ReSUILScccciieeiiieiiiiiiiiciricrecrrc s e seneessessenesenenes 124
4.4.1 Floating Point Multiplier Compilation REPOITccccuveriiiiieeciiee ettt e rn e e 124
4.4.2 Floating Point Multiplier TEStDENCNcoviieee e e 125
4.4.3 Floating Point Multiplier SImulation RESUILScciiiiiiiiiiiic e e 126
(6 T NSO PP TP OUPUPUPTPTIN 126
(6 1= = H PO PP TP OUPUPUPTPTIN 127

[OF: 1Y I RO URUPPRURRRRNS 128

Floating Point Processor Kartikey’s Master Thesis

(6= L= LT ROTP P P TP OUPUPUPTPRINN 129

(6= = PP OUPT PSP 130

L B3 0o T ol [T T 131
Chapter 5: 32-bits Floating Point DiVidercovveeeeiiriveniiirnsensiisnsenescsssssessssssssnsonns 132
5.1 Floating Point Division AlgOrithm...........cccciiiiuiiiiiiiiiiiiniiiiincneeseasesesasssesenes 133
5.1.1 Floating-Point DiViSioN EXAMIPIE........uviiiiiiieieiee ettt tee et e et e e e e e e s aae e e enta e e eeanreeesanaeeeens 134
5.2 Floating Point Divider FIOWChartcccccciiiiiiiiiiiiiiiiiiiiciiiicnieennennsessssssenesssssseees 137
5.3 Floating Point Divider HardWareccceeiiiiiuiiiiiiniiiiiniciiiniieissssees 138
5.3.1 Floating Point Divider Hardware Archit@CtUIEeeveiiiie et eree et aree e 139
5.3.2 Floating Point Divider Hardware Implementationccocceiiieiiiiinieniieeeeeee e 140
5.3.2.2 SigN Bit CAlCUIGTION ..ottt ettt s s naees 140
5.3.2.2 Data Classification MOAUIE.......cccuiiiiiiiiee et s e e s e e e saae e e s saneeas 141
5.3.2.3 Modular EXPonent SUDTIraCTOr.........cocuiiieiiieeieiiee et et e eetre e st e e et e e e erae e e s are e e e asaeeeeareeas 143
5.3.2.4 Carry Lookahead Bias Adder..........ceiiuiiieeiiiieeeiee ettt tte e stve e e et e e e tae e e s tve e e e saaeeeeanaeas 144
5.3.2.5 Mantissa APPeNnd MOAUIEcccuuiiiiiiiee et et e et e e eba e e e s ar e e e eaaae e eearaeas 145
5.3.2.6 MaNntissa 24-Dit DIVIAET ..c..eevuiirieiiieiriee sttt sttt ste e e saeesbe e s saeeesbe e e saaeenbaeesaseenanas 147
5.3.2.7 Mantissa Left ShIfteruuiiiiiieeiee e e e s e e e rre e e e raaeeas 148
5.3.2.8 Mantissa DiViSiON ROUNGINGccouviiiiiiiiiiiieeie ettt ettt e sae e saneesaees 149
5.3.2.9 EXPONent DECIeMENT ...t 150
5.3.2.20 COMPULE FIAES ..eeeuueieiiiiiiieiiteeeiee ettt ettt ettt ettt e s bt e s bt e s bt e e bt e e sateesat e e sane e st e e saneennees 151

Lo 207000 B R 0o] ¢ Y o 10 (=T @ U 1| SO OROON 152

5.4 Floating Point Divider RESUILSccoiiiiiimmeniiiiiiiiiirinninnrrrrsessssn s snaaes 153
5.4.1 Floating Point Divider Compilation REPOITccooviiiiiiiiiiiiie ettt aaee e 153
4.4.2 Floating Point Divider TESTDENCHccueiiiiiieeee et 154
5.4.3 Floating Point Divider Simulation RESUILSc..eiivciiiriiiiie e see e e e e aree e 155

(O LT3 TSSOSO PSSRSO OO OROROROON 155

(O LT3 = OSSOSO PSP OR RO O PO ORPRORORPON 156

(6= LT3 GO OO PSR OO SR PR OO ORORORPON 157

(6= 1= L PP PP TP OUPUPUPTTPRN 158

[0 1= PP PP TP PP PUPUPTRN 159

LR 30 0o T ol 11T T o N 160
Chapter 6: FIoating POiNt UNit............ccueeeeueeeeenerennserenneesenneerensessnsseesassssnsssssnssssssssssnnsene 161
6.1 Floating Point Unit BIOCk Diagram........cccceiiimueieiiimnieiiinesciiennsereennssessensssesennsssssennsssssenes 162
6.2 Floating Point Unit Verilog Codecciimiiiimiiiiiiiciienscirenescseeneeessennsesennssssnennssssnenes 163
6.3 Floating Point Unit RTL Diagram.......cccoiiirrreuuesisinniinisnnnssssisiinnesssssssssisssmmesssssssssssssmssssses 164
Chapter 7: EQUCALION MOAUIE..............ccuuueeeeeeeeeererenerereneereneesensesenssersasessnssessnssesssssssnnnne 165
725 T = < T PPN 166
2 3 - |« 07 2O 174
2 - 1« T J 181
2 N - 1« T 187
T - |« T YO 194
X - | « TN T 200
0 AL |« 7 206

Floating Point Processor Kartikey’s Master Thesis

728 N 1= I 219
7286 L0 T 1 < 225
L0 4 Tol L1 T3 o Y 229
CRAPLEr 8: CONCIUSIONc...eueeeeneeeeeeereeeeeereereeereeeeeesseeseseseeasernsesnseresssesssennsenssensssnssnns 230
8.1 FUuture SCoPe Of WOrKcoceeeeiiieiciieeiccrrceccrreen s s eren e s s seen s s esa s s s sennsssssenassssnenassssnennnes 231
127141 Lo [2] o] £} V7S OOt 232

ADOUL TNE AULROK ..euveeeeeereeeereerteeresreressuseseessssssssssssssssssssssssssssesssssssssssssssssssssssssssssnsnnes 236

Floating Point Processor Kartikey’s Master Thesis

Table of Figures

Figure 1 Base 10 Notation Figure 2 Base 2 NOtation........cccceeeiiiiiiiiiiiiiiiiiiiieeesseeeseeeene 2
FIBUIE 3 PDP 10..ciiieiiisissesssessssesens 3
Figure 4 32-bit Floating Point FOrMat........cccceeiiiiiiiiiiiiiiiiiinininnirennnsseesees e ssssse e s s saasss e s s s 5
Figure 5 Binary Significandsccccceeeiiiiiiiimiiiiiiiniieinereen e 6
Figure 6 Significand Representation........cccceeiiiiiiiiiiiiiiiiiiir e s e s e s s s s e s s s s s s e s e e s e s s e snnnens 6
Figure 7 SUbNormal Representation.......ccceiiiiiiiiiiiiiiiiiciiiciirrre s s e s s e e s s s s s e s s s s s s e sessessesnnnens 7
Figure 8 Examples of Binary FIoating FOrmatccccvvviiiiiiiiiiiiiiiiiiciniiiinnnnennnnnnenee e s s s sssss s e s e s e e sessessnnens 7
Table 1 FIoating POINt PArametersccccciiiiiiiiiiiiiiiiiiiissnns 8
Figure 9 Range of Binary 32-bit FOrmat.........ccccceiiiiimieiiiiiiiiiieiieiniinceeeeesn s sssssse e aasss e s s 9
TabIE 2 Data TYPeS...cciiiiiiiiiiiiiissisiss 10
Table 3 Arithmetic OPErations........cccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisss 11
Figure 10 Binary Representation for Addcceeeviiiiiiiiiiiiiciiiiiiiiieeeeeerreee s se s e se s s e s s s e s s s s s s s s s s s s e sesssnnnnns 14
Figure 11 Adder EXponent SUDLractioncccceiiiiiiiiiiiiiiiiiicisceeeeeieeeese e s e s s s e s e s s s e s s s e s e s ssssssssssssssssssesannnnnnnns 14
Figure 12 Adder Mantissa AdditioNn........ce.eciiiiiiiiemeiiiiiiiiieeiincenireeneeiseesseeennssssssssesesnnssssssssssssnnsssssssssssnnnnns 15
Figure 13 FPA EXamPIe RESUILccccieiieeiecccccccccrrreererrerrrerrrr s s s s s s s e s e s s s s s s s s s e s s s s s s s s s s sessesssssssesesensssesannnnnnnns 15
Figure 14 Floating Point Adder Flowchartcccceviiiiiiiiiiiiiiiisssssssssssssssssssssseen 16
Figure 15 Floating Point Adder Architectureccccvviiiiiiiiiiiiiii e 18
Table 4 SigN OPEratioNscccciiiiiiiiiiiiiiiiiiiiisiss 19
Figure 16 Modular SUBtractor RTLccciiiiiiiiiiiiiiiiiiiiiiiiiiiisississnns 20
Figure 17 EXponent SUDLractor COe.......coiiiiiiiiiiiiiiiiiiiiiiiiiiieeieerrs s s e e e s s e s e s s s e s e s s sesssssssssssssssssssesnnnnnnanns 21
Figure 18 Modular EXponent SUb BIOCK.........ccceeiiiiiiiiiiiiiicccccccerrrrrrrrsrnrrnerernssses s s se s e e e s e s se s s s s s s s s s s s s s s s e esesennnnnes 22
Figure 19 Ripple Carry SUbtractor BIOCKcccivieiiiiiiiiiiiiiccic i sese e s s s ee s s s e e s e s sesssssssesesssssssssnsnnnnnns 23
Figure 20 Ripple Carry RTL Diagramccccviiiiiiiiiiiiiniiiiniiiiiniiiiiiiisissnns 24
Figure 21 Ripple Carry SUbtractor Codeccviiiiiiiiiiiiiiiiiiniiisssens 25
Figure 22 Twos Complementor Block Diagram........ccceevviiiiiiiiiiiiiiiiiiiiiiissssssssssssssssssssssssssssssssseens 26
Figure 23 Twos Complementor RTL Diagram......cccceeiiiiiiiiiiiiiiininiiiniiiniiiiiissssssssssssssssssssssssssssssssssnns 27
Figure 24 Twos Complementor COAEuuuiiiiiiiimmmiiiiiiiiiiriiieesirreennnssssesseeeennsssssessssssnnnssssssssssssnnsssssssssssnnnnns 28
Figure 25 MuX BIOCK DIQagramccciiieeeeeeiiiiiiiieeneeiiiiiiineenensssssssesesnnssssssssssssnnssssssssssssnnnsssssssssssnnnsssssssssssnnnnns 30
Figure 26 Mantissa IMUX RTLcciiiiiiiimeeiiiiiiiieennesiiiesiineenmssssssssesesnmssssssssssssnnssssssssssssnnnsssssssssssnnnsssssssssssnnnnes 31
Figure 27 Mantissa MUX €Occiiiiereeeiiiiiiiiennneiiiiiiiseennsssssssesesnnssssssssssssnnsssssssssssssnnsssssssssssnnnsssssssssesnnnnns 32
Table 5 MUX Truth Tableuuueeiiiiiiiiiiiiiiiineennninn s ssssse s s s saasss e s s s s s s ssanss e s s ssas 32
Figure 28 Right Shifter Block Diagramccceiiiiiiiiiiiiiiiiiiiiiiiiiiissnns 33
Figure 29 Right Shifter Code........cciiiiiiiiiiiiiiiiiiiiiiii s s s s s s s s s s s s s s s s s e s e snanns 34
Table 6 MUItIPIeXer 2 TabIe ...ccceeeeeiiiiiiieiiccccrrrrereeeseeee s e eeenesssses s e s e snnsssssesssseennnssssssssssesnnssssssssnssnnnnnssssssnanes 35
Figure 30 Mantissa CLA BIOCK DIagramcccoiieeeeeiiiiiiiieemenniiiisiineennsssssessseeennssssssssssssnnnssssssssssssnnsssssssssssnnnnes 37
FigUre 31 Generate ANDccccceeeiiiiiiiiiiieeceeeiireeneessseesesesnnssssssssssesnnssssssssssssnnssssssssssssnnnssssssssssennnnssssssssssnnnnns 38
FigUre 32 Propagate ORcccceeeeeiiiiiiieiceeeccierireenensssesseeeennsssssssseeesnmsssssssssessnnnssssssssssennnssssssssesennnnsssssssesennnnns 38
FiSUre 33 Carry OUT LOZIC ...civeeruuriiiiiiinenmnniisniiiieesssssssniimeessssssssssimsssnss 39
Figure 34 Carry Lookahead Adder Codecciiiiiiiiiiiiiiiiiiiiiiiiiiiiiisssssssssssss s s sssssssssssssssssssssssssssssanns 40
Table 7 MUltipleXer 3 Table ... s 41
Figure 35 Controlled Incrementor BIOCK........cooueeeeeeeiiiiiiieeiccccsierecice s ccs s s sse s s s e e e snassseesssesesnnnsssssssesennnnns 42
Figure 36 Controlled INcrementor RTLcciiiiiieieeiiiiiiiiceieecccesreseeneesssesesseeennnssssssssssennassssssssssesnnnsssssssessnnnnns 44
Figure 37 Controlled Incrementor COdeouimmmmmiiiiiiiieireceerrreeneesseeeseeeennnssssssssesennnssssssssssssnnnsssssssesennnnns 45
Figure 38 FPA Compilation REPOItcceeeeeciiiieeiiccccersrrerieessses s e seenaessessssesennnsssssssseeennnssssssssesesnnsssssssseesnnnnns 47
Figure 39 FPA TEStDENCNcciiiiiiiiciccccccccccccrcr e s s e s s s e s e s e s s s s e s e e s e e e anes 48
Figure 40 €Case A RESUIL....ccciiiiiiiiiiiiiiiiiiiiiiiieiiirrrrrrse s e s s e s s s e s e s eeeeseseeesnnnnnnanns 49
Figure 41 Case B RESUIL......cccciiiiiiiiiiiiiiiiiiiiiiiiiinirrrrrsre e s s s s s s s s e s s s s s s s s e s e s s s s s s s e s s e s e s e snesnnnanns 50
Figure 42 Case C RESUIccciiiiiiiiiiiiiiiiiiiicicic i s s s s s s s s s s s s e s s s s s s s s s s s e s s e s s s s s s e e eeseenesesnnnnnnanns 51
Figure 43 Case D RESUIL......cccceeeeeiiiiiiiiiiiieccesrereeeeeseee s s e eeerenssssssesesnanssssssssessnnnssssssssesennnssssssssenennnnssssnssesennnnns 52
Figure 44 Binary Representation Sub EXample........ccccviiiiiiiiiiiiiiiiniisssssssssnnsneen 56
Figure 46 Sub Exponent SUbtractioncccceiiiiiiiiiiiiiiiiii e 56
Figure 47 Subtract Mantissa SUBEractionccccvviiiiiiiiiiiiiiii e s e s s e e e e e 57
Figure 48 FPS EXample RESUILccceviiiiiiiiiiiiiiiiiiiiiniiniiiiinniiniiinssnsss s s ss s s e s s s s s s s s s s sssssssssssssssssssssssnnnnnnnnns 57
Figure 49 Floating Point Subtractor FIoOWchartcccoiiiiiiiiiiiiiiiiiiir e ee e 58

Figure 50 Floating Point Subtractor Archit@Ctureccceviiiiiiiiiiiiiiiiii e s e e s e e e eees 60

Floating Point Processor Kartikey’s Master Thesis

Table 8 Sign OPerationscccccveeeeiiiiiiiiiiiireiiiiirre s as s ass s e s s s s s s aas s s e e s s s s s aann e e e s seaes 61
Figure 51 Mux BIOCK DIagram 2.......ccceiiiiiiiiiiiiiiiiiiiiiiniiiisiiisissssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssssnnns 62
Table 9 MUX Truth Table ..cccueeiiiiiiiiiinriiiiiiineeenininsssseesssssssssssssessssssssssssssesssssssssssnsssessssssssssnnssasssssss 63
Table 10 MUltipleXer 2 TABIEcccciiiiiiiiiiiirccrircrirsrrssssssssssssssssssssss s s s s s s sssssss s ssssssssssssssssssssssssssssssssssnsnssnsnnes 65
Figure 52 24 bit Ripple Carry SUD RTL.....ccciiiiiiiiiiiiiiiiiiciieiiiiiiiiiierienesssess e se s sssss s s s s s s s s sssssssssssssssssssssssnnsnnnnnns 67
Figure 53 24-bit Ripple Cary SuUb Codeceeviiiiiiiiiiiiiiiiiiii s s s s s ssssssssens 68
Table 11 MultipleXer 3 Tablecccciiiiiiiiiiiiiiiiiiiiiiiniinisisiiisiisss 69
Figure 54 Controlled Decrement BIOCK........cccceeiiiiiiiiemreiiiiiiiiiiiecininneesees s sssse e ansseees 71
Figure 55 Controlled Decrement RTL......ccccvveeeiiiiiiiiiiiereiiiiiiisinieesisissssssseesssssssssssssessssssssssssssesssssssssssnnsenes 73
Figure 56 Controlled Decrement COUEcuviiiiiiiiiiiiiiiiiiiiiiiiirrrr e e s e e e s e s e s e s s s s s s s s s s sesssessessnnsnnannns 74
Figure 57 Left Shifter BIOCK DIiagramcccceiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnrre s s s e s s e s s e s s e s s s s s s s s s s s sssssesensnsnanns 75
Figure 58 Left Shifter Code.......coiiiiiiiiiiiiiiiiiiiii e e e e e e s s e s e s e e s s e e s e e s e sseens 76
Figure 59 FPS Compilation REPOIt......ccceiiiiiiiiiiiiiiiiiiiiiiiiiiiisnssnns 78
Figure 60 FPS Testbenchcccueiiiiiiiiiiiiiiiicnnerec e ass s sasss s e s s s s annneees 79
Figure 61 FPS Case A RESUILccciiiiiiiiiiiiiiiiiiiiiiiiiiinssnssssssssssssssssssss s s s s s s s s s s s s sssssssssssssssssssssssssssssssnssnsnnnns 80
Figure 62 FPS Case B RESUIL.........ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiisisissnns 81
FIUIre 63 €Cas@ C RESUI ...ccceeeeiiiiiicccccciicirccccs s s s e s s s e s s s s s e e s s s s e s s s e s s s s e s s s s s sesssesesesessessesssssennsnsnsesnnnnnnnnns 82
Figure 64 Case D RESUIL......ccoe i e e s e e s e s s e e s e s s s s s s s e s e s s e s s s s esseesssesesesanannnanns 83
Figure 65 Binary Presentation Mul EXamplecccoeiiiiiiiiiiiiiiiccciciiseennirnsseininnennee e sesese s e sessesesessssssssssssesesssnnnnns 87
Figure 66 XOR Sign SUBIaCtioN.....cccciiiiiiiicccccccecrrrrrrrerrrrrrrrrrrrre s s e s s e e s e s e e s s e s s s e s s e s s s s s s sesssessssesnnnnnnanns 87
Figure 67 Mul Exponent Additionccceiiiiiiiiiiiiiiiiiisssssssssssssssssssssssssssssssssssssssnns 88
Figure 68 Mul Bias SUBTIactionccciiiiiiiiiiiiiiiiiiiiiinsssssssssssssssssssss s ss s s s s s s s ssssssssssssssssanns 88
Figure 69 Mantissa Multiplication.........cccceeiiiiiiiiiiiiii e 89
Figure 70 Incrementing EXPONENTcccceeeeiiiiiiiiieieiiieniineeneessseesesesnnsssssssssssnnsssssssssssssnnssssssssssssnnsssssssssssnnnnns 89
Figure 71 FPM EXample RESUILccceeiiiiiiiiccccccccceerrrrerrssrrrs s s s s s s s s s e s s e s e s s s s s s e s s s s s e s s sessssssssessenssssesesannnnnnnns 89
Figure 72 Floating POINt MUIIPIIEr......cceeee it e s e ennss s sese s s e s nnnssssssssssesnnsssssssseeennnnes 90
Figure 73 Floating Point Multiplication Architecture........ceeeeuciiiiiiiiieiiciiiirrrrrrrcre e eesneessseesseeennnnes 92
Table 13 Sign OpPerations MUl cciiiiiiiiiiiiininnninisss 93
Figure 74 SNAN FOIMAtccoiiiiiiuiiiiiiiiiiieiniiiiiiiiiienmsiiiiiiiresmsssssssiimsssssssssssissnes 94
Figure 75 NN FOrMaAt.....ccciiiiiuiiiiiiiiiiiinmniiiiiiiiienmmiiiiiiimesmssssiisimmsmssssssssiisssnns 94
Figure 76 Plus INfinity FOrMatccceeieiiiiiiiccccccreeeeesrsirssrre s ss sssssssssssssssssssessssnsesnssenannnnnnnns 95
Figure 77 Negative INfinity FOrMat.......ccceieiiiiiiiiiicccccccceserrrerrrre s se s e s e ss s e s s e s e s s s e s s s s ssssssssssssssenessesnnanananns 95
Figure 78 PosSitive Zero FOrMatccciieeeeeiiiiiiiiiiiisiiniineeieesssessesesnnsssssssssessnnnsssssssssssnnnsssssssssssnnnsssssssssssnnnnns 96
Figure 79 Negative Zero FOrMAL........cccceeeeiiiiiiiieeiciiicniireeneesssessesesnnsssssssssessnnnssssssssessnnnsssssssssssnnnsssssssssssnnnnes 96
Figure 80 Subnormal Format

Figure 81 Normal FOrmat......ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisisissnns
Figure 82 Data Classification Verilog Codecccuviiiiiiiiiiiiiiiiiiiiiisssnssssssssssssssssssssssssssssssssssenn 98
Figure 83 Data Classification RTL DIagramcccceviiiiiiiiiiiiiiiiiiniiiiiiiisssssssssssssssssssssssssssssssssssssssnns 99
Figure 84 Exponent Adder INStantiationcceeeeeiiiiiiiiiiceiicirrirerie e s reces e e e s e seennas e s s s e e e e nnnsssssssseennnnns 100
Figure 85 Bias Subtraction Instantiationcceeeeeciiiiiiiiiceiccirrirerce e sse e e s e enees e s e s e e e e nansssssssseennnnns 101
Figure 86 Mantissa Append BIOCK Diagramc.cceeeiiiiiiieieeeicciiiiieeieecessressenessssessesennsssssssseeesnnnssssssseesnnnnns 102
Figure 87 Mantissa Append Verilog Code........ccuiriiiiiiiiiiiiiiiiiiiiiiiiiisnesssnns 103
Figure 88 Mantissa IMUX RTLiiiiiiiiimuniiiiniiiiemmmssiiniimmesssssssiiimeessssssssiimmsssssssssssissssssssssssssssssssssssssssssssssss 104
Table 14 Append Mantissa Truth Table........ccccciiiiiiiiiiiiirr s s s aes 104
Figure 89 Wallace Multiplication Stagesccceviiiiiiiiiiiiiiiiiiir s s s s s s s s s s s s s saneens 106
Figure 90 Wallace Multiplication Stage 0ccceeeeeiiiiiiiiiieeiciiiiireeiesseeesreeeenessseeesesennasssssssseeesnanssssssssesnnnnns 107
Figure 91 Wallace Multiplication Stage 1ccceeeeeiiiiiiiiiieecceerrireecessessreeeenasssssssseeeenmnssssssssneennnssssssssesennnns 107
Figure 92 Wallace Multiplication Stage 2ccceeeeeiciiiiiieiieeccceriireeiessee s s eeeenasssseesseeeenmsssssssssesennnssssssssesennnns 108
Figure 93 Wallace Multiplication Stage 3ccceeeeiceiiiiiiiicericeriireriesses s s e eeenassssessseseenmnssssssssesennnssssssssesnnnnns 108
Figure 94 Wallace Multiplication Step 3.....ccciiiiiiiiiiiiiiiiiiiii s s s s s s s s s s s s snneees 108
Figure 95 Wallace Multiplier FIoOw DIiagramccceviiiiiiiiiiiiiiiiiiiiiiiiiiiiinissnsens 109
Figure 96 Wallace Tree Mul BIOCk Diagramccccveiiiiiiiiiiiiiiiiiiiiiiiininiieisssens 110
Figure 97 Wallace Multiplier Codecovviiiiiiiiiiiiiiiiiiiiisssssssssssssssssssssssssssssssssssssssnn 111

Figure 98 Wallace Tree 32-bit RTL
Figure 99 Wallace Tree 16-bit RTL
Figure 100 Wallace Tree 8-bit RTL
Figure 101 Right Shifter INStantiationcccevviiiiiiiiiiiiiii s e s e e e 114

Floating Point Processor Kartikey’s Master Thesis

Figure 102 Product Rounding Verilog Codecccovvmmmiiiiiiiiiiinmneiiiiiiiiinnreeniissssssseessssssssssssssesssssssssssssenes 115
Figure 103 Product Rounding RTL Diagramcccceeiiiiiiiiiiiiiiiiiiiiiiiisiiessesssssssssssssssssesssssssssessssssssssssssssssssssssnns 116
Figure 104 Exponent Incrementor Instantiation.........ccouiveeeeiiiiiiiiinienniiiiniiieennesssssssessssees 117
Figure 105 Compute FIags RTL DIagramcccccviiiiiiiiiiiiiiiiiiiiiiiiiiiiissssssssssssssssesssnsnns 119
Figure 106 Compute Flags Verilog Codeccuimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiininiiinnennnensssseessssssss s ssssssssssssssssssssssssnnens 121
Figure 107 Compute Output RTL Diagramccccciiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeseeeseeeen 123
Figure 108 Compute Output Verilog Code..........ocuvnimmmiiiiiiiiiininieiiiiiiiienreeniissssssseesssssssssssssesssssssssssssenes 123
Figure 109 FPM Compilation REPOItcceiviiiiiiiiiiiiiiiiiiiiiiiissnns 124
Figure 110 FPIVMI TESDENCHcuueeeeeiiiiiiieeneiiitcctrree s ass s sasss s e s s s s s snnneees 125
Figure 111 FPM Case A RESUILccoeiiiiiiiiiicicccccrccccicrrnrrrrrrrr e s s s s s e e s s e e s e s s e s s s e s s s s s e s s s s e s e sannnns 126
FIigUre 112 FPIMI CaS@ B......cciiieeeeeiiiiiiiiennneiisiiiieemssssisssiisssnsssssssssssssnnnssssssssssnnnnes 127
FIiZUre 113 FPIMI CaS@ C.....coiiiiieenniiiiiiiiennsssisssiisssnsssssssssssssnsssssssssssssssssssssssssssnsssssssssssssnnssssssssssssnnsssssssssssnnnnes 128
FIgUIre 114 FPIMI Case D....cccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisiiisssens 129
FIgUre 115 FPIMI CaS@ Eccoiisiisssssnssnsens 130
Figure 116 Binary Presentation Divide EXample..........eeciiiiiiiiiieeeiiiiiiiiniinnieiniiinnessennnissssssssessssssssssssseens 134
Figure 117 XOR Sign DiViSION ...ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisiisissssssssssssssssssssssissessessssssssssssssssssssssseens 134
Figure 118 Divide EXponent SUDLIractionccceviiiiiiiiiiiiicicicccccrrrrrrrrrrre e e e se s s e e s s e s s s s s e s s s sesssennnns 135
Figure 119 Divide Bias SUDBEIaCtioN.......ccceieiiiiiiiicccccereeerrrrerrrrree e e s s s e s e s e s e s e e s s e s s e s s s s s ssesessssnsnsnnnnns 135
Figure 120 Mantissa DIVISIONccciiiiieeeeiiiiiiiieeneniiiiiiiieenessisseeiineesnssssssssssssnnssssssssssssnnssssssssssssnnsssssssssssnnnnns 136
Figure 121 FPD EXampPle RESUILcccceeieiiiiiiiiccccccceseiserresss s s e ss s s ss s s s s ss s s s s s s s s s s s s s s sssssssssssssssssssssnssnnsnsnsnnnnnnns 136
Figure 122 Floating Point DIVIder........cccevviiiiiiiiiiiiiiiiiiiiissnsnns 137
Figure 123 Floating Point DIVISIONccciviiiiiiiiiiiiiiiiiiiiisssnens 139
Table 15 Sign Operations DIVIAEcccciiiiiiiiiiiiiiiiiiiiiiiiiiiiissssssssssssssssssssssssss 140
Figure 124 Data Classification Instantiation B..........cccceviiiiiiiiiiiiiiiiiiisciesesesse e se s se e esesseessessssssssssesssennens 142
Figure 125 Data Classification InStantiationccccceviiiiiiiiiiiiiiicicirerrrrrr e e e e e e e e e e e s e e s e eeseeeens 142
Figure 126 Mode Subtractor INStantiationccceeeeeiiiiiiiiiieicicirirer e enee e e s s e s e s nnnsssesssseennnnes 143
Figure 127 Bias Addition INStantiationccoiieeeeeeiiiiiiiiiiccccriricresscc s rreeeeesssee s s sesnnssssssssesesnnssssssssssennnnns 144
Table 16 Append Mantissa Truth Table........ccccoiiiiiiiiiiiiiiii s s s saes 145
Figure 128 Append Mantissa A Instantiationccccviiiiiiiiiiiiii e 146
Figure 129 Append Mantissa A Instantiationccceviiiiiiiiiiiii e 146
Figure 130 24-bit Divider CoOAe......ccoimmimmmiiiiiiiiirriiiiiiirernnnsssesrrsernnsssssessssesnnsssssessssssnnssssssssssssnnsssssssssssnnnnns 147
Figure 131 Left Shifter Instantiation........cccceeeiiiiiiiiiiieiccrrr e s e e e s e s s e s s s s s s s s s s s s s eeeesannnns 148
Figure 132 Division Rounding INStantiation.......c.ceeueciiiiiiiiieeiiiiiiiicrscccnrrrceneesses s sesneesssessesesnassssssssssennnnes 149
Figure 133 Exponent Decrement INStantiation..........ccooereeeeeiiiiiiiiiieccicciiircrreecses e see s s e s e snanssssesseeennnnes 150
Figure 134 Compute Flags Instantiationcccceviiiiiiiiiiiiiiiissssssssssssssssssseens 151
Figure 135 Compute Out INStantiationccoivriieiiiiiiiiiiiiiiiiiiiiiirssnrrsssasssssssnssssssssssssssssssees 152
Figure 136 FPD Compilation REPOrtccceiiiiiiiiiiiiiiiiiiiiiiinnssnnnns 153
Figure 137 FPD TeSthench.......ccccviiiiiiiiiiiiiiiiiiiiiiiiiniiinninssssssssss sssssnnnnns 154
Figure 138 FPD Case A RESUIL........coiiiiiiieecciiiiieiieeeceesseeeenensseeeseseenasssssssseeesnassssssssssennnnssssssseeennnnssssssssennnnnns 155
FigUre 139 FPD Cas@ B......ccccieeeeueiiiiiiiieiennsceissieennassseessseeeennssssssssenesnnssssssssseesnnsssssssssssnnnnsssssssesesnnnssssssssesnnnnns 156
FigUre 140 FPD CaS@ C.....ccoiiieeeeuuciirrereennnssessseeenmmsssssssseeesnnssssssssesesnnssssssssssesnnsssssssssssnnsssssssssesssnnnssssssssssnnnnns 157
FISUIE 141 Case D ..cccevuriiiiiiiiiennniiiiiiinienssssisiiiimeesssssssssiimessssssssssssmesssnsnss 158
LT UL =y o 0 I - T 159
Figure 143 Floating Point Unit BIock DIiagramcccccvviiiiiiiiiiiiiiiiniiiiiiiiiinnnnssssnsssssssssssssssssssssssssssssssssssssnsnns 162
Figure 144 Floating Point Unit Verilog Code.........cccviiiiiiiiiiiiiiiiiiiiiiiiinninnnennnsssnesssssssssssssssssssssssenns 163

Figure 145 Floating Point Unit RTL Diagramccceeueiiiiiieeieenciiiiiieeienessesseseenassssssssesesnnsssssssseeesnnnssssssssssnnnnns 164

file://///Users/kartikey/Documents/MS/Thesis%20Paper%20Final%20Draft.docx%23_Toc134059851
file://///Users/kartikey/Documents/MS/Thesis%20Paper%20Final%20Draft.docx%23_Toc134059852
file://///Users/kartikey/Documents/MS/Thesis%20Paper%20Final%20Draft.docx%23_Toc134059853

Floating Point Processor Kartikey’s Master Thesis

Acknowledgments

This project would not have been possible without the support of many people. Many
thanks to my adviser, Dr. Bill D Carroll, who read my numerous revisions and helped make
some sense of the confusion. Also, thanks to my committee members, Prof. David Levine, and
Dr. Jason Losh, who offered guidance and support. Thanks to the University of Texas at
Arlington Graduate College for providing me with support and infrastructure to complete this
project. And finally, thanks to lord Hanuman, my parents, my girlfriend, and numerous friends

who endured this long process with me, always offering support and love.

Floating Point Processor Kartikey’s Master Thesis

Abstract

In today’s day and age of arithmetic, Floating Point Arithmetic is by far the most
industry sanctioned way of approximating real number arithmetic for making numerical
calculations on all computers used by industries on an everyday basis.

In the year 1985, IEEE 754 standard was established that defined a single universal
standard for all different arithmetic formats [1]. Before this, for a long period each computer
had a different arithmetic format and size for bases, significand, and exponents. This format
allowed industries all around the world to compute floating point arithmetic in a universal
way and facilitated open communication between all worlds.

The first objective of this project is implementing a single precision binary floating
point processing unit in accordance with the IEEE 754 standard using Verilog hardware
description language and writing test benches to run ModelSim simulations for testing.

The second objective of this project is to convert the implementation of the single
precision floating point unit into an education model. The purpose of this education model
will be to educate future Digital Logic & Design students in the field of floating-point
processing and provide them a roadmap to build their own floating-point processor using a

series of lab assignment.

Floating Point Processor Kartikey’s Master Thesis

Chapter 1: Introduction

Manipulating real numbers efficiently has been the basis of computing in various fields
ranging from engineering & science, to finance. There have been many ways to approximate
and compute real numbers in an efficient way ever since computers have been introduced.

The most efficient one of these computing methods and representing real numbers in
computers has been identified to be floating point arithmetic. The representation of such an
infinite, continuous set with a finite set is a difficult task. Such a task requires a lot of
compromises to be made in terms of speed, accuracy, implementation, and memory cost [2].

Considering the challenges of speed and accuracy, floating point arithmetic is the
perfect compromise that can be made for most numerical applications that needs to be

performed in today’s day and age of computation.

Floating Point Processor Kartikey’s Master Thesis

1.1 Floating Point Numbers

The floating-point numbers representation is based on scientific notation for
representing floating point numbers [3]. This notation consists of four major elements: sign,
mantissa, base, and exponent. In the scientific notation, the decimal point is not set in a fixed
position in the bit sequence. The position of decimal is indicated as a base power.

Example of floating-point representation using different bases:

Exponent

Exponent
Sign — Sign ~—
—M =25 PN -1101
+ 5.05 - 10 + 1.01110 - 2
e A 'x_Y__/' '\‘—\‘/—j
Figure 1 Base 10 Notation Figure 2 Base 2 Notation

Floating point numbers expressed in scientific notation consist of four primary components:

e Sign: This element conveys information about the sign of the number (0 is used for

positive numbers, 1 for negative numbers).

e Mantissa: This element consists of the value of the number.

e Exponent: This element consists of the value of the base power in a biased form.

e Base: The base of a number is implied and is universally known for all number system

(2 for binary numbers, 10 for decimal numbers).

This kind of free hand format allowed for each individual architect or programmer to
design their own floating point number system for use. This allowed for different elements to
be interpreted using different bit numbers with no uniformity overall.

The very first modern-day implementation of a floating-point arithmetic in a computer

was built using a radix-2 number system. This number system consisted of 14-bit significand,

Floating Point Processor Kartikey’s Master Thesis

7-bit exponents, and 1-bit sign. On the other hand, another computer PDP-10, Figure 3, used

a radix-8 number system and IBM 360 used a radix-16 floating point arithmetic [4].

Figure 3 PDP 10

This non uniformity of number system in different architectures led to the need for a
universal standard of floating-point number which developed a clear and concise format to

be used by all developers worldwide. This was called the IEEE 754 standard.

1.2 The IEEE 754 Standard

IEEE is acronym for the Institute of Electrical and Electronics Engineers (IEEE). |IEEE is
the world's largest technical professional organization dedicated to advancing technological
innovations and excellence for the benefit of humanity.

The American Institute of Electrical Engineers was the organization that gave birth to
the IEEE in 1884. The competing Institute of Radio Engineers was established in 1912.
Although the IRE drew more students and grew larger by the middle of the 1950s, the AIEE
was initially larger. In 1963, the IRE and the AIEE amalgamated to form IEEE.

The IEEE Operations Center in Piscataway, New Jersey, initially established in 1975, is
where most of the business is conducted. The IEEE headquarters are in New York City [5].

One of the many responsibilities of IEEE is serving as a major standards development
organization for the creation of industrial standards in a variety of fields like nanotechnology,

consumer electronics, and telecommunications. The IEEE 754-2008 is one of such standards.

3

Floating Point Processor Kartikey’s Master Thesis

1.2.1 Overview

The IEEE 754 standard, revised in 2008, specified important aspects of floating-point

arithmetic such as formats and methods to operate with floating point numbers. The IEEE 754

standard specifies four different formats for representing floating point numbers are:

Half Precision Floating Point (16 bits)
Single Precision Floating Point (32 bits)
Double Precision Floating Point (64 bits)

Quadruple Precision Floating Point (128 bits)

32 bits and 64 bits are the most found representation of floating-point numbers. In this

thesis we will be working with the single precision floating point number system i.e., 32 bits

of operands [6].

Furthermore, this IEEE 754 standard dictates that all the computational work done with

floating point numbers will output the same result irrespective of whether the processing was

done in software or hardware, and irrespective of the method of implementation.

The IEEE 754 standard specifies the following:

Formats for binary and decimal floating-point numbers for arithmetic and data
transaction between modules.

Instructions for various operations such as addition, subtraction, multiplication, and
other similar operations.

Variety of parameters to be considered when rounding binary numbers after
arithmetic operations and conversions.

Setting parameters for conversions between integer to floating point format.
Guidelines for floating point data classification, exceptions, and their handlings such

as NaN, Zero, Normal, Subnormal, and Infinity data types.

4

Floating Point Processor Kartikey’s Master Thesis

1.2.2 Binary Format Encodings
Floating point binary number is represented in accordance with IEEE 754 standard in

three separate fields and 32 bits for single precision number as shown in Figure 4 [7]:

1 bit MSB 8 bit LSB MSB 23 bit LSB
S J E Mantissa
(Sign Biy (Biased Exponent)

ES‘ 'ED MZZ ' 'MD

Figure 4 32-bit Floating Point Format

To explain the figure, the single precision (32 bit) binary format has been divided in 3 parts:
e Sign: The most significant bit of the 32-bit number (31t bit) is the bit that conveys
information regarding sign of the number being represented. (0 to denote positive
numbers, 1 to denote negative numbers).
e Exponent: The next part is the 8-bit biased exponent that ranges from bit 23 to bit 30.
e Mantissa: The final part is the 23-bit long mantissa that ranged from bit 22 to bit 0.
Exponent
The exponent value for the 32-bit binary number system is stored in 8 bits. This has
the bias value of 127 added to it. This dictates the final range of exponent to fall between
-12610 (10000010;) and +12710 (000000013, being zero at value (011111115,).
To find the true value of the exponent, a fixed value (bias) is subtracted from it. In the
case of 8 bits, this value yields a true exponent range from 01p to 25510 [8].
The biased exponent has a range that is divided into three sections based on type:
e Normal: For 32-bit number system, the range for normal numbers consists of every

integer from 2° (110) to 28 — 2 (25410). Given the 8 bits of exponents.

Floating Point Processor Kartikey’s Master Thesis

e Subnormal & Zero: For 32-bit number system, the value 0 is used for subnormal
numbers and the zero-type number [9].
e Special Cases: The reserved value 28 — 1 (25510) is used to encode special types of
number cases like Infinity or NaN.
Significand
The final part of this floating-point binary number representation is the 23-bit long
significand which starts from the least significant bit of the number representation. A floating-
point number can be represented in variety of different ways.

For Example:

0.110 x 2° 1100 x 21 0.00110 x 27

Figure 5 Binary Significands

All the values in the above examples (Figure 5) are equivalent in value and expressed
with difference significand values. The thesis has emphasized the importance of a unique
representations. In order to achieve that objective, finite floating-point numbers are to be
normalized for choosing a representation with minimum possible value of the exponent. A
normal number is the kind where the most significant bit of the significand is nonzero value
when represented in binary or base 2 format. In a typical convention, the radix point is to the

right of the last bit of the number which is represented in form of [10]:

+ 1.bbbb... b x 2*E

Figure 6 Significand Representation

The mantissa is reality is a 24 bit number but as shown in figure above, the most

significant bit is always 1. This kind of convention deems it unnecessary for the mantissa to

6

Floating Point Processor Kartikey’s Master Thesis

store this most significant bit in their representation. The mantissa thus became a 23 bit value
which in reality contains an implicit bit depending on the type of data being represented.
The mantissa is appended with 1 as the most significant bit (24" bit) for all the normal
numbers (Figure 6), and appended with 0 for all subnormal number type (Figure 7). Both these
most significant bits in different data types will be implied and taken into account when

making arithmetic operations to get the correct decimal value.

Figure 7 Subnormal Representation

1.2.3 Examples of Floating Point Representation

The Figure 8 below shows examples of four numbers stored in binary floating point
format in a 32 bit number system. On the very left for each example is decimal value of a
number, in the middle there is the same number in binary format, and on the right is that

number in 32 bit floating point binary format as defined by IEEE 754 [11].

1.6328125x 220 = 1.1010001 x 2-1010 = 0 01101011 10100010000000000000000
1.6328125x 220 = 1.1010001 x 21010 = 0 10010011 10100010000000000000000
-1.6328125x 220 = -1.1010001 x 2-10100 =1 01101011 10100010000000000000000
-1.6328125x 2?0 = -1.1010001 x 210100 =1 10010011 10100010000000000000000

Figure 8 Examples of Binary Floating Format

Floating Point Processor Kartikey’s Master Thesis

The binary pattern on the right side has four important features of note:
e Sign of value is stored in the first bit of the word.
e First bit of significand is 1 and is not stored in the significand field.
e The exponent in binary is true exponent with 127 added to it as bias.

e The base of the format is 2 which signifies binary.

1.2.4 Floating Point Parameters

Parameter Format
Binary 32 Binary 64 Binary 128
Storage Bits 32 64 128
Exponent Bits 08 11 15
Exponent Bias 127 1023 16383
Max Exponent 127 1023 16383
Min Exponent -126 -1022 -16382
Significand Bits 23 52 112
Sign Bits 1 1 1
No. of Exponents 254 2046 32766
No. of Fractions 223 252 2112
No. of Values 1.98 x 23! 1.99 x 23 1.99 x 2128

Table 1 Floating Point Parameters
1.2.5 Range of Floating-Point Number
There is a finite range of values that can be represented with the finite number of bits in
the floating-point number system. In the twos complement number system, all the integer
values from -23'to 23! — 1 can be represented in this system. However, when we use the
representation as shown in Figure 4 allows for a broader range of numbers [12]:
e Negative Numbers: Range from — (2 — 2°23) x 2128 and -2-1%7

e Positive Numbers: Range from 27127 and (2 — 2°23) x 2%%%

Floating Point Processor Kartikey’s Master Thesis

Exceptions
Al
4 hl
Zero
Neg . Neg Pos s Pos
Usable Negative Numbers Usable Positive Numbers
Overflow J 9 J Underflow J Underflow } Overflow J
(2 - 2-23) x 2128 _p-127 0 2-127 (2 - 2:28) x 2128

- - - L

Figure 9 Range of Binary 32-bit Format

Figure 9 shows the range of binary 32 bit floating point number format. The range is
divided into a total of seven different regions. The ranges are [13]:
e Negative Overflow: Negative numbers that are less than — (2 — 2-23) x 2128
e Negative Numbers: Negative numbers range from — (2 — 2-23) x 2128 to0 -2°1%7
e Negative Underflow: Negative numbers that are greater than — 21/
e Zero
e Positive Underflow: Positive numbers that are less than 27127
e Positive Numbers: Positive numbers range from 21?7 and (2 — 2-23) x 21%%
e Positive Overflow: Negative numbers that are greater than (2 — 2-23) x 2128
1.2.6 Rounding of Floating-Point Number
According to IEEE 754 standard, the result of floating-point operation needs to be
unique irrespective of method of computation. This gives birth to the need for absolute
precision which can be reached by employing the process of rounding the results [14].
There are four major rounding operations that are recommended by the standard:
e Rounding the result to the nearest representable number.
e Rounding the result towards + o,
e Rounding the result towards - oo,

e Rounding the result towards 0.

Floating Point Processor Kartikey’s Master Thesis

In this thesis, we will be employing Rounding to nearest policy for all our operation results,
as itis the default rounding mode listed in the standard. In this policy, the representable value

nearest to the infinity precise result will be used.

1.2.7 Data Types of 32 bit Floating-Point Number

Sign Biased Exponent Fraction Value
Positive Zero 0 0 0 0
Negative Zero 1 0 0 -0
Plus Infinity 0 All 1s 0 oo
Minus Infinity 1 All 1s 0 -o0
Quiet NaN Oorl All 1s 1=0; MSB =1 gNaN
Signal NaN Oor1l All 1s I=0; MSB=0 sNaN
Positive Normal 0 0<e<255 F 28127
Neg Normal 1 0<e<255 F -2¢127
Pos Subnormal 0 0 F=/0 28126
Neg Subnormal 1 0 F=/0 -2e126

Table 2 Data Types

10

Floating Point Processor Kartikey’s Master Thesis

1.3 Floating-Point Arithmetic

Floating-point arithmetic is about the basic operations that can be carried out
between two different floating point binary numbers. For addition and subtraction, the
arithmetic is trickier than multiplication and division as it requires shifting radix point and
ensuring that the operands are in alignment with each other [15].

The following table 3 summarizes the basic operations for floating point arithmetic:

Floating Point Numbers Arithmetic Operations
X = Xs x BXe X+Y=(Xs x BX¥YE+ Ys) x B%
Y =Ysx B X-Y=(Xs x BX¥YE - Y5) x B

XXY=(Xs x Ys) x BXE+YE

X/Y=(Xs/ Ys) x B XE-YE

Table 3 Arithmetic Operations

1.3.1 Exponent Overflow

A positive exponent exceeds the maximum possible value which is any value more than 127.
1.3.2 Exponent Underflow

A negative exponent that is less than the minimum possible value which is any value less than
the -127 value. This implies that the exponent number is too small to be represented, and it
may be reported as zero value.

1.3.3 Significand Overflow

On addition of two significands, the result might carry out from the MSB and exceed the
maximum value allowed. This can be fixed during the normalization process.

1.3.4 Significand Underflow

In the process of aligning significands, digits may flow off the right end of the value.

11

Floating Point Processor Kartikey’s Master Thesis

Chapter 2: 32-bits Floating Point Adder

In this chapter, we describe an efficient implementation of an IEEE 754 single precision
floating point adder targeted for DE-1 Cyclone V FPGA. Verilog is used to implement a
technology-independent pipelined design. The adder implementation handles the overflow
and underflow cases. Rounding is implemented to give more precision when using the Carry
Look Ahead Adder for faster calculations. The Floating-Point Adder was verified by testbench
simulations on ModelSim.

In this chapter we will dive deeper into the floating-point adder algorithm,
architecture, code design, RTL diagram, and simulation results.

We will talk about the procedure in addition operations and a first look at the code
design in a block diagram way followed by deeper understanding of code development. Out
of four arithmetic operations, floating point addition is the most complicated operation.

Floating point addition is done by extracting signs, subtracting exponents, adding
mantissa values, and shifting the mantissa for normalization.

There are five basic phases of designing a Floating-Point Adder:

1) Check for Zeroes.

2) Isolate the sign bits.

3) Align the Significands.

4) Add the Significands.

5) Normalize the Significand

6) Normalize the Exponent if needed.

12

Floating Point Processor Kartikey’s Master Thesis

2.1 Floating Point Addition Algorithm

As described in the above topics, floating point number is in the format of:

7= (_15) *) (E — Bias) * (1M)

To add two floating point numbers A & B the different steps to follow are [16]:

1)
2)
3)
4)
5)
6)
7)
8)

9)

Extracting signs, exponents and mantissas of both A and B numbers.
Calculating the output sign.

Treating the special cases.

Finding out the data types of numbers given

Subtracting the two exponents.

Shifting the lower exponent number mantissa to the right.

Addition of the mantissa values

Normalizing mantissa by bit shifting.

Detecting exception, overflow, and underflow.

13

Floating Point Processor Kartikey’s Master Thesis

2.1.1 Floating-Point Addition Example
A =9.75 (base 10)

B =0.5625 (base 10)

S1 El M1
X1 = [o | 10000010 | 00111000000000000000000 |

S2 E2 M2
X2 = [o | o1111110 | 00100000000000000000000 |

Figure 10 Binary Representation for Add

1) S1=0, E1=10000010, M1 =00111000000000000000000
$2=0,E2=01111110, M2 = 00100000000000000000000

2) Exponent Subtraction

10000010
- 01111110

00000100

Figure 11 Adder Exponent Subtraction

E =00000100; = 419
3) Right Shift mantissa M2 by E1 — E2 (4)
1.M2 =1.00100000000000000000000

Shifted Mantissa = 0.00010010000000000000000

14

Floating Point Processor Kartikey’s Master Thesis

4) Add the mantissa

1.00111000000000000000000
+ 0.00010010000000000000000

1.01001010000000000000000

Figure 12 Adder Mantissa Addition

M =1.01001010000000000000000
5) No normalization needed.
6) No exponent incrementation needed.

7) Result

S3 E3 M3
X3 = [0 | 10000010 | 01001010000000000000000

Figure 13 FPA Example Result

15

ADD

Floating Point Processor

2.2 Floating Point Adder Flowchart

The below, Figure 14, showcases a typical flowchart that is used to design a floating
point adder. The figure shows a step by step narrative and displays the high level functions
that is required to compute floating point addition [17]. The flowchart shows block level

diagram and each block or element is implemented in hardware and is described in detail in

the following topics of the thesis .

Yes

Increment
Smaller Exp

No i Y
Shift
Significand RETURN
Yes Yes
Y v . 4
[Z<-Y ‘ Z<-X

RETURN

Yes

Another

Number in Z

Y

RETURN
Report <ve

Overflow

w

Kartikey’s Master Thesis

Add
Significand

Increment
Exponent

Figure 14 Floating Point Adder Flowchart

16

No

lNo.

Normalized? -Yes.

No
Y

Shift
Significand

Decrement
Exponent

Yes

Y

Report
Underflow

Y
RETURN

Round
Results

Y

RETURN

Floating Point Processor Kartikey’s Master Thesis

2.3 Floating Point Adder Hardware

In this section of the thesis we will start explaining and diving deeper into the
hardware implementation of the floating point adder. This section will start by elaborating
the flowchart further with help of showcasing the hardware architecture used to design the
module followed by detailed description of each module used in the architecture.

After understanding the theory of hardware implementation and the architecture of
floating point adder the thesis will show the code development that achieved out final

objective of building this floating point unit.

17

Floating Point Processor Kartikey’s Master Thesis

2.3.1 Floating Point Adder Hardware Architecture
The below figure, Figure 15, showcases the hardware architecture that was designed

and coded to implement synthesizable 32-bit floating point adder using Verilog.

01 08 23 01 08 23

23 33 23
| 8 ; ‘ 8
MA EA EB
Mantissa 1 Cout Mantissa
Shifter MUX Modular Exponent Adder MUX
i Subtractor
|[EA-EB|
1 Appended 24
EA 8
M
Mantissa qp.q | o 5 =oEs
Right Shifter Exponent
S INC MUX
‘ 24
8.
Cout 24 bit
E Carry Look Ahead Adder
Controlled Exponent 1
Incrementror
l 24 ;
M

Mantissa Normalizer
Bit Shifter

\ 4

Exponent [8:0]

:

Mantissa [22:0]

Figure 15 Floating Point Adder Architecture

18

Floating Point Processor Kartikey’s Master Thesis

This floating point architecture uses a total of eight modules that serve various unique

purposes in making the design work. The modules are:

e Mantissa Shifter Multiplexer e Mantissa Adder Multiplexer
e Modular Exponent Subtractor e Mantissa Right Shifter

e Exponent Increment Multiplexer e Carry Look Ahead Adder

e Controlled Incrementor e Mantissa Normalizer

2.3.2 Floating Point Adder Hardware Implementation

In this section, we will discuss the hardware implementation designed for the floating
point adder and explain each module and each algorithm step in detail.
2.3.2.1 Sign Bit Calculation

Adding two positive numbers will result in a positive number which makes this section
easy for us since there will be another module to take care of subtraction. The table below

shows sign operations for various cases:

A’s Sign Symbol B’s Sign Operation
+ + + +
+ + - -
- + - +
- + + -

Table 4 Sign Operations

19

Floating Point Processor Kartikey’s Master Thesis

2.3.2.2 Modular Exponent Subtractor

This modular exponent subtractor is responsible for subtracting the exponent of the
second input from the exponent of the first input. This module of hardware description
language ensures that the exponent difference value is absolute in nature. Before the
subtraction operation is performed the program doesn’t know which exponent is higher in
value. The modular exponent subtractor allows us to not just compute the absolute exponent
difference, it also allows us to identify the larger exponent which further identifies the
exponent that will be used for the incrementor module and ultimately computing the result
of the entire operation.
Modular Exponent Subtractor RTL Diagram

This module further has a total of two modules that facilitate the two tasks. The

figure below, Figure 16, shows the RTL of the module consisting of the two modules.

RippleCarrySub:subtractor

Cout
R[7..0]

AL7.01 [Z[Z"z]
B[7.0] [> - ([:d]
OpCode|[> pote

twoSIGN:twosComplement

A[7..0] B[7..0]

Figure 16 Modular Subtractor RTL

20

Floating Point Processor

Modular Exponent Subtractor Verilog Code

Kartikey’s Master Thesis

The figure below, Figure 17, shows the top level design’s Verilog code for the

implementation of the Modular Exponent Subtractor discussed in the previous section.

1 ?udUWE ModeSubtractor #(parameter W = 8)
2 =l
3 input [w-1:0] A,
4 input [w-1:0] B,
5 input OpCode,
6 output[w-1:0] R,
7 oUTputT Cout
8)i
g- L
10 wire [W-1:0] out;
11 wire [W-1:0] outFinal;
12
13 Ripplecarrysub #(.N(w)) subtractor
14 Bl (
15 CACA),
16 .B(B),
17 .0OpCode (OpCode) ,
18 R{out),
19 Cout (Cout)
20)i
21 L
22 TwoSIGN #(.N(W)) twosComplement
23 =HY
24 CAfout),
25 B{outFinal)
26)i
27 L
28 assign R = (Cout == 1'bl) 7 outFinal : out;
29
30 endmodule

Figure 17 Exponent Subtractor Code

21

Floating Point Processor

Modular Exponent Subtractor Block Diagram

Kartikey’s Master Thesis

The following figure shows the block diagram for the modular exponent subtractor

used in the floating point adder algorithm.

Twos Complement
Convertor

©o

A —8 »
Ripple Carry o
Subtractor -
B —8 »
Cout
1
2-t0-1
Multiplexer
\
ouT

Figure 18 Modular Exponent Sub Block

The three modules inside the modular exponent subtractor are:
e 8-bit Ripple Carry Subtractor

e Twos Complement Convertor

e OQutput Multiplexer

22

Floating Point Processor Kartikey’s Master Thesis

8-bit Ripple Carry Subtractor

To compute the result, an 8-bit ripple carry subtractor was used to subtract the
exponent of input A and the exponent of input B. As shown in Figure 19, it is shown that a
ripple carry subtractor is a chain of cascaded full adders. Each full adder of this ripple carry
adder has three total inputs described as A, B, & C. The full adders also has two outputs
namely R and Cout. The carry output of each full adder is fed into the C input of the next full
adder, you can also say that the carry output bit ripples to the next full adder [18].

The following figure also shows XOR gates with B and C as inputs and feeding into the
input. The XOR gates achieve the purpose of turning the B input into a negative, followed by

a regular addition results into the subtraction of the two inputs.

8-bit Ripple Carry Subtractor Block Diagram

A3 B3 A2 B2 Al Bl AQ BO

: . : é)

R1 RO

R3 R2

Figure 19 Ripple Carry Subtractor Block

23

Floating Point Processor Kartikey’s Master Thesis

8-bit Ripple Carry Subtractor RTL Diagram
The following figure, Figure 20, shows an RTL diagram of the 8 bit ripple carry

subtractor that was used to compute the exponent and the carry out.

FullAdderRippleCarryLoop[3].FAD FullAdderRippleCarryLoop[4].FAD
H H
Al7.0] 3 A 4 A
B[7.0] 3 B Cout 4 B Cout
OpCode Co R Co R R[7.0]
C C
FullAdderRippleCarryLoop[1].FAOQ FullAdderRippleCarryLoop[2].FAQ
1 A 2 A
1 B Cout 2 B Cout
Co R Co R
e C
[| FullAdderRippleCarryLoop[0].FAQ
[|
0 A
0 B Cout
Co R
C
FullAdderRippleCarryLoop[5].FAD
[2
£ A FullAdderRippleCarryLoop[6].FAD
5 B Cout
Co R g A .
C & B Cout
Co R
FullAdderRippleCarryLoop[7].FAD <
7 A Cout
z : Cout
7 B Cout)
Co R
C

Figure 20 Ripple Carry RTL Diagram

As it can be seen in the RTL diagram the Cout output is computed based on the Carry
output of the last full adder and the opcode (1 in case of subtraction, 0 in case of addition)
input for the ripple carry subtractor. The Cout is low when Exponent of input A is greater

than exponent of input B, and Cout is high for the other way around.

24

Floating Point Processor

8-bit Ripple Carry Subtractor Verilog Code

Kartikey’s Master Thesis

The figure below, Figure 21, shows the Verilog code for the ripple carry subtractor.

The module consists of two 8-bit inputs, opcode (1 for negative), 8-bit output, and a carry

output. The code mainly consists of one for loop that synthesizes a full adder 8 times for

every bit of input and output.

Figure 21 Ripple Carry Subtractor Code

25

1 ?Gdu1e RippleCarrysub #(parameter N = &)
2 =
3 input [N-1:0] A,
4 input [N-1:0] B,
5 input OpCode,
(3] output [N-1:0] R,
7 output Cout
8)
] wire [N:0] C:
10 wire [N-1:0] sum;
11 assign C[0] = oOpCode;
12
13 genvar i;
14 QA generate
15 | for(i=0; di<N; i=1+1)
16 o begin: RippleCarryLoop
17 | Fulladder Fa0
18 =
19 LACALT]D,
20 LB(B[1]),
21 Lo(c[i]),
22 .Co{opCode),
23 LR(SUM[i]D,
24 Lcout(C[i+1])
25 |);
26 - end
27 endgenerate
28 L
29 assign Cout = C[O]AC[N];
30 assign R = SUM;
31
32 endmodule

Floating Point Processor Kartikey’s Master Thesis

Twos Complement Convertor

To take into account the absolute value part of the subtractor, a twos complement
convertor has been employed. This module takes in the output of the ripple carry subtractor
as an input and outputs the conversion.

As shown in Figure 22, the module takes in an 8 bit input called input A, each bit of
input A is fed into an XOR gate which other input of XOR gate being MSB of input A. The
output of the XOR gate then feeds into an half adder, and the other input of that half adder
is also the MSB of input A [19].

The output of the half adder is fed into the input of the next half adder. This module
is a cascade of 8 half adders accounting for each but of the 8 bit input and output. This is

how an 8 bit output B is computed that is two’s complement of input A.

Twos Complement Convertor Block Diagram

AT A6 A5 Ad A3 A2 Al AQ
[[[[[| [

59 6o Lo

Hf H Hf % T H Hf % T % l % Hf % l .

B7 B6 BS B4 B3 B2 B1 BO

Figure 22 Twos Complementor Block Diagram

26

Floating Point Processor

Twos Complement Convertor RTL Diagram

Kartikey’s Master Thesis

The figure below, Figure 23, shows the RTL diagram the twos complement convertor.

As shown in the RTL diagram it can be seen that there are total of 7 XOR gates being used to

feed into eight half adders.

F

halfADDERtwosFor[0].halfADDER_inst1

halfADDER:twosFor[71.halfADDER_inst1

1'h0 a
b

s BL7.0]

a cout
b 5
halfADDERtwosFor[1]halfADDER_inst1
q comb~1
:::)) a cout
5
5
halfADDER:twosFor[2].halfADDER_inst1
; omb~2
::)) a cout
5
b s
halfADDERtwosFor[3].halfADDER_inst1
3 comb~3
::)) a cout
5
b s
halfADDER:twosFor[4].halfADDER_inst1
4 comb-4
::)) a cout
5
b s
halfADDERtwosFor[5].halfADDER_inst1
5 tomb~5
::)) a cout
-
b 5
halfADDERtwosFor[6].halfADDER_inst1
g Comb~6
::) a cout
5
) b 5

Figure 23 Twos Complementor RTL Diagram

27

Floating Point Processor Kartikey’s Master Thesis

Twos Complement Convertor Verilog Code

The figure below, Figure 24, shows the Verilog code for the ripple carry subtractor.
The module consists of two 8-bit inputs, opcode (1 for negative), 8-bit output, and a carry
output. The code mainly consists of one for loop that synthesizes a full adder 8 times for

every bit of input and output.

1 ?DduWE TwoSIGN #(parameter N = 8)
2 =
3 input [N-1:0] A,
4 output [N-1:0] B
5);
6
7 wire [N:0] hajl
8 assign hal[0] = A[N-1];
9
10 genvar 1;
11 O generate
12 | for{i=0; i=<N; i=1+1)
13 © begin: twosFor
14 | halfADDER halfADDER_instl
15 © (
16 .s(B[i]) , // output s_sig
17 .cout{hali+1]) , // output cout_sig
18 calfalildACalN-112D) A/ input a_sig
19 Lblhalil) A/ odnput b_sig
20)i
21 end
22 endgenerate I
23 endmodule

Fad
=Y

Figure 24 Twos Complementor Code

28

Floating Point Processor Kartikey’s Master Thesis

Output Multiplexer

The output multiplexer is a module with three inputs R, A, & B. A & B are two 8-bit
inputs that feeds into the module. The R input acts as a selector that switches the output
between input A and input B.

The A input of this module is the output of the ripple carry subtractor module, and
the B input of the module is the output of twos complementor module. The R input is
defined by the Cout output coming from the ripple carry subtractor module.

As mentioned in previous section, The Cout is low when Exponent of input A is
greater than exponent of input B, and Cout is high for the other way around. When the Cout
is low the output of this multiplexer is the output of ripple carry subtractor, and when the
Couto is high the output of the module and the multiplexer is the output of the twos
complement convertor module.

The code and RTL diagram for this module is included in the RTL diagram and code

section from the modular exponent subtractor section.

29

Floating Point Processor Kartikey’s Master Thesis

2.3.2.3 Mantissa Shifter Multiplexer
The next module used to design a floating point adder is a 2-to-1 multiplexer. As
shown in the block diagram in Figure 25, this kind of multiplexer consists of two inputs A

and B, and one select input called S, and finally one output labelled R.

Mantissa Shifter Multiplexer Block Diagram

2x1
MUX

Figure 25 Mux Block Diagram

The output of the multiplexer is dependent on the select input to the multiplexer
which connects one of the inputs to the output at a time. Since there are only two input
signals we only require a 1 bit select signal to link one of the inputs to the output.

The objective of this Mantissa Shifter Multiplexer is to connect the lower input out of
two inputs to the input of a right shifter unit that will be discussed in the next section. The
decision to select which input is the lower one is taken by Cout of the exponent subtractor

module.

30

Floating Point Processor Kartikey’s Master Thesis

Mantissa Shifter Multiplexer RTL Diagram

The figure below, Figure 26, is the RTL diagram for the multiplexer designed to

output the mantissa to be feed to the shifter unit.

NbitMux:MantissaShifterMux

=]
S
Y~[23..0]
B[23..0] 0 V12301
A[23..0] 1 -

Figure 26 Mantissa MUX RTL

As seen in the RTL diagram above, the multiplexer takes two 24 bit inputs, one bit of
a select input, and a 24 bit output. The two inputs are 23-bit mantissa of input A and 23 bit
mantissa for input B, both the inputs are appended with a 1 as their most significant bit. The
select input for this multiplexer comes from the Cout output of the exponent subtractor
module. The appended 1 to the mantissa inputs are to take care of the hidden bit implied in

the IEEE 754 standard of floating point binary format.

31

Floating Point Processor Kartikey’s Master Thesis

Mantissa Shifter Multiplexer Verilog Code

1 modu le Nbi1tMux #({parameter N)

2 B(

3 input [N-1:0] A, B, //declare data inputs
4 input 5, //declare select input

5 output [N-1:0] ¥ //declare output

6);

7 aEEi?ﬂ ¥ = S==1 ? A : B; //select input

8 endmodu | e

9 |

Figure 27 Mantissa MUX Code

Figure 27, shows the Verilog code for the mantissa shifter multiplexer. The select
input coming in from Cout output of the exponent subtractor decides which input goes
through the multiplexer and gets inputted into the shifter unit. If the Cout value is high,
mantissa A gets selected for shifter unit and if Cout is low, mantissa B gets selected for the
output of the shifter unit.

This operation is described in the truth table below:

Input 1 Input 2 Select Output
A B 1 A
A B 0 B

Table 5 MUX Truth Table

32

Floating Point Processor Kartikey’s Master Thesis

2.3.2.4 Mantissa Right Shifter

For the next module of the floating point adder, we implemented a Barrel Shifter
type of right shifter unit. A barrel shifter is a combinational circuit that facilitates right shift
for this adder. Unlike regular shifter a barrel shifter is a sequential circuit [20].

If we were to use a regular register based shifter, a 24 bit data shift would take
around 24 clock cycles to process the shift. However, with this barrel shifter the module will
only need one clock cycle to compute the shift.

Mantissa Right Shifter Block Diagram

The block diagram for the mantissa barrel shifter is shown down below in Figure 28.

The first level showcases a 4 bit right shift, the second level shows a 2 bit right shift, and the

last level shows a 1 bit right shift.

A5 Ad A3 A2 Al A0

R R R A A

o
>
~
>
(=2

Ay Ly Ly AT T
T

Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

Figure 28 Right Shifter Block Diagram

33

Floating Point Processor Kartikey’s Master Thesis

Mantissa Right Shifter Verilog Code

The following figure, Figure 29, shows the code for a mantissa right shifter unit used
to implement the floating point adder [21].

The mantissa right shifter unit takes in the smaller mantissa from two inputs, which
is being selected by the multiplexer described above. The outputted mantissa from
multiplexer then gets inputted into this barrel shifter that uses multiplexers to shift the
mantissa by the desired shift value.

This shift value is achieved from the exponent subtractor unit module. The mantissa

is shifted the same value as of the difference between the two exponents.

1 Emodule Barrelshifter(
2 input [23:0] In,
3 output [22:0] out,
4 input [4:0] shift
5 ;
5]
7 wire [23:0]a;
8 genvar i;
g
10 [E generate
11 g begin:bl
12 for(i=0;i<23;i=1+1)
13 = begin:b2
14 Mux M{In[i] , In[i+1l] , shift[o] , a[il);:
15 end
16 Mux M1{In[23] , 1'b0 , shift[0] , a[23]);
17 end
18 endgenerate
19
20 wire [23 0]al;
21 genvar j , k;
22
23 [Hgenerate
24 = begin:b3
25 | for (§j=0; j<22; j=j+1)
26 H begin:b4
27 dMux m2Calj]l , al[j+2] , shifc[1] , al[j]1):
28
29 for(k 227 k<245 k=k+1)
30 @ begin:b5
31 Mux M3{alk] , 1°ho , shift[1] , al[k]);
32 end
33 end
34 endgenerate
35
36 genvar p q;
37 wire [23:]az
38
39 Hgenerate
40 = begin:bé
41 | for (p=0; p<20; p=p+1)
42 = begin:b7?
43 Mux M4 (al[p] , al[p+4] , shifc[2] , az[pl);
44 end
45 for(k=20; k<24 ; k=k+1)
46 & begin:b8
47 Mux M5Cal[k] , 1°h0o , shift[2] , a2[k]l);
48 end
49 end
50 endgenerate

Figure 29 Right Shifter Code

34

Floating Point Processor Kartikey’s Master Thesis

2.3.2.5 Mantissa Adder Multiplexer

Similar to its predecessor, this module is also a two-to-one multiplexer. The two
inputs of this multiplexer are mantissa of input A and input B. The selector for this
multiplexer is the same select for its predecessor, the Cout output from the exponent
subtractor module.

The purpose of this multiplexer is to select the mantissa out of two input mantissas
with the higher exponent value. It essentially does the opposite of the previous mantissa
multiplexer as it selects the mantissa with higher exponent value. The output of this
multiplexer feeds into the mantissa adder.

This mantissa multiplexer has the same Verilog code, block diagram, and RTL
diagram as the multiplexer explained in the section above. However, the truth table would

be inverted for the desired operation as shown in table below:

Input 1 Input 2 Select Output
A B 0 A
A B 1 B

Table 6 Multiplexer 2 Table

35

Floating Point Processor Kartikey’s Master Thesis

2.3.2.6 Mantissa Carry Look Ahead Adder

The next step in the floating point adder algorithm is adding the mantissa of input A
with the mantissa of input B. The first mantissa for this adder operation will come directly
from the input’s mantissa. While the other input for this addition will come from the right
shifter unit that we just described in the section above.

To implement the mantissa adder module in hardware implementation, we make
use of a carry lookahead adder in Verilog language. A Carry Lookahead Adder is composed
of a variable number of full adders cascaded together, similar to the ripple carry adder
hardware construction. The number of full adders cascaded in this design, depends on the
number of input bits to be added.

The difference between a ripple carry adder and a carry lookahead adder is that the
carry lookahead adder is able to compute the Cout value using the input values. This makes
sure that the Cout is produced before the full adder finishes its operation. The advantage of
carry look ahead adder is the speed with which it performs these calculations. Since the
following full adder doesn’t need to wait for the previous full adder to finish operation, all
the full adders can work in parallel and save a lot of computing time.

The drawback of using a carry lookahead adder over a ripple carry adder is that it
utilizes a lot more logic than a simple ripple carry adder. Using a carry look ahead adder is a
good lesson to showcase the balance between speed of execution and resources used when

designing a module on FPGA [22].

36

Floating Point Processor Kartikey’s Master Thesis

Mantissa Carry Look Ahead Adder Block Diagram
The following figure, Figure 30, shows the block diagram for the carry lookahead
logic. As seen in the block diagram, each bit of both the inputs feed into individual full

adders which in turn return a S bit that computes the sum for that bit [23].

A3 B3 A2 B2 Al B1 A0 BO

FA3 «—C3- FA2 <+—C2 FA1 C1 FAO -«

S3 S2 S1 SO

CARRY LOOK AHEAD LOGIC

ca (Generate, Propogate, Carry)

A3 B3 A2 B2 Al Bl AO BO

Figure 30 Mantissa CLA Block Diagram

The second module seen in that block diagram is the carry look ahead logic block.
This block takes in the two inputs, the block’s inside mechanism can be explained in two
parts and two logic equation that ultimately computes a carry output. The three logic steps

inside the carry look ahead logic block are:

37

Floating Point Processor Kartikey’s Master Thesis

e Compute generate variable:
We compute the generate variable by putting the two input bits through an AND

gate and the output is the generate variable.

Figure 31 Generate AND

e Compute propagate variable:
We compute the propagate variable by putting the two input bits through an XOR

gate and the output is the propagate variable.

Figure 32 Propagate OR

38

Floating Point Processor Kartikey’s Master Thesis

e Compute Carry out.
The circuit schematic shows the way to compute the Carry output that is being

computed by the carry look ahead logic block.

A

=D
“ R

J c3
‘ j Das

Figure 33 Carry Out Logic

39

Floating Point Processor Kartikey’s Master Thesis

Mantissa Carry Look Ahead Adder Verilog Code

The following figure, Figure 34, showcases the Verilog code for a parameterized
carry look ahead adder that is implemented in this floating point adder design.

The carry look ahead adder takes in two 24 bit input labelled A and B, it also shows R
as a 24 bit output and Cout as a carry out output. Input A of the adder comes from the right
shifter unit explained in previous section that contains the bit shifted mantissa from one of
the inputs. Input B contains the value from the mantissa adder multiplexer also explained in
the previous section. The Cout output will further be used to normalize the mantissa result
and increment the exponent which will be explained in further sections.

Lastly, the module contains Opcode input which defines whether the module does

addition or subtraction (0 for addition, 1 for subtraction).

1 ?odu1e CLAParameter #(parameter N = 24)
2 O
3 input [N-1:0] A,
4 input [N-1:0] B,
5 input OpCode,
[output[N-1:0] R,
7 output Cout
8 JH
9
10 wire [N:0] C;
11 wire [N-1:0] G, P, SUM;
12
13 assign c[0] = opcode; // opCode = 0 for addition, opCode = 1 for subtraction
14
15 // create the rFull Adders
16 genvar 1;
17 O generate
18 | for (i=0; i<N; i=1+1)
19 © begin: FulladdderfFor
20 | Fulladder Fulladder_inst
21 3 ¢
22 LACAli]D,
23 LB(BLi]),
24 .clclily,
25 .Co(opCode),
26 LRISUM[i]), I
27 Lcout ()
28);
29 = end
30 endgenerate
i1 i
32 genvar j;
33 [E Ggenerate
34 | for (j=0; j<N; j=j+1)
35 B begin: TermGenerator
36 assign G[j] = A[j] & B[j1; // Create the Generate (G) Terms: Gi=Ai%Bi
37 assign P[J] = (A{'] | BL31); // Create the Propagate Terms: Pi=Ai+Bi
38 assign c[j+1] = G[j} | (P[3] & c[i1); // Create the Carry Terms
39 - end
40 endgenerate
1] L
42 assign R = 5SUM;
43 assign Ccout = C[N];
44
45 endmodule
46

Figure 34 Carry Lookahead Adder Code

40

Floating Point Processor Kartikey’s Master Thesis

2.3.2.7 Exponent Increment Multiplexer

Similar to its predecessor, this module is also a two-to-one multiplexer. The two
inputs of this multiplexer are exponents of input A and input B. The selector for this
multiplexer is the same select for its predecessor, the Cout output from the exponent
subtractor module.

The purpose of this multiplexer is to select the exponent out of two input exponents
with the higher exponent value. The output of this multiplexer feeds into the exponent
incrementor module that we will discuss in later section.

This exponent multiplexer has the same Verilog code, block diagram, and RTL
diagram as the multiplexer explained in the sections above. However, the truth table would

be inverted for the desired operation as shown in table below:

Input 1 Input 2 Select/Cout Output
EA EB 1 EA
EA EB 0 EB

Table 7 Multiplexer 3 Table

41

Floating Point Processor Kartikey’s Master Thesis

2.3.2.8 Controlled Incrementor

In this section of the thesis, we will move on to the next module of the floating point
adder unit, the controlled exponent incrementor. This module is similar to the ripple carry
adder we discussed earlier in the thesis, with slight modifications for our purposes.

The controlled exponent incrementor module is built of eight different full adders
cascaded together with the Cout of each full adder being outputted to the input of the next
full adder. Additionally, the first input of each full adder is connected to the input and the
other input of those full adders are all hard coded with zeroes. Except for the very first full
adder which takes its second input from the other input to the module.

Controlled Incrementor Block Diagram

The following figure, Figure 35, shows the block diagram used for implementing the
controlled incrementor module. The block diagram shown below shows the block diagram
for incrementing a 4-bit number based on select input. The modification to make this 8-bit

incrementor is shown and explained in the sections below.

A Select A 1'b0 A 100 A 1'b0

Half Adder Full Adder Full Adder

R

Figure 35 Controlled Incrementor Block

Full Adder

A

Y
Y

42

Floating Point Processor Kartikey’s Master Thesis

Controlled Incrementor RTL Diagram

As shown in Figure 36, the RTL diagram of the controlled exponent incrementor
shows the 8-bit input labelled E, and another 1-bit input labelled select, in addition there is
an 8-bit output labelled as Out.

Each individual bit of the 8-bit input comes directly from the output of the exponent
incrementor multiplexer that was discussed in the previous section. Each bit of this 8-bit
input feeds into seven different full adder and one half adder. The other 1-bit input called
select goes into the first half adder. The output of the first half adder gets cascaded through
to the next full adders and the outputs are all concatenated together to form the 8-bit
output that is shown coming out of this RTL diagram.

The output of this controlled incrementor depends of the select input. The select
input comes from the Cout output of the carry look ahead adder. If the select is high it
signifies that the exponent must be incremented to be normalized for final output. If the
select is low the exponent is outputted as it was inputted. This output makes up for the final

exponent part of the 32-bit result.

43

Floating Point Processor Kartikey’s Master Thesis

e e e e e e e

FullddderINCname[5].F1
E[7_0 5
[7-a1] -
[
| =
FullAdderlNCname[7].F1
il 7 A
FullAdderNCrame[4]F1 Jutl7-a]
[
select

Figure 36 Controlled Incrementor RTL

44

Floating Point Processor Kartikey’s Master Thesis

Controlled Incrementor Verilog Code
The following figure, Figure 37, shows the Verilog code used to design the controlled
incrementor. The module is named exponent incrementor as it takes in the lower exponent

as input and increments it depending on the select input but shown in the code below.

1 module exponentIncrementor

2 H(

3 input select,

4 input [7:0] E,

5 output [7:0] out

6 |);

i

8 wire [7:0]w;

9 wire [7:0]Cinm;
10
11 assign w =(select==1"b1)71:0;
12
13 HalfadderInC H(E[D],w[0],out[0],Cin[0]);
14
15 genvar j;

16 [H generate
17 B begin

18

19 for(j=1; j<8; j=j+1)
20

21 @ begin: name

22

23 Fulladderine FL(E[]],w[il,cin[j-1],0ut[]],Cin[j1);
24

25 end

26 end

27 endgenerate

28 -

29 endmodule

30

Figure 37 Controlled Incrementor Code

45

Floating Point Processor Kartikey’s Master Thesis

2.3.2.9 Mantissa Normalizer

The final module for this floating point adder is the mantissa normalizer. The
mantissa normalizer is the same module that used before for right shifting the mantissa
before the mantissa addition carried out by carry lookahead adder. The mantissa normalizer
module is the same module called mantissa right shifter module that was explained in the
section above.

The 24-bit input for this particular module comes from the output of the carry look
ahead adder module that computes the mantissa addition. The other 5-bit input for this
right shifter mantissa normalizer input comes from the Cout output of the same carry look
ahead adder which signifies how much the mantissa must be shifted (0 bits or 1 bit).

The mantissa normalizer shifts the mantissa addition output only when the Cout
output of the carry look ahead adder is high. The high value from the adder signifies that the
mantissa addition has a carry of 1 and that signifies that the mantissa needs to be shifted to
be normalized for the final output.

The output of this right shifter is the final mantissa value used to represent the 32 bit
binary floating point result.

Refer to the ‘Mantissa Right Shifter’ section for Verilog code, block diagram, and the

RTL diagram for this final module.

46

Floating Point Processor

2.4 Floating Point Adder Results

The whole floating point adder unit was tested on Quartus’ ModelSim simulation
software using testbenches and waveforms. The design simulation involved generating

setup scripts for the simulator, compiling simulation models, running the simulation, and

viewing the results.

2.4.1 Floating Point Adder Compilation Report

@ ==Filter>>

Flow Status

Quartus Prime Version
Revision Mame
Top-level Entity Mame
Family

Device

Timing Models

Total logic elements
Total registers

Total pins

Total virtual pins

Total memeory bits
Embedded Multiplier 9-bit elements
Total PLLs

UFM blocks

ADC blocks

Successful - Mon Mar 27 07:08:50 2023
18.1.0 Build 625 09/12/2018 5J Lite Edition
FPUAdder

FPUAdder

MAX 10

10MOBDAF484CEG

Final

348 [8,064 (4%

0

111/ 250 (44 %)

0

0/ 387,072 (0%)

0/48(0%)

0f2(0%)

0f1(0%)

0/1(0%)

Figure 38 FPA Compilation Report

47

Kartikey’s Master Thesis

Floating Point Processor Kartikey’s Master Thesis

2.4.2 Floating Point Adder Testbench

A testbench is used to generate the stimulus and applies it to the implemented

floating point adder and compare the results against our calculations based on the IEEE 754

floating point convertor online. This online easy to use convertor allows us to input a

decimal input value and returns a binary or hexadecimal value in 32-bit binary encoding

format or vice versa [24]. The design was synthesized using precision synthesis tools

targeting the DE-1 SoC Max 10 FPGA machine family.

1 timescale 1ns / 1ps
2 module FPuadder_th;
3
4 /4 Inputs
5 reg [31:0] A;
6 reg [31:0] B;
Fi
8 /7 outputs
9 wire [31:0] Out;
10
11 wire Exception;
12 wire overflow;
13 wire underflow;
14
15 wire snanA, Qnana, InfA, ZeroA, SubNA, Norma;
16 wire snanB, Qnang, InfB, ZeroB, SubNB, NormM;
17
18 /¢ Instantiate the unit under Test (UUT)
19 FPUAdder fpuadderTB
20 [© (
21 CACAY,
22 .B(B),
23 Lout{out),
24 .Exceptinn(ExceEtinn},
25 Loverflow(overtlow),
26 uUnderflow(underflow),
27 . Snana(snanal,
28 .Qnana{gnana),
28 LInfa(Infa),
30 .Zeroa(Zeroa),
31 . SubNA(SubNA),
32 Norma(Norma),
33 . SnanB({snang),
34 .QnanB (Qnang) ,
35 . InfBR{(InfRB),
36 .ZeroB({ZeroB),
37 . SubNB (SubNB),
38 . Norme (Normg?)
));
40 -

Figure 39 FPA Testbench

48

Floating Point Processor

Kartikey’s Master Thesis

2.4.3 Floating Point Adder Simulation Results

Case A:
A:
1 bit MSB 8 bit LSB MSB 23 bit LSB
m 10000010 01101100000000000000001
Es -Eo Mgz - -Mg
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
0 10000001 01100100000010000011011
Es -Eo Maz - -Mg
R:
1 bit MSB 8 bit LSB MSB 23 bit LSB
0 10000011 00001111000000100000111
Eg . . Eo Mgg : -Mg

Simulation Results:

[FPUAdder_th/A
[FPUAdder_thyB
[FPUAdder_th/Out

[FPUAdder thiInfA

[FPUAdder th/Infe
[FPUAdder th/ZeroB

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

[FPUAdder_th/ZeroA
[FPUAdder_th/SubNA
[FPUAdder_th/NormA
[FPUAdder_thSnan
[FPUAdder_th/QnanB

[FPUAGder th/SublB
[FPUAGder_th/Normil
[FPUAGder th/NormB

(01000100000010...
(1000000101100, 1 1 01100100000010000011011
U1000T00TTLI0 01000001100001111000000 100000111

[FRUAdder_th/Exception
[FPUAdder_th/Qverfiow
[FRUAdder _th/Underflow
[FPUAdder_thSnanA
[FRUAdder_th/Qnana

Figure 40 Case A Result

49

Floating Point Processor Kartikey’s Master Thesis

Case B:
A:
1 bit MSB 8 bit LSB_ MSB 23 bit LSB
0 10000100 11011111110101110000101
Es - -Eo Mgz - -Mg
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
m 10000001 10100000000000000000000
Es - -Eo Myo - - Mg
R:
1 bit MSB 8 hit LSB MSB 23 bit LSB
m 10000101 00001001111010111000010
Es - -Eo Mgz - Mg

Simulation Result:

[FPUAdder_thjA 01000100000010...
[FPUAdder_th/B 01000000101100...
JFPUAdder_th/Out DOOCROEETIIOT S 01000010100001001111010111000010
[FRUAdder_th/Exception
[FRUAdder_th/Overflow
[FRUAdder_th/Underflow

JFPUAdder_tb/SnanA

[FPUAdder_th/Qnana

[FPUAdder_tb/InfA

[FPUAdder_th/Zerof

[FPUAdder_th/SubNA

[FPUAdder_tbMormA

JFPUAdder _th/SnanB

JFPUAdder_tb/Qnanb

[FPUAdder_th/InfR

[FPUAdder_thZerof

JFPUAdder_th/SubNg

JFPUAdder_th Mormh

JFPUAdder_th Morm8

#
#
#
F
#
F
F.
F
#
#
F
#
F
F.
F
#

Figure 41 Case B Result

50

Floating Point Processor Kartikey’s Master Thesis

Case C:
A:
1 bit MSB 8 bit LSBE MSB 23 bit LSB
0 10001000 11110100010000000000000
Es -Eo Mgz - -Mp
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
m 10001000 11101010110100111011011
Es - -Eo Mgz - -Mg
R:
1 bit MSB 8 bit LSB MSB 23 bit LSB
M 10001000 11101111100010011101101
Eg- -Eo Mzz - -Mp

Simulation Result:

[FPUAdder_thfa

[FRUAdder_th/B | 01000100011100010110100111011011
[FRUAdder_th/Out | 01000100111101111100010011101101
[FRUAdder_th/Exception

[FPUAdder_th/Overflow

[FPUAdder_th/Underflow

[FPUAdder_th/Snana

[FPUAddEr_th/OnanA

[FPUAdder_thfInfA

[FPUAdder_th/ZeroA

[FPUAddEr_th/SubNA

[FPUAdder_thMormA

[FPUAdder_th/SnanB

[FPUAddEr_th/OnanB

[FPUAdder_th/InfB

[FPUAdder_th/ZeroB

JFPUAdder_th/SubNE

[FPUAdder_th/Maormi

[FPUAdder_th/MormB

F
#
4
#
#
4
#
#
4
#
#
4
#
#
4
#

Figure 42 Case C Result

51

Floating Point Processor Kartikey’s Master Thesis

Case D:
A:
1 bit MSB 8 bit LSB MSB 23 bit LSB
M 10001000 00010010111111100101011
Eg - -Eo My - Mg
B:
1 bit MSB 8 hit LSB MSB 23 bit LSB
0 10000001 01100100000010000011001
Es - -Eo My - Mg
R:
1 bit MSB 8 bit LSB_ MSB 23 bit LSB
0 10001000 00010101110001100110011
Eg - -Eo Mz - -Mg

Simulation Result:

[FPUAdder_th/a 0100000000038 01000100000010010111111100101011
[FPUAdder_th/B 01000000202200:.] 01000000101100100000010000011001
(FPUAdder thCut™ " |01000100000030:.. 01000100000010101110001100110011
[FPUAdder_th/Exce...

[FPUAdder_th/Over...

[FPUAdder_th/Und...

[FPUAdder_th/SnanA

[FPUAdder_th/QnanA

[FRUAdder_th/InfA

[FPUAdder_th/ZeroA

[FPUAdder_thy/SubMA

[FPUAdder_th/MormA

[FPUAdder_th/Snang

[FPUAdder_th/Qnanb

[FPUAdder_th/InfE

[FPUAdder_th/Zerob

[FPUAdder_th/SubNE

[FPUAdder_thy/Mormi

[FPUAdder_th/MormB

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

Figure 43 Case D Result

52

Floating Point Processor Kartikey’s Master Thesis

2.5 Conclusion

This section of the thesis presented an implementation of a floating point adder that
supports the IEEE 754-2008 binary interchange format. The adder implements this
algorithm using a carry look ahead adder for faster computation and used various different

modules to compute the final output.

53

Floating Point Processor Kartikey’s Master Thesis

Chapter 3: Floating Point Subtractor

In this chapter, we describe an efficient implementation of an IEEE 754 single precision
floating point subtractor targeted for DE-1 Cyclone V FPGA. Verilog is used to implement a
technology-independent pipelined design. The subtractor implementation handles the
overflow and underflow cases. Rounding is implemented to give more precision when using
the Ripple Carry Subtractor for faster calculations. The Floating-Point Subtractor was verified
by testbench simulations on ModelSim.

In this chapter we will dive deeper into the floating-point subtractor algorithm,
architecture, code design, RTL diagram, and simulation results.

We will talk about the procedure in subtraction operations and a first look at the code
design in a block diagram way followed by deeper understanding of code development.

Floating point subtraction is done by extracting signs, subtracting exponents,
subtracting mantissa values, and shifting the mantissa for normalization.

Floating-Point Subtraction is a mirror image of floating-point addition which is why a
lot of algorithm steps and modules would be similar or mirror of the previous chapter.

There are five basic phases of designing a Floating-Point Subtractor:

1) Check for Zeroes.

2) Align the Significands.

3) Subtract the Significands.
4) Normalize the Significand

5) Normalize the Exponent if needed.

54

Floating Point Processor Kartikey’s Master Thesis

3.1 Floating Point Subtraction Algorithm

As described in the above topics, floating point number is in the format of:

7= (_15) *) (E — Bias) * (1M)

To subtract two floating point numbers A & B the different steps to follow are [25]:

1)
2)
3)
4)
5)
6)
7)
8)

9)

Extracting sings, exponents and mantissas of both A and B numbers.
Calculating the output sign.

Treating the special cases.

Finding out the data types of numbers given

Subtracting the two exponents.

Shifting the lower exponent number mantissa to the right.
Subtraction of the mantissa values

Normalizing mantissa by bit shifting.

Detecting exception, overflow, and underflow.

55

Floating Point Processor Kartikey’s Master Thesis

3.1.1 Floating-Point Subtraction Example
A =50.5 (base 10)

B =21.25 (base 10)

S1 El M1

X1 = [0] 10000100 | 10111100000000000000000 |
S1 El M1

X2 = [0] 10000011 | 01000100000000000000000

Figure 44 Binary Representation Sub Example

1) S1=0, E1=10000100, M1 =10111100000000000000000

S2 =0, E2=10000011, M2 =01001000000000000000000

2) Exponent Subtraction

10000100
— 10000011
00000001

Figure 46 Sub Exponent Subtraction

E =00000001 =110
3) Right Shift Mantissa M2 by E1 — E2 (1)
1.M2 =1.01001000000000000000000

Shifted Mantissa = 0.10010000000000000000000

56

Floating Point Processor Kartikey’s Master Thesis

4) Subtract the Mantissa

1.10111100000000000000000
— 0.10010000000000000000000

1.00101100000000000000000

Figure 47 Subtract Mantissa Subtraction

5) No normalization needed
6) No exponent incrementation needed.

7) Result

S1 El M1
X3 = | 0| 10000100 | 00101100000000000000000 |

Figure 48 FPS Example Result

57

Floating Point Processor Kartikey’s Master Thesis

3.2 Floating Point Subtractor Flowchart

The below, Figure 49, showcases a typical flowchart that is used to design a floating
point subtractor. The figure shows a step by step narrative and displays the high level
functions that is required to compute floating point subtraction. The flowchart shows block
level diagram and each block or element is implemented in hardware and is described in detail

in the following topics of the thesis [26].

No

Y
Increment Shift
Z<-0
Smaller Exp - ‘ No | significand
Shift Decrement
Significand RETURN Exponent
Y

A

Yes

Y

Shift
Significand
Report

Decrement Underflow

Exponent
y
RETURN

Another
Number in Z

Y

RETURN
i : Report ¥
Qverflow e

Figure 49 Floating Point Subtractor Flowchart

58

Subtract : Round
Yes = Normalized? .y +
Significand "’ e Results

Y
RETURN

Floating Point Processor Kartikey’s Master Thesis

3.3 Floating Point Subtractor Hardware
In this section of the thesis we will start explaining and diving deeper into the
hardware implementation of the floating point subtractor. This section will start by
elaborating the flowchart further with help of showcasing the hardware architecture used to
design the module followed by detailed description of each module used in the architecture.
After understanding the theory of hardware implementation and the architecture of
floating point subtractor the thesis will show the code development that achieved out final

objective of building this floating point unit [27].

59

Floating Point Processor Kartikey’s Master Thesis

3.3.1 Floating Point Subtractor Hardware Architecture
The below figure, Figure 50, showcases the hardware architecture that was designed

and coded to implement synthesizable 32-bit floating point subtractor using Verilog.

32 32
J L
(il 08 2 til tis 23
v
<SA>< EA)(MA) (ss)(EB)(MB)
I |
23 33 23
| 8 ; & 8
MA ‘ EA EB
Mantissa Mantissa
Shifter MUX L Cout Modular Exponent Sub MUX
i Subtractor
|EA-EB|
1 Appended 24
l EA 8

M
i EA EB
Mantls§a Shift [5
Right Shifter Exponent
M S DEC MUX
24
8
Cout 24 bit
E Ripple Carry Subtractor
Controlled Exponent 1 M
Decrementor
l 24 ;
M

Mantissa Normalizer
Left Bit Shifter

1 »

Exponent [8:0]

:

Mantissa [22:0]

Figure 50 Floating Point Subtractor Architecture

60

Floating Point Processor Kartikey’s Master Thesis

This floating point architecture uses a total of eight modules that serve various unique

purposes in making the design work. The modules are:

e Mantissa Shifter Multiplexer e Mantissa Subtract Multiplexer
e Modular Exponent Subtractor e Mantissa Right Shifter

e Exponent Decrement Multiplexer e Ripple Carry Subtractor

e Controlled Decrement e Mantissa Normalizer

3.3.2 Floating Point Subtractor Hardware Implementation

In this section, we will discuss the hardware implementation designed for the floating
point subtractor and explain each module and each algorithm step in detail.
3.3.2.1 Sign Bit Calculation

Subtracting two positive numbers will result in a positive number which makes this
section easy for us since there will be another module to take care of subtraction. The table

below shows sign operations for various cases:

A’s Sign Symbol B’s Sign Operation
+ - + +
+ - - +
- - + -

Table 8 Sign Operations

61

Floating Point Processor Kartikey’s Master Thesis

3.3.2.2 Modular Exponent Subtractor

This modular exponent subtractor is responsible for subtracting the exponent of the
second input from the exponent of the first input. This module of hardware description
language ensures that the exponent difference value is absolute in nature. Before the
subtraction operation is performed the program doesn’t know which exponent is higher in
value. The modular exponent subtractor allows us to not just compute the absolute exponent
difference, it also allows us to identify the larger exponent which further identifies the
exponent that will be used for the incrementor module and ultimately computing the result
of the entire operation.

To get detailed description of the modular exponent subtractor, and understand all
the components of this module by help of block diagrams, RTL diagrams, and code snippets,
please refer to section 2.3.2.2 in chapter 2: 32-bit Floating Point Adder.
3.3.2.3 Mantissa Shifter Multiplexer

The next module used to design a floating point adder is a 2-to-1 multiplexer. As
shown in the block diagram in Figure 51, this kind of multiplexer consists of two inputs A

and B, and one select input called S, and finally one output labelled R.

2x1
MUX

Figure 51 Mux Block Diagram 2

62

Floating Point Processor Kartikey’s Master Thesis

The output of the multiplexer is dependent on the select input to the multiplexer
which connects one of the inputs to the output at a time. Since there are only two input
signals we only require a 1 bit select signal to link one of the inputs to the output.

The objective of this Mantissa Shifter Multiplexer is to connect the lower input out of
two inputs to the input of a right shifter unit that will be discussed in the next section. The
decision to select which input is the lower one is taken by Cout of the exponent subtractor
module.

The select input coming in from Cout output of the exponent subtractor decides
which input goes through the multiplexer and gets inputted into the shifter unit. If the Cout
value is high, mantissa A gets selected for shifter unit and if Cout is low, mantissa B gets
selected for the output of the shifter unit.

This operation is described in the truth table below:

Input 1 Input 2 Select Output
A B 1 A
A B 0 B

Table 9 MUX Truth Table

To get detailed description of the Mantissa Shifter Multiplexer and understand all the
components of this module by help of block diagrams, RTL diagrams, and code snippets,

please refer to section 2.3.2.3 in chapter 2: 32-bit Floating Point Adder.

63

Floating Point Processor Kartikey’s Master Thesis

3.3.2.4 Mantissa Right Shifter

For the next module of the floating point adder, we implemented a Barrel Shifter
type of right shifter unit. A barrel shifter is a combinational circuit that facilitates right shift
for this adder. Unlike regular shifter a barrel shifter is a sequential circuit.

If we were to use a regular register based shifter, a 24 bit data shift would take
around 24 clock cycles to process the shift. However, with this barrel shifter the module will
only need one clock cycle to compute the shift.

To get detailed description of the Mantissa Right Shifter and understand all the
components of this module by help of block diagrams, RTL diagrams, and code snippets,

please refer to section 2.3.2.4 in chapter 2: 32-bit Floating Point Adder.

64

Floating Point Processor Kartikey’s Master Thesis

3.3.2.5 Mantissa Subtractor Multiplexer

Similar to its predecessor, this module is also a two-to-one multiplexer. The two
inputs of this multiplexer are mantissa of input A and input B. The selector for this
multiplexer is the same select for its predecessor, the Cout output from the exponent
subtractor module.

The purpose of this multiplexer is to select the mantissa out of two input mantissas
with the higher exponent value. It essentially does the opposite of the previous mantissa
multiplexer as it selects the mantissa with higher exponent value. The output of this
multiplexer feeds into the mantissa adder.

This mantissa multiplexer has the same Verilog code, block diagram, and RTL
diagram as the multiplexer explained in the section above. However, the truth table would

be inverted for the desired operation as shown in table below:

Input 1 Input 2 Select Output
A B 0 A
A B 1 B

Table 10 Multiplexer 2 Table

65

Floating Point Processor Kartikey’s Master Thesis

3.3.2.6 Mantissa Ripple Carry Subtractor

The next step in the floating point subtractor algorithm is subtracting the mantissa of
input A with the mantissa of input B. The first mantissa for this subtractor operation will
come directly from the input’s mantissa. While the other input for this subtraction will come
from the right shifter unit that we just described in the section above.

To implement the mantissa subtractor module in hardware implementation, we
make use of a ripple carry subtractor in Verilog language. A ripple carry subtractor is
composed of a variable number of full adders cascaded together. The number of full adders
cascaded in this design, depends on the number of input bits to be added.

The 8-bit version of the ripple carry subtractor is described by using block diagram,
RTL diagram, and Verilog code in the modular subtractor section above. In this section we
will dive deeper into the ripple carry subtractor and show modifications needed to make the

subtractor operate on 24 bit numbers.

Mantissa 24-bit Ripple Carry Subtractor RTL Diagram

The following figure, Figure 52, shows an RTL diagram of the 24 bit ripple carry
subtractor that was used to compute the mantissa subtraction and the carry out.

As it can be seen in the RTL diagram, there are a total of 24 full adders to compute
the operation for each bit of input and compute a total of 24 bit output.

As can also be seen in the RTL diagram the Cout output is computed based on the
Carry output of the last full adder and the opcode (1 in case of subtraction, 0 in case of
addition) input for the ripple carry subtractor. The Cout is low when Exponent of input A is

greater than exponent of input B, and Cout is high for the other way around.

66

Floating Point Processor Kartikey’s Master Thesis

= i -\.Q'ELH;W_':—HI & il e g Rt]

= i qﬁiﬂﬁ_-:-ul & il qﬁiw}(-ﬂl

= -\.Q'ELH;W_ p] = il qﬁiw;{-ﬂl

= i -\.Q'ELH;W_H:—HI & il qﬁiw;{-ﬂl

ST TR.LTE q’%ﬂﬁ_":-ﬂl -mﬁ%’ﬁﬁ."f-ﬂl

Lr . | —mﬁ%ﬂﬁ_'a‘:—}il
il - e Pt |

(BTt}

e et e

= il -q'.%‘u oL el 1 M A

¢ il -H'EE'LW R -m'\-ﬂl’lﬁ'iw-'{'“'

S LT S By sl 1 S —m?ﬁm,ﬂ(—nl

S LT S —qﬁ%ﬁﬁf':—ﬂl [1
= il -q'.%‘u A g T |

= iy q’iﬁt#w.-'-:-ﬂl E

Figure 52 24 bit Ripple Carry Sub RTL

67

Floating Point Processor Kartikey’s Master Thesis

Mantissa 24-bit Ripple Carry Subtractor Verilog Code

The figure below, Figure 53, shows the Verilog code for the 24-bit ripple carry
subtractor. The module consists of two 24-bit inputs, opcode (1 for negative), 24-bit output,
and a carry output. The code mainly consists of one for loop that synthesizes a full adder 24

times for every bit of input and output.

1 ?ndu1e RippleCarrysSub # parameter N = 2}
2 B
3 input [N-1:0] A,
4 input [N-1:0] B,
5 input OpCode,
(¥ output[N-1:0] R,
7 output Cout
8 M
9 wire [N:0] C;
10 wire [N-1:0] sum;
11 assign C[0] = opCode;
12
13 genvar 1;
14 = generate
15 | for(i=0; i=N; i=1+1)
16 H begin: RipplecarryLoop
17 | Fulladder FAD
18 =
19 LACAl]),
20 LB(B[1]),
21 Lclc[1]),
22 .Co(opCode),
23 LROSUMIA]D,
24 LCout(C[i+1]D)
25 DK
26 - end
27 endgenerate
28 =
29 assign Cout = CLOJAC[N];
30 assign R = SUM;
Ell
32 endmodule
33

Figure 53 24-bit Ripple Cary Sub Code

68

Floating Point Processor Kartikey’s Master Thesis

3.3.2.7 Exponent Decrement Multiplexer

Similar to its predecessor, this module is also a two-to-one multiplexer. The two
inputs of this multiplexer are exponents of input A and input B. The selector for this
multiplexer is the same select for its predecessor, the Cout output from the exponent
subtractor module.

The purpose of this multiplexer is to select the exponent out of two input exponents
with the higher exponent value. The output of this multiplexer feeds into the exponent
decrement module that we will discuss in later section.

This exponent multiplexer has the same Verilog code, block diagram, and RTL
diagram as the multiplexer explained in the sections above. However, the truth table would

be inverted for the desired operation as shown in table below:

Input 1 Input 2 Select/Cout Output
EA EB 1 EA
EA EB 0 EB

Table 11 Multiplexer 3 Table

69

Floating Point Processor Kartikey’s Master Thesis

3.3.2.8 Controlled Decrement

In this section of the thesis, we will move on to the next module of the floating point
adder unit, the controlled exponent decrement. This module is similar to the ripple carry
subtractor we discussed earlier in the thesis, with slight modifications for our purposes.

The controlled exponent decrement module is built of eight different full adders
cascaded together with the Cout of each full adder being outputted to the input of the next
full adder. Additionally, the first input of each full adder is connected to the input and the
other input of those full adders are all hard coded with zeroes. Except for the very first full
adder which takes its second input from the other input to the module. The second input of
this decrement module is passed through an XOR gate along with an opcode input.

The XOR gate converts the select input into a twos complement version and
performing the addition operation on the twos complement number would give us the

decremented result.

70

Floating Point Processor Kartikey’s Master Thesis

Controlled Decrement Block Diagram

The following figure, Figure 54 shows the block diagram used for implementing the
controlled decrement module. The block diagram shown below shows the block diagram for
decrementing a 4-bit number based on select input. The modification to make this 8-bit

decrement is shown and explained in the sections below.

Select 1'h0 1'h0 10

Half Adder » Full Adder Full Adder Full Adder

v
v

Cin—

Figure 54 Controlled Decrement Block

71

Floating Point Processor Kartikey’s Master Thesis

Controlled Decrement RTL Diagram

As shown in Figure 55, the RTL diagram of the controlled exponent decrement shows
the 8-bit input labelled E, and another 1-bit input labelled select, in addition there is an 8-bit
output labelled as Out, and finally a 1-bit Cin input.

Each individual bit of the 8-bit input comes directly from the output of the exponent
decrement multiplexer that was discussed in the previous section. Each bit of this 8-bit input
feeds into seven different full adder and one half adder. The other 1-bit input called select
goes into the first half adder. The output of the first half adder gets cascaded through to the
next full adders and the outputs are all concatenated together to form the 8-bit output that
is shown coming out of this RTL diagram.

The output of this controlled decrement depends of the select input. The select
input comes from the Cout output of the carry look ahead adder. If the select is high it
signifies that the exponent must be decremented to be normalized for final output. If the
select is low the exponent is outputted as it was inputted. This output makes up for the final

exponent part of the 32-bit result.

72

Floating Point Processor

Kartikey’s Master Thesis

FullAdderiNC:name[2] F1
W2 .
): FullAdderiNC:name[1]F1
E7.01C>
select[w1
TR
HalfAdderlNCH
Ié)) B 5
FullAdderINC:name[2]F1
FullAdderiNC:name[4]F1
w4 : -
|—‘=: B
) Cin
FullAdderINC:name[5] F1
W~E 5 a
|—\ B
) Cin
[
FullAdderlNC:name[8].F1
W~E g Cout

FullAdderlNCrame[7].F1

-

Figure 55 Controlled Decrement RTL

73

out[7.0]

Floating Point Processor Kartikey’s Master Thesis

Controlled Decrement Verilog Code
The following figure, Figure 56, shows the Verilog code used to design the controlled
decrement. The module is named exponent decrement as it takes in the lower exponent as

input and decrements it depending on the select input but shown in the code below.

1 module decrementor
2 B(
3 input select,
4 input [7:0] E,
5 input C,
(5] output [7:0] out
7 :
&
9
10 wire [7:0]x;
11 wire [7:0]w;
12 wire [7:0]cCin;
13
14 assign X =(select==1"b1)71:0;
15 assign w[0] = xAC;
16 HalfadderINC HCE[O] ,w[0],out[0],Cin[0]);
17
18 genvar j;
19 @M= generate
20 H= begin
21
22 for(j=1; j<8; j=j+1)
23
24 @ begin: name
25
26 assign w[j] = xAC;
27
28 FulladderIne FL{E[j],w[j].Ccin[j-1],out[j].Ccin[j]);
29
30 = end
31 = end
37 endgenerate
33 -
34 endmodule

Figure 56 Controlled Decrement Code

74

Floating Point Processor Kartikey’s Master Thesis

3.3.2.9 Mantissa Normalizer

The final module for this floating point subtractor is the mantissa normalizer. The
mantissa normalizer is a variation of the module that used before for right shifting the
mantissa before the mantissa subtraction was carried out by ripple carry subtractor. The
mantissa normalizer module is a module called mantissa left shifter module which is the
opposite of the right shifter module discussed above.

For this module of the floating point subtractor, we implemented a Barrel Shifter
type of left shifter unit. A barrel shifter is a combinational circuit that facilitates left shift for
this subtractor. Unlike regular shifter a barrel shifter is a sequential circuit.

Mantissa Left Shifter Block Diagram

The block diagram for the mantissa barrel shifter is shown down below in Figure 57.

The first level showcases a 4 bit left shift, the second level shows a 2 bit left shift, and the

last level shows a 1 bit left shift [28].

0 A0 Al A2 A3 A4 AS A6 AT

— 1 | | B —

\ [

{]] \\]]| 1] o)|]
MUX s MUX
[\ \ \ / \ / | [

|
\ \ [\ [
S0 MUK /H\ [X /F’\ MUX /H\\ MUX sl MUX /F’\ MUX
\ J \ \ / \

|
[| | | :
1 / x\ / { ;o / &\ / \ A / ‘\ |
S e Mo ok e Mo o e o /
] \ / T [i T\ [[
\ / \ / \ J \ \ / \ | \ / |

[]]

o | | | |

\ I\ [[/| [[I /
$2————| MUX [MUX o f—sh MUX /u»\ MUX) MUK s MUX fs MUK

[j o J [. /

\ / \ /

\
\ [joo

) B1 B2 B3 B4 BS B6 B7

Figure 57 Left Shifter Block Diagram

75

Floating Point Processor

Kartikey’s Master Thesis

Mantissa Left Shifter Verilog Code

The following figure, Figure 58, shows the code for a mantissa left shifter unit used

to implement the floating point subtractor [29].

The mantissa left shifter unit takes in the smaller mantissa from two inputs, which is

being selected by the multiplexer described above. The outputted mantissa from

multiplexer then gets inputted into this barrel shifter that uses multiplexers to shift the

mantissa by the desired shift value.

This shift value is achieved from the exponent subtractor unit module. The mantissa

is shifted the same value as of the difference between the two exponents.

[y
[l W e v RN s O R R R

B
[V W« I s W I SR N

Bl Bl B B B
ol RO

Pl Pud Pod B
00 =l & wn

(WX RN VN RVE VRN]
ol B DD

[FNRVERFY]
e =

38

[¥X]
[1s]

module barrelLeftshifter

SO
input [7
[7:0] out; //The B-bit output line

output
; input [2

wire [7:

mux_2tol
mux_2tol
mux_2tol
mux_2tol
mux_2tol
mux_2tol
mux_2tol
mux_2tol

mux_2tol
mux_2tol
mux_2tol
mux_2tol
mux_2tol
mux_2tol
mux_2tol
mux_2tol

mux_2tol
mux_2tol
mux_2tol
mux_2tol
mux_2tol
mux_2tol
mux_2tol
mux_2tol

endmodule

:0] In; //The 8-bit Input line

0]

:0] shift; //The 3-bit shift magnitude selection Input
Levell, Level2; //Two &-bit intermediate lines

md {1°b0, In[0], Levell[0], shift[0]);

ml (In[0], In[1], Levell[1l], shift[0]);

m2 (In[1], In[2], Levell[Z2], shift[0]);

m3 (In[2], In[3], Levell[3], shift[0]);

md (In[2], In[4], Levell[4], shift[0]);

ms (In[4], In[5], Levell[5], shift[0]);

maé (In[5], In[&], Levell[&], shift[0]);

m? (In[&], In[7], Levell[7], shift[0]);

md0 (1'b0 , Levell[0], Level2[0], shift[1]);:

mll {(1'b0 , Levell[l], Level2[1l], shift[1]);:

m22 (Levell[0], Levell[2], Level2[2], shift[1]);

m33 (Levell[1l], Levell[2], Level2[3], shift[Ll]);

mdd (Levell[2], Levell[4], Level2[4], shift[1l]);

m55 {(Levell[2], Levell[5], Level2[5], shift[1l]);

mee (Levell[4], Levell[s], Level2[&], shift[1l]);

m77 (Levell[5], Levell[7], Level2[7], shift[1]);

md00 (1'bkD , Level2[0], out[0], shift[2]);

mlll (1°bkD , Level2[1], out[1l], shift[2]);

m222 (1'bD , Level2[2], out[2], shift[2]);

m333 (1'bDo , Level2[2], out[2], shift[2]);

mddd (Level2[0], Level2[4], out[4], shift[2]);

m355 (Level2[1l], Level2[5], out[5], shift[z2]);

maes (Level2[2], Level2[&], out[&], shift[2]);

m777 (Level2[2], Level2[7], out[7], shift[z2]);

Figure 58 Left Shifter Code

76

Floating Point Processor Kartikey’s Master Thesis

The 24-bit input for this particular module comes from the output of the ripple carry
subtractor module that computes the mantissa subtraction. The other 5-bit input for this
left shifter mantissa normalizer input comes from the Cout output of the same carry look
ahead adder which signifies how much the mantissa must be shifted (0 bits or 1 bit).

The mantissa normalizer shifts the mantissa addition output only when the Cout
output of the ripple carry subtractor is high. The high value from the subtractor signifies
that the mantissa subtraction has a carry of 1 and that signifies that the mantissa needs to
be shifted to be normalized for the final output.

The output of this left shifter is the final mantissa value used to represent the 32 bit

binary floating point result.

77

Floating Point Processor Kartikey’s Master Thesis

3.4 Floating Point Subtractor Results

The whole floating point subtractor unit was tested on Quartus’ ModelSim
simulation software using testbenches and waveforms. The design simulation involved
generating setup scripts for the simulator, compiling simulation models, running the

simulation, and viewing the results.

3.4.1 Floating Point Subtractor Compilation Report

Flow Summary

@, <<Filter>

Flow Status Successful - Tue Mar 28 04:20:41 2023
Quartus Prime Version 18.1.0 Build 625 09/12/2018 5J Lite Edition
Revision Mame FPUSubtractor

Top-level Entity Name FPUSubtractor

Family MAX 10

Device 10MOBDAF484CEG

Timing Models Final

Total logic elements 331/8,064 (4%)

Total registers 0

Total pins 127 /250(51 %)

Total virtual pins 0

Total memory bits 0387072 (0%)

Embedded Multiplier 9-bit elements 0/ 48 (0%)

Total PLLs 0/2(0%)

UFM blocks 0/1(0%)

ADC blocks 0/1(0%)

Figure 59 FPS Compilation Report

78

Floating Point Processor Kartikey’s Master Thesis

3.4.2 Floating Point Subtractor Testbench

A testbench is used to generate the stimulus and applies it to the implemented
floating point subtractor and compare the results against our calculations based on the IEEE
754 floating point calculator online [30]. The design was synthesized using precision

synthesis tools targeting the DE-1 SoC Max 10 FPGA machine family.

1 | timescale 1ns / 1ps

2 module FPUsSubtractor_th;

3

4 S/ Inputs

5 reg [31:0] A;

5] reg [31:0] B;

7

& J/ outputs

aQ wire [31:0] out;
10
11 wire Exception;
12 wire overftlow;
13 wire Underflow;
14
15 wire snana, Qnana, Infa, Zerdh, SubNA, Norma;
16 wire snang, Qnang, Infe, Zeruﬁ, SUbNB, NormM;
17
18 /7 Instantiate the unit under Test (UUT)
19 FPUSubtractor fpusubrTb
20 3= (
21 LALAY,
22 .B(B),
23 Lout{out),
24 .Exception(Exception),
25 .Gueranw(GverFqnw},
26 LUnderflow(underflow),
27 . Snana{snana) ,
28 .QnanalQnana) ,
29 CInfalInfa),
30 ZeroA{Zeroa),
31 . SubNA(SUbNA) ,
32 . Norma{Norma) ,
33 .snang{snang) ,
34 Lanang{qQnang) ,
35 Infe{Infe),
36 .ZeroB{(ZeroB),
37 . SubNBE(SubNB),
38 . NormB {Normg)
sl J;
40 L

Figure 60 FPS Testbench

79

Floating Point Processor Kartikey’s Master Thesis

3.4.3 Floating Point Subtractor Simulation Results

Case A:
A:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 ‘ 10000100 10011010000000000000000
Es - -Eo Mz - -Mg
B:
1 bit MSB 8 hit LSB MSB 23 bit LSB
‘ 0 ‘ 10000010 11101001100110011001101
Esg “BEo Mgz - Mg
R:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 ‘ 10000100 00011111100110011001101
= -Eo Mzz - -Mp

Simulation Results:

F
F
F
F
F
F
F
F
F
F
F
F
F
F.
F.
F.

[FPUSubtractor_th/A
[FPUSUbtractor_th/B

JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...
JFPUSUbtractor_th/...

01000100100111...
01000100100011...
01000100100011..,

01000001011101001100110011001101
01000010000011111310011001 1001101

Figure 61 FPS Case A Result

80

Floating Point Processor Kartikey’s Master Thesis

Case B:
A:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 ‘ 10000100 11011111110101110000101
Es - -Eo Mgz - -Mo
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 ‘ 10000001 10100000000000000000000
Es - -Eo Mgz - -Mg
R:
1 bit MSB 8 hit LSB MSB 23 bit LSB
‘ 0 ‘ 10000100 10101011110101110000101
Eg - “BEo Mgz - Mg

Simulation Result:

fFPUSubtractor_th/A |01000100100111...
fFPUSubtractor_th/B |01000100100011...
(FPUSubtractor .. 0100010010001 01000010010101014110101110000101
[FPUSubtractor_thf...
[FPUSubtractor_thf...
[FPUSubtractor_thf...
[FPUSubtractor_thf...
[FPUSubtractor_thf...
[FPUSubtractor_thf...
[FPUSubtractor_thf...
[FPUSubtractor_thf...
[FPUSubtractor_thf...
[FPUSubtractor_thf...
[FPUSUbtractor_thf...
[FPUSUbtractor_thf...
[FPUSubtractor_thf...
[FPUSubtractor_thf...
[FPUSubtractor_thf...
[FPUSubtractor_thf...

F
F
F
F
F
F
F
F
4
4
F
F
F
F
F
F

Figure 62 FPS Case B Result

81

Floating Point Processor Kartikey’s Master Thesis

Case C:
A:
1 bit MSB 8 hit LSB MSB 23 bit LSB
‘ 0 ‘ 10000110 11110101000110011001101
Eg - -Eo Mgz - Mg
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 ‘ 10000100 10011010000000000000000
Es - -Eo Mz - -Mp
R:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 ‘ 10000110 10001110100110011001101
Eg - -Eo Mgz - -Mg

Simulation Result:

[FPUSubtractor_th/a |01000100100111...
JFPUSubtractor_th/8 |01000100100011...
FPUSUbfractor th/... |01000200100011] 01000011010001110100110011001101
[FRUSubtractor_tb/...
[FPUSubtractor_tb/...
[FPUSubtractor_tb/...
[FPUSubtractor_tb/...
[FPUSubtractor_tb/...
[FPUSubtractor_thf...
[FPUSubtractor_thf...
[FRUSubtractor_th/...
[FRUSubtractor_th/...
[FRUSubtractor_th/...
[FRUSubtractor_thf...
[FPUSubtractor_tb/...
[FPUSubtractor_tb/...
[FRUSubtractor_tb/...
[FRUSubtractor_tb/...
[FRUSubtractor_tb/...

F
F
F
F
F
F
F
F
F
F
4
4
4
F
F
F

Figure 63 Case C Result

82

Floating Point Processor Kartikey’s Master Thesis

Case D:
A:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 ‘ 10001000 00010010111111100101011
Es - -Eo Mgz - -Mo
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 ‘ 10000001 01100100000010000011001
Es - -Eo Mgz - -Mo
R:
1 bit MSB 8 hit LSB MSB 23 bit LSB
‘ 0 ‘ 10001000 00010000001101100100011
Es - -Eo Mgz - -Mo

Simulation Result:

(FPUSUbtractor_th/A
[FRUSubtractor_th/B

fFPUSUbtractor_thf...
(FPUSUbtractor_thf...
[FRUSubtractor_th/...
fFPUSUbtractor_thf...
(FPUSUbtractor_thf. ..
[FRUSubtractor_th/...
fFPUSUbtractor_thf...
[FPUSUbtractor_thf. ..
[FRUSubtractor_th/...
fFPUSUbtractor_thf...
fFPUSUbtractor_thf...
[FRUSubtractor_th/...
fFPUSUbtractor_thf...
fFPUSUbtractor_thf...
[FRUSubtractor_th/...
fFPUSUbtractor_thf...
fFPUSUbtractor_thf...

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

Figure 64 Case D Result

83

Floating Point Processor Kartikey’s Master Thesis

3.5 Conclusion

This section of the thesis presented an implementation of a floating point subtractor
that supports the IEEE 754-2008 binary interchange format. The subtractor implements this
algorithm using a ripple carry subtractor for faster computation and used various different

modules to compute the final output.

84

Floating Point Processor Kartikey’s Master Thesis

Chapter 4: 32-bits Floating Point Multiplier

In this chapter, we describe an efficient implementation of an IEEE 754 single precision
floating point multiplier targeted for DE-1 Cyclone V FPGA. Verilog is used to implement a
technology-independent pipelined design. The multiplier implementation handles the
overflow and underflow cases. Rounding is implemented to give more precision when using
the Wallace Tree Multiplier for faster calculations. The Floating-Point Multiplier was verified
by testbench simulations on ModelSim.

In this chapter we will dive deeper into the floating-point multiplier algorithm,
architecture, code design, RTL diagram, and simulation results. Floating-point multiplication
is much less complicated than addition and subtraction as the following discussion
showcases:

We will talk about the procedure in multiplication operations and a first look at the
code design in a block diagram way followed by deeper understanding of code development.

Floating point multiplication is done by extracting signs, adding exponents, multiplying
mantissa values, and shifting the mantissa for normalization [31].

There are five basic phases of designing a Floating-Point Multiplier:

1) Check for Zeroes.

2) Add exponents.

3) Subtract Bias.

4) Multiply the Significands.
5) Normalize the Significand.

6) Normalize the Exponent if needed.

85

Floating Point Processor Kartikey’s Master Thesis

4.1 Floating Point Multiplication Algorithm
As described in the above topics, floating point number is in the format of:
Z= (-15) * 2 (E-Bias) * (1 1)
To multiply two floating point numbers A & B the different steps to follow are [32]:
1) Extracting sings, exponents and mantissas of both A and B numbers.
2) Calculating the output sign.
3) Treating the special cases.
4) Finding out the data types of numbers given
5) Adding the two exponents.
6) Subtracting the bias from exponent addition.
7) Multiplying the mantissa values
8) Normalizing mantissa by bit shifting.
9) Normalizing exponent if necessary.

10) Detecting exception, overflow, and underflow.

86

Floating Point Processor Kartikey’s Master Thesis

4.1.1 Floating-Point Multiplication Example
A =125.125 (base 10)

B =12.0625 (base 10)

S1 El M1

X1 = | 0] 10000101 | 11110100100000000000000 |
S1 El M1

X2 = |0 | 10000010 | 10000010000000000000000 |

Figure 65 Binary Presentation Mul Example

1) S1=0,E1=10000101, M1=11110100100000000000000

S2 =0, E2 =10000010, M2 = 10000010000000000000000

2) Sign bit calculation

S1
S3
S2

Figure 66 XOR Sign Subtraction

S3=0

87

Floating Point Processor

3) Exponent Addition

10000101
-+ 10000010

100000111

Figure 67 Mul Exponent Addition

Unbiased Exponent = 100000111

4) Subtract Bias

100000111

— 01111111
010001000

Figure 68 Mul Bias Subtraction

Biased Exponent = 010001000

88

Kartikey’s Master Thesis

Floating Point Processor Kartikey’s Master Thesis

5) Multiply the Mantissa

1.11110100100000000000000
X 1.10000010000000000000000

10.1111001010101001000000000000000000000000000000

Figure 69 Mantissa Multiplication

1.M3 =10.1111001010101001000000000000000000000000000000
6) Left Shift the Mantissa for normalization
Left Shifted Mantissa = 1.111100101010100100000000000000000000000000000

7) Increment the exponent

010001000
+ 000000001

010001000

Figure 70 Incrementing Exponent

E =10001000
8) Result
S3 E3 M3
X3 = [O| 10001000 | 11110010101010010000000 J

Figure 71 FPM Example Result

89

Floating Point Processor Kartikey’s Master Thesis

4.2 Floating Point Multiplier Flowchart

The below, Figure 72, showcases a typical flowchart that is used to design a floating
point multiplier. The figure shows a step by step narrative and displays the high level functions
that is required to compute floating point multiplication. The flowchart shows block level
diagram and each block or element is implemented in hardware and is described in detail in

the following topics of the thesis [33].

ADD
No \
SUBTRACT
BIAS
X=07? No > Y =07 J'
Exponent Yes REPORT
Yes Overflow ? OVERFLOW
‘ Z<-0 ‘: Yes N*o
|
v
Exponent REPORT
Underflow ? Yes UNDERFLOW
Y
RETURN No
¥
MULTIPLY
SIGNIFICANDS
Y
NORMALIZE

4 Y

ROUND }—~ RETURN

Figure 72 Floating Point Multiplier

90

Floating Point Processor Kartikey’s Master Thesis

4.3 Floating Point Multiplier Hardware
In this section of the thesis we will start explaining and diving deeper into the
hardware implementation of the floating point multiplication. This section will start by
elaborating the flowchart further with help of showcasing the hardware architecture used to
design the module followed by detailed description of each module used in the architecture.
After understanding the theory of hardware implementation and the architecture of
floating point multiplication the thesis will show the code development that achieved out

final objective of building this floating point unit.

91

Floating Point Processor Kartikey’s Master Thesis

4.3.1 Floating Point Multiplier Hardware Architecture
The below figure, Figure 73, showcases the hardware architecture that was designed

and coded to implement synthesizable 32-bit floating multiplier adder using Verilog

32 32
01 08 B 01 08
Lo 0w (o) e
L 8 3 J
23 l L 23
l EA EB l
Data Data
o Exponent o
Classifier MA Cout CLX Adder Classifier
SubNormalA SubNormalB
Mantissa Append A EA+EB Mantissa Append B
1 <
MA MB ‘
) -]
24
24
{ f :
MA MB 127 Bias E
: Bias
24 bit
Wallace Multiplier MOD Subtractor
Biased Exponent
M |
E
—M[47} > | S Exponent
Incrementor
48
} !
M M[47]
Mantissa M 48 M[23:0] Mantissa . 1
Right Shifter) Product Rounding
YY V¥ 23 9
EA EB E M A J A J
Mantissa Exponent
Compute Flags Compute Output
Format
Output
Vol !
Exception Overflow Underflow +

Figure 73 Floating Point Multiplication Architecture

92

Floating Point Processor

Kartikey’s Master Thesis

This floating point architecture uses a total of ten modules that serve various unique

purposes in making the design work. The modules are:

e Exponent CLA Adder

e Mantissa Append Module

e 24-bit Wallace Multiplier

e Exponent Incrementor

e Compute Flags

4.3.2 Floating Point Multiplier Hardware Implementation

Data Classifier

Modular Subtractor
Mantissa Right Shifter
Mantissa Product Rounding

Compute Output

In this section, we will discuss the hardware implementation designed for the floating

point multiplier and explain each module and each algorithm step in detail.

4.3.2.1 Sign Bit Calculation

Multiplying two positive numbers will result in a positive number. Multiplying two

negative numbers will result in a negative number. Multiplying one positive number and one

negative number will result in a negative number. The sign bit calculation for this floating

point multiplication unit is done using an XOR gate. The table below shows sign operations

for various cases:

A’s Sign Symbol B’s Sign Operation
+ X +
+ X -
- X -
- X -

Table 13 Sign Operations Mul

93

Floating Point Processor Kartikey’s Master Thesis

4.3.2.2 Data Classification Module

A 32-bit binary floating point number can be encoded to form a total of six different
cases based on the value of each data bit. The six different data types and the criteria that
must be met for their encoding are [34]:

1) Signalling NaN (sNaN)

1 bit MSB 8 bit LSB MSB 23 bit LSB

‘ S ‘ 11111111 00000000001000000000000

Es- ‘Eo Mz Mo

Figure 74 sNaN Format

If all eight exponent bits are 1.
And MSB of mantissa is O.
And at least one bit from the rest of mantissa is 1.

2) Quiet NaN (qNaN)

1 bit MSB 8 bit LSB MSB 23 bit LSB

‘ S ‘ 11111111 10000000001000000000000

Es- ‘Eo Mz - Mg

Figure 75 gNaN Format

If all eight exponent bits are 1.
And MSB of mantissa is 1.

And rest of mantissa be zero or hon-zero.

94

Floating Point Processor Kartikey’s Master Thesis

3) Negative Infinity (- o°)

1 bit MSB 8 bit LSB MSB 23 bit LSB

1 ‘ 1111111 00000000000000000000000

Es - ‘Eo Mz - Mo

Figure 76 Plus Infinity Format

If sign bit of the number is 1.

And all eight exponent bits are 1.

And MSB of mantissa is 0.

And rest of mantissa bits are also zero.

4) Positive Infinity (+ o)

1 bit MSB 8 bit LSB MSB 23 bit LSB

0 ‘ 11111111 00000000000000000000000

ES' 'EO M22 ' 'MO

Figure 77 Negative Infinity Format

If sign bit of the number is 0.
And all eight exponent bits are 1.
And MSB of mantissa is 0.

And rest of mantissa bits are also zero.

95

Floating Point Processor Kartikey’s Master Thesis

5) Positive Zero (+ Z)

1hit MSB 8 bit LSB MSB 23 bit LSB

‘ 0 ‘ 00000000 00000000000000000000000

Es- Ep My - Mo

Figure 78 Positive Zero Format

If sign bit of the number is 0.

If all eight exponent bits are 0.

And MSB of mantissa is 0.

And rest of mantissa bits are also 0.

6) Negative Zero (- 2)

1hit MSB 8 bit LSB MSB 23 bit LSB

‘ 1 ‘ 00000000 00000000000000000000000

Es- Ep My - Mo

Figure 79 Negative Zero Format

If sign bit of the numberis 1.
If all eight exponent bits are 0.
And MSB of mantissa is 0.

And rest of mantissa bits are also 0.

96

Floating Point Processor Kartikey’s Master Thesis

7) Subnormal

1 bit MSB 8 bit LSB MSB 23 bit LSB

‘ S ‘ 00000000 00000000000100000000000

Es- ‘Eo My Mo

Figure 80 Subnormal Format

If all eight exponent bits are 0.

At least one bit from the rest of mantissa is 1.

8) Normal
1 bit MSB 8 hit LSB MSB 23 bit LSB
‘ S ‘ 00010000 00000000000100000000000

ES‘ 'ED M22 ' 'MD

Figure 81 Normal Format

If at least one exponent bit is 1.

At least one bit from the rest of mantissa is 1.

97

Floating Point Processor

Kartikey’s Master Thesis

Data Classification Module Verilog Code

The following figure, Figure 82, shows the Verilog code used for designing the data

classification model with all the criteria described above:

1 module sp_class
2 ol
3 input[31:0] A,
4 output snan, gnan, infinity, zero, subnormal, normal
5| s
6
7 wire expHigh, expLow, sigHigh, sigLow;
8
9 //AND reduction operator to check if all exponent bits are 1
10 assign expHigh = &A[30:23];
11 //NOR reduction operator to check if all exponent bits are 0
12 assign expLow = ~|A[30:23];
13
14 //AND reduction operator to check if all significand bits are 1
15 assign sigHigh = &A[22:0];
16 //AND reduction operator to check if all significand bits are 0
17 assign sigLow = ~|Aa[22:0];
18
19 assign snan = expHigh & ~A[22] & ~sigLow,
20 assign gnan = expHigh & aA[22];
21
22 assign infinity = expHigh & sigLow;
23
24 assign zero = expLow & sigLow;
25
26 assign subnormal = expLow & ~sigLow,
27 assign normal = ~expHigh & ~explLow;
28
29 endmodule
30

Figure 82 Data Classification Verilog Code

The Verilog code utilizes AND & NOR reduction operators to check all the bits of

exponents and significands for 1s and Os respectively. The reduced variable is then used to

check different cases in accordance with all the criteria defined by IEEE 754 standards.

This data classification module is used twice for both A and B inputs for the

multiplication operation. Input A and Input B are both 32-bit inputs to the two instantiations

of this module. The output of this module are the various data types, the Zero data type

output is later used in another module to compute the hidden mantissa bit.

98

Floating Point Processor Kartikey’s Master Thesis

Data Classification Module RTL Diagram

The following figure, Figure 83, shows the RTL diagram that was outputted when the
Verilog code shown above was compiled. The RTL diagram’s first level shows the AND &
NOR reduction operator at work, followed by which there are AND gates at level two that

finally computes the various data types as high or low.

23
Al31.01[22" |WideAndo

i gnan

<l

LU |

snan

23

:__ WideNor0

i infinity

30

5 normal

; subnormal

: 40.—D subnormal

. zZero

- WideNor1

= B -

Figure 83 Data Classification RTL Diagram

This RTL diagram is generated twice in the entire floating point multiplication unit as

it is used to classify both A and B inputs into different data types described above.

99

Floating Point Processor Kartikey’s Master Thesis

4.3.2.3 Exponent Carry Lookahead Adder

This exponent carry lookahead adder module is the first arithmetic operation
module that constitutes the floating point multiplication algorithm described in section 4.1
above in this chapter.

This module’s basic task is to add the exponent of input A and exponent of input B.
The module used to carry out this addition operation is the Carry Lookahead Adder that is
described in great detail in section 2.3.2.6.

The only difference between the carry lookahead adder implemented in section
2.3.2.6 and this section is that the previous adder worked with 24-bits inputs, whereas this
adder operates on 8-bits inputs. The carry look ahead adder described in section 2.3.2.6 was
a parametrized implementation, hence there was only one modification necessary to

change the input parameter from 24-bits to 8-bits.

70 claparameter #(.N(8)) ExponentAdder
i1 =

72 .A(EA),

73 .B(EB),

74 .0pCode (1 b0},

75 . Cout (COUtEXpop),

76 ; . R{(CLAEXpOuUtTemp)

77 :

Figure 84 Exponent Adder Instantiation

Figure 84 shows the instantiation of the exponent carry look ahead adder modified
for 8-bits operation by changing the value that is assigned to variable N. The output of this
exponent adder feeds into the next module that is the modular bias subtractor.

Please refer to section 2.3.2.6 for details about Carry Look Ahead Adder including

Verilog code, RTL Diagram, and Block Diagram.

100

Floating Point Processor Kartikey’s Master Thesis

4.3.2.4 Modular Bias Subtractor

This modular bias subtractor module is the next arithmetic operation module that
constitutes the floating point multiplication algorithm described in section 4.1 above in this
chapter.

This module’s primary task is to subtract the fixed bias value of 12710 from the result
of the exponent carry look ahead adder module. When our design added the two exponent
values with each other, the bias of those two exponents got doubled. This module subtracts
the extra bias value and normalizes the exponent back to its correct magnitude.

The modular bias subtractor makes use of the same module that was used in section
2.3.2.2 of chapter two to carry out exponent subtraction. The instantiation for this module

is shown in Figure 85 below:

80

B1 Subtractig bias from EA+EB

82 subtraction is done to find the absolute value
83 Modesubtractor #{.W{9)) EAEBSub
B4 pB(

&5 .A{CLAEXpOUT),

86 LB{9'b0011111117,

&7 .0OpCode(1'bl),

&8 .R{unbiasedExponent),

B9 . Cout (coutsub

90 J;

91 -

Figure 85 Bias Subtraction Instantiation

As shown in the instantiation above in Figure 85, the inputs to the modular
subtractor is the output of the exponent addition, along with 001111111, which is 127 in
decimal. The modular subtractor is also a parameterized module which has been modified
to operate on 9-bits for this operation. The output of this module is absolute value and it
will be fed to the exponent incrementor module discussed in coming sections.

Please refer to section 2.3.2.2 for details about the modular subtractor and all its

constituting elements including Verilog code, RTL Diagram, and Block Diagram.

101

Floating Point Processor Kartikey’s Master Thesis

4.3.2.5 Mantissa Append Module

This module acts as a preparation step before we get to the most crucial step of the
floating point multiplication algorithm which is mantissa multiplication.

This module’s primary task is to compute the hidden/implied bit of the mantissa that
exists at the most significant bit spot but hidden for representation purposes. The hidden bit
of a mantissa depends on the data type of each input. If the data type of the input, as
computed by the data classification module, is of type Subnormal, then it is computed that
the most significant bit of the 24-bit mantissa is a 0. If the data type of an input is computed
as non- Subnormal then it is decided that the most significant bit of the mantissais a 1.
Mantissa Append Module Block Diagram

The following figure, Figure 86, shows the block diagram for Mantissa Append
module discussed above. The mantissa append module is essentially a two-to-one
multiplexer with two inputs and one output.

The module has another input labelled as S which selects which input gets linked

through and outputted out of the module and in turn gets fed into the Wallace multiplier.

2x1
MUX

Figure 86 Mantissa Append Block Diagram

102

Floating Point Processor Kartikey’s Master Thesis

Mantissa Append Module Verilog Code

The following figure, Figure 87, shows the code for the mantissa append module.

1 module appendMantissa
2 Bf
3 input [22:0] A,
4 input s,
5 output[23:0]R
6)
7
8 assign R =(S5==1"b1)? {1'b0,A} : {1°bl,A};
9
10 endmodule
11
12

Figure 87 Mantissa Append Verilog Code

This module takes in two 23-bits inputs which come directly from the mantissa of
input A. The input S comes from the Subnormal output of the data classification module. As
shown in the code, if the select is high (i.e. input is of type subnormal) then the output of
the module is the input of the module appended with value of 0. If the select is low the
output of the module is the input of the module appended with value of 1.

The mantissa append module is instantiated and used twice in this operation. The
first use of this module is deciding on the hidden bit of mantissa of input A as it takes in
mantissa of input A as its input. The second use of this module is deciding on the hidden bit
of mantissa of input B as it takes in mantissa of input B as its input.

The outputs of both the modules feeds into the two different inputs of the Wallace
multiplier as the mantissa has now been prepped for multiplication. The output of those

modules are 24-bits.

103

Floating Point Processor Kartikey’s Master Thesis

Mantissa Append Module RTL Diagram
The figure below, Figure 88, shows the RTL diagram for the mantissa append module

designed to output the mantissa to be feed to the multiplier unit.

NbitMux:MantissaShifterMux

S

Y~[23..0]

B[23.0]] 0
A[23..0] 1

Y[23..0]

Figure 88 Mantissa MUX RTL

The operation of this module is described in the table below:

Input 1 Input 2 Select Output
A B 1 {1’b0,A}
A B 0 {1’b1,B}

Table 14 Append Mantissa Truth Table

104

Floating Point Processor Kartikey’s Master Thesis

4.3.2.6 Mantissa 32-bit Wallace Multiplier

The 32-bit Wallace tree mantissa multiplier module is the next arithmetic operation
module that constitutes the floating point multiplication algorithm described in section 4.1
above in this chapter.

This module takes in two 24-bits input A and B and produce a 48-bits output that is
the multiplication result of inputs A and B. The input A to this module comes from the first
mantissa append module and the second input, input B, comes from the second mantissa
append module as described in the section above.

This modules carries out the mantissa multiplication operation using a Wallace tree
multiplier algorithm that facilitates fast calculation and results in an efficient system.

Wallace tree multiplier is a multiplication algorithm that uses a tree structure to add
partial products to obtain the product and carry two numbers. Wallace Tree Multiplier is a
multiplier that works in parallel by making use of the Wallace tree algorithm. This algorithm
allows for a fast and efficient multiplication of two integers.

Wallace tree multiplier is a fast multiplier with medium complexity which can be
described as its biggest advantage. Although this multiplier does require a large chip area

due to a large amount of logic in terms of AND gates and full adders.

105

Floating Point Processor Kartikey’s Master Thesis

Mantissa 32-bit Wallace Multiplier Computation

In Wallace multiplier, any three wires with the exact same weights and input into a
full adder. The result will be an output wire of the same weight and an output wire with a
higher weight for each of the three input wires. Furthermore, If there are two wires of the
same weight left, input them into a half adder. And finally, If there is just one wire left,
connect it to the next layer of full adder or half adder depending on what is available in the
next level to the immediate adjacent of the result.

For a 8 by 8 Wallace multiplier the computation steps are provided below [35]:
Step 1: Partial product obtained after multiplication is taken at the first stage. The data is
taken with 3 wires and added using adders and the carry of each stage is added with next

two data in the same stage.

—>» — <4 >3 >» ©

wWH4HNO0CO0O =T

"X X
0000

020000
0900000

09000000

00000000

0000000

000000

00000

0000

000

o0

o

BITS OF MULTIPLIER

Figure 89 Wallace Multiplication Stages

106

Floating Point Processor Kartikey’s Master Thesis

Step 2: Partial products reduced to two layers of full adders with same procedure.

\
oﬁo
o0
o

Stage O:

o

o0

00000
o

(X X}

LA
o

PPN
(X)

-
\

o
@
% ®
®
®

o

o
®
o
o

Figure 90 Wallace Multiplication Stage 0

Stage 1:

Figure 91 Wallace Multiplication Stage 1

107

Floating Point Processor Kartikey’s Master Thesis

Stage 2:

Figure 92 Wallace Multiplication Stage 2

Stage 3:

\:fﬂ‘....

NN N

Figure 93 Wallace Multiplication Stage 3

Step 3: Use Ripple carry adder or Carry look ahead adder to compute final addition

- —
—— - ———

Figure 94 Wallace Multiplication Step 3

108

Floating Point Processor Kartikey’s Master Thesis

Mantissa 32-bit Wallace Multiplier Flow Diagram

The following figure, Figure 95, shows the flow diagram for a Wallace tree multiplier
[36].

A B

| |

Partial Product Generator

Full Adder or Half Adder

A Y

Ripple Carry Adder
Or
Carry Look Ahead Adder

l

P

Figure 95 Wallace Multiplier Flow Diagram

109

Floating Point Processor Kartikey’s Master Thesis

Mantissa 32-bit Wallace Multiplier Block Diagram
The following figure, Figure 96, elaborates further on the flow diagram shown in the
section just above. There are three primary levels to this Wallace tree multiplier algorithm
as apparent from the data flow diagram [37].
1) The partial product generator generates partial products using a simple two-input
AND gate that is fed to the Wallace tree adder.
2) Multiple half and a full adders that does additions in multiple levels and also
considers carry generated by a previous level adder.
3) The last level of the Wallace tree adder can be implemented ripple carry adder. To

improve computation latency, a carry look-ahead adder can also be used.

P4z Psa Pe1 Pio P33 Paz PsiPeo P23 P32 Par Psg P13 P22 P31 Pag Poz P12 P21 Pao Po2 Pi Pao Pog Pio Poo

7 C FA c FA C2 FA HA
co

CUTr) L Al
ER RN E I

bl Jé
T

Z[7] Z[6] Z[5] Z[4] Z[3] Z[2] Z[1] Z[0]

w.
N

-—
o

Figure 96 Wallace Tree Mul Block Diagram

110

Floating Point Processor Kartikey’s Master Thesis

Mantissa 32-bit Wallace Multiplier Verilog Code

The following figure, Figure 97, shows a code snippet from the 32-bit Wallace tree
multiplier code. The code shows two 32 inputs being taken in the Wallace multiplier and a
64-bit output being outputted.

This design has been achieved by instantiating four 16-bit Wallace tree multiplier
which in turn was written using the base 8-bit Wallace multiplier module. The code for all

these different modules can be found in the annex of this thesis.

1 module wal lace32bit (a,b,out,asn);
2
3 input [31:0] a;
4 input [31:0] b;
5 output [63:0] asn;
i
7 wire [31:0] inl,tmpl,tmp2,tmp3,tmpd;
8 wire [47:0] in2,in3;
g wire [63:0] ind;
10
11 wallacelébit wlz2(a[l15:0],b[15:0],tmpl);
12 wallacelébit w22(a[15:0],b[31:16],tmp2); //ml nh
13 wallacel6bit w33(a[31:16],b[15:0],tmp3); //mh nl
14 wallacelébit wd4(a[31:16],b[31:16],tmp4d);
15
16 assign inl = tmpl;
17 assign in2 = tmp2<<l6;
18 assign in3 = tmp3<<l6;
19 assign ind = tmpd<<3Z;
20
21 assign asn= inl+in2+in3+ind;
22
23 endmodule I
24
25

Figure 97 Wallace Multiplier Code

For our purposes, the floating point multiplier unit passed two 24 bit inputs to this
multiplier while appending the rest of the bits with Os to satisfy the 32-bit data requirement.
Similarly, the 64 bit output was truncated to be 48 bits to get the required length of data

that is essential to the computation of this multiplication module.

111

Floating Point Processor Kartikey’s Master Thesis

Mantissa 32-bit Wallace Multiplier RTL Diagram

The following figure, Figure 98, shows the RLT Diagram for a 32-bit Wallace tree

multiplier.
wallace16bitw12 ThociN Addo ThOCIN - Add1 ThO O Add2
0UT[45.0] QUT[49.0] 0UT[63.0]

31,0 e s g [asni6a.0)
b[3‘|..0]D 190 b[15.0] 'Y

wallace1obitw22 wallace1obitwdd

wallace16bitw33
asn[21.0] 31H15.0] asn[31.0]

31H15.0]

Figure 98 Wallace Tree 32-bit RTL

The following figure, Figure 99, shows the RLT Diagram for a 32-bit Wallace tree

multiplier.
wallace16bitw12
H WallaceMultiplierBbitw1 1hocN - AddO Tho N Add1 Tho N Add2
OUT[24.0 OUT[21.0 asn[31.C
a[15.0] (220 [31.0] [
b[15.0]
1
T
WallaceMultiplier8bitw4
WallaceMultiplier8bitw3
15:8 a[7.0] asn[15.0]
70 b[7.0]

Figure 99 Wallace Tree 16-bit RTL

112

Kartikey’s Master Thesis

Floating Point Processor

The following figure, Figure 100, shows the RLT Diagram for a 8-bit Wallace

multiplier.

|

Figure 100 Wallace Tree 8-bit RTL

113

Floating Point Processor Kartikey’s Master Thesis

4.3.2.7 Mantissa Right Shifter

The next module for the floating point multiplication is used to normalize the output
coming out from the previous module which is the mantissa Wallace multiplier. This module
takes in the 48-bit mantissa product that is outputted from the previous module and checks
the most significant bit of the mantissa product to decide for shifting operation. The
mantissa left shifter shifts the 48-bit product by 1-bit if the most significant bit of the
product is low which is binary 0.

If most significant bit of the mantissa product is 0 then the product is already
normalized and next 23 bits after most significant bits are taken into consideration for
further operations by consequent modules.

if most significant bit of the mantissa product is 1 then it is safe to assume that the
next bit of the multiplication product is always 1, so starting from next to next bit, next 23

bits are taken into consideration for further operations by consequent modules.

136

137 assign shiftmantissal4:0] = {4 b0000,productMantissal47]};
138

139 FE'ightSh'ifter" #(.W(4E8)) ManitssashiftrightFinal
140 =

141 .in(productmantissa),

142 shift(shiftMantissa),

143 Lout {normalizedProductMantissa)

144 3

145

146

Figure 101 Right Shifter Instantiation

The figure above, Figure 101, shows the instantiation for left shifter module. As
shown in the figure above, the shift variable depends on the most significant bit of the
product.

Please refer to section 3.3.2.9 labelled Mantissa Normalizer to look at detailed

description of the Left Shifter module including its workings, Code, & RTL Diagrams.

114

Floating Point Processor Kartikey’s Master Thesis

4.3.2.8 Mantissa Product Rounding

The next module for the floating point multiplication is used to round the output
coming out from the previous module which is the mantissa left shifter module. The general
rule when rounding binary fractions to the n'" place prescribes to check the digit following
the nt" place in the number. If it’s 0, then the number should always be rounded down. If,
instead, the digit is 1 and any of the following digits are also 1, then the number should be
rounded up.
Mantissa Product Rounding Verilog Code

The figure below, Figure 102, shows the Verilog code for the mantissa product
rounding module. The code takes in a 24-bit input and returns a 1-bit output that is the
product rounded value. The input for this module comes from the output of the previous
left shifter module. The 24-bit input is sliced from the least significant bit to 24™ bit of the

48-bit output coming from the left shifter module.

1 module productRounding

2 H(

3 input [23:0] A,

4 output R

5 1);

6

7 wire round;

g

g assign round = |(a[22:0]); ////Ending 22 bits are OR'ed for rounding operation.
10 assign R = (A[23] & round);
11
12 endmodule
13

Figure 102 Product Rounding Verilog Code

As shown in the code, we are performing a reductive OR operation on 23-bits of the
input and then performing an AND operation between the reduced bit and the 24 bit of
the input. This performs the algorithm described in the above paragraph. The output of this

module is then used as the least significant bit of the mantissa product value.

115

Floating Point Processor Kartikey’s Master Thesis

Mantissa Product Rounding RTL Diagram

As shown in Figure 103, the RTL diagram shows the logic that is used to design the
product rounding module for our purposes. The product rounding module takes in a 24-bit
input and has a one bit output that is used as the least significant bit for our final mantissa
value used in computing the final results. 23-bits out of the 24-bits input excluding the most
significant bit is fed together to an OR gate and reduced to a single bit as the output from
the OR gate. This output is then inputted to an AND gate along with the most significant bit

of the input. The output of this AND gate is our rounding result.

T N
0
A[23..0] |
e
I
WideOrO .
\ R
23 [
15
A .

Figure 103 Product Rounding RTL Diagram

116

Floating Point Processor Kartikey’s Master Thesis

4.3.2.9 Exponent Incrementor

In this section of the thesis, we will move on to the next module of the floating point
multiplier unit, the controlled exponent incrementor. The exponent incrementor is
discussed in great detail in section 2.3.2.7 of chapter two of this thesis. As discussed in the
section mentioned , the controlled exponent incrementor has an 8-bit input labelled E, and
another 1-bit input labelled select, in addition there is an 8-bit output labelled as Out.

Each individual bit of the 8-bit input comes directly from the output of the modular
bias subtractor module that was discussed previously in this chapter. Each bit of this 8-bit
input feeds into seven different full adder and one half adder. The other 1-bit input called
select goes into the first half adder. The output of the first half adder gets cascaded through
to the next full adders and the outputs are all concatenated together to form the 8-bit
output that is talked about in section 2.3.2.7.

The output of this controlled incrementor depends on the select input. The select
input comes from the most significant bit of the Wallace tree multiplier result. if most
significant bit of the Wallace tree multiplier result is 1 then the product is of the form 2’b11,
and we need to shift the decimal point to left to make the product normalized and
therefore we add 1 to resultant exponent. If most significant bit of the Wallace tree
multiplier result is 1 then the product is of the form 2’b01 and the product is already

normalized and nothing is added or subtracted to exponent.

168

169 exponentIncrementorMUL expInc
170 B¢

171 .E(unbiasedexponent[8:0]),
172 .select(productMantissal47]),
173 .out (finalExponent)

174 b E

1?5 — . - ——

Figure 104 Exponent Incrementor Instantiation

117

Floating Point Processor Kartikey’s Master Thesis

4.3.2.10 Compute Flags

In this section of the thesis, we will move on to the next module of the floating point
multiplier unit, the compute flags module. As discussed in chapter 1 of this thesis there are
certain error flags that must be computed in accordance with the IEEE 754 standard when
performing binary floating point arithmetic.

The flags that are expected to be computed during a floating point arithmetic
operations are Zero, Exception, Underflow, and Overflow flags. The compute flags achieves
this desired objective using logical operations on the final exponent and final mantissa value
computed from modules discussed above [38].

e Exception: The exception flag is set to high if either of the two initial exponent values
are 255 which is an error in the value of the initial exponent.

e Zero: If the exception flag is set to low and all the final mantissa bits are low in value
then the mantissa equals a value of zero. This is when the Zero flag is set high.

e Overflow: If the Zero flag is set to high and the final exponent value in binary is a
number greater than the upper bound limit of 255, the overflow flag is set to high.

e Underflow: If the Zero flag is set to high and the final exponent value in binary is a
number lesser than the lower bound limit of 127, the underflow flag is set to high.

These four flags are computed in this module using AND and OR gates in association
with NOT gates that compute the flags required following all required guidelines by the IEEE

754 standard released in the year 2008.

118

Floating Point Processor Kartikey’s Master Thesis

Compute Flags RTL Diagram

The figure on following page, Figure 105, shows the RTL diagram that was resulted

upon designing the compute flags module.

FPUFlags:flags
= :
EA[7..0] 1
j WideAndO
7T N
J
7
EB[7..0] 0
d' . Exception
: WideAnd1 Exception
:) |
) A
7
_ Overflow
7 Overflow
Equal0 p—C —
finalMantissa[22..0] A[22.0] /\OUT o Zero 8
23'h0 B[22.0] {5) Tho 1 zero
N) Underflow
finalExponent[8..0] 7 N Underflow
8 J
5, 7

Figure 105 Compute Flags RTL Diagram

Exception

As shown in the RTL diagram above in Figure 105, The exception value is driven using
the 8-bit exponent values from input A and input B. These two 8-bit inputs are sent to two
individual 8 input wide AND gates which perform a reductive operation on these bits. The
output coming from this AND gate is single bit and if each bit of the 8-bit input is 1 the AND
gate output shows a 1 to signify that the input is 255 in value (8'b11111111).

Next, the outputs of the two individual AND gates are fed into the inputs of a 2 input
wide OR gate. If either of the input of the OR gate is a 1 the output is also a 1 which then

sets the exception flag high signifying at least one of the initial exponent value is 255.

119

Floating Point Processor Kartikey’s Master Thesis

Zero

As shown in RTL diagram zero flag is simply a combination of an equal to condition
statement that compares the final mantissa value received from the left shifter module
(section 4.3.2.6) with the zero value to check if it is equal to zero.

Additionally, we employ a multiplexer which selects between the result of this equal
statement and another zero value. The select to this multiplexer comes from the exception
value computed in the previous paragraph.

Overflow

As shown in RTL diagram the overflow flag is computed using the most significant bit
and second most significant bit of the final exponent value computed using the exponent
incrementor module. The 2-bits of the exponents are fed to two individual 3-input AND
gate. The most significant bit of exponent is fed as inputted whereas the 7t bit of the final
exponent is sent through a NOT gate before being fed to the AND gate..

Additionally, the third input value in the AND gate is the zero flag set in previous
section. If the value of the output from this AND gate is set as high, it signifies that the
exponent value is more than 255 and hence there is an overflow flag displayed.

Underflow

As shown in RTL diagram the underflow flag is computed using the most significant
bit and second most significant bit of the final exponent value computed using the exponent
incrementor module. The 2-bits of the exponents are fed to two individual 3-input AND
gate. Additionally, the third input value in the AND gate is the zero flag set in previous
section. If the value of the output from this AND gate is set as high, it signifies that the

exponent value is less than 127 and hence there is an underflow flag displayed.

120

Floating Point Processor Kartikey’s Master Thesis

Compute Flags Verilog Code

The following figure, Figure 106, shows the Verilog code for a compute flag module
used to implement the floating point multiplier. The code shows all the assign statements
that computes all the flags using logic gates discussed in previous sections pertaining to the

RTL diagram of the module.

module FPUFlags

ac |

input [7:0] EA, EB,
input [22:0] finalmantissa,
input [8:0] finalexponent,
output wire Exception, oOverflow, Underflow,

y output wire zero

, //ZERO and Exception flag

//Exception flag sets 1 if either one of the exponent is 255.
assign Exception = (&EA) | (&EB);
//If exception is true and final mantissa is 0)))
assign zero = Exception 7 1'b0 : (finalMantissa == 22'd0) ? 1'b1l : 17h0;
//overflow Flag
//If final exponent is greater than 255 then overflow.
assign overflow = ((finalexponent[8] & !finalexponent[7]) & !'zero) ;
//underflow Flag
//If sum of both exponents is less than 127 then underflow.))
assign Underflow = ((finalexponent[8] & finalexponent[7]) & 'zero) 7 1°kl : 1'h0;

endmodule

Figure 106 Compute Flags Verilog Code

As seen in the figure above, the module takes in two 8-bits inputs in form of
exponent values from input A and input B. Module also takes in the 23-bit final mantissa
value, and the 8-bit final exponent value as inputs. The outputs of this module are different

error flags such as Exception, Overflow, Underflow, and finally the Zero flag.

121

Floating Point Processor Kartikey’s Master Thesis

4.3.2.11 Compute Output

The final module of the floating point multiplication unit is the compute output
modules. As suggested by the name this final module outputs the result of the entire
floating point multiplication arithmetic. In this module we are not simply concatenating the
final exponent value with the final mantissa value along with the sign bit to get the final
result.

This module has been designed in accordance with the IEEE 754 standard that
dictates what the output of the arithmetic should look like based on the error flags that was
computed in the previous module. The output for each computed error flag is defined by
IEEE 754 standard is [39]:

e Exception: 32-bits output with all bits being 0 in value.

e Zero: The most significant bit of the result will be the sign bit computed previously.
The rest of the 31-bits of the result will be all 0.

e Overflow: The most significant bit of the result will be the sign bit computed
previously. The next 8-bits of the result will be the exponent which will have all 8-
bits set to 1. The final 23 bits will be set to 0.

e Underflow: The most significant bit of the result will be the sign bit computed
previously. The rest of the 31-bits of the result will be all 0.

e No Error: The most significant bit of the result will be the sign bit computed
previously. The next 8-bits of the result will be the exponent as outputted from the
exponent incrementor module. used previously in the design. The final 23-bits of
the result is as outputted from the left shifter module used previously in the design.

These are standard output result values in case an error flag is noted by the floating

point multiplication unit.

122

Floating Point Processor Kartikey’s Master Thesis

Compute Output RTL Diagram
The figure on following page, Figure 107, shows the RTL diagram that was resulted

upon designing the compute output module.

computeQutgetOut

Exception

Underflow

Out~[30.0]
finalExponent[S..[i

finalMantissa[22..07
-

Out~[124.93]

sign

Overflow

Out[31..0]
32'h0 1 =

92:b.

Out~[61.31]

31'hff 1

ZEero

Out~[92.62]

0
31'h0 1

Figure 107 Compute Output RTL Diagram

As shown in the RTL diagram the module uses four multiplexers hardcoded with the
IEEE 754 standard as outputs. The select for these multiplexers come from the error flag

module discussed in previous section.
Compute Output Verilog Code

The figure on following page, Figure 108, shows the Verilog code that was used for

designing the compute output module.

1 module computeQut

2 o(

3 input Exception, zero, sign, overflow, underflow,

4 input [8:0] finalexponent,

5 input [22:0] finalmantissa,

G

7 output [31:0] out

8 JH

9
10 assign out = Exception 7 32'd0 : zero ? {sign,31'd0} : overflow ? {sign,8'hFF,23'd0} :
11 underflow 7 {sign,31'd0} : {sign,finalexponent[7:0],finalMantissa}l;
12
13 endmodule
14
15

Figure 108 Compute Output Verilog Code

123

Floating Point Processor

Kartikey’s Master Thesis

4.4 Floating Point Multiplier Results

The whole floating point multiplier unit was tested on Quartus’ ModelSim simulation

software using testbenches and waveforms. The design simulation involved generating

setup scripts for the simulator, compiling simulation models, running the simulation, and

viewing the results.

4.4.1 Floating Point Multiplier Compilation Report

Flow Summary

® :<Filters>

Flow Status

Cuartus Prime Version
Revision NMame
Top-level Entity Mame
Family

Device

Timing Models

Total logic elements
Total registers

Total pins

Total virtual pins

Total memory bits
Ermbedded Multiplier 9-bit elements
Total PLLs

UFM blocks

ADC blocks

Successful - Wed Apr05 22:23:58 2023
18.1.0 Build 625 09/12/2018 SJ Lite Edition
FPM

FPM

MAX 10

TOMOBDAF484CEG

Final

243 [8,064 (3 %)

0

111/ 250 (44 %)

0

0/387,072 (0%)

7/48(15%)

0/2(0%)

0/1(0%)

0f1(0%)

Figure 109 FPM Compilation Report

124

Floating Point Processor Kartikey’s Master Thesis

4.4.2 Floating Point Multiplier Testbench

A testbench is used to generate the stimulus and applies it to the implemented
floating point multiplier and compare the results against our calculations based on the IEEE
754 floating point calculator online [40]. The design was synthesized using precision

synthesis tools targeting the DE-1 SoC Max 10 FPGA machine family.

‘timescale 1ns / 1ps
module FPM_th;

J/ INpUtTs
reg [31:0] A;
reqg [31:0] B;

J/ OUTputs
wire [31:0] out;

wire Exception;
wire overflow;
wire uUnderflow;

wire snana, Qnana, Infa, FZeroa, SubNA, Norma;
wire snang, QnangB, InfB, FeroB, SubNB, Normn;

S/ Instantiate the Unit uUnder Test (UUT)
FPM fpuadderTe

Jout{out),
.Exceptinﬂ(Excegtinn},
Joverflow(overt low),
CUnderflow{undert low) ,
. Snana(snana) ,
.ananalgQnana) ,
CInfal{Infa),
ZeroA(Zeroa),

. SubNA{SubNA),

. Norma({Norma) ,

. Snang{snang) ,
.anang{qnang) ,
CInfe{(Infe),
.ZeroB(ZeroB),

. SubNB(SubNB) ,

. NormB {NormB)

);
= A

Figure 110 FPM Testbench

125

Floating Point Processor Kartikey’s Master Thesis

4.4.3 Floating Point Multiplier Simulation Results

Case A:
A:
1 bit MSB 8 hit LSB MSB 23 bit LSB
‘ 0 ‘ 10000100 01101001000010100011111
Es Eo M Mo
B:
1 bit MSB 8 hit LSB MSB 23 hit LSB
‘ 0 | 10000100 1111100100001010001111
= -Eo Mgz - Mg
R:
1 bit MSB 8 bit LSB MSB 23 hit LSB
0 ‘ 10001010 01100100001000011101010
Es - -Eo My - ‘Mo

Simulation Results:

100000 TOT0T00. S 01000010001101001000010100001111
Q0000000000005 01000010011111001000010100011111
1000000 TIOR8 01000101001100100001000011101010

F)
F)
F)
F)
F)
F)
F)
F)
F)
F)
F)
F)
F)
F)
F)
F)

Figure 111 FPM Case A Result

126

Floating Point Processor Kartikey’s Master Thesis

Case B:
A:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 | 10000000 10010011001100110011010
Es- -Eo Mgz - Mo
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
\ 1 | 10000010 11001100011110101110001
Es - -Eo Mpo - - Mg
R:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 1 | 10000100 110101010100000110011
Es - -Eo M2z -Mp

Simulation Result:

TI00000EIOT0E 010000000 1001001100110011001 1010
LO0E0R00000a00CESY 11000001011001100011110101210001
1000000 TTI0T06] 11000010001 10101010 1000001400011

)
)
F
#
#
#
#
#
F
F
F
F
F
F
F
F
F
)
)

Figure 112 FPM Case B

127

Floating Point Processor Kartikey’s Master Thesis

Case C:
A:
1 bit MSB 8 hit LSB MSB 23 bit LSB
\ 1 | 10000010 10100100110011001100110
Es: -Eo Mgz - -Mpg
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
1 \ 10000100 10000001010001111010111
Es - -Eo Mao Mg
R:
1 bit MSB 8 bit LSB MSB 23 bit LSB
\ 0 \ 10001000 00111100101001101110100]
Es - -Eo Mg - Mp

Simulation Results:

TI00CQC0TOIRIA0SM 11000001010100100110011001100110
OOCQ00000CR00ESST 11000010010000001010001111010111
T00000STTIOI005 01000100000111100101001101110100

F
F
F
4
F
F
4
F
F
4
F
F
4
F
F
4
F
F
4

Figure 113 FPM Case C

128

Floating Point Processor Kartikey’s Master Thesis

Case D:
A:
1 bit MSB 8 bit LSB MSB 23 bit LSB
0 | 01110101 10010100110001011000001]
Es - -Eo Mg - - Mg
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
0 | 01110101 10010100110001011000001]
Es - -Eo Maz - -Mp
R:
1 bit MSB 8 bit LSBE MSB 23 bit LSB
0 | 01101100 00111111111111111111111]
Es: -Eo Mgz - -Mp

Simulation Result:

TIO0000TIOTO00SY 0011101011001010011000101 1000001
QOC00Q00A0SE00SSY 0011101011001010011000101 1000001
1000000TTIOT00S 10110110000111111131433113111130311

F
r
4
r
4
4
4
4
4
4
)
F
r
4
4
r

Figure 114 FPM Case D

129

Floating Point Processor

Kartikey’s Master Thesis

Case E:
A:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 | 00000000 00000000000000000000000
Es -Eo Maz -Mp
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 | 00000000 00000000000000000000000
Es - -Eo Maz -Mp
R:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 | 00000000 00000000000000000000000
Es - -Eo Moz -Mo

Simulation Result:

11000001010100...
00000000000000...
10000001110100...

F
F
)
F
#
F
#
#
)
F
#
)
F
#
F
F
#
F
#

Figure 115 FPM Case E

130

Floating Point Processor Kartikey’s Master Thesis

4.5 Conclusion

This section of the thesis presented an implementation of a floating point multiplier
that supports the IEEE 754-2008 binary interchange format. The multiplier implements this
algorithm using a Wallace tree multiplier for faster computation and used various different

modules to compute the final output.

131

Floating Point Processor Kartikey’s Master Thesis

Chapter 5: 32-bits Floating Point Divider

In this chapter, we describe an efficient implementation of an IEEE 754 single precision
floating point divider targeted for DE-1 Cyclone V FPGA. Verilog is used to implement a
technology-independent pipelined design. The divider implementation handles the overflow
and underflow cases. Rounding is implemented to give more precision to the output of the
divider operation. The Floating-Point Divider was verified by testbench simulations on
ModelSim.

In this chapter we will dive deeper into the floating-point divider algorithm,
architecture, code design, RTL diagram, and simulation results. Floating-point multiplication
is much less complicated than addition and subtraction as the following discussion
showcases:

We will talk about the procedure in division operations and a first look at the code
design in a block diagram way followed by deeper understanding of code development.

Floating point division is done by extracting signs, subtracting exponents, dividing
mantissa values, and shifting the mantissa for normalization [41].

There are six basic phases of designing a Floating-Point Multiplier:

1) Check for Zeroes.

2) Subtract exponents.

3) Add Bias.

4) Divide the Significands.

5) Normalize the Significand.

6) Normalize the Exponent if needed.

132

Floating Point Processor Kartikey’s Master Thesis

5.1 Floating Point Division Algorithm
As described in the above topics, floating point number is in the format of:
Z= (-15) * 2 (E-Bias) x (1 1)
To divide two floating point numbers A & B the different steps to follow are [42]:
1) Extracting sings, exponents and mantissas of both A and B numbers.
2) Calculating the output sign.
3) Treating the special cases.
4) Finding out the data types of numbers given
5) Subtracting the two exponents.
6) Adding the bias from exponent subtraction.
7) Dividing the mantissa values
8) Normalizing mantissa by bit shifting.
9) Normalizing exponent if necessary.

10) Detecting exception, overflow, and underflow.

133

Floating Point Processor Kartikey’s Master Thesis

5.1.1 Floating-Point Division Example
A =127.03125 (base 10)

B =16.9375 (base 10)

S1 El M1

X1 = | 0| 10000101 | 11111100001000000000000 |
S2 EZ2 M2

X2 = | 0| 10000011 | 00001111000000000000000 |

Figure 116 Binary Presentation Divide Example

9) S1=0,E1=10000101, M1 =11111100001000000000000

S2 =0, E2=10000011, M2 = 00001111000000000000000

10) Sign bit calculation

S1
S3
S2

Figure 117 XOR Sign Division

S3

1]
o

134

Floating Point Processor

11) Exponent Subtraction

10000101
— 10000011

00000010

Figure 118 Divide Exponent Subtraction

Unbiased Exponent = 00000010

12) Add Bias

00000010
101111111

10000001

Figure 119 Divide Bias Subtraction

Biased Exponent = 10000001

135

Kartikey’s Master Thesis

Floating Point Processor Kartikey’s Master Thesis

13) Divide the Mantissa

1.11111100001000000000000
/1.00001111000000000000000

1.11100000000000000000000

Figure 120 Mantissa Division

1.M3 =1.11100000000000000000000

14) Right Shift the Mantissa for normalization
No right shift needed.

Right Shifted Mantissa = 1.11100000000000000000000

15) Decrement the exponent

No decrement for exponent needed.

16) Result

S3 E3 M3

X3

0} 10000001 J 11100000000000000000000

Figure 121 FPD Example Result

136

Floating Point Processor Kartikey’s Master Thesis

5.2 Floating Point Divider Flowchart

The below, Figure 122, showcases a typical flowchart that is used to design a floating
point divider. The figure shows a step by step narrative and displays the high level functions
that is required to compute floating point division. The flowchart shows block level diagram
and each block or element is implemented in hardware and is described in detail in the

following topics of the thesis [43].

SUBTRACT
DIVIDE EXPONENTS

ADD
BIAS

No i

Exponent
Overflow ?

Yes REPORT
Yes Yes OVERFLOW

! |

7 <0 ‘ Z <-- Infinity ‘ No

Y

Yes REPORT
UNDERFLOW

Exponent
Underflow ?

Y

[RETURN)« No
¥

DIVIDE
SIGNIFICANDS

4

NORMALIZE

Y Y

ROUND]—~ RETURN

Figure 122 Floating Point Divider

137

Floating Point Processor Kartikey’s Master Thesis

5.3 Floating Point Divider Hardware

In this section of the thesis we will start explaining and diving deeper into the
hardware implementation of the floating point division. This section will start by elaborating
the flowchart further with help of showcasing the hardware architecture used to design the
module followed by detailed description of each module used in the architecture.

After understanding the theory of hardware implementation and the architecture of
floating point division the thesis will show the code development that achieved out final

objective of building this floating point unit.

138

Floating Point Processor Kartikey’s Master Thesis

5.3.1 Floating Point Divider Hardware Architecture

The below figure, Figure 123, showcases the hardware architecture that was
designed and coded to implement synthesizable 32-bit floating multiplier adder using

Verilog following the IEEE 754 standard.

0; 08 2 lil fii Zf
LEY S —(se) e O
8 8.
5 | { . | l
l EA EB l B
CIDat_af Modular Exponent Classifi
assifier MA Subtractor assifier
SubNormalA Cout SubNormalB
Mantissa Append A |EA-EB| Mantissa Append B
1 <
MA MB ‘
o—
24 J o1 J
} Y v
MA MB 127 Bias E
. Carry Look Ahead
24 bit ;
Divider Bias Adder
Biased Exponent
M C . E
}—M[25] » | S Exponent
Decrementor
25
! -
M M[25]
1 1 Mantissa M oe M[25] Mantissa 1
‘l l Left Shifter ; Product Rounding
XOR 1
YyY V¥ 23 l 9
EA EB E M Y Y

Compute Flags

v \ v
Exception Overflow Underflow

Figure 123 Floating Point Division

139

Mantissa Sign Exponen

Compute Output
Format

Output

32

'

Floating Point Processor Kartikey’s Master Thesis

This floating point architecture uses a total of ten modules that serve various unique

purposes in making the design work. The modules are:

e Modular Exponent Subtractor e Data Classifier

e Mantissa Append Module o CLA Bias Adder

e 24-bit Divider e Mantissa Left Shifter

e Exponent Decrement e Mantissa Division Rounding
e Compute Flags e Compute Output

5.3.2 Floating Point Divider Hardware Implementation

In this section, we will discuss the hardware implementation designed for the
floating point divider and explain each module and each algorithm step in detail.
5.3.2.1 Sign Bit Calculation

Dividing two positive numbers will result in a positive number. Dividing two negative
numbers will result in a negative number. Dividing one positive number and one negative
number will result in a negative number. The sign bit calculation for this floating point division

unit is done using an XOR gate. The table below shows sign operations for various cases:

A’s Sign Symbol B’s Sign Operation
+ / + +
+ / - -
- / + -
- / - -

Table 15 Sign Operations Divide

140

Floating Point Processor Kartikey’s Master Thesis

5.3.2.2 Data Classification Module

A 32-bit binary floating point number can be encoded to form a total of six different
cases based on the value of each data bit. The six different data types and the criteria that
must be met for their encoding are:

1) Signalling NaN (sNaN)
2) Quiet NaN (gNaN)

3) Negative Infinity (- =)
4) Positive Infinity (+ o)
5) Positive Zero (+ 0)

6) Negative Zero (- 0)

7) Subnormal

8) Normal

The Data classification module takes in the two inputs A and B as inputs to the
module and computes the type of input into 8 different data types. The data types are
defined in great detail and the criteria necessary for a data to be classified as each type in
section 4.3.2.2 in the multiplication chapter.

The data classification module outputs 8-bits of data with each line of data carrying
one classification for the data input. The output is high for output that the input is classified
as and low for all the other outputs as an input cannot be classified into more than one data
type. The Subnormal bit of output is then fed into the mantissa append module discussed in
one of the sections below.

The data classification module has been described in great detail in section 4.3.2.2 of

the multiplication chapter using Verilog code, RTL diagram, and classification examples.

141

Floating Point Processor

Kartikey’s Master Thesis

The figure below, Figure 124, shows the instantiation of the data classification

module used to classify the data input B.

30
31
32
33
34
35
36
37
38
39
40

=

sp_class classB

(

);

.A(B),
.snan{snang),
.gnan{gnang) ,
infinity(InfE),
.Zero(ZeroB),
.subnormal {(SubNB),
.normal (NormB)

Figure 124 Data Classification Instantiation B

The figure below, Figure 125, shows the instantiation of the data classification

module used to classify the data input A.

=

sp_class classa

(

);

-ACA),
.snan{snana) ,
.gnan{gnana),
anfinity(Infa),
.Zero(Zeroa),
.subnormal {SubNAa),
.normal (Norma)

Figure 125 Data Classification Instantiation

The above two figures shows the data classification module instantiation used in the

floating point division module. As shown in figures the two modules have the inputs A and B

for each module. The figure also shows six different outputs coming out of the data

classification module. Each of these 6 bits depict each of the data class discussed in the

paragraph above. These outputs are wires that goes into next modules to assist with

operations done in consecutive modules.

142

Floating Point Processor Kartikey’s Master Thesis

5.3.2.3 Modular Exponent Subtractor

This modular exponent subtractor is responsible for subtracting the exponent of the
second input from the exponent of the first input. This module of hardware description
language ensures that the exponent difference value is absolute in nature. Before the
subtraction operation is performed the program doesn’t know which exponent is higher in
value. The modular exponent subtractor allows us to not just compute the absolute exponent
difference, it also allows us to identify the larger exponent. This exponent difference will
further be sent to the bias addition module, the output of which, will be used for the exponent
decrement module and ultimately computing the result of the entire operation.

The figure below, Figure 126, shows the instantiation of the modular exponent
subtractor used for the floating point divider algorithm. As shown in the figure, the two
inputs of the modules are exponent of A and B, the output of the module is a wire called

exponent diff that is fed into the next module discussed in the next section.

67

o8

69 Modesubtractor #({.W{2)) EAEBSub
70 =N

71 .A(EA),

72 .B(EB),

73 .OpCode(l bl),

74 .R{exponentDiff),
75 Cout(coutsub)

76);

i

78 I

Figure 126 Mode Subtractor Instantiation

The modular exponent subtractor module has been described in great detail in
section 2.3.2.2 of the adder chapter using Verilog code, RTL diagram, Block diagram and

detailed explanation of each module inside the top level subtractor module.

143

Floating Point Processor Kartikey’s Master Thesis

5.3.2.4 Carry Lookahead Bias Adder

This carry lookahead bias adder module is the next arithmetic operation module that
constitutes the floating point division algorithm described in section 5.1 above in this
chapter. This module makes use of the same carry lookahead adder module that was used
in section 2.3.2.6 of chapter two to carry out exponent addition.

This module’s primary task is to add the fixed bias value of 12710 to the result of the
modular exponent subtractor module. When our design subtracted the two exponent
values with each other, the bias of those two exponents also got subtracted and cancelled
out. This module adds the negated bias value and normalizes the exponent back to its

correct magnitude. The instantiation for this module is shown in Figure 127 below:

85

86

87 %LAParameter #(.N(E)) ExopnentBiasAdder
88 =

B9 .AlexponentDiff),

a0 .B(8'd127),

a1 .0OpCode(1 b0},

92 .Cout (cCoutExpop),

a3 .R(biasedeExponentTemp)
94)i

a5

a6 -

Figure 127 Bias Addition Instantiation

As shown in the instantiation above in Figure 127, the inputs to the carry lookahead
bias adder is the output of the exponent subtraction, along with 001111111, which is 127 in
decimal. This module is also a parameterized module which has been modified to operate
on 8-bits for this operation. The output of this module is absolute value and it will be fed to
the exponent decrement module discussed in coming sections.

Please refer to section 2.3.2.6 for details about carry lookahead bias adder and all its

constituting elements including Verilog code, RTL Diagram, and Block Diagram.

144

Floating Point Processor Kartikey’s Master Thesis

5.3.2.5 Mantissa Append Module

This module acts as a preparation step before we get to the most crucial step of the
floating point division algorithm which is mantissa division.

This module’s primary task is to compute the hidden/implied bit of the mantissa that
exists at the most significant bit spot but hidden for representation purposes. The hidden bit
of a mantissa depends on the data type of each input.

This module takes in two 23-bits inputs which come directly from the mantissa of
input A. The input S comes from the Subnormal output of the data classification module. As
shown in the code, if the select is high (i.e. input is of type subnormal) then the output of
the module is the input of the module appended with value of 0. If the select is low the
output of the module is the input of the module appended with value of 1.

The operation of this module is described in the table below:

Input 1 Input 2 Select Output
A B 1 {1'b0,A}
A B 0 {1’b1,B}

Table 16 Append Mantissa Truth Table

145

Floating Point Processor Kartikey’s Master Thesis

The figure below, Figure 128, shows the instantiation of the mantissa append
module used to append the mantissa of input A.

107
108
109 appendMantissa appenda
110 Bg¢(

111 LAlMA),

112 . S{subNA),

113 .R{Appendedmantissaa)
114):

115
116 E

Figure 128 Append Mantissa A Instantiation

The figure below, Figure 129, shows the instantiation of the mantissa append

module used to append the mantissa of input B.

115 |_

116

117 appendMantissa appends
118 H(

119 .A(MB) ,

120 . 5({5ubNB),

121 .R{AppendedMantissaB)
122 J);

123
124 -

Figure 129 Append Mantissa A Instantiation

The above two figures shows the mantissa append module instantiation used in the
floating point division module. As shown in figures the two modules have the inputs A and B
for each module. The figure also shows one output coming out of the mantissa append
module. These outputs are wires that goes into next modules to assist with operations done

in consecutive module of mantissa division.

146

Floating Point Processor Kartikey’s Master Thesis

5.3.2.6 Mantissa 24-bit Divider

The 24-bit mantissa divider module is the next arithmetic operation module that
constitutes the floating point division algorithm described in section 5.1 above in this
floating point division chapter.

This module takes in two 24-bits input A and B and produce a 24-bits output that is
the quotient result of inputs A and B. The input A to this module comes from the first
mantissa append module and the second input, input B, comes from the second mantissa

append module as described in the section above [44].

Mantissa 24-bit Divider Verilog Code

1 module dividerTest(A,B,Res);
2 parameter WIDTH = 24,
3 input [WIDTH*2-1:0] Aj;
4 input [WIDTH-1:0] B;
5 output [WIDTH:0] Res;
5 reg [WIDTH:0] Res = 0;
7 reg [WIDTH®*2-1:0] al;
8 reg [WIDTH-1:0] bil;
9 reg [WIDTH:0] pl;
10 reg [WIDTH*2-1:0] Div_Test;
11 integer 1i;
12
13 always@ (A or B)
14 A begin
15 al = A;
16 bl = B;
17 pl= 0O;
18 start = 0;
19 A for(i=0;1 < WIDTH;i=i+1) begin //start the for loop
20 pl = {pl[WIDTH-2:0],al[WIDTH-1]};
21 al [WIDTH-1:1] = al[WIDTH-2:0];
22 pl = pl-bil;
23 A if(pl[WIDTH-1] == 1) begin
24 al[o] = 0;
25 - pl = pl + bl; end
26 else
27 al[o] = 1;
28 - end
29 Res = al;
30 end
31 L
32 endmodule
33

Figure 130 24-bit Divider Code

The following figure, Figure 130, shows a code snippet from the 24-bit mantissa
divider code. The code shows two 24 inputs being taken in the mantissa divider and a 24-bit
guotient being outputted.

147

Floating Point Processor Kartikey’s Master Thesis

5.3.2.7 Mantissa Left Shifter

The next module for the floating point division is used to normalize the output
coming out from the previous module which is the mantissa divider module. This module
takes in the 25-bit mantissa division value that is outputted from the previous module and
checks the most significant bit of the mantissa division value to decide for shifting
operation. The mantissa left shifter shifts the 25-bit division result by 1-bit, if the most
significant bit of the division result is low which is binary 0.

If most significant bit of the mantissa division result is 1 then the division value is
already normalized and next 23 bits after most significant bits are taken into consideration
for further operations by consequent modules.

if most significant bit of the mantissa division is O then it is safe to assume that the
next bit of the division value is always 1, so starting from next to next bit, next 23 bits are

taken into consideration for further operations by consequent modules.

If the M5B of the product is 0 then shift the result to the left by 1-bit.
assign shiftMantissal4:0] = {4 b0000,~quotientMantissal24]};

Leftshifter #(.w(25)) ManitssashiftLeftFinal
=
.in(guutientmaﬂtissa},
.shift{shiftMantissa),
Lout{normalizedquotientMantissa)

Figure 131 Left Shifter Instantiation

The figure above, Figure 131, shows the instantiation for right shifter module. As
shown in the figure above, the shift variable depends on the most significant bit of the
product.

Please refer to section 2.3.2.4 labelled Mantissa Right Shifter to look at detailed

description of the Right Shifter module including its workings, Code, & RTL Diagrams.

148

Floating Point Processor Kartikey’s Master Thesis

5.3.2.8 Mantissa Division Rounding

The next module for the floating point division is used to round the output coming
out from the previous module which is the mantissa right shifter module.

The working of the Mantissa Product Rounding module is discussed in great detail in
section 4.3.2.8 of the multiplication chapter. Please refer to that section to understand the
inner workings of this module by the help of Verilog code, RTL diagram, and explanation

The figure below, Figure 132, shows the instantiation of the division result rounding

module that was used in this floating point division unit.

155

156 wire guotientRound;

157

158 productrRounding #(.N(0)) round

159 =

160 LAlnormalizedQuotientMantissall]),
161 .R{quotientrRound)

162)

163

164

Figure 132 Division Rounding Instantiation

As shown in the figure above, the input of this module is the least significant bit from
the result of the mantissa division computed by the module explained in the section above.
The output of this module is a one bit value which is then concatenated with the rest of the
guotient value to form the final mantissa value of the floating point division arithmetic

result.

149

Floating Point Processor Kartikey’s Master Thesis

5.3.2.9 Exponent Decrement

In this section of the thesis, we will move on to the next module of the floating point
divider unit, the controlled exponent decrement module. The exponent decrement module
is discussed in great detail in section 3.3.2.8 of chapter three of this thesis. As discussed in
the section mentioned , the controlled exponent decrement module has an 8-bit input
labelled E, and another 1-bit input labelled select, in addition there is an 8-bit output.

Each individual bit of the 8-bit input comes directly from the output of the carry
lookahead bias adder module that was discussed previously in this chapter. Each bit of this
8-bit input feeds into seven different full adder and one half adder. The other 1-bit input
called select goes into the first half adder. The output of the first half adder gets cascaded
through to the next full adders and the outputs are all concatenated together to form the 8-
bit output that is talked about in section 3.3.2.8.

The output of this controlled decrement module depends on the select input. The
select input comes from the most significant bit of the mantissa divider result. if most
significant bit of the mantissa divider result is 1 then the divider result is of the form 2’b11,
and we need to shift the decimal point to right to make the divider result normalized and
therefore we subtract 1 to resultant exponent. If most significant bit of the mantissa divider
result is 1 then the divider result is of the form 2’b01 and the divider result is already

normalized and nothing is added or subtracted to exponent.

LB

176 exponentDecrementor expDec

177 B¢

178 .E(biasedexponent[8:0]),

179 .select(quotientMantissal24]),
180 .out (finalExponent)

181);

Figure 133 Exponent Decrement Instantiation

150

Floating Point Processor Kartikey’s Master Thesis

5.3.2.10 Compute Flags

In this section of the thesis, we will move on to the next module of the floating point
divider unit, the compute flags module. As discussed in chapter 1 of this thesis there are
certain error flags that must be computed in accordance with the IEEE 754 standard when
performing binary floating point arithmetic.

The flags that are expected to be computed during a floating point arithmetic
operations are Zero, Exception, Underflow, and Overflow flags. The compute flags achieves
this desired objective using logical operations on the final exponent and final mantissa value
computed from modules discussed above.

The figure below, Figure 134, shows the instantiation of the compute flags module

used to compute error flags for the floating point division module.

187

188 FPUFlags flags

189 @E(

190 .EA(EA),

191 .EB(EB),

192 finalMantissa(finalMantissa),

193 .finalexponent (finaleExponent),

194 .Exceptiuﬂ(Exceqtﬁuﬂ}, ZERD and Exception flag
195 Loverflow(overtlow), overflow Flag
196 LUnderflow(undertlow), Underflow Flag
197 .Zzero(zero)

198 3

199 L o

Figure 134 Compute Flags Instantiation

As shown in the figure above, the compute flags module has two 8-bit inputs. The
first input is the exponent of input A and the second input is the exponent of input B. And
the figure also shows another two 23-bits input in terms of the two mantissa values. The
module outputs the four error flags as discussed.

Please refer to section 4.3.2.10 from chapter 4 of the thesis for detailed explanation

into working of this module using block diagram, RTL diagram, and Verilog code.

151

Floating Point Processor Kartikey’s Master Thesis

5.3.2.11 Compute Output

The final module of the floating point division unit is the compute output modules.
As suggested by the name this final module outputs the result of the entire floating point
division arithmetic. In this module we are not simply concatenating the final exponent value
with the final mantissa value along with the sign bit to get the final result.

This module has been designed in accordance with the IEEE 754 standard that
dictates what the output of the arithmetic should look like based on the error flags that was
computed in the previous module.

The figure below, Figure 135, shows the instantiation of the compute output module

used to compute output for the floating point division module.

201

202

203 computeQut getout

204 =R

205 .Exception(Exception),

206 .Zero{zero),

207 .sign(sign),

208 Loverflow({overftlow),

209 Underflow{underflow),

210 .finalexponent{finalExponent),
211 .finalMmantissa(finalMantissa),
212 Lout{out)

213 K

214 L)

Figure 135 Compute Out Instantiation

As shown in the figure above, the compute output module has inputs in the form of
final mantissa and exponent, along with error flags computed in previous module. T
Please refer to section 4.3.2.11 from chapter 4 of the thesis for detailed explanation

into working of this module using block diagram, RTL diagram, and Verilog code.

152

Floating Point Processor

5.4 Floating Point Divider Results

Kartikey’s Master Thesis

The whole floating point divider unit was tested on Quartus’ ModelSim simulation

software using testbenches and waveforms. The design simulation involved generating

setup scripts for the simulator, compiling simulation models, running the simulation, and

viewing the results.

5.4.1 Floating Point Divider Compilation Report

Flow Summary

&, <<Filter=>

Flow Status

Cruartus Prime Version
Revision Mame
Top-level Entity Name
Family

Device

Timing Models

Total logic elements
Total registers

Total pins

Total virtual pins

Total memory bits
Ermmbedded Multiplier 3-bit elements
Total PLLs

UFM blocks

ADC blocks

Successful - Mon Apr 1003:22:00 2023
18.1.0 Build 625 09/12/2018 5J Lite Edition
FPD

FPD

MAX 10

TOMOBDAF484CEG

Final

1,916/ 8,064 (24 %)

0

111/ 250 (44 %)

0

0/387,072(0%)

0/48(0%)

0/2(0%)

0/1(0%)

0/1(0%)

Figure 136 FPD Compilation Report

153

Floating Point Processor Kartikey’s Master Thesis

4.4.2 Floating Point Divider Testbench

A testbench is used to generate the stimulus and applies it to the implemented
floating point divider and compare the results against our calculations based on the IEEE
754 floating point calculator online [45]. The design was synthesized using precision

synthesis tools targeting the DE-1 SoC Max 10 FPGA machine family.

1 module FPD_th;

2

3 S/ Inputs

4 reg [31:0] A;

5 reg [31:0] B;

6

i S/ Outputs

8 wire [31:0] out;

9
10 wire Exception;
11 wire overflow;
12 wire underflow;
13 L
14 ire snanA, Qnana, Infa, Zeroa, SubNA, Norma;
15 wire snang, Qnang, InfB, ZeroB, SUubNB, NormM;
16
17 J/ Instantiate the unit under Test (UUT)
18 FPD TpuDivTB
19 A3 {
20 ACA),
21 .B(B),
22 Lout(out),
23 .Exceptinn(Exceqtinﬂ},
24 Lovertlow{overf low),
25 LUnderflow{underflow),
26 . Shana{snanal,
27 Lgnanalqnana) ,
2B CInfalInfa),
29 ZeroA{Zerod),
30 . SubNA{SUbNAY,
31 Norma{Norma),
32 .Snang{snang),
33 .gnang{gnang),
34 CInfe{INfB),
35 .ZeroB{ZeroB),
36 . SubNB{SubNB),
37 . NormB {Normg)
38 J;
39 L

Figure 137 FPD Testbench

154

Floating Point Processor Kartikey’s Master Thesis

5.4.3 Floating Point Divider Simulation Results

Case A:
A:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 | 10001000 00000000001110011001101
Es -Eo M2z - -Mp
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 | 10000110 01000100101011100001010
Es - -Eo Moz - -Mp
R:
1 bit MSB 8 bit LSB MSB 23 hit LSB
‘ 0 ‘ 10000010 10010100000011001111111
Es - -Eo Moz -Mp

Simulation Results:

JFPD_th/a 00000200000080. T01000100000000000001110011001101
[FRPD_th/B 0000000000000, .. ::I 01000011001000100101011100001010
JFPD_thfOut 000000000000008.5 T01000001010010100000011001111111
[FPD_th/Exception

JFRD_thfOrverflow

JFPD_th/Underflow

[FPD_th/Snana

[FPD_th/QnanA

JEPD_th/InfA

JFPD_th/Zerof

JEPD_th/SubMaA

JFPD_th/Morma

JFPD_th/SnanB

[FPD_th/QnanB

JFPD_th/InfB

JFPD_th/ZeroB

JFPD_th/SubMB

JFPD_th/Mormi

JFPD_th/MormB

4,
-+,
4,
4,
4,
-+,
-+,
4,
4,
-+,
-+,
4,
4,
4,
-+,
4,

Figure 138 FPD Case A Result

155

Floating Point Processor Kartikey’s Master Thesis

Case B:
A:
1 bit MSB 8 hit LSB MSB 23 hit LSB
0 | 10000111 11001111001111010111000
Es -Eo Mz - -Mp
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
\ 1 \ 10000100 11000110011001100110011
Es - -Eo M2z - -Mo
R:
1 bit MSB 8 bit LSBE MSB 23 bit LSB
\ 1 | 10000010 00000100111110101111010
Eg - -Eo Maz - -Mo

[FPD_th/A 00000000000000. T01000011111001111001111010111000
[FPD_th/B 0000000000000 T11000010011000110011001100180011
JFPD_th/Out 0000000000A000. T 11000001000000100111110101111010
JFPD_th/Exception

fFRD_tb/Overflow

[FRD_tb/Underflaow

[FRD_tb/SnanA

[FPD_th/Qrana

[FPD_thfInfa

[FPD_th/Zerod

[FPD_th/SubmMa

JFPO_th/Morma,

[FRD_tb/SnanB

[FFD_tb/QnanB

[FPD_th{InfE

[FPD_thfZeroB

[FPD_th/SubME

[FPD_th/Mormi

JFPD_th/MormB

B

-,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,

Figure 139 FPD Case B

156

Floating Point Processor Kartikey’s Master Thesis

Case C:
A:
1 bit MSB 8 bit LSBE MSB 23 bit LSB
‘ 1 ‘ 10000101 00010001001100110011010
Esg - -Eo Maz -Mp
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 1 | 10000011 10001110011001100110011
Es -Eo Mgz - - Mo
R:
1 bit MSB 8 hit LSB MSB 23 bit LSB
0 ‘ 10000010 01011111000110011011010
Es - -Eo Maa - Mo

Simulation Result:

UOC0Q0C000000essy 11000010100010001001100110011010
UO0C0Q0G000000esY 11000001110001110011001100110011
OOO0OC000S00REESY 11000001001011111000110011011010

JFPD_th/fa
[FPD_tb/B
JFPD_th/Out
JFPD_tb/Exception
JFPD_thfOverflow
JFPD_th Underflow
JFPD_tb/Snana
JFPD_thfQnanA
JFPD_th/InfA
JFPD_th/Zerof
JFPD_thfSubMA
JFPD_th/MormA
JFPD_tb/SnanB
JFPD_th/QnanB
JFPD_th/InfE
JFPD_th/ZercB
JFPD_thfSubMB
JFPD_thMormM
JFPD_thMormB

B

-,
4,
e
4,
4,
e
4,
4,
e
4,
4,
e
4,
4,
e
4,
4,

Figure 140 FPD Case C

157

Floating Point Processor Kartikey’s Master Thesis

Case D:
A:
1 bit MSB 8 hit LSB MSB 23 bit LSB
‘ 0 ‘ 10001000 10101011001101011100001 }
Es - -Eo M2z -Mo
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 | 10001000 00110011110100110011010
Es - -Eo Mzz - -Mg
R:
1 bit MSB 8 hit LSB MSB 23 bit LSB
0 | 01111111 01100011010010010001011
Es - -Eo Mgz - -Mo

JFRD_th/a 00000000000004a, ,, ::I 01000100010101011001101011100001
fFPD_tb/B DODO0OBO00ONAESSY T01000100000110011110100110011010
JFPD_thfOut 0000000000000, ., ::I 001111111031100011310010010001011
JFPD_th Exception

[FPD_thfOverflow

JFPD_thUnderflow

JFPD_th/SnanA

JFPD_tbfQnanA

JFPD_th/InfA

[FPO_th/ZeroA

JFPD_th/SubMA

JFPD_th/MormA

fFPD_th/SnanB

fFPD_thfQnanB

JFED_th/InfE

JFPD_th/ZercB

JFPD_th/fSubMB

JFPD_thMormM

JFPD_th/MormB

-,
4,
4,
4,
4,
4,
4,
-,
-,
-,
4,
4,
4,
4,
4,
4,

Figure 141 Case D

158

Floating Point Processor

Kartikey’s Master Thesis

Case E:
A:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 | 00000000 00000000000000000000000
Es -Eo Maz -Mp
B:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 | 00000000 00000000000000000000000
Es - -Eo Maz -Mp
R:
1 bit MSB 8 bit LSB MSB 23 bit LSB
‘ 0 | 00000000 00000000000000000000000
Es - -Eo Moz -Mo

Simulation Result:

11000001010100...
00000000000000...
10000001110100...

F
F
)
F
#
F
#
#
)
F
#
)
F
#
F
F
#
F
#

Figure 142 FPD Case E

159

Floating Point Processor Kartikey’s Master Thesis

5.5 Conclusion

This section of the thesis presented an implementation of a floating point divider
that supports the IEEE 754-2008 binary interchange format. The divider implements this
algorithm using a shift divider for faster computation and used various different modules to

compute the final output.

160

Floating Point Processor Kartikey’s Master Thesis

Chapter 6: Floating Point Unit

In this chapter, we describe an efficient implementation of an IEEE 754 single precision
floating point unit targeted for DE-1 Cyclone V FPGA. Verilog is used to implement a
technology-independent pipelined design. The floating-point unit implementation
instantiates all the previous operation modules and makes use of an opcode to display one of
the fours outputs. The Floating-Point Unit was verified by testbench simulations on
ModelSim. In this chapter we will look at floating-point unit design, architecture, code design,

and RTL diagram.

161

OUT-

Floating Point Processor

6.1 Floating Point Unit Block Diagram

Kartikey’s Master Thesis

The figure below, Figure 143, shows the block diagram that was used as an

architecture for the final floating-point unit. The block diagram shows all the previous

operation modules instantiated along with multiple multiplexers to choose input and output

wires that are fed to input and outputs of the operation modules respectively.

4-1
Mux

Floating-Point
Adder

32

Floating-Point
Subtractor

32

32

Floating-Point
Multiplier

32

32

Floating-Point
Divider

32

32

2-2
Mux

2-2
Mux

2-2
Mux

2-2
Mux

l«—32

l«—32

1

l«—32

l«—32

l«—32

l«—32

Figure 143 Floating Point Unit Block Diagram

162

1 OpCode

Floating Point Processor Kartikey’s Master Thesis

6.2 Floating Point Unit Verilog Code

The figure below, Figure 144, shows a snippet from the Verilog code that was used to
program and run the final floating-point unit. The Verilog shows all the previous operation
modules instantiated in a top-level design along with multiple multiplexers that are
connected to the operation modules using wires. The final multiplexer takes in use of an input

called the Opcode to compute the final output of the floating-point unit.

1 module FPU
2 [(
3 input [31:0] A,
4 input [31:0] B,
5 input [1:0] opcode,
G output Overflow, uUnderflow, Exception,
7 output [31:0] out
g)i
9
10 wire [31:0] out_add, out_mul, out_diwv;
11 wire Exception_add, Exception_mul, Exception_div;
12 wire overflow_add, overflow_mul, overflow_diwv;
13 wire Underflow_add, underflow_mul, underflow_diwv;
14 wire [31:0] temp_result,resultl,result2,result3,resultd,results,results;
15
16 FPUAdder add_sub
17 B
18 Ala),
19 .B(B),
20 Lout{out_add),
21 .Exceptiuﬂ(Exceqtiuﬂ_add},
22 Loverflow(overt low_add),
23 Underflow{Underflow_add)
24)i
25 L
26 FPM mult
27 B
28 AlA),
29 .B(B),
30 Jout{out_mull,
31 .Exceptiun(Exceqtiun_muW},
32 Loverflow(overt low_mul),
33 LUnderflow{undertTow_mul)
34);
35 L
36 FPD div
37 B(
38 Aala),
39 .B(B),
40 Lout{out_div),
41 .Exception{Exception_div),
42 .OVEFF1DW(OVEFF€DW_dﬁV},
43 Underflow{underflow_div)
44)
45

Figure 144 Floating Point Unit Verilog Code

163

Floating Point Processor Kartikey’s Master Thesis

6.3 Floating Point Unit RTL Diagram
The figure below, Figure 145, shows the RTL diagram that was generated from the
Verilog code that was used to program and run the final floating-point unit and discussed in

the previous section.

Mo THEMS
I | Mue 1BTMOS
azLay 1 oo
n ot
CETN - | | iidsnd]
L -
M Z2ETMO1 | M BEMOS
mo
Dk M 1BTHIT
.00
N ID FPRODcie M SFETMOZ .
— Mo THTMOS
- n1 cut
- "l \
= - D> ks
ncertow |
VifideArki
:. — o widsAndz ‘ M TBEMOS
E iidafnds n o N [Excegion
Mu 32BTHO10 [Overtow
AT 1 5] o
o 5]
Mt SZBTMO11
E f |
t
T — s oz

1
17 111 1A

Figure 145 Floating Point Unit RTL Diagram

164

Floating Point Processor Kartikey’s Master Thesis

Chapter 7: Education Module

In this chapter of the thesis, we will shift our focus from designing and constructing
the 32-bit floating point unit to creating various education modules. The purpose of this
chapter is to provide a road map for a digital logic and design student and facilitate them to
build their own floating point unit.

This chapter has been divided into ten different sections. Each section is aimed to act
as a laboratory assignment with specific guidelines, and theory of the subject matter to
build each module illustrated in the previous thesis chapters.

The first section of each lab, it starts the students with educating them regarding the
purpose and outcome of each laboratory, the purpose section introduces the students to
the lab assignment and gives them a brief reason as to why the module is being
implemented. The next section, provides students with the necessary background needed
to implement the module at hand. This section discusses modules implemented in previous
labs as well as the computation or algorithm necessary to implement the lab they are
working on. The next section, walks the student through the design requirement followed
by the design verification. Finally, the lab assignments have a section that asks students

important questions regarding their implementation of the design.

165

Floating Point Processor Kartikey’s Master Thesis

7.1lab 1
Name: ID#
Date Submitted: Lab Section #
CSE [xxxx] Digital Logic Fall Semester 2024

Lab Number 1 — Modular Exponent Subtractor
Perform [Month] [Date], [Year]

This lab is performed on the DE10-Lite.

166

Floating Point Processor Kartikey’s Master Thesis

CSE 2441 LABORATORY ASSIGNMENT 1 FALL 2024

VERILOG MODULAR EXPONENT SUBTRACTOR

(100 POINTS)

PURPOSE/OUTCOMES
To give you experience writing Verilog modules and instantiating these modules to realize
more complex designs. In this lab you will implement a modular exponent subtractor. You
will construct a Ripple Carry Subtractor to subtract two exponents and compute the
difference between the two. Then, you will construct a twos complement to sign magnitude
convertor to find the absolute value of the difference. This absolute difference will then be
used to perform floating point arithmetic in future labs. After completing this lab, you will
have demonstrated an ability to design eight-bit ripple carry subtractor, eight-bit twos
complement to sign magnitude convertor, to write Verilog models of adders and
subtractors, to capture and verify your designs using Model-Sim on Quartus Prime, and to

realize and test your designs on a DE10-Lite.

167

Floating Point Processor Kartikey’s Master Thesis

DESIGN REQUIREMENTS
In this lab you will construct a modular exponent subtractor unit that consists of three
individual modules connected together to find the absolute difference between two 8-bits

input. The top level block diagram is shows in Figure 1.

A —8 »
Ripple Carry o .| Twos Complement
Subtractor R - Convertor
B —8—»
Cout
R
1 B
2-to-1
Multiplexer
8
\
ouT

Figure 1 — Modular Exponent Subtractor
You will construct the module shown in Figure 1, in the following steps constructing each of
the underlying module in each step of the process:
DESIGN REQUIREMENT
1. Constructing and Testing the Ripple Carry Subtractor
a) For the first module, the Ripple Carry Subtractor, start by writing a Verilog model of a full-

adder using the circuit shown in Figure 2. Create an instantiation template for this module.

168

Floating Point Processor Kartikey’s Master Thesis
AD \D_
EC yi
—
05

BDa
D D

Co

Figure 2 — Full Adder Circuit
b) Secondly, use the instantiation of full adder module created in step ‘a’ to form a ripple
carry subtractor module in Verilog. For a four-bit ripple carry subtractor, four full adders are
cascaded together passing the output of the first full adder to the input of the next full

adder as shown in Figure 3 below.

A3 B3 A2 B2 Al Bl A0 BO
I/:\I I/:\I I/:\I I/:\I
o/ ./ N o/

<—{ FA <—{ FA FA FA <«+—CO
R3 R2 R1 RO

Figure 3 — Four-bit Ripple Carry Subtractor

169

Floating Point Processor Kartikey’s Master Thesis

c) Modify the block diagram shown in Figure 3 for 8-bits subtraction operation. Perform this
by instantiating eight full adders in chain in a Verilog module. Remember to pass each bit of
Input B through an XOR gate along with CO which will be high for subtraction operation.

2. Constructing and Testing the Twos Complement to Sign Magnitude Convertor

a) For this second module, start by writing a Verilog model of a half-adder using the circuit

shown in Figure 4. Create an instantiation template for this module.

Cout

Figure 4 — Half Adder Circuit
b) Secondly, use the instantiation of half adder module created in step ‘a’ to form a twos
complement convertor module in Verilog. For a four-bit twos complement convertor, four

half adders are cascaded together as shown in Figure 5 below.

B3 B2 B1 BO
Figure 5 — Twos Complement Convertor

170

Floating Point Processor Kartikey’s Master Thesis

c) Modify the block diagram shown in Figure 4 for 8-bits conversion operation. Perform this
by instantiating eight half adders in chain in a Verilog module. Remember to pass each bit of
Input A through an XOR gate along with most significant bit of the input. The MSB of input A
is also the second input of the first half adder.

3. Constructing Two-to-One Multiplexer

a) For the last element of this module, write a Verilog module for two-to-one multiplexer.
The multiplexer should select the A input as output if S input is high and B input as output if

Sinput is low in value. Use block diagram in Figure 6 for reference.

2%x1
MUX

Figure 6 — Two-to-One Multiplexer
b) Create an instantiation template of this module for future use.
4. Constructing the Modular Subtractor Module
a) For the final step of the construction, use the block diagram shown in Figure 1 to connect
all three modules constructed in steps above. Open a new project on Quartus and in a new
Verilog code file, and declare inputs and outputs as needed. Finally, instantiate each of the

three modules discussed above and connect them using wires.

171

Floating Point Processor Kartikey’s Master Thesis

DESIGN VERIFICATION
1. Simulate your design using waveforms to verify its correctness. Use the following values
of A and B for your simulation inputs.
(a) 01010101 - 10101010
(b) 01111111 - 00000001
(c)01111111-12111211211
(d) 01100110 - 11011101
2. Include screen shots of your simulation waveform in your report.

3. Record the simulation results in the table below for your report.

A B R=|A-B]|
01010101 10101010
01111111 00000001
01111111 11111111
01100110 11011101

DE10-Lite IMPLEMENTATION
1. Implement your design on the DE-10 Lite using the following inputs/outputs using pin
assignments of your choice.
Inputs: AQ, Al, A2, A3, A4, A5, A6, A7, BO, B1, B2, B3, B4, B5, B6, B7
Outputs: RO, R1, R2, R3, R4, R5, R6, R7
2. Include a table of your assignments in your report.

3. Program the DE10-Lit e with your design.

172

Floating Point Processor Kartikey’s Master Thesis

CHECK YOUR UNDERSTANDING

1. Explain how the circuit in Figure 3 computes R = A — B,

where A = (A3A2A1A0)2 , B = (B3B2B1Bo)2 and D = (R3R2R1R0)2

2. Explain how the circuit in Figure 5 converts twos complement to signed magnitude.
3. Explain the role of multiplexer in figure 1, what does value of input S signify?

4. Instantiate the modular exponent subtractor module for future use.

173

Floating Point Processor Kartikey’s Master Thesis

7.2 Lab 2
Name: ID#
Date Submitted: Lab Section #
CSE [xxxx] Digital Logic Fall Semester 2024

Lab Number 2 — Right & Left Barrel Shifter
Perform [Month] [Date], [Year]

This lab is performed on the DE10-Lite.

174

Floating Point Processor Kartikey’s Master Thesis

CSE 2441 LABORATORY ASSIGNMENT 2 FALL 2024

RIGHT & LEFT BARREL SHIFTER

(100 POINTS)

PURPOSE/OUTCOMES
To give you experience writing Verilog modules and instantiating these modules to realize
more complex designs. In this lab you will implement a left and right barrel shifter module.
A regular shift operation done in Verilog using the shift operator (<<,>>) uses a sequential
circuit. The register based shift operation takes eight clock cycles to shift eight bits of data.
However, a barrel shifter module uses a combinational circuit to shift eight bits of data by
only using one clock cycle. The barrel shifter module you will implement in this lab will use
several multiplexers for each level of data shift. After completing this lab, you will have
demonstrated an ability to design 8-bit and a 24-bit left and right barrel shifter module, to
write Verilog models of multiplexers, to capture and verify your designs using Model-Sim on
Quartus Prime, and to realize and test your designs on a DE10-Lite.
BACKGROUND
In Lab 1, you designed, constructed, and tested the two-to-one multiplexer that was used to

form the modular exponent subtractor module as shown in Figure 1.

A— »
2x1 R
MUX

B— =
S

Figure 1 — Two-to-One Multiplexer

175

Floating Point Processor Kartikey’s Master Thesis

DESIGN REQUIREMENT - 1

1. In the first step of the lab you will write the Verilog code for a right barrel shifter unit with
3-bit shift input and 8-bit data input. This module consists of twenty-four two-to-one
multiplexers arranged in three levels. Each level signifies one additional bit of data shift. The

block diagram for the right barrel shifter is shows in Figure 2.

A AR

—— N
A R AT AT A JF\U ALY
— w
0 \Ul/L\Ol/L\Ol/L\O 1/_\01/L\01/_\01/L\01/

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Figure 2 — 8-bit Right Barrel Shifter

2. Ap through A7 is the 8-bit data input to the barrel shifter module. Inputs Bo to B, are the 3-

bit shift input that defines how many bits does the input need to be shifted.

176

Floating Point Processor Kartikey’s Master Thesis

DESIGN VERIFICATION - 1
1. Simulate your design using waveforms to verify its correctness. Use the following values
of A and B for your simulation inputs.

(a) A=01010101, B=001

(b) A=01111111,B=010

(c)A=01111111,B=011

(d) A=01100110, B =100
2. Include screen shots of your simulation waveform in your report.
3. Record the simulation results in a table for your report.
DE10-Lite IMPLEMENTATION - 1
1. Implement your design on the DE-10 Lite using the following inputs/outputs using pin
assignments of your choice.

Inputs: A0, A1, A2, A3, A4, A5, A6, A7, A8, BO, B1, B2, B3
Outputs: RO, R1, R2, R3, R4, R5, R6, R7, R8

2. Include a table of your pin assignments in your report.
3. Program the DE10-Lite with your design.
DESIGN REQUIREMENT - 2
1. Take the block diagram for the right barrel shifter from Figure 2 and modify it to operate
on a 24-bit data input and equip it to perform a 5-bit data shift on the input. Draw the block
diagram for the next part of this lab.
2. Use the block diagram created in step 1 of this section and modify the Verilog code
written in design requirement section 1 of this lab to operate on 24-bit data input for a 5-bit

data shift operation.

177

SO

St

S2

Floating Point Processor

DESIGN VERIFICATION - 2

1. Simulate your design using waveforms to verify its correctness. Use the following values

of A and B for your simulation inputs.

(a) A=010101010101010101010101, B = 00001
(b) A=011111110111111101100110, B = 00010
(c)A=011111110110011001100110, B = 01000

(d)A=011001100101010101010101, B = 10100

2. Include screen shots of your simulation waveform in your report.

3. Record the simulation results in a table for your report.

DESIGN REQUIREMENT - 3

1. In the next section, you will write the Verilog code for a left barrel shifter unit with 3-bit

shift input and 8-bit data input. This module consists of twenty-four two-to-one

multiplexers arranged in three levels. Each level signifies one additional bit of data shift. The

block diagram for the left barrel shifter is shows in Figure 3.

Kartikey’s Master Thesis

0 A0 Al "2 A3 A AS AB A7
\ 1
\ J A [a A [I /
o MUK MUK MUK s MUK s MUK MK s MUG o MK
\ . / \ [o / \ [Fo /
] QRN -
\ lo I [I] [I /
MU M M L mux L M L mux Lsl o MUX |
I \ / | / \ o / | / \ | \ /
| 1
‘ l ‘ l | ‘
\ I / [\ / \ [/ \ / \ ;o /
\ \ I \ [| \ [/
MUK e MUK o MUK o MUK MUK o MUK e MUK e MUK
\ [| \] | [[\ | \ [\ f
/ \ i \ / \ / \ /
BO B B2 B3 B4 BS B6 87

Figure 3 — 8-bit Left Barrel Shifter

178

Floating Point Processor Kartikey’s Master Thesis

DESIGN VERIFICATION -3
1. Simulate your design using waveforms to verify its correctness. Use the following values
of A and B for your simulation inputs.

(a) A=01010101, B=001

(b) A=01111111,B=010

(c)A=01111111,B=011

(d) A=01100110, B =100
2. Include screen shots of your simulation waveform in your report.
3. Record the simulation results in a table for your report.
DE10-Lite IMPLEMENTATION - 3
1. Implement your design on the DE-10 Lite using the following inputs/outputs using pin
assignments of your choice.

Inputs: A0, A1, A2, A3, A4, A5, A6, A7, A8, BO, B1, B2, B3
Outputs: RO, R1, R2, R3, R4, R5, R6, R7, R8

2. Include a table of your pin assignments in your report.
3. Program the DE10-Lite with your design.
DESIGN REQUIREMENT - 4
1. Take the block diagram for the right barrel shifter from Figure 3 and modify it to operate
on a 24-bit data input and equip it to perform a 5-bit data shift on the input. Draw the block
diagram for the next part of this lab.
2. Use the block diagram created in step 1 of this section and modify the Verilog code

written in section 3 to operate on 24-bit data input for a 5-bit data shift operation.

179

Floating Point Processor Kartikey’s Master Thesis

DESIGN VERIFICATION - 4
1. Simulate your design using waveforms to verify its correctness. Use the following values
of A and B for your simulation inputs.
(a) A=010101010101010101010101, B = 00001
(b) A=011111110111111101100110, B = 00010
(c)A=011111110110011001100110, B =01000
(d)A=011001100101010101010101, B = 10100
2. Include screen shots of your simulation waveform in your report.
3. Record the simulation results in a table for your report.
CHECK YOUR UNDERSTANDING
1. What is the advantage of using a barrel shifter instead of the Verilog shift operator
(<<,>>) which uses a register based shift module?
2. What do the various levels of multiplexers signify in the different designs?

3. What would be total number of multiplexers used for a 64-bit shifter design?

180

Floating Point Processor Kartikey’s Master Thesis

7.3 Llab 3
Name: ID#
Date Submitted: Lab Section #
CSE [xxxx] Digital Logic Fall Semester 2024

Lab Number 3 — Controlled Incrementor/Decrementer
Perform [Month] [Date], [Year]

This lab is performed on the DE10-Lite.

181

Floating Point Processor Kartikey’s Master Thesis

CSE 2441 LABORATORY ASSIGNMENT 3 FALL 2024

CONTROLLED INCREMENTOR/DECREMENTER

(100 POINTS)

PURPOSE/OUTCOMES
To give you experience writing Verilog modules and instantiating these modules to realize
more complex designs. In this lab you will implement a modular controlled incrementor and
decrementer module. The controlled incrementor module will take an 8-bit input and
increment it based on a one bit input. The controlled decrement module will take an 8-bit
input and decrement it based on a one bit input. This module makes use of the ripple carry
subtractor with minor modification to accomplish this task. After completing this lab, you
will have demonstrated an ability to design eight-bit ripple carry subtractor, to write Verilog
models of adders and subtractors, to capture and verify your designs using Model-Sim on
Quartus Prime, and to realize and test your designs on a DE10-Lite.
BACKGROUND
In Lab 1, you designed, constructed, and tested the 4-bit ripple carry adder/subtractor that

was used to form the modular exponent subtractor module as shown in Figure 1.

A3 B3 A2 B2 Al Bl A0 BO
I/:\I I/:\I \/:\I I/:\Hi
N N N AN

' ' '
)) FF*—.)
R3 R2 R1 RO

Figure 1 — Ripple Carry Adder/Subtractor
182

Floating Point Processor Kartikey’s Master Thesis

Additionally in previous Labs you also designed, constructed, and tested a half-adder as

shown in Figure 2 below.

Cout

Figure 2 — Half-Adder
DESIGN REQUIREMENT - 1
1. In the first step of the lab you will write the Verilog code for the 4-bit controlled
incrementor module by making certain changes to the ripple carry adder that was used in

lab 1. The modifications to be made are shown in Figure 3 below.

A Select A 1'b0 A 1'h0 A 1'b0

Half Adder Full Adder Full Adder

R

Figure 3 — Controlled Incrementor

Full Adder

4
4
4

2. Figure 3 shows 4-bit input that needs to be incremented labelled as A, 1-bit input labelled

as Select that allows the increment to happen when high.

183

Floating Point Processor Kartikey’s Master Thesis

3. For step 3, modify the Verilog code written for 4-bit controlled incrementor in step 1.
Write the Verilog code for 8-bit controlled incrementor with four additional full-adders.
4. Create an instantiation template of this module for future use.
DESIGN VERIFICATION - 1
1. Simulate your design using waveforms to verify its correctness. Use the following values
of A and Select for your simulation inputs.

(a) A=01010101, Select =1

(b) A=01111111, Select=1

(c)A=01111111, Select=0

(d) A=01100110, Select=1
2. Include screen shots of your simulation waveform in your report.
3. Record the simulation results in a table for your report.
DE10-Lite IMPLEMENTATION - 1
1. Implement your design on the DE-10 Lite using the following inputs/outputs using pin
assignments of your choice.

Inputs: AO, A1, A2, A3, A4, A5, A6, A7, Select
Outputs: SO, S1, S2, S3, S4, S5, S6, S7

2. Include a table of your assignments in your report.

3. Program the DE10-Lite with your design.

184

Floating Point Processor Kartikey’s Master Thesis

DESIGN REQUIREMENT - 2
1. In the next section of the lab you will write the Verilog code for the 4-bit controlled

decrementer module. The modifications to be made are shown in Figure 4 below.

o

Select 1'b0 l 1'b l 1'h0

A fT% A A ITL A FTLJI

Y 1y 1y 1Y

Half Adder »| Full Adder

R

Figure 4 — Controlled Decrementer

/s

Full Adder Full Adder

v
v

Cin—/

2. In this step, modify the Verilog code written for 4-bit controlled decrementer in step 1.
Write the Verilog code for 8-bit controlled decrementer with four additional full-adders.
3. Create an instantiation template of this module for future use.
DESIGN VERIFICATION - 2
1. Simulate your design using waveforms to verify its correctness. Use the following values
of A and Select for your simulation inputs.

(a) A=01010101, Select=1

(b) A=01111111, Select=1

(c) A=01111111, Select=0

(d) A=01100110, Select =1

185

Floating Point Processor Kartikey’s Master Thesis

2. Include screen shots of your simulation waveform in your report.
3. Record the simulation results in a table for your report.
DE10-Lite IMPLEMENTATION - 2
1. Implement your design on the DE-10 Lite using the following inputs/outputs using pin
assignments of your choice.

Inputs: AO, A1, A2, A3, A4, A5, A6, A7, Select, Cin

Outputs: SO, S1, S2, S3, S4, S5, S6, S7

2. Include a table of your assignments in your report.

3. Program the DE10-Lite with your design.

186

Floating Point Processor Kartikey’s Master Thesis

7.4 lab 4
Name: ID#
Date Submitted: Lab Section #
CSE [xxxx] Digital Logic Fall Semester 2024

Lab Number 4 — 24-bit Carry Look Ahead Adder
Perform [Month] [Date], [Year]

This lab is performed on the DE10-Lite.

187

Floating Point Processor Kartikey’s Master Thesis

CSE 3441 LABORATORY ASSIGNMENT 4 FALL 2024

24-bit Carry Look Ahead Adder

(100 POINTS)

PURPOSE/OUTCOMES
To give you experience writing Verilog modules and instantiating these modules to realize
more complex designs. In this lab you will implement a 24-bit Carry Look Ahead Adder using
Verilog hardware description language. The carry lookahead adder is an upgraded version of
the ripple carry adder that you have used so far for the addition and subtraction operation.
In this lab you will also learn how to design a parameterize model for your Verilog code. The
parameterize model will allow you to scale the module up or down by the number of bits
that is required in the design. After completing this lab, you will have demonstrated an
ability to to write Verilog models of adders and subtractors, to capture and verify.
BACKGROUND
Ripple-carry adders (RCA), designed in previous labs, as shown in Figure 1 are constructed
using a simple circuit of cascaded full adders. But the RCA is slow due to the necessity for

carries to propagate the full length of the chain in the worst case scenario.

A3 B3 A2 B2 Al Bl A0 BO
0\ 7 N 7N
[+ Lot \ | [+ |j+—
\I/ / \I
FA FA FA FA |[«—CO
R3 R2 R1 RO

Figure 1 — Ripple Carry Adder/Subtractor

188

Floating Point Processor Kartikey’s Master Thesis

A carry-lookahead adder (CLA) overcomes the propagation problem by generating all carries
at once with two-level logic but at the expense of a much more complex design. The basic
elements of the CLA is illustrated below.

Compute generate variable:

You compute the generate variable by putting the two input bits through an AND gate and

the output is the generate variable as shown in Figure 2.

.

R

Figure 2 — Compute Generate
Compute propagate variable:
You compute the propagate variable by putting the two input bits through an XOR gate and

the output is the propagate variable as shown in Figure 3.

Figure 3 — Compute Propagate

189

Floating Point Processor Kartikey’s Master Thesis

e Compute Carry out.
The circuit schematic shows the way to compute the Carry output that is being

computed by the carry look ahead logic block.

A

=D
“ R

J c3
‘ j Das

Figure 4 — Compute Carry
The p and g outputs drive carry-generate logic that simultaneously produces the carries for
all stages of the CLA.
DESIGN REQUIREMENT -1
1. In the first part of lab, you will start by constructing a 4-bit carry look ahead adder as

shown in the block diagram shown below in Figure 5. The first level of carry look ahead

190

Floating Point Processor Kartikey’s Master Thesis

adder is made of full adders which you designed in previous labs. For the second level of

logic refer to the background section for help in constructing that level.

A3 B3 A2 B2 Al B1 A0 BO

FA3 —C3- FA2 «—C2 FA1 Cl FAO -

S3 S2 S1 SO

CARRY LOOK AHEAD LOGIC

c4 (Generate, Propogate, Carry)

A3 B3 A2 B2 Al B1 A0 BO
Figure 5 — Carry Look Ahead Adder Block Diagram

Helpful Tip: Use two for loops to construct the two levels of logic. Use first for loop for the
cascaded chain of full adders, and the second for loop for computing the carry look ahead
logic. Parametrize the for loop to change number of input and output bits.
DESIGN VERIFICATION -1
1. Simulate your design using waveforms to verify its correctness. Use the following values
of A and B for your simulation inputs.

(a) 0101 + 1010

(b) 0111 + 0001

(c) 1111 + 1111

(d) 0110 + 1100

191

Co

Floating Point Processor Kartikey’s Master Thesis

2. Include screen shots of your simulation waveform in your report.

3. Record the simulation results in the table below for your report.

A B R=A+B
0101 1010
0111 0001
1111 1111
0110 1100

DE10-Lite IMPLEMENTATION
1. Implement your design on the DE-10 Lite using the following inputs/outputs using pin
assignments of your choice.

Inputs: AO, A1, A2, A3, BO, B1, B2, B3, CO

Outputs: RO, R1, R2, R3, C4

2. Include a table of your assignments in your report.
3. Program the DE10-Lite with your design.
DESIGN REQUIREMENT - 2
1. Construct a 24-bit carry look ahead adder using the design and block diagram illustrated
in the first design requirement section. You should only be changing the iteration value in
both your for loops to switch from 4-bits to 24-bits of inputs and outputs.
2. Parameterize your carry look ahead adder module. After this step you should only need
to change the variable value at top of design to change the number of bits.

3. Instantiate the 24-bit module for future use.

192

Floating Point Processor

DESIGN VERIFICATION - 2

Kartikey’s Master Thesis

1. Simulate your design using waveforms to verify its correctness. Use the following values

of A and B for your simulation inputs.

(a) 010101010101010101010101 +101010101010101010101010

(b) 011111110111111101100110 + 000000010101010101010101

(c)011111110110011001100110 +111111111010101011010101

(d) 011001101100110100110000 + 011001100110011010101011

2. Include screen shots of your simulation waveform in your report.

3. Record the simulation results in the table below for your report.

A B R=A+B
a.l a.2
b.1 b.2
cl c.2
d.1 d.2

TESTBENCH VERIFICATION
1. Write a test bench for this 24-bit carry look ahead adder module.

2. Simulate the test bench using ModelSim on Quartus.

3. Screenshot your output from the tcl console.

4. Screenshot your ModelSim simulation results.

CHECK YOUR UNDERSTANDING

1. What’s the speed up in operating speed achieved by using CLA instead of RCA?

2. What’s the increase in complexity, in terms of logic elements, required for CLA compared

to RCA?

193

Floating Point Processor Kartikey’s Master Thesis

7.5Llab 5
Name: ID#
Date Submitted: Lab Section #
CSE [xxxx] Digital Logic Fall Semester 2024

Lab Number 5 — Floating Point Adder
Perform [Month] [Date], [Year]

This lab is performed on the DE10-Lite.

194

Floating Point Processor Kartikey’s Master Thesis

CSE 3441 LABORATORY ASSIGNMENT 5 FALL 2024

Floating Point Adder

(100 POINTS)

PURPOSE/OUTCOMES
Your purpose in this lab is to design a 32-bit single precision floating point adder that can
perform 32-bit floating point addition and that produces exception, underflow, overflow,
zero, and the final output. See Figure 1 for the input/output diagram of the floating point
adder. The adder component of your floating point adder should use group carry lookahead
architecture implemented in the previous lab. You will code your design in System Verilog,
simulate to verify its correctness, and test its functionality using testbenches and ModelSim
on Quartus. After completing this lab, you will have demonstrated an ability to design a
floating point arithmetic unit, to write Verilog models of the floating point adder, to capture

and verify your designs using Model-Sim on Quartus Prime.

out <—32— |
| _ _ «— 32 A
Zero Floating-Point
Overflow =—1 Adder
«— 32 B

Underflow<——31—

Figure 1 — Floating Point Adder

195

Floating Point Processor Kartikey’s Master Thesis

BACKGROUND

In this lab you will use the instantiations created in all the previous labs from Lab 1 to Lab 5.
The modules you need for this lab are:

1. Lab 1: 8-bit Modular Exponent Subtractor

2. Lab 1: 24-bit Two-to-One Multiplexer

3. Lab 1: 8-bit Two-to-One Multiplexer

4. Lab 2: 24-bit Barrel Right Shifter

5. Lab 3: 8-bit Controlled Incrementor

6. Lab 4: 24-bit Carry Look Ahead Adder

You will use the instantiations for the above mentioned module and connect them together

using wires in a top level type module design.

196

Floating Point Processor Kartikey’s Master Thesis

DESIGN REQUIREMENT

1. Write a System Verilog model for a 32-bit single precision floating point adder. In addition
to the floating point addition, provide functionality for overflow, underflow, zero, &
exception outputs. Use the architecture or block diagram shown in Figure 2 to understand

how the modules are interconnected.

32 32
J L
01 08 25 01 08 23
v v v Y
€D G G EDELID G
|
23
| 8 8
A l ‘
MA MB EA EB

Mantissa

Mantissa

Shifter MUX Cout pModular Exponent Adder MUX

Subtractor

|EA-EB|

1 Appended 24

EA 8 EB

M
i EA EB
Mantissa g | 5
Right Shifter Exponent

S INC MUX

24 24

Cout 24 bit
E Carry Look Ahead Adder

Controlled Exponent
Incrementror l

24

M

Mantissa Normalizer

v Bit Shifter
Exponent [8:0]

Mantissa [22:0]

Figure 2 — Floating Point Adder Architecture
2. Add logic to compute the final sign bit output depending on the two different input values
and the sign bit of each input value.
3. Add logic to compute the various error flags for this module like overflow, underflow etc.
4. Create an instantiation template for this module for future use.

197

Floating Point Processor Kartikey’s Master Thesis

DESIGN VERIFICATION
1. Simulate your design using waveforms to verify its correctness. Use the following values
of A and B for your simulation inputs.
(a) A=32'p01000001001101100000000000000001 //11.375
B =32'b01000000101100100000010000011011 //5.56300
(b) A=32'001000010011011111110101110000101 //59.979
B =32'b01000000110100000000000000000000 //6.5
(c) A=32'01000100011110100010000000000000 //1000.5
B =32'p01000100011101010110100111011011 //981.654
(d) A=32'001000100000010010111111100101011 //549.987
B =32'b01000000101100100000010000011001 //5.563
2. Include screen shots of your simulation waveform in your report.

3. Record the simulation results in the table below for your report.

A B R=A+B Underflow Overflow Zero
11.375 5.56300
59.979 6.5
1000.5 981.654
549.987 5.563

TESTBENCH VERIFICATION

1. Write a test bench for this 32-bit floating point adder module using test cases above.
2. Simulate the test bench using ModelSim on Quartus.

3. Screenshot your output from the tcl console.

4. Screenshot your ModelSim simulation results.

198

Floating Point Processor Kartikey’s Master Thesis

CHECK YOUR UNDERSTANDING

1. Why is the mantissa passed through a mantissa right shifter module, how do you decide
which mantissa goes into the mantissa right shifter module?

2. Why is the modular subtractor used to determine the shift value for the right shifter unit?
3. Why is the exponent incremented before the final output, what case would the exponent
not be incremented in?

4. Why do we use the mantissa normalizer unit, what case would we not normalize it?

199

Floating Point Processor Kartikey’s Master Thesis

7.6 Lab 6
Name: ID#
Date Submitted: Lab Section #
CSE [xxxx] Digital Logic Fall Semester 2024

Lab Number 6 — Floating Point Subtractor
Perform [Month] [Date], [Year]

This lab is performed on the DE10-Lite.

200

Floating Point Processor Kartikey’s Master Thesis

CSE 3441 LABORATORY ASSIGNMENT 6 FALL 2024

Floating Point Subtractor

(100 POINTS)

PURPOSE/OUTCOMES
Your purpose in this lab is to design a 32-bit single precision floating point subtractor that
can perform 32-bit floating point addition and that produces exception, underflow,
overflow, zero, and the final output. See Figure 1 for the input/output diagram of the
floating point subtractor. The subtractor component of your floating point subtractor should
use ripple carry subtractor implemented in previous labs. You will code your design in
System Verilog, simulate to verify its correctness, and test its functionality using testbenches
and ModelSim on Quartus. After completing this lab, you will have demonstrated an ability
to design a floating point arithmetic unit, to write Verilog models of the floating point

subtractor, to capture and verify your designs using Model-Sim on Quartus Prime.

Out = 32
] - : «—32—A
zero . Floating-Point
Overflow =——1 Subtractor
« 32 B
Underflow<e——1——

Figure 1 - Floating Point Subtractor

201

Floating Point Processor Kartikey’s Master Thesis

BACKGROUND

In this lab you will use the instantiations created in all the previous labs from Lab 1 to Lab 5.
The modules you need for this lab are:

1. Lab 1: 8-bit Modular Exponent Subtractor

2. Lab 1: 24-bit Two-to-One Multiplexer

3. Lab 1: 8-bit Two-to-One Multiplexer

4. Lab 1: 24-bit Ripple Carry Subtractor

5. Lab 2: 24-bit Barrel Right Shifter

6. Lab 2: 24-bit Barrel Left Shifter

7. Lab 3: 8-bit Controlled Decrementer

You will use the instantiations for the above mentioned module and connect them together

using wires in a top level type module design.

202

Floating Point Processor Kartikey’s Master Thesis

DESIGN REQUIREMENT

1. Write a System Verilog model for a 32-bit single precision floating point subtractor. In
addition to the floating point subtraction, provide functionality for overflow, underflow,
zero, & exception outputs. Use the architecture or block diagram shown in Figure 2 to

understand how the modules are interconnected.

32 32
01 08 5B 01
I G
zls [
23
| 8 ¢ ‘ 8
MA EA EB MA
Mantissa 1 Cout Mantissa
Shifter MUX Modular Exponent Sub MUX
1 Subtractor
|EA-EB|
1 Appended 24
! S

M

Mantissa EA EB

Shift

Right Shifter Exponent
S DEC MUX

M

24

M1 M2
Cout 24 bit
E Ripple Carry Subtractor
Controlled Exponent 1 M
Decrementor
l 20
M
. Mantissa Normalizer
v Left Bit Shifter

Exponent [8:0]

Mantissa [22:0]

Figure 2 — Floating Point Subtractor Architecture
2. Add logic to compute the final sign bit output depending on the two different input values
and the sign bit of each input value.
3. Add logic to compute the various error flags for this module like overflow, underflow etc.

4. Create an instantiation template for this module for future use.

203

Floating Point Processor Kartikey’s Master Thesis

DESIGN VERIFICATION
1. Simulate your design using waveforms to verify its correctness. Use the following values
of A and B for your simulation inputs.
(a) A=32'p01000010010011010000000000000000 //51.25
B =32'b01000001011101001100110011001101 //15.3
(b) A=32'001000010011011111110101110000101 //59.979
B =32'b01000000110100000000000000000000 //6.5
(c) A=32'001000011011110101000110011001101 //250.55
B =32'b01000010010011010000000000000000 //51.25
(d) A=32'001000100000010010111111100101011 //549.987
B =32'b01000000101100100000010000011001 //5.563
2. Include screen shots of your simulation waveform in your report.

3. Record the simulation results in the table below for your report.

A B R=A-B Underflow Overflow Zero
51.25 15.3
59.979 6.5
250.55 51.25
549.987 5.563

TESTBENCH VERIFICATION

1. Write a test bench for this 32-bit floating point subtractor module using test cases above.
2. Simulate the test bench using ModelSim on Quartus.

3. Screenshot your output from the tcl console.

4. Screenshot your ModelSim simulation results.

204

Floating Point Processor Kartikey’s Master Thesis

CHECK YOUR UNDERSTANDING

1. Explain all the major differences between the floating point adder and the floating point

subtractor architecture.

205

Floating Point Processor Kartikey’s Master Thesis

7.7 Lab 7
Name: ID#
Date Submitted: Lab Section #
CSE [xxxx] Digital Logic Fall Semester 2024

Lab Number 7 — 32-bit Wallace Tree Multiplier
Perform [Month] [Date], [Year]

This lab is performed on the DE10-Lite.

206

Floating Point Processor Kartikey’s Master Thesis

CSE 3441 LABORATORY ASSIGNMENT 4 FALL 2024

32-bit Wallace Tree Multiplier

(100 POINTS)

PURPOSE/OUTCOMES
To give you experience writing Verilog modules and instantiating these modules to realize
more complex designs. In this lab you will implement a 32-bit Wallace tree multiplier using
Verilog hardware description language. The advantage of using Wallace tree multiplier is its
faster speed. The Wallace multiplier has O(log n) reduction layers, but each layer has only
O(1) propagation delay. After completing this lab, you will have demonstrated an ability to
write Verilog model for the multiplier, half adder, full adder, to capture and verify your
designs using Model-Sim on Quartus Prime.
BACKGROUND
Wallace tree multiplier is a multiplication algorithm that uses a tree structure to add partial
products to obtain the product and carry two numbers. Wallace Tree Multiplier is a
multiplier that works in parallel by making use of the Wallace tree algorithm. This algorithm
allows for a fast and efficient multiplication of two integers.
Step 1: Partial product obtained after multiplication is taken at the first stage. The data is
taken with 3 wires and added using adders and the carry of each stage is added with next

two data in the same stage. Refer to Figure 1.

Figure 1 —Step 1

207

Floating Point Processor Kartikey’s Master Thesis

Step 2: Partial products reduced to two layers of full adders with same procedure.

Stage O:

secee
Q

/ /

o0
@ooo W
0900000

Figure 2 — Step 2 Stage 0

Stage 1:

T

|C.

9\/\/&/

/\/\/j

J\./\/ \./

Figure 3 — Step 2 Stage 1
Stage 2:

ee000e
°

T\Z

o
00\9.\/\ ./\/ L
00000

Figure 4 — Step 2 Stage 2

Stage 3:

sedsisesess ™™™

O

Figure 5 — Step 2 Stage 3

208

Floating Point Processor Kartikey’s Master Thesis
Step 3: Use Ripple carry adder or Carry look ahead adder to compute final addition

2

A

Figure 5 — Step 3
Figure 6 shows the flow diagram for a Wallace tree multiplier.

B

|

Partial Product Generator

-~ >

Full Adder or Half Adder

RCA OR CLA

Figure 6 — Data Flow

209

Floating Point Processor Kartikey’s Master Thesis

DESIGN REQUIREMENT
1. Write a System Verilog model for a 8-bit output Wallace tree multiplier. Use the

architecture or block diagram shown in Figure 7 to write the Verilog module.

P43 Psy Pe1 P7o P33 Paa PsiPsg P23 P32 Pai Psg P13 P2a P31 Pag Pz P12 Po1 Pag Poa P11 Pao Po1 P1o Poo

j C FA C C2 FA HA
co

(ﬂ

S4 ‘ 52

rw“ ww :
HHﬁ Hr ‘
! BTt

Z6] Z[5] 2[4] 2[3] yip) Z[1] Z[o]

Figure 7 — 4-bit Wallace Tree Multiplier
2. Modify your Verilog module to work with two 8-bit inputs and produce a 16-bit output.
3. Instantiate your 8-bit Wallace multiplier to produce a two 16-bit input Wallace multiplier.

Use the RTL diagram in Figure 9 to create this module.

210

Floating Point Processor

Kartikey’s Master Thesis

wallace16bitw12

asn[31.c

= WallaceMultiplierBbitw1 1'ho ciN - Add0 Tho ciN- Add1 Tho N Add2
Al24.0] {0, 0UT24.0] AL25.0] {0 0UT(25.0] A31.01 00, 0UT(31.0]
a[15.0] 70 3[7.0] sn[15.0] £ + + ™ +
g0l 7 b[7.0] i B[24.0] B[25.0] E' B[31.0]
' C_ | o o = o
r r
WallaceMultiplier8bitw2 WallaceMultiplier8bitw4
WallaceMultiplierBbitw3
70 a[7.0] asn[15.0] 158 a[7.0] asn[15.0]
158 b[7.0] 158 a[7.0] asn[15.0] 158 b[7.0]
. 70 b[7.0] —
[n

BLID

Figure 9 — 16-bit Wallace Multiplier

4. Instantiate your 16-bit Wallace multiplier to produce a two 32-bit input Wallace

multiplier. Use the RTL diagram in Figure 10 to create this module.

wallace1ohitw12

1.0

Tho on - Add0 Thoon Addl Thoon Add2
.01 I OUT46.0] 40.0) R U149, o52.0] J 0UT[6:.0]
15[15.0] 310 £ t + - +) asn[63.0]
190 b[15.0] . ar — E‘ —
o . m
- -
L2 L2
wallace16hbitw22 wallacel6bitwdd
wallace16bitw33
15:0[15.0] asn[21.0] 31:H15.0] asn[21.0]
316 b[15.0] 3116 a[15.0] 2s[31.0] 31H15.0]
150 b[15.0)
Figure 10 — 32-bit Wallace Multiplier
DESIGN VERIFICATION

1. Simulate your design using waveforms to verify its correctness. Use the following values

of A and B for your simulation inputs.

(a) A=32'p01000001001101100000000000000001 //11.375

B =32'b01000000101100100000010000011011 //5.56300

(b) A=32'p01000010011011111110101110000101 //59.979

B =32'b01000000110100000000000000000000 //6.5

211

Floating Point Processor Kartikey’s Master Thesis

(c) A=32'b01000100011110100010000000000000 //1000.5
B =32'b01000100011101010110100111011011 //981.654
(d) A=32'b01000100000010010111111100101011 //549.987
B =32'p01000000101100100000010000011001 //5.563
2. Include screen shots of your simulation waveform in your report.

3. Record the simulation results in the table below for your report.

A B R=A*B
11.375 5.56300
59.979 6.5
1000.5 981.654
549.987 5.563

TESTBENCH VERIFICATION

1. Write a test bench for this 32-bit Wallace tree multiplier module using test cases above.
2. Simulate the test bench using ModelSim on Quartus.

3. Screenshot your output from the tcl console.

4. Screenshot your ModelSim simulation results.

CHECK YOUR UNDERSTANDING

1. What is the one disadvantage of using Wallace tree multiplier over conventional

multipliers?

212

Floating Point Processor Kartikey’s Master Thesis

7.8 Lab 8
Name: ID#
Date Submitted: Lab Section #
CSE [xxxx] Digital Logic Fall Semester 2024

Lab Number 8 — Floating Point Multiplier
Perform [Month] [Date], [Year]

This lab is performed on the DE10-Lite.

213

Floating Point Processor Kartikey’s Master Thesis

CSE 3441 LABORATORY ASSIGNMENT 8 FALL 2024

Floating Point Multiplier

(100 POINTS)

PURPOSE/OUTCOMES
Your purpose in this lab is to design a 32-bit single precision floating point multiplier that
can perform 32-bit floating point multiplication and that produces exception, underflow,
overflow, zero, and the final output. See Figure 1 for the input/output diagram of the
floating point multiplier. The multiplier component of your floating point multiplier should
use the Wallace tree multiplier implemented in the previous lab. You will code your design
in System Verilog, simulate to verify its correctness, and test its functionality using
testbenches and ModelSim on Quartus. After completing this lab, you will have
demonstrated an ability to design a floating point arithmetic unit, to write Verilog models of
the floating point multiplier, to capture and verify your designs using Model-Sim on Quartus

Prime.

Out <—32
i - : «—32—A
Zero . Floating-Point
Overflow =—1 Multiplier
<« 32— B

Underflow<e——1———

Figure 1 — Floating Point Multiplier

214

Floating Point Processor Kartikey’s Master Thesis

BACKGROUND

In this lab you will use the instantiations created in all the previous labs from Lab 1 to Lab 5.
The modules you need for this lab are:

1. Lab 1: 8-bit Modular Exponent Subtractor

2. Lab 1: 24-bit Two-to-One Multiplexer

3. Lab 1: 8-bit Two-to-One Multiplexer

4. Lab 2: 24-bit Barrel Left Shifter

5. Lab 3: 8-bit Controlled Incrementor

6. Lab 7: Wallace Tree Multiplier

You will use the instantiations for the above mentioned module and connect them together

using wires in a top level type module design.

215

Floating Point Processor Kartikey’s Master Thesis

DESIGN REQUIREMENT
1. Write a System Verilog model for a 32-bit single precision floating point multiplier. In
addition to the floating point multiplication, provide functionality for overflow,
underflow, zero, & exception outputs. Use the architecture or block diagram shown

in Figure 2 to understand how the modules are interconnected.

32

|

Classifier

SubNormalB

8. 8. ’
23 ; L 23
l EA EB l B
Dat_a_ Exponent
Classifier MA Cout CLA Adder
SubNormalA
Mantissa Append A EA+EB Mantissa Append B
1 -
MA MB ‘
J = J
24
24
' f -
MA MB 127 Bias E
. Bias
24 bit
Wallace Multiplier MOD Subtractor
Biased Exponent
M (
E
— M[47] > S Exponent
Incrementor
48
Py
M M[47]
Manti;sa M . M[23:0 Mantissa '
Left Shifter Product Rounding
Yy \/ \] 23 9
EA EB E M A A
Mantissa Exponent
Compute Flags Compute Output
Format
Output
Vol !
Exception Overflow Underflow +

Figure 2 — Floating Point Multiplier Architecture

216

Floating Point Processor Kartikey’s Master Thesis

2. Add logic to compute the final sign bit output depending on the two different input values
and the sign bit of each input value.
3. Design and construct a data classifier module to classify inputs into different data types.
4. Design and construct a mantissa append module to append based on data type.
5. Design and construct a product rounding module.
6. Add logic to compute the various error flags for this module like overflow, underflow etc.
7. Create an instantiation template for this module for future use.
DESIGN VERIFICATION
1. Simulate your design using waveforms to verify its correctness. Use the following values
of A and B for your simulation inputs.
(a) A=32'n4234_851F // 45.13
B=32'h427C_851F // 63.13
(b) A =32'h4049_999A // 3.15
B=32'hCl66_3D71//-14.39
(c) A=32'hC152_6666 //-13.15
B =32'hC240_A3D7 // -48.16
(d) A=32'h3ACA_62C1 // 0.00154408081
B =32'h3ACA_62C1 // 0.00154408081

2. Include screen shots of your simulation waveform in your report.

217

Floating Point Processor Kartikey’s Master Thesis

3. Record the simulation results in the table below for your report.

A B R=AxB | Underflow Overflow Zero
45.13 63.13
3.15 -14.39
-13.15 -48.16
0.00154408081 | 0.00154408081

TESTBENCH VERIFICATION

1. Write a test bench for this 32-bit floating point multiplier module using test cases above.
2. Simulate the test bench using ModelSim on Quartus.

3. Screenshot your output from the tcl console.

4. Screenshot your ModelSim simulation results.

CHECK YOUR UNDERSTANDING

1. What is a subnormal data type and how does it affect the appending of both your
mantissa inputs?

2. What is the significance of subtracting the bias from added exponent value?

3. What kind of IEEE 754 rounding did you perform in the mantissa product rounding
module? What influenced your choice?

4. Explain the different error flags used and the method of computing those flags?

218

Floating Point Processor Kartikey’s Master Thesis

7.9 Lab 9
Name: ID#
Date Submitted: Lab Section #
CSE [xxxx] Digital Logic Fall Semester 2024

Lab Number 9 — Floating Point Divider
Perform [Month] [Date], [Year]

This lab is performed on the DE10-Lite.

219

Floating Point Processor Kartikey’s Master Thesis

CSE 3441 LABORATORY ASSIGNMENT 9 FALL 2024

Floating Point Divider

(100 POINTS)

PURPOSE/OUTCOMES
Your purpose in this lab is to design a 32-bit single precision floating point divider that can
perform 32-bit floating point division and that produces exception, underflow, overflow,
zero, and the final output. See Figure 1 for the input/output diagram of the floating point
divider. The divider component of your floating point division can use any fixed point divider
module of your choice. You will code your design in System Verilog, simulate to verify its
correctness, and test its functionality using testbenches and ModelSim on Quartus. After
completing this lab, you will have demonstrated an ability to design a floating point
arithmetic unit, to write Verilog models of the floating point divider, to capture and verify

your designs using Model-Sim on Quartus Prime.

Out <—32
‘ | - : «—32—A
zero . Floating-Point
Overflow =—1 Divider
«—32— B

Underflowe——1———

Figure 1 — Floating Point Divider

220

Floating Point Processor Kartikey’s Master Thesis

BACKGROUND

In this lab you will use the instantiations created in all the previous labs from Lab 1 to Lab 5.
The modules you need for this lab are:

1. Lab 1: 8-bit Modular Exponent Subtractor

2. Lab 1: 24-bit Two-to-One Multiplexer

3. Lab 1: 8-bit Two-to-One Multiplexer

4. Lab 2: 24-bit Barrel Right Shifter

5. Lab 3: 8-bit Controlled Decrementer

6. Lab 4: 9-bit Carry Look Ahead Adder

6. Lab 8: Mantissa Append

7. Lab 8: Mantissa Rounding

8. Lab 8: Data Classifier Module

You will use the instantiations for the above mentioned module and connect them together

using wires in a top level type module design.

221

Floating Point Processor Kartikey’s Master Thesis

DESIGN REQUIREMENT
1. Write a System Verilog model for a 32-bit single precision floating point divider. In
addition to the floating point division, provide functionality for overflow, underflow,
zero, & exception outputs. Use the architecture or block diagram shown in Figure 2

to understand how the modules are interconnected.

32 32
(J L
01 08 23
v Y
TEIEL I S
{ 8 8

EA EB

Modular Exponent
" Subtractor

|EA-EB|

Classifier
SubNormalB

Classifier
SubNormalA

Coul

Mantissa Append A Mantissa Append B

MB

hz { 24

127 Bias
24 bit Carry Look Ahead
Divider Bias Adder
Biased Exponent
M
E
e S Exponent

Decrementor

M M[25]

Mantissa
Right Shifter

Mantissa
Product Rounding

25 M[25]

[
)

YY VYV ¥
EA EB E M

Mantissa Sign Exponent

Compute Flags Compute Output

Format

Output

Exception Overflow Underflow *

Figure 2 — Floating Point Divider Architecture

222

Floating Point Processor Kartikey’s Master Thesis

2. Add logic to compute the final sign bit output depending on the two different input values
and the sign bit of each input value.
3. Add logic to compute the various error flags for this module like overflow, underflow etc.
4. Create an instantiation template for this module for future use.
DESIGN VERIFICATION
1. Simulate your design using waveforms to verify its correctness. Use the following values
of A and B for your simulation inputs.
(a) A=32'nh4400_1CCD // 512.45
B=32'nh4322_570A // 162.34
(b) A=32'h43E7_9EB8 // 463.24
B =32'hC263_3333 //-56.80
(c) A=32'hC288_999A //-68.3
B=32'hC1C7_3333//-24.9
(d) A =32'h4455_9AE1 // 854.42
B=32'nh4419 E99A // 615.65
2. Include screen shots of your simulation waveform in your report.

3. Record the simulation results in the table below for your report.

A B R=A/B Underflow Overflow Zero
512.45 162.34
463.24 -56.80
-68.3 -24.9
854.42 615.65

223

Floating Point Processor Kartikey’s Master Thesis

TESTBENCH VERIFICATION

1. Write a test bench for this 32-bit floating point divider module using test cases above.
2. Simulate the test bench using ModelSim on Quartus.

3. Screenshot your output from the tcl console.

4. Screenshot your ModelSim simulation results.

CHECK YOUR UNDERSTANDING

1. Which fixed arithmetic divider did you use and why?

2. How does the XOR gate compute the sign of the operation?

224

Floating Point Processor Kartikey’s Master Thesis

7.10 Lab 10
Name: ID#
Date Submitted: Lab Section #
CSE [xxxx] Digital Logic Fall Semester 2024

Lab Number 10 — Floating Point Unit
Perform [Month] [Date], [Year]

This lab is performed on the DE10-Lite.

225

Floating Point Processor Kartikey’s Master Thesis

CSE 3441 LABORATORY ASSIGNMENT 10 FALL 2024

Floating Point Unit

(100 POINTS)

PURPOSE/OUTCOMES
Your purpose in this lab is to design a 32-bit single precision floating point unit that can
perform 32-bit floating point addition, subtraction, multiplication, and division based on a
given Op code, and that produces exception, underflow, overflow, zero, and the final
output. See Figure 1 for the input/output diagram of the floating point unit. The floating
point unit will require multiplexers in order to figure out which operation needs to be done
based on given opcode. You will code your design in System Verilog, simulate to verify its
correctness, and test its functionality using testbenches and ModelSim on Quartus. After
completing this lab, you will have demonstrated an ability to design a floating point
arithmetic unit, to write Verilog models of the floating point unit, to capture and verify your

designs using Model-Sim on Quartus Prime.

Out ~—32 - A
Zero ! Floating-Point
Overflow =—1 unit
Underflow<——1—— - OpCode

Figure 1 - Floating Point Unit

226

Floating Point Processor Kartikey’s Master Thesis

BACKGROUND

In this lab you will use the instantiations created in some of the previous labs:

1. Lab 5: Floating Point Adder

2. Lab 6: Floating Point Subtractor

3. Lab 8: Floating Point Multiplier

4. Lab 9: Floating Point Divider

DESIGN REQUIREMENT

Write a System Verilog model for a 32-bit single precision floating point Unit. Use the shown

in Figure 2 to understand how the modules are interconnected.

_ a9 l«—32
Floating-Point 2-2 .
Adder Mux
32 e 1
32
. _ 32
Floating-Point 2-2 ,
(] Subtractor Mux
< 32 -1 A
OUT- 4-1
Mux — — B
32 l«e—32
__| Floating-Point 22|, 2 OpCode
Multiplier Mux J
< 32
le—1
- . 32 la—32
Floating-Point 2-2 22
Divider Mux [
« 32 e 1

Figure 2 — Floating Point Unit Architecture

227

Floating Point Processor

DESIGN VERIFICATION

Kartikey’s Master Thesis

1. Simulate your design using waveforms to verify its correctness. Use the following values

of A and B for your simulation inputs.

2. Include screen shots of your simulation waveform in your report.

(a) A = 32'h4400_1CCD // 512.45
B =32'h4322_570A // 162.34
Opcode = 1000 //Division

(b) A =32'h4234_851F // 45.13
B =32'h427C_851F // 63.13
Opcode = 0100 // Multiplication

(c) A =32'h424D_0000 // 51.25
B=32'h4174_CCCD // 15.3
Opcode = 0010 // Subtraction

(d) A=32'h426F _EB85 //59.979
B =32'h40D0_0000// 6.5

Opcode = 0001 // Addition

3. Record the simulation results in a table for your report.

TESTBENCH VERIFICATION

1. Write a test bench for this 32-bit floating point unit module using test cases above.

2. Simulate the test bench using ModelSim on Quartus.

3. Screenshot your output from the tcl console.

4. Screenshot your ModelSim simulation results.

228

Floating Point Processor Kartikey’s Master Thesis

Conclusion

This chapter of the thesis covered ten different laboratory assignments that convert
the first five chapters of the thesis into an education module. These ten lab assignments are
ready to be deployed in a Digital Logic & Design course and will equip students with all the
necessary information and details to design a floating point unit just like the one
implemented in this thesis. Additionally, the assignments also checks for the student’s
understanding after every lab section to make sure they understand the material being

taught and the modules being implemented in a thorough fashion.

229

Floating Point Processor Kartikey’s Master Thesis

Chapter 8: Conclusion

This thesis paper consists of a total of eight chapters starting from the introduction
of the subject matter in form of floating point number and floating point arithmetic. These
eight chapters are mainly divided into four sections.

The first section consisted of just the first chapter that introduced the readers with
all the basic concepts of floating point number, floating point number representation, and
floating point arithmetic that is required to understand the consequent chapters of this
thesis in an easy and secure manner.

The next section of the thesis dove deeper into what a floating point processor looks
like and how this processor works. This section ranged from chapter two to chapter five
which attempts to explain to the readers on how each module of a floating point unit is
designed, constructed in hardware description language, and then tested using test benches
and simulation tools in accordance with IEEE 754 online calculator.

The third section of the thesis acts as an education model. This section of the thesis
converts the design, construction, and testing performed in the first chapter into an
education model that makes it accessible for future students of this subject to build and test
their own floating point unit and perhaps improve on the design in section two. This
education model turns the entire floating point unit into a total of ten lab assignments with
each lab working on some component of the unit.

And finally, the last and fourth section consists of the final conclusion and future
scope of work, which is this chapter, along with chapter eight and nine which illustrates the

references used throughout this thesis paper and a section about the author.

230

Floating Point Processor Kartikey’s Master Thesis

8.1 Future Scope of Work

The Verilog code written for complete 32-bit floating point arithmetic unit has been
implemented and tested on ModelSim. Once this entire model has been created on the
Verilog code as shown in this paper, the same can be optimized using system Verilog or
VHDL and can be regenerated with optimized results.

Furthermore, an extension of this project can be construction of a piece of hardware
that can facilitate the synthesis of this floating point unit on the DE-1 SoC Cyclone V board.
The suggested piece of hardware will need to be equipped to take in 32-bit inputs and

should be able to display the 32-bit output using an LCD screen or equivalent.

231

Floating Point Processor Kartikey’s Master Thesis

Bibliography

[1] Russinoff, David M. “Floating-Point Numbers.” Formal Verification of Floating-Point
Hardware Design, 2021, pp. 47-54., https://doi.org/10.1007/978-3-030-87181-9 4.

[2] Goldberg, David. “What Every Computer Scientist Should Know about Floating-Point
Arithmetic.” ACM Computing Surveys, vol. 23, no. 1, 1991, pp. 5-48.,
https://doi.org/10.1145/103162.103163.

[3] Edwards, Eddie. “Floating Point Numbers.” Floating Point Numbers,
https://www.doc.ic.ac.uk/~eedwards/compsys/float/.

[4] Brown, W. S. “A Simple but Realistic Model of Floating-Point Computation.” ACM
Transactions on Mathematical Software, vol. 7, no. 4, 1981, pp. 445-480.,
https://doi.org/10.1145/355972.355975.

[5] “Floating-Point Basics and the IEEE-754 Standard.” Documentation — Arm Developer,
https://developer.arm.com/documentation/den0042/a/Floating-Point/Floating-point-
basics-and-the-IEEE-754-standard.

[6] “IEEE Annals of the History of Computing.” IEEE Annals of the History of Computing, vol.
26, no. 2, 2004, pp. 01-01., https://doi.org/10.1109/mahc.2004.1299651.

[7] “Machine Numbers and the IEEE 754 Floating-Point Standard.” Introduction to Scientific
and Technical Computing, 2016, pp. 31-37., https://doi.org/10.1201/9781315382395-
3.

[8] Presuhn, R. “Textual Conventions for the Representation of Floating-Point Numbers.”
2011, https://doi.org/10.17487/rfc6340.

[9] Schwarz M. Eric, Trong Dao Son “Introduction to denormalized numbers” Hardware
Implementation of denormalized numbers.

[10] Venners, Under the Hood By Bill, and Bill Venners. “Floating-Point Arithmetic.”
InfoWorld, JavaWorld, 1 Oct. 1996,
https://www.infoworld.com/article/2077257/floating-point-arithmetic.html.

[11] Stallings, William. “Floating Point Arithmetic.” Computer Organization and Architecture:
Designing for Performance, Pearson, New York, NY, 2022.

[12] Stallings, William. “Floating Point Arithmetic.” Computer Organization and Architecture:
Designing for Performance, Pearson, New York, NY, 2022.

[13] Linhart, Jean Marie. “Mata Matters: Overflow, Underflow and the IEEE Floating-Point
Format.” The Stata Journal: Promoting Communications on Statistics and Stata, vol. 8,
no. 2, 2008, pp. 255-268., https://doi.org/10.1177/1536867x0800800207.

232

Floating Point Processor Kartikey’s Master Thesis

[14] “5. Rounding.” Numerical Computing with IEEE Floating Point Arithmetic, 2001, pp. 25—
29., https://doi.org/10.1137/1.9780898718072.ch5.

[15] Hettiarachchi, Don Lahiru, et al. “Integer vs. Floating-Point Processing on Modern FPGA
Technology.” 2020 10th Annual Computing and Communication Workshop and
Conference (CCWC), 2020, https://doi.org/10.1109/ccwc47524.2020.9031118.

[16] Cavanagh, Joseph. “Floating-Point Addition.” Computer Arithmetic and Verilog HDL
Fundamentals, 2017, pp. 551-570., https://doi.org/10.1201/b12751-12.

[17] Stallings, William. “Floating Point Arithmetic.” Computer Organization and Architecture:
Designing for Performance, Pearson, New York, NY, 2022.

[18] Doyen, Laurent, et al. “Robustness of Sequential Circuits.” 2010 10th International
Conference on Application of Concurrency to System Design, 2010,
https://doi.org/10.1109/acsd.2010.26.

[19] Carroll Bill. “Twos Complement Convertor.” CSE 5357 Output Unit Lecture.

[20] “Systemverilog Study Notes. Barrel Shifter RTL Combinational Circuit.” element14
Community, https://community.element14.com/technologies/fpga-
group/b/blog/posts/systemverilog-study-notes-barrel-shifter-rtl-combinational-
circuit.

[21] Admin. “8 Bit Barrel Shifter Verilog.” VLSI GYAN, 22 Jan. 2022,
http://visigyan.com/barrel-shifter-verilog /.

[22] Johri, Raj, et al. “High Performance 8 Bit Cascaded Carry Look Ahead Adder with Precise
Power Consumption.” International Journal of Communication Systems, vol. 28, no. 8,
2014, pp. 1475-1483., https://doi.org/10.1002/dac.2727.

[23] Carroll Bill. “Carry Look Ahead Adder block Diagram” CSE 5357 Carry Look Ahead Adder
lecture presentation. UTA CSE 5357

[24] H., Schmidt. “Tools & Thoughts.” IEEE-754 Floating Point Converter, https://www.h-
schmidt.net/FloatConverter/IEEE754.html.

[25] Boldo, Sylvie, and Marc Daumas. “Properties of the Subtraction Valid for Any Floating
Point System.” Electronic Notes in Theoretical Computer Science, vol. 66, no. 2, 2002,
pp. 132—-144,, https://doi.org/10.1016/s1571-0661(04)80408-0.

[26] Stallings, William. “Floating Point Arithmetic.” Computer Organization and Architecture:
Designing for Performance, Pearson, New York, NY, 2022.

[27] Roy, Dr. Shirshendu. “Floating Point Architectures.” Digital System Design, 13 Mar.
2021, https://digitalsystemdesign.in/floating-point-architectures/.

[28] Barrel Shifter, https://esrd2014.blogspot.com/p/barrel-shifter.html.

233

Floating Point Processor Kartikey’s Master Thesis

[29] Barrel Shifter, https://esrd2014.blogspot.com/p/barrel-shifter.html.

[30] H., Schmidt. “Tools & Thoughts.” IEEE-754 Floating Point Converter, https://www.h-
schmidt.net/FloatConverter/IEEE754.html.

[31] Al-Ashrafy, Mohamed, et al. “An Efficient Implementation of Floating Point Multiplier.”
2011 Saudi International Electronics, Communications and Photonics Conference
(SIECPC), 2011, https://doi.org/10.1109/siecpc.2011.5876905.

[32] Roy, Dr. Shirshendu. “Floating Point Multiplication.” Digital System Design, 13 Mar.
2021, https://digitalsystemdesign.in/floating-point-multiplication/.

[33] Stallings, William. “Floating Point Arithmetic.” Computer Organization and Architecture:
Designing for Performance, Pearson, New York, NY, 2022.

[34] Ganssle, Jack. “IEEE 754 Floating Point Numbers.” The Firmware Handbook, 2004, pp.
203-205., https://doi.org/10.1016/b978-075067606-9/50019-9.

[35] “Design and Analysis of FIR Filters Using Wallace Tree Multiplier and Carry Select
Adder.” International Journal of Recent Trends in Engineering and Research, 2018, pp.
151-153., https://doi.org/10.23883/ijrter.conf.02180328.024.12uiw.

[36] Manzoor Qasim, Syed, et al. “Towards Optimised FPGA Realisation of
Microprogrammed Control Unit Based FIR Filters.” Control Theory in Engineering
[Working Title], 2019, https://doi.org/10.5772/intechopen.90662.

[37] Visiverify. “Wallace Tree Multiplier.” VLSI Verify, 11 Dec. 2022,
https://visiverify.com/verilog/verilog-codes/wallace-tree-multiplier.

[38] Aswani, T.S., and B. Premanand. “Area Efficient Floating Point Addition Unit with Error
Detection Logic.” Procedia Technology, vol. 24, 2016, pp. 1149-1154.,,
https://doi.org/10.1016/j.protcy.2016.05.068.

[39] Maclaren, Nick. “IEEE 754 Error Handling and Programming Languages.” IEEE, Mar.
2000, https://doi.org/10.3403/01786371u.

[40] H., Schmidt. “Tools & Thoughts.” IEEE-754 Floating Point Converter, https://www.h-
schmidt.net/FloatConverter/IEEE754.html.

[41] Grover, Naresh, and M.K. Soni. “Design of FPGA Based 32-Bit Floating Point Arithmetic
Unit and Verification of Its VHDL Code Using MATLAB.” International Journal of
Information Engineering and Electronic Business, vol. 6, no. 1, 2014, pp. 1-14.,
https://doi.org/10.5815/ijieeb.2014.01.01.

[42] Roy, Dr. Shirshendu. “Floating Point Division.” Digital System Design, 13 Mar. 2021,
https://digitalsystemdesign.in/floating-point-division/.

234

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floating Point Processor Kartikey’s Master Thesis

[43] Stallings, William. “Floating Point Arithmetic.” Computer Organization and Architecture:
Designing for Performance, Pearson, New York, NY, 2022.

[44] Green, Will. “Division in Verilog.” Project F, 1 Mar. 2023,
https://projectf.io/posts/division-in-verilog/.

[45] H., Schmidt. “Tools & Thoughts.” IEEE-754 Floating Point Converter, https://www.h-
schmidt.net/FloatConverter/IEEE754.html.

[46] Design of Single Precision Float Adder (32-Bit Numbers) According to ...
https://upcommons.upc.edu/bitstream/handle/2099.1/15467/32BitFloatingPointAdd
er.pdf?sequence=4.

235

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html

Floating Point Processor Kartikey’s Master Thesis

About the Author

Kartikey Sharan, born in Bihar, India, is a Master’s
student at University of Texas at Arlington. Kartikey
moved to United States at the age of 17 to attend
University of Texas at Arlington BS in Computer
Engineering. He has 4 years of experience writing

Verilog modules and has worked on projects such

as designing and coding TRISC processor, and
designing and coding a SPI IP Core with Linux Device Drivers. He has a keen interest in the
field of FPGA based digital system designs. Presently, he is a working as a graduate teaching

assistant under Dr. Bill Carroll for the Advanced Digital Logic & Design course at UTA.

236

	DESIGN OF SINGLE PRECISION FLOATING POINT UNIT (32-BIT NUMBERS) ACCORDING TO IEEE 754 STANDARD USING VERILOG, AND CREATION OF AN EDUCATION MODEL FOR ADVANCED DIGITAL LOGIC AND DESIGN COURSES
	Recommended Citation

	tmp.1725462723.pdf.fVO5E

