
University of Texas at Arlington University of Texas at Arlington 

MavMatrix MavMatrix 

Computer Science and Engineering Theses Computer Science and Engineering Department 

2023 

DESIGN OF SINGLE PRECISION FLOATING POINT UNIT (32-BIT DESIGN OF SINGLE PRECISION FLOATING POINT UNIT (32-BIT 

NUMBERS) ACCORDING TO IEEE 754 STANDARD USING NUMBERS) ACCORDING TO IEEE 754 STANDARD USING 

VERILOG, AND CREATION OF AN EDUCATION MODEL FOR VERILOG, AND CREATION OF AN EDUCATION MODEL FOR 

ADVANCED DIGITAL LOGIC AND DESIGN COURSES ADVANCED DIGITAL LOGIC AND DESIGN COURSES 

Kartikey Sharan 

Follow this and additional works at: https://mavmatrix.uta.edu/cse_theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Sharan, Kartikey, "DESIGN OF SINGLE PRECISION FLOATING POINT UNIT (32-BIT NUMBERS) ACCORDING 
TO IEEE 754 STANDARD USING VERILOG, AND CREATION OF AN EDUCATION MODEL FOR ADVANCED 
DIGITAL LOGIC AND DESIGN COURSES" (2023). Computer Science and Engineering Theses. 517. 
https://mavmatrix.uta.edu/cse_theses/517 

This Thesis is brought to you for free and open access by the Computer Science and Engineering Department at 
MavMatrix. It has been accepted for inclusion in Computer Science and Engineering Theses by an authorized 
administrator of MavMatrix. For more information, please contact leah.mccurdy@uta.edu, erica.rousseau@uta.edu, 
vanessa.garrett@uta.edu. 

https://mavmatrix.uta.edu/
https://mavmatrix.uta.edu/cse_theses
https://mavmatrix.uta.edu/cse
https://mavmatrix.uta.edu/cse_theses?utm_source=mavmatrix.uta.edu%2Fcse_theses%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=mavmatrix.uta.edu%2Fcse_theses%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mavmatrix.uta.edu/cse_theses/517?utm_source=mavmatrix.uta.edu%2Fcse_theses%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu
mailto:leah.mccurdy@uta.edu,%20erica.rousseau@uta.edu,%20vanessa.garrett@uta.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2023 Kartikey Sharan 
 



 
 

DESIGN OF SINGLE PRECISION FLOATING POINT UNIT (32-BIT NUMBERS)  

ACCORDING TO IEEE 754 STANDARD USING VERILOG, AND CREATION OF AN EDUCATION 

MODEL FOR ADVANCED DIGITAL LOGIC AND DESIGN COURSES 

 

BY 

KARTIKEY SHARAN 
 
 

 
 
 

MASTER THESIS 

Submitted in partial fulfilment of the requirements for the degree of 

 Master of Science in Computer Engineering in the Graduate College of the  

University of Texas at Arlington, May 2024 

 

Arlington, Texas 

 

 

Advisor: 

 DR. BILL D CARROLL 

The University of Texas at Arlington 

Professor Computer Science and Engineering 



Floating Point Processor   Kartikey’s Master Thesis 

Table of Contents 

Table of Figures .............................................................................................................. VII 

Acknowledgments ............................................................................................................ X 

Abstract .......................................................................................................................... XI 

Chapter 1: Introduction..................................................................................................... 1 

1.1 Floating Point Numbers ...................................................................................................... 2 

1.2 The IEEE 754 Standard ........................................................................................................ 3 
1.2.1 Overview .............................................................................................................................................. 4 
1.2.2 Binary Format Encodings ..................................................................................................................... 5 

Exponent .................................................................................................................................................. 5 
Significand ................................................................................................................................................ 6 

1.2.3 Examples of Floating Point Representation ......................................................................................... 7 
1.2.4 Floating Point Parameters .................................................................................................................... 8 
1.2.5 Range of Floating-Point Number .......................................................................................................... 8 
1.2.6 Rounding of Floating-Point Number .................................................................................................... 9 
1.2.7 Data Types of 32 bit Floating-Point Number ...................................................................................... 10 

1.3 Floating-Point Arithmetic.................................................................................................. 11 
1.3.1 Exponent Overflow ............................................................................................................................ 11 
1.3.2 Exponent Underflow .......................................................................................................................... 11 
1.3.3 Significand Overflow .......................................................................................................................... 11 
1.3.4 Significand Underflow ........................................................................................................................ 11 

Chapter 2: 32-bits Floating Point Adder ........................................................................... 12 

2.1 Floating Point Addition Algorithm ..................................................................................... 13 
2.1.1 Floating-Point Addition Example ........................................................................................................ 14 

2.2 Floating Point Adder Flowchart ......................................................................................... 16 

2.3 Floating Point Adder Hardware ......................................................................................... 17 
2.3.1 Floating Point Adder Hardware Architecture ..................................................................................... 18 
2.3.2 Floating Point Adder Hardware Implementation ............................................................................... 19 

2.3.2.1 Sign Bit Calculation ..................................................................................................................... 19 
2.3.2.2 Modular Exponent Subtractor .................................................................................................... 20 
2.3.2.3 Mantissa Shifter Multiplexer ...................................................................................................... 30 
2.3.2.4 Mantissa Right Shifter ................................................................................................................ 33 
2.3.2.5 Mantissa Adder Multiplexer ....................................................................................................... 35 
2.3.2.6 Mantissa Carry Look Ahead Adder ............................................................................................. 36 
2.3.2.7 Exponent Increment Multiplexer ............................................................................................... 41 
2.3.2.8 Controlled Incrementor .............................................................................................................. 42 
2.3.2.9 Mantissa Normalizer .................................................................................................................. 46 

2.4 Floating Point Adder Results ............................................................................................. 47 
2.4.1 Floating Point Adder Compilation Report .......................................................................................... 47 
2.4.2 Floating Point Adder Testbench ......................................................................................................... 48 
2.4.3 Floating Point Adder Simulation Results ............................................................................................ 49 

Case A: .................................................................................................................................................... 49 
Case B: .................................................................................................................................................... 50 
Case C: .................................................................................................................................................... 51 
Case D: .................................................................................................................................................... 52 

2.5 Conclusion ....................................................................................................................... 53 

 



Floating Point Processor   Kartikey’s Master Thesis 

Chapter 3: Floating Point Subtractor ............................................................................... 54 

3.1 Floating Point Subtraction Algorithm ................................................................................ 55 
3.1.1 Floating-Point Subtraction Example ................................................................................................... 56 

3.2 Floating Point Subtractor Flowchart .................................................................................. 58 

3.3 Floating Point Subtractor Hardware .................................................................................. 59 
3.3.1 Floating Point Subtractor Hardware Architecture ............................................................................. 60 
3.3.2 Floating Point Subtractor Hardware Implementation ....................................................................... 61 

3.3.2.1 Sign Bit Calculation ..................................................................................................................... 61 
3.3.2.2 Modular Exponent Subtractor .................................................................................................... 62 
3.3.2.3 Mantissa Shifter Multiplexer ...................................................................................................... 62 
3.3.2.4 Mantissa Right Shifter ................................................................................................................ 64 
3.3.2.5 Mantissa Subtractor Multiplexer................................................................................................ 65 
3.3.2.6 Mantissa Ripple Carry Subtractor ............................................................................................... 66 
3.3.2.7 Exponent Decrement Multiplexer .............................................................................................. 69 
3.3.2.8 Controlled Decrement ................................................................................................................ 70 
3.3.2.9 Mantissa Normalizer .................................................................................................................. 75 

3.4 Floating Point Subtractor Results ...................................................................................... 78 
3.4.1 Floating Point Subtractor Compilation Report ................................................................................... 78 
3.4.2 Floating Point Subtractor Testbench .................................................................................................. 79 
3.4.3 Floating Point Subtractor Simulation Results ..................................................................................... 80 

Case A: .................................................................................................................................................... 80 
Case B: .................................................................................................................................................... 81 
Case C: .................................................................................................................................................... 82 
Case D: .................................................................................................................................................... 83 

3.5 Conclusion ....................................................................................................................... 84 

Chapter 4: 32-bits Floating Point Multiplier ..................................................................... 85 

4.1 Floating Point Multiplication Algorithm ............................................................................ 86 
4.1.1 Floating-Point Multiplication Example ............................................................................................... 87 

4.2 Floating Point Multiplier Flowchart ................................................................................... 90 

4.3 Floating Point Multiplier Hardware ................................................................................... 91 
4.3.1 Floating Point Multiplier Hardware Architecture ............................................................................... 92 
4.3.2 Floating Point Multiplier Hardware Implementation ......................................................................... 93 

4.3.2.1 Sign Bit Calculation ..................................................................................................................... 93 
4.3.2.2 Data Classification Module ......................................................................................................... 94 
4.3.2.3 Exponent Carry Lookahead Adder ............................................................................................ 100 
4.3.2.4 Modular Bias Subtractor .......................................................................................................... 101 
4.3.2.5 Mantissa Append Module ........................................................................................................ 102 
4.3.2.6 Mantissa 32-bit Wallace Multiplier .......................................................................................... 105 
4.3.2.7 Mantissa Right Shifter .............................................................................................................. 114 
4.3.2.8 Mantissa Product Rounding ..................................................................................................... 115 
4.3.2.9 Exponent Incrementor ............................................................................................................. 117 
4.3.2.10 Compute Flags ........................................................................................................................ 118 
4.3.2.11 Compute Output .................................................................................................................... 122 

4.4 Floating Point Multiplier Results ..................................................................................... 124 
4.4.1 Floating Point Multiplier Compilation Report .................................................................................. 124 
4.4.2 Floating Point Multiplier Testbench ................................................................................................. 125 
4.4.3 Floating Point Multiplier Simulation Results .................................................................................... 126 

Case A: .................................................................................................................................................. 126 
Case B: .................................................................................................................................................. 127 
Case C: .................................................................................................................................................. 128 



Floating Point Processor   Kartikey’s Master Thesis 

Case D: .................................................................................................................................................. 129 
Case E: .................................................................................................................................................. 130 

4.5 Conclusion ..................................................................................................................... 131 

Chapter 5: 32-bits Floating Point Divider ....................................................................... 132 

5.1 Floating Point Division Algorithm .................................................................................... 133 
5.1.1 Floating-Point Division Example ....................................................................................................... 134 

5.2 Floating Point Divider Flowchart ..................................................................................... 137 

5.3 Floating Point Divider Hardware ..................................................................................... 138 
5.3.1 Floating Point Divider Hardware Architecture ................................................................................. 139 
5.3.2 Floating Point Divider Hardware Implementation ........................................................................... 140 

5.3.2.1 Sign Bit Calculation ................................................................................................................... 140 
5.3.2.2 Data Classification Module ....................................................................................................... 141 
5.3.2.3 Modular Exponent Subtractor .................................................................................................. 143 
5.3.2.4 Carry Lookahead Bias Adder..................................................................................................... 144 
5.3.2.5 Mantissa Append Module ........................................................................................................ 145 
5.3.2.6 Mantissa 24-bit Divider ............................................................................................................ 147 
5.3.2.7 Mantissa Left Shifter ................................................................................................................ 148 
5.3.2.8 Mantissa Division Rounding ..................................................................................................... 149 
5.3.2.9 Exponent Decrement................................................................................................................ 150 
5.3.2.10 Compute Flags ........................................................................................................................ 151 
5.3.2.11 Compute Output .................................................................................................................... 152 

5.4 Floating Point Divider Results ......................................................................................... 153 
5.4.1 Floating Point Divider Compilation Report ...................................................................................... 153 
4.4.2 Floating Point Divider Testbench ..................................................................................................... 154 
5.4.3 Floating Point Divider Simulation Results ........................................................................................ 155 

Case A: .................................................................................................................................................. 155 
Case B: .................................................................................................................................................. 156 
Case C: .................................................................................................................................................. 157 
Case D: .................................................................................................................................................. 158 
Case E: .................................................................................................................................................. 159 

5.5 Conclusion ..................................................................................................................... 160 

Chapter 6: Floating Point Unit ....................................................................................... 161 

6.1 Floating Point Unit Block Diagram ................................................................................... 162 

6.2 Floating Point Unit Verilog Code ..................................................................................... 163 

6.3 Floating Point Unit RTL Diagram ...................................................................................... 164 

Chapter 7: Education Module ........................................................................................ 165 

7.1 Lab 1 .............................................................................................................................. 166 

7.2 Lab 2 .............................................................................................................................. 174 

7.3 Lab 3 .............................................................................................................................. 181 

7.4 Lab 4 .............................................................................................................................. 187 

7.5 Lab 5 .............................................................................................................................. 194 

7.6 Lab 6 .............................................................................................................................. 200 

7.7 Lab 7 .............................................................................................................................. 206 

7.8 Lab 8 .............................................................................................................................. 213 



Floating Point Processor   Kartikey’s Master Thesis 

7.9 Lab 9 .............................................................................................................................. 219 

7.10 Lab 10 .......................................................................................................................... 225 

Conclusion ........................................................................................................................... 229 

Chapter 8: Conclusion ................................................................................................... 230 

8.1 Future Scope of Work ..................................................................................................... 231 

Bibliography ................................................................................................................. 232 

About the Author ......................................................................................................... 236 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

Table of Figures  
Figure 1 Base 10 Notation        Figure 2 Base 2 Notation ...............................................................................2 
Figure 3 PDP 10 ................................................................................................................................................3 
Figure 4 32-bit Floating Point Format ...............................................................................................................5 
Figure 5 Binary Significands .............................................................................................................................6 
Figure 6 Significand Representation .................................................................................................................6 
Figure 7 Subnormal Representation .................................................................................................................7 
Figure 8 Examples of Binary Floating Format ...................................................................................................7 
Table 1 Floating Point Parameters ...................................................................................................................8 
Figure 9 Range of Binary 32-bit Format ............................................................................................................9 
Table 2 Data Types ......................................................................................................................................... 10 
Table 3 Arithmetic Operations ....................................................................................................................... 11 
Figure 10 Binary Representation for Add ....................................................................................................... 14 
Figure 11 Adder Exponent Subtraction .......................................................................................................... 14 
Figure 12 Adder Mantissa Addition ................................................................................................................ 15 
Figure 13 FPA Example Result ........................................................................................................................ 15 
Figure 14 Floating Point Adder Flowchart ...................................................................................................... 16 
Figure 15 Floating Point Adder Architecture .................................................................................................. 18 
Table 4 Sign Operations ................................................................................................................................. 19 
Figure 16 Modular Subtractor RTL ................................................................................................................. 20 
Figure 17 Exponent Subtractor Code .............................................................................................................. 21 
Figure 18 Modular Exponent Sub Block.......................................................................................................... 22 
Figure 19  Ripple Carry Subtractor Block ........................................................................................................ 23 
Figure 20 Ripple Carry RTL Diagram ............................................................................................................... 24 
Figure 21 Ripple Carry Subtractor Code ......................................................................................................... 25 
Figure 22 Twos Complementor Block Diagram ............................................................................................... 26 
Figure 23 Twos Complementor RTL Diagram.................................................................................................. 27 
Figure 24 Twos Complementor Code ............................................................................................................. 28 
Figure 25 Mux Block Diagram ........................................................................................................................ 30 
Figure 26 Mantissa MUX RTL ......................................................................................................................... 31 
Figure 27 Mantissa MUX Code ....................................................................................................................... 32 
Table 5 MUX Truth Table ............................................................................................................................... 32 
Figure 28 Right Shifter Block Diagram ............................................................................................................ 33 
Figure 29 Right Shifter Code........................................................................................................................... 34 
Table 6 Multiplexer 2 Table ........................................................................................................................... 35 
Figure 30 Mantissa CLA Block Diagram .......................................................................................................... 37 
Figure 31 Generate AND ................................................................................................................................ 38 
Figure 32 Propagate OR ................................................................................................................................. 38 
Figure 33 Carry Out Logic ............................................................................................................................... 39 
Figure 34 Carry Lookahead Adder Code ......................................................................................................... 40 
Table 7 Multiplexer 3 Table ........................................................................................................................... 41 
Figure 35 Controlled Incrementor Block ......................................................................................................... 42 
Figure 36 Controlled Incrementor RTL ........................................................................................................... 44 
Figure 37 Controlled Incrementor Code ......................................................................................................... 45 
Figure 38 FPA Compilation Report ................................................................................................................. 47 
Figure 39 FPA Testbench ................................................................................................................................ 48 
Figure 40 Case A Result .................................................................................................................................. 49 
Figure 41 Case B Result .................................................................................................................................. 50 
Figure 42 Case C Result .................................................................................................................................. 51 
Figure 43 Case D Result .................................................................................................................................. 52 
Figure 44 Binary Representation Sub Example ............................................................................................... 56 
Figure 46 Sub Exponent Subtraction .............................................................................................................. 56 
Figure 47 Subtract Mantissa Subtraction ....................................................................................................... 57 
Figure 48 FPS Example Result ........................................................................................................................ 57 
Figure 49 Floating Point Subtractor Flowchart ............................................................................................... 58 
Figure 50 Floating Point Subtractor Architecture ........................................................................................... 60 



Floating Point Processor   Kartikey’s Master Thesis 

Table 8 Sign Operations ................................................................................................................................. 61 
Figure 51 Mux Block Diagram 2 ...................................................................................................................... 62 
Table 9 MUX Truth Table ............................................................................................................................... 63 
Table 10 Multiplexer 2 Table ......................................................................................................................... 65 
Figure 52 24 bit Ripple Carry Sub RTL ............................................................................................................. 67 
Figure 53 24-bit Ripple Cary Sub Code ........................................................................................................... 68 
Table 11 Multiplexer 3 Table ......................................................................................................................... 69 
Figure 54 Controlled Decrement Block ........................................................................................................... 71 
Figure 55 Controlled Decrement RTL .............................................................................................................. 73 
Figure 56 Controlled Decrement Code ........................................................................................................... 74 
Figure 57 Left Shifter Block Diagram .............................................................................................................. 75 
Figure 58 Left Shifter Code ............................................................................................................................. 76 
Figure 59 FPS Compilation Report .................................................................................................................. 78 
Figure 60 FPS Testbench ................................................................................................................................ 79 
Figure 61 FPS Case A Result ........................................................................................................................... 80 
Figure 62 FPS Case B Result ............................................................................................................................ 81 
Figure 63 Case C Result .................................................................................................................................. 82 
Figure 64 Case D Result .................................................................................................................................. 83 
Figure 65 Binary Presentation Mul Example .................................................................................................. 87 
Figure 66 XOR Sign Subtraction ...................................................................................................................... 87 
Figure 67 Mul Exponent Addition .................................................................................................................. 88 
Figure 68 Mul Bias Subtraction ...................................................................................................................... 88 
Figure 69 Mantissa Multiplication .................................................................................................................. 89 
Figure 70 Incrementing Exponent .................................................................................................................. 89 
Figure 71 FPM Example Result ....................................................................................................................... 89 
Figure 72 Floating Point Multiplier ................................................................................................................. 90 
Figure 73 Floating Point Multiplication Architecture ...................................................................................... 92 
Table 13 Sign Operations Mul ........................................................................................................................ 93 
Figure 74 sNaN Format .................................................................................................................................. 94 
Figure 75 qNaN Format .................................................................................................................................. 94 
Figure 76 Plus Infinity Format ........................................................................................................................ 95 
Figure 77 Negative Infinity Format ................................................................................................................. 95 
Figure 78 Positive Zero Format ...................................................................................................................... 96 
Figure 79 Negative Zero Format ..................................................................................................................... 96 
Figure 80 Subnormal Format .......................................................................................................................... 97 
Figure 81 Normal Format ............................................................................................................................... 97 
Figure 82 Data Classification Verilog Code ..................................................................................................... 98 
Figure 83 Data Classification RTL Diagram ..................................................................................................... 99 
Figure 84 Exponent Adder Instantiation ...................................................................................................... 100 
Figure 85 Bias Subtraction Instantiation ...................................................................................................... 101 
Figure 86 Mantissa Append Block Diagram .................................................................................................. 102 
Figure 87 Mantissa Append Verilog Code..................................................................................................... 103 
Figure 88 Mantissa MUX RTL ....................................................................................................................... 104 
Table 14 Append Mantissa Truth Table ........................................................................................................ 104 
Figure 89 Wallace Multiplication Stages ...................................................................................................... 106 
Figure 90  Wallace Multiplication Stage 0 .................................................................................................... 107 
Figure 91 Wallace Multiplication Stage 1 ..................................................................................................... 107 
Figure 92 Wallace Multiplication Stage 2 ..................................................................................................... 108 
Figure 93 Wallace Multiplication Stage 3 ..................................................................................................... 108 
Figure 94 Wallace Multiplication Step 3 ....................................................................................................... 108 
Figure 95 Wallace Multiplier Flow Diagram ................................................................................................. 109 
Figure 96 Wallace Tree Mul Block Diagram .................................................................................................. 110 
Figure 97 Wallace Multiplier Code ............................................................................................................... 111 
Figure 98 Wallace Tree 32-bit RTL ................................................................................................................ 112 
Figure 99 Wallace Tree 16-bit RTL ................................................................................................................ 112 
Figure 100 Wallace Tree 8-bit RTL ................................................................................................................ 113 
Figure 101 Right Shifter Instantiation .......................................................................................................... 114 



Floating Point Processor   Kartikey’s Master Thesis 

Figure 102 Product Rounding Verilog Code .................................................................................................. 115 
Figure 103 Product Rounding RTL Diagram .................................................................................................. 116 
Figure 104 Exponent Incrementor Instantiation ........................................................................................... 117 
Figure 105 Compute Flags RTL Diagram ....................................................................................................... 119 
Figure 106 Compute Flags Verilog Code ....................................................................................................... 121 
Figure 107 Compute Output RTL Diagram .................................................................................................... 123 
Figure 108 Compute Output Verilog Code .................................................................................................... 123 
Figure 109 FPM Compilation Report ............................................................................................................ 124 
Figure 110 FPM Testbench ........................................................................................................................... 125 
Figure 111 FPM Case A Result ...................................................................................................................... 126 
Figure 112 FPM Case B ................................................................................................................................. 127 
Figure 113 FPM Case C ................................................................................................................................. 128 
Figure 114 FPM Case D ................................................................................................................................. 129 
Figure 115 FPM Case E ................................................................................................................................. 130 
Figure 116 Binary Presentation Divide Example ........................................................................................... 134 
Figure 117 XOR Sign Division ....................................................................................................................... 134 
Figure 118 Divide Exponent Subtraction ...................................................................................................... 135 
Figure 119 Divide Bias Subtraction ............................................................................................................... 135 
Figure 120 Mantissa Division ....................................................................................................................... 136 
Figure 121 FPD Example Result .................................................................................................................... 136 
Figure 122 Floating Point Divider ................................................................................................................. 137 
Figure 123 Floating Point Division ................................................................................................................ 139 
Table 15 Sign Operations Divide .................................................................................................................. 140 
Figure 124 Data Classification Instantiation B .............................................................................................. 142 
Figure 125 Data Classification Instantiation ................................................................................................. 142 
Figure 126 Mode Subtractor Instantiation ................................................................................................... 143 
Figure 127 Bias Addition Instantiation ......................................................................................................... 144 
Table 16 Append Mantissa Truth Table ........................................................................................................ 145 
Figure 128 Append Mantissa A Instantiation ............................................................................................... 146 
Figure 129 Append Mantissa A Instantiation ............................................................................................... 146 
Figure 130 24-bit Divider Code ..................................................................................................................... 147 
Figure 131 Left Shifter Instantiation ............................................................................................................. 148 
Figure 132 Division Rounding Instantiation .................................................................................................. 149 
Figure 133 Exponent Decrement Instantiation ............................................................................................. 150 
Figure 134 Compute Flags Instantiation ....................................................................................................... 151 
Figure 135 Compute Out Instantiation ......................................................................................................... 152 
Figure 136 FPD Compilation Report ............................................................................................................. 153 
Figure 137 FPD Testbench ............................................................................................................................ 154 
Figure 138 FPD Case A Result ....................................................................................................................... 155 
Figure 139 FPD Case B .................................................................................................................................. 156 
Figure 140 FPD Case C .................................................................................................................................. 157 
Figure 141 Case D ........................................................................................................................................ 158 
Figure 142 FPD Case E .................................................................................................................................. 159 
Figure 143 Floating Point Unit Block Diagram .............................................................................................. 162 
Figure 144 Floating Point Unit Verilog Code ................................................................................................. 163 
Figure 145 Floating Point Unit RTL Diagram ................................................................................................. 164 
 
 
 
 
 

file://///Users/kartikey/Documents/MS/Thesis%20Paper%20Final%20Draft.docx%23_Toc134059851
file://///Users/kartikey/Documents/MS/Thesis%20Paper%20Final%20Draft.docx%23_Toc134059852
file://///Users/kartikey/Documents/MS/Thesis%20Paper%20Final%20Draft.docx%23_Toc134059853


Floating Point Processor   Kartikey’s Master Thesis 

Acknowledgments 

This project would not have been possible without the support of many people. Many 

thanks to my adviser, Dr. Bill D Carroll, who read my numerous revisions and helped make 

some sense of the confusion. Also, thanks to my committee members, Prof. David Levine, and 

Dr. Jason Losh, who offered guidance and support. Thanks to the University of Texas at 

Arlington Graduate College for providing me with support and infrastructure to complete this 

project. And finally, thanks to lord Hanuman, my parents, my girlfriend, and numerous friends 

who endured this long process with me, always offering support and love. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

Abstract 

In today’s day and age of arithmetic, Floating Point Arithmetic is by far the most 

industry sanctioned way of approximating real number arithmetic for making numerical 

calculations on all computers used by industries on an everyday basis.  

In the year 1985, IEEE 754 standard was established that defined a single universal 

standard for all different arithmetic formats [1]. Before this, for a long period each computer 

had a different arithmetic format and size for bases, significand, and exponents. This format 

allowed industries all around the world to compute floating point arithmetic in a universal 

way and facilitated open communication between all worlds.  

The first objective of this project is implementing a single precision binary floating 

point processing unit in accordance with the IEEE 754 standard using Verilog hardware 

description language and writing test benches to run ModelSim simulations for testing.  

 The second objective of this project is to convert the implementation of the single 

precision floating point unit into an education model. The purpose of this education model 

will be to educate future Digital Logic & Design students in the field of floating-point 

processing and provide them a roadmap to build their own floating-point processor using a 

series of lab assignment.



Floating Point Processor   Kartikey’s Master Thesis 
 

 1 

Chapter 1: Introduction 

Manipulating real numbers efficiently has been the basis of computing in various fields 

ranging from engineering & science, to finance. There have been many ways to approximate 

and compute real numbers in an efficient way ever since computers have been introduced.  

The most efficient one of these computing methods and representing real numbers in 

computers has been identified to be floating point arithmetic. The representation of such an 

infinite, continuous set with a finite set is a difficult task. Such a task requires a lot of 

compromises to be made in terms of speed, accuracy, implementation, and memory cost [2]. 

Considering the challenges of speed and accuracy, floating point arithmetic is the 

perfect compromise that can be made for most numerical applications that needs to be 

performed in today’s day and age of computation.  

 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

2 
 

1.1 Floating Point Numbers 

 The floating-point numbers representation is based on scientific notation for 

representing floating point numbers [3]. This notation consists of four major elements: sign, 

mantissa, base, and exponent. In the scientific notation, the decimal point is not set in a fixed 

position in the bit sequence. The position of decimal is indicated as a base power.  

 Example of floating-point representation using different bases: 

         

       Figure 1 Base 10 Notation        Figure 2 Base 2 Notation            

Floating point numbers expressed in scientific notation consist of four primary components: 

• Sign: This element conveys information about the sign of the number (0 is used for 

positive numbers, 1 for negative numbers). 

• Mantissa: This element consists of the value of the number. 

• Exponent: This element consists of the value of the base power in a biased form. 

• Base: The base of a number is implied and is universally known for all number system 

(2 for binary numbers, 10 for decimal numbers). 

This kind of free hand format allowed for each individual architect or programmer to 

design their own floating point number system for use. This allowed for different elements to 

be interpreted using different bit numbers with no uniformity overall.  

The very first modern-day implementation of a floating-point arithmetic in a computer 

was built using a radix-2 number system. This number system consisted of 14-bit significand, 



Floating Point Processor   Kartikey’s Master Thesis 

3 
 

7-bit exponents, and 1-bit sign. On the other hand, another computer PDP-10, Figure 3, used 

a radix-8 number system and IBM 360 used a radix-16 floating point arithmetic [4].  

 
Figure 3 PDP 10 

This non uniformity of number system in different architectures led to the need for a 

universal standard of floating-point number which developed a clear and concise format to 

be used by all developers worldwide. This was called the IEEE 754 standard.  

1.2 The IEEE 754 Standard  

 IEEE is acronym for the Institute of Electrical and Electronics Engineers (IEEE). IEEE is 

the world's largest technical professional organization dedicated to advancing technological 

innovations and excellence for the benefit of humanity.  

 The American Institute of Electrical Engineers was the organization that gave birth to 

the IEEE in 1884. The competing Institute of Radio Engineers was established in 1912. 

Although the IRE drew more students and grew larger by the middle of the 1950s, the AIEE 

was initially larger. In 1963, the IRE and the AIEE amalgamated to form IEEE.  

 The IEEE Operations Center in Piscataway, New Jersey, initially established in 1975, is 

where most of the business is conducted. The IEEE headquarters are in New York City [5]. 

 One of the many responsibilities of IEEE is serving as a major standards development 

organization for the creation of industrial standards in a variety of fields like nanotechnology, 

consumer electronics, and telecommunications. The IEEE 754-2008 is one of such standards. 



Floating Point Processor   Kartikey’s Master Thesis 

4 
 

1.2.1 Overview 

The IEEE 754 standard, revised in 2008, specified important aspects of floating-point 

arithmetic such as formats and methods to operate with floating point numbers. The IEEE 754 

standard specifies four different formats for representing floating point numbers are: 

• Half Precision Floating Point (16 bits) 

• Single Precision Floating Point (32 bits) 

• Double Precision Floating Point (64 bits) 

• Quadruple Precision Floating Point (128 bits) 

32 bits and 64 bits are the most found representation of floating-point numbers. In this 

thesis we will be working with the single precision floating point number system i.e., 32 bits 

of operands [6].   

Furthermore, this IEEE 754 standard dictates that all the computational work done with 

floating point numbers will output the same result irrespective of whether the processing was 

done in software or hardware, and irrespective of the method of implementation.  

The IEEE 754 standard specifies the following: 

• Formats for binary and decimal floating-point numbers for arithmetic and data 

transaction between modules. 

• Instructions for various operations such as addition, subtraction, multiplication, and 

other similar operations.  

• Variety of parameters to be considered when rounding binary numbers after 

arithmetic operations and conversions. 

• Setting parameters for conversions between integer to floating point format.  

• Guidelines for floating point data classification, exceptions, and their handlings such 

as NaN, Zero, Normal, Subnormal, and Infinity data types. 



Floating Point Processor   Kartikey’s Master Thesis 

5 
 

1.2.2 Binary Format Encodings 
 

Floating point binary number is represented in accordance with IEEE 754 standard in 

three separate fields and 32 bits for single precision number as shown in Figure 4 [7]: 

 

 Figure 4 32-bit Floating Point Format 

To explain the figure, the single precision (32 bit) binary format has been divided in 3 parts: 

• Sign: The most significant bit of the 32-bit number (31st bit) is the bit that conveys 

information regarding sign of the number being represented. (0 to denote positive 

numbers, 1 to denote negative numbers). 

• Exponent: The next part is the 8-bit biased exponent that ranges from bit 23 to bit 30.  

• Mantissa: The final part is the 23-bit long mantissa that ranged from bit 22 to bit 0.  

Exponent 

The exponent value for the 32-bit binary number system is stored in 8 bits. This has 

the bias value of 127 added to it. This dictates the final range of exponent to fall between         

-12610 (100000102) and +12710 (000000012), being zero at value (011111112).  

To find the true value of the exponent, a fixed value (bias) is subtracted from it. In the 

case of 8 bits, this value yields a true exponent range from 010 to 25510 [8].  

The biased exponent has a range that is divided into three sections based on type: 

• Normal: For 32-bit number system, the range for normal numbers consists of every 

integer from 20 (110) to 28 – 2 (25410). Given the 8 bits of exponents. 



Floating Point Processor   Kartikey’s Master Thesis 

6 
 

• Subnormal & Zero: For 32-bit number system, the value 0 is used for subnormal 

numbers and the zero-type number [9]. 

• Special Cases: The reserved value 28 – 1 (25510) is used to encode special types of 

number cases like Infinity or NaN.  

Significand 
 
 The final part of this floating-point binary number representation is the 23-bit long 

significand which starts from the least significant bit of the number representation. A floating-

point number can be represented in variety of different ways. 

 For Example: 

 

Figure 5 Binary Significands  

 All the values in the above examples (Figure 5) are equivalent in value and expressed 

with difference significand values. The thesis has emphasized the importance of a unique 

representations. In order to achieve that objective, finite floating-point numbers are to be 

normalized for choosing a representation with minimum possible value of the exponent. A 

normal number is the kind where the most significant bit of the significand is nonzero value 

when represented in binary or base 2 format. In a typical convention, the radix point is to the 

right of the last bit of the number which is represented in form of [10]: 

 

        Figure 6 Significand Representation   

The mantissa is reality is a 24 bit number but as shown in figure above, the most 

significant bit is always 1. This kind of convention deems it unnecessary for the mantissa to 



Floating Point Processor   Kartikey’s Master Thesis 

7 
 

store this most significant bit in their representation. The mantissa thus became a 23 bit value 

which in reality contains an implicit bit depending on the type of data being represented.  

The mantissa is appended with 1 as the most significant bit (24th bit) for all the normal 

numbers (Figure 6), and appended with 0 for all subnormal number type (Figure 7). Both these 

most significant bits in different data types will be implied and taken into account when 

making arithmetic operations to get the correct decimal value.  

                     

Figure 7 Subnormal Representation 

1.2.3 Examples of Floating Point Representation 

 The Figure 8 below shows examples of four numbers stored in binary floating point 

format in a 32 bit number system. On the very left for each example is decimal value of a 

number, in the middle there is the same number in binary format, and on the right is that 

number in 32 bit floating point binary format as defined by IEEE 754 [11]. 

 

Figure 8 Examples of Binary Floating Format 

 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

8 
 

The binary pattern on the right side has four important features of note: 

• Sign of value is stored in the first bit of the word.  

• First bit of significand is 1 and is not stored in the significand field. 

• The exponent in binary is true exponent with 127 added to it as bias. 

• The base of the format is 2 which signifies binary. 

1.2.4 Floating Point Parameters 

Parameter Format 

Binary 32 Binary 64 Binary 128 

Storage Bits 32 64 128 

Exponent Bits 08 11 15 

Exponent Bias 127 1023 16383 

Max Exponent 127 1023 16383 

Min Exponent -126 -1022 -16382 

Significand Bits 23 52 112 

Sign Bits 1 1 1 

No. of Exponents 254 2046 32766 

No. of Fractions 223 252 2112 

No. of Values 1.98 x 231 1.99 x 263 1.99 x 2128 
 

       Table 1 Floating Point Parameters  

1.2.5 Range of Floating-Point Number 

There is a finite range of values that can be represented with the finite number of bits in 

the floating-point number system. In the twos complement number system, all the integer 

values from -231 to 231 – 1 can be represented in this system. However, when we use the 

representation as shown in Figure 4 allows for a broader range of numbers [12]: 

• Negative Numbers: Range from – (2 – 2-23) x 2128 and -2-127 

• Positive Numbers: Range from 2-127 and (2 – 2-23) x 2128. 



Floating Point Processor   Kartikey’s Master Thesis 

9 
 

 
Figure 9 Range of Binary 32-bit Format  

Figure 9 shows the range of binary 32 bit floating point number format. The range is 

divided into a total of seven different regions. The ranges are [13]: 

• Negative Overflow: Negative numbers that are less than – (2 – 2-23) x 2128  

• Negative Numbers: Negative numbers range from – (2 – 2-23) x 2128 to -2-127 

• Negative Underflow: Negative numbers that are greater than – 2-127 

• Zero 

• Positive Underflow: Positive numbers that are less than 2-127 

• Positive Numbers: Positive numbers range from 2-127 and (2 – 2-23) x 2128. 

• Positive Overflow: Negative numbers that are greater than (2 – 2-23) x 2128  

1.2.6 Rounding of Floating-Point Number 
 

According to IEEE 754 standard, the result of floating-point operation needs to be 

unique irrespective of method of computation. This gives birth to the need for absolute 

precision which can be reached by employing the process of rounding the results [14].  

 There are four major rounding operations that are recommended by the standard: 

• Rounding the result to the nearest representable number. 

• Rounding the result towards + ∞. 

• Rounding the result towards - ∞. 

• Rounding the result towards 0.   



Floating Point Processor   Kartikey’s Master Thesis 

10 
 

In this thesis, we will be employing Rounding to nearest policy for all our operation results, 

as it is the default rounding mode listed in the standard. In this policy, the representable value 

nearest to the infinity precise result will be used.  

1.2.7 Data Types of 32 bit Floating-Point Number 
 

 Sign Biased Exponent Fraction Value 

Positive Zero 0 0 0 0 

Negative Zero 1 0 0 -0 

Plus Infinity 0 All 1s 0 ∞ 

Minus Infinity 1 All 1s 0 -∞ 

Quiet NaN 0 or 1 All 1s !=0; MSB = 1 qNaN 

Signal NaN 0 or 1 All 1s != 0; MSB = 0 sNaN 

Positive Normal 0 0 < e < 255 F 2e-127 

Neg Normal 1 0 < e < 255 F -2e-127 

Pos Subnormal 0 0 F =/ 0 2e-126 

Neg Subnormal 1 0 F =/ 0 -2e-126 

 

Table 2 Data Types  

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

11 
 

1.3 Floating-Point Arithmetic 

Floating-point arithmetic is about the basic operations that can be carried out 

between two different floating point binary numbers. For addition and subtraction, the 

arithmetic is trickier than multiplication and division as it requires shifting radix point and 

ensuring that the operands are in alignment with each other [15].  

The following table 3 summarizes the basic operations for floating point arithmetic: 

 

Floating Point Numbers Arithmetic Operations 

X = XS x BX
E  

Y = YS x BY
E 

X + Y = (  XS   x  B XE-YE  +  YS  )  x  BY
E   

X - Y = (  XS   x  B XE-YE   -  YS  )  x  BY
E 

X x Y = ( XS   x  YS )  x  B XE + YE 

X / Y = ( XS  /  YS )  x   B XE - YE
  
 

 

     Table 3 Arithmetic Operations 

1.3.1 Exponent Overflow 
 
A positive exponent exceeds the maximum possible value which is any value more than 127. 
 

1.3.2 Exponent Underflow 
 
A negative exponent that is less than the minimum possible value which is any value less than 

the -127 value. This implies that the exponent number is too small to be represented, and it 

may be reported as zero value. 

1.3.3 Significand Overflow 
 
On addition of two significands, the result might carry out from the MSB and exceed the 

maximum value allowed. This can be fixed during the normalization process.  

1.3.4 Significand Underflow 
 
In the process of aligning significands, digits may flow off the right end of the value. 



Floating Point Processor   Kartikey’s Master Thesis 

12 
 

Chapter 2: 32-bits Floating Point Adder  

In this chapter, we describe an efficient implementation of an IEEE 754 single precision 

floating point adder targeted for DE-1 Cyclone V FPGA. Verilog is used to implement a 

technology-independent pipelined design. The adder implementation handles the overflow 

and underflow cases. Rounding is implemented to give more precision when using the Carry 

Look Ahead Adder for faster calculations. The Floating-Point Adder was verified by testbench 

simulations on ModelSim. 

In this chapter we will dive deeper into the floating-point adder algorithm, 

architecture, code design, RTL diagram, and simulation results.  

We will talk about the procedure in addition operations and a first look at the code 

design in a block diagram way followed by deeper understanding of code development. Out 

of four arithmetic operations, floating point addition is the most complicated operation.  

 Floating point addition is done by extracting signs, subtracting exponents, adding 

mantissa values, and shifting the mantissa for normalization. 

 There are five basic phases of designing a Floating-Point Adder: 

1) Check for Zeroes. 

2) Isolate the sign bits. 

3) Align the Significands. 

4) Add the Significands. 

5) Normalize the Significand 

6) Normalize the Exponent if needed. 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

13 
 

2.1 Floating Point Addition Algorithm  

As described in the above topics, floating point number is in the format of: 

Z= (-1S) * 2 (E – Bias) * (1.M) 

To add two floating point numbers A & B the different steps to follow are [16]: 

1) Extracting signs, exponents and mantissas of both A and B numbers. 

2) Calculating the output sign. 

3) Treating the special cases. 

4) Finding out the data types of numbers given 

5) Subtracting the two exponents. 

6) Shifting the lower exponent number mantissa to the right. 

7) Addition of the mantissa values  

8) Normalizing mantissa by bit shifting. 

9) Detecting exception, overflow, and underflow. 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

14 
 

2.1.1 Floating-Point Addition Example  
 
A = 9.75 (base 10) 

B = 0.5625 (base 10) 

 

Figure 10 Binary Representation for Add 

 

1) S1 = 0, E1 = 10000010, M1 = 00111000000000000000000 

S2 = 0, E2 = 01111110, M2 = 00100000000000000000000 

2) Exponent Subtraction 

 

Figure 11 Adder Exponent Subtraction 

E = 000001002 = 410 

3) Right Shift mantissa M2 by E1 – E2 (4)  

1.M2 = 1.00100000000000000000000 

Shifted Mantissa = 0.00010010000000000000000 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

15 
 

4) Add the mantissa 

 

Figure 12 Adder Mantissa Addition 

M = 1.01001010000000000000000 

5) No normalization needed.  

6) No exponent incrementation needed.  

7) Result 

Figure 13 FPA Example Result 



Floating Point Processor   Kartikey’s Master Thesis 

16 
 

2.2 Floating Point Adder Flowchart  

The below, Figure 14, showcases a typical flowchart that is used to design a floating 

point adder. The figure shows a step by step narrative and displays the high level functions 

that is required to compute floating point addition [17]. The flowchart shows block level 

diagram and each block or element is implemented in hardware and is described in detail in 

the following topics of the thesis .  

 
               Figure 14 Floating Point Adder Flowchart 



Floating Point Processor   Kartikey’s Master Thesis 

17 
 

2.3 Floating Point Adder Hardware  

 In this section of the thesis we will start explaining and diving deeper into the 

hardware implementation of the floating point adder. This section will start by elaborating 

the flowchart further with help of showcasing the hardware architecture used to design the 

module followed by detailed description of each module used in the architecture.  

 After understanding the theory of hardware implementation and the architecture of 

floating point adder the thesis will show the code development that achieved out final 

objective of building this floating point unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

18 
 

2.3.1 Floating Point Adder Hardware Architecture  

 The below figure, Figure 15, showcases the hardware architecture that was designed 

and coded to implement synthesizable 32-bit floating point adder using Verilog.  

 
  Figure 15 Floating Point Adder Architecture 

 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

19 
 

 This floating point architecture uses a total of eight modules that serve various unique 

purposes in making the design work. The modules are:  

• Mantissa Shifter Multiplexer 

• Modular Exponent Subtractor 

• Exponent Increment Multiplexer 

• Controlled Incrementor 

• Mantissa Adder Multiplexer  

• Mantissa Right Shifter 

• Carry Look Ahead Adder 

• Mantissa Normalizer 

2.3.2 Floating Point Adder Hardware Implementation 

 In this section, we will discuss the hardware implementation designed for the floating 

point adder and explain each module and each algorithm step in detail. 

2.3.2.1 Sign Bit Calculation  

 Adding two positive numbers will result in a positive number which makes this section 

easy for us since there will be another module to take care of subtraction. The table below 

shows sign operations for various cases: 

 

 

 

A’s Sign Symbol B’s Sign Operation 

+ + + + 

+ + - - 

- + - + 

- + + - 

Table 4 Sign Operations  



Floating Point Processor   Kartikey’s Master Thesis 

20 
 

2.3.2.2 Modular Exponent Subtractor 

 This modular exponent subtractor is responsible for subtracting the exponent of the 

second input from the exponent of the first input. This module of hardware description 

language ensures that the exponent difference value is absolute in nature. Before the 

subtraction operation is performed the program doesn’t know which exponent is higher in 

value. The modular exponent subtractor allows us to not just compute the absolute exponent 

difference, it also allows us to identify the larger exponent which further identifies the 

exponent that will be used for the incrementor module and ultimately computing the result 

of the entire operation.  

Modular Exponent Subtractor RTL Diagram 

This module further has a total of two modules that facilitate the two tasks. The 

figure below, Figure 16, shows the RTL of the module consisting of the two modules. 

 

Figure 16 Modular Subtractor RTL  

 



Floating Point Processor   Kartikey’s Master Thesis 

21 
 

Modular Exponent Subtractor Verilog Code 

The figure below, Figure 17, shows the top level design’s Verilog code for the 

implementation of the Modular Exponent Subtractor discussed in the previous section.  

 
     Figure 17 Exponent Subtractor Code  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

22 
 

Modular Exponent Subtractor Block Diagram  

 The following figure shows the block diagram for the modular exponent subtractor 

used in the floating point adder algorithm. 

 
Figure 18 Modular Exponent Sub Block 

The three modules inside the modular exponent subtractor are: 

• 8-bit Ripple Carry Subtractor 

• Twos Complement Convertor 

• Output Multiplexer 

 

 
 



Floating Point Processor   Kartikey’s Master Thesis 

23 
 

8-bit Ripple Carry Subtractor 

 To compute the result, an 8-bit ripple carry subtractor was used to subtract the 

exponent of input A and the exponent of input B. As shown in Figure 19, it is shown that  a 

ripple carry subtractor is a chain of cascaded full adders. Each full adder of this ripple carry 

adder has three total inputs described as A, B, & C. The full adders also has two outputs 

namely R and Cout. The carry output of each full adder is fed into the C input of the next full 

adder, you can also say that the carry output bit ripples to the next full adder [18].  

The following figure also shows XOR gates with B and C as inputs and feeding into the 

input. The XOR gates achieve the purpose of turning the B input into a negative, followed by 

a regular addition results into the subtraction of the two inputs. 

8-bit Ripple Carry Subtractor Block Diagram 

 

     Figure 19  Ripple Carry Subtractor Block   

 

 
 



Floating Point Processor   Kartikey’s Master Thesis 

24 
 

8-bit Ripple Carry Subtractor RTL Diagram 

The following figure, Figure 20, shows an RTL diagram of the 8 bit ripple carry 

subtractor that was used to compute the exponent and the carry out. 

 
 

        Figure 20 Ripple Carry RTL Diagram  

 As it can be seen in the RTL diagram the Cout output is computed based on the Carry 

output of the last full adder and the opcode (1 in case of subtraction, 0 in case of addition) 

input for the ripple carry subtractor. The Cout is low when Exponent of input A is greater 

than exponent of input B, and Cout is high for the other way around.  



Floating Point Processor   Kartikey’s Master Thesis 

25 
 

8-bit Ripple Carry Subtractor Verilog Code 

 The figure below, Figure 21, shows the Verilog code for the ripple carry subtractor. 

The module consists of two 8-bit inputs, opcode (1 for negative), 8-bit output, and a carry 

output. The code mainly consists of one for loop that synthesizes a full adder 8 times for 

every bit of input and output. 

 
 

  Figure 21 Ripple Carry Subtractor Code  

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

26 
 

Twos Complement Convertor 

 To take into account the absolute value part of the subtractor, a twos complement 

convertor has been employed. This module takes in the output of the ripple carry subtractor 

as an input and outputs the conversion.  

 As shown in Figure 22, the module takes in an 8 bit input called input A, each bit of 

input A is fed into an XOR gate which other input of XOR gate being MSB of input A. The 

output of the XOR gate then feeds into an half adder, and the other input of that half adder 

is also the MSB of input A [19].  

The output of the half adder is fed into the input of the next half adder. This module 

is a cascade of 8 half adders accounting for each but of the 8 bit input and output. This is 

how an 8 bit output B is computed that is two’s complement of input A.  

Twos Complement Convertor Block Diagram 

 
                Figure 22 Twos Complementor Block Diagram  

 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

27 
 

Twos Complement Convertor RTL Diagram 

 The figure below, Figure 23, shows the RTL diagram the twos complement convertor. 

As shown in the RTL diagram it can be seen that there are total of 7 XOR gates being used to 

feed into eight half adders.  

 

 
Figure 23 Twos Complementor RTL Diagram 

 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

28 
 

Twos Complement Convertor Verilog Code  

 The figure below, Figure 24, shows the Verilog code for the ripple carry subtractor. 

The module consists of two 8-bit inputs, opcode (1 for negative), 8-bit output, and a carry 

output. The code mainly consists of one for loop that synthesizes a full adder 8 times for 

every bit of input and output. 

 

Figure 24 Twos Complementor Code 

 

 

 

 

 

 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

29 
 

Output Multiplexer 

 The output multiplexer is a module with three inputs R, A, & B. A & B are two 8-bit 

inputs that feeds into the module. The R input acts as a selector that switches the output 

between input A and input B.  

The A input of this module is the output of the ripple carry subtractor module, and 

the B input of the module is the output of twos complementor module. The R input is 

defined by the Cout output coming from the ripple carry subtractor module.  

As mentioned in previous section, The Cout is low when Exponent of input A is 

greater than exponent of input B, and Cout is high for the other way around. When the Cout 

is low the output of this multiplexer is the output of ripple carry subtractor, and when the 

Couto is high the output of the module and the multiplexer is the output of the twos 

complement convertor module.  

 The code and RTL diagram for this module is included in the RTL diagram and code 

section from the modular exponent subtractor section.  

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

30 
 

2.3.2.3 Mantissa Shifter Multiplexer 

 The next module used to design a floating point adder is a 2-to-1 multiplexer. As 

shown in the block diagram in Figure 25, this kind of multiplexer consists of two inputs A 

and B, and one select input called S, and finally one output labelled R. 

Mantissa Shifter Multiplexer Block Diagram  

 

Figure 25 Mux Block Diagram 

 The output of the multiplexer is dependent on the select input to the multiplexer 

which connects one of the inputs to the output at a time. Since there are only two input 

signals we only require a 1 bit select signal to link one of the inputs to the output. 

 The objective of this Mantissa Shifter Multiplexer is to connect the lower input out of 

two inputs to the input of a right shifter unit that will be discussed in the next section. The 

decision to select which input is the lower one is taken by Cout of the exponent subtractor 

module.  

 

 

 
 



Floating Point Processor   Kartikey’s Master Thesis 

31 
 

Mantissa Shifter Multiplexer RTL Diagram 

 The figure below, Figure 26, is the RTL diagram for the multiplexer designed to 

output the mantissa to be feed to the shifter unit. 

 

 

Figure 26 Mantissa MUX RTL 

As seen in the RTL diagram above, the multiplexer takes two 24 bit inputs, one bit of 

a select input, and a 24 bit output. The two inputs are 23-bit mantissa of input A and 23 bit 

mantissa for input B, both the inputs are appended with a 1 as their most significant bit. The 

select input for this multiplexer comes from the Cout output of the exponent subtractor 

module.  The appended 1 to the mantissa inputs are to take care of the hidden bit implied in 

the IEEE 754 standard of floating point binary format.  

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

32 
 

Mantissa Shifter Multiplexer Verilog Code  

 

Figure 27 Mantissa MUX Code 

Figure 27, shows the Verilog code for the mantissa shifter multiplexer. The select 

input coming in from Cout output of the exponent subtractor decides which input goes 

through the multiplexer and gets inputted into the shifter unit. If the Cout value is high, 

mantissa A gets selected for shifter unit and if Cout is low, mantissa B gets selected for the 

output of the shifter unit.  

This operation is described in the truth table below: 

Input 1 Input 2 Select Output 

A B 1 A 

A B 0 B 

 

Table 5 MUX Truth Table 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

33 
 

2.3.2.4 Mantissa Right Shifter  

 For the next module of the floating point adder, we implemented a Barrel Shifter 

type of right shifter unit. A barrel shifter is a combinational circuit that facilitates right shift 

for this adder. Unlike regular shifter a barrel shifter is a sequential circuit [20].  

 If we were to use a regular register based shifter, a 24 bit data shift would take 

around 24 clock cycles to process the shift. However, with this barrel shifter the module will 

only need one clock cycle to compute the shift.  

Mantissa Right Shifter Block Diagram 

 The block diagram for the mantissa barrel shifter is shown down below in Figure 28. 

The first level showcases a 4 bit right shift, the second level shows a 2 bit right shift, and the 

last level shows a 1 bit right shift.  

 
Figure 28 Right Shifter Block Diagram 



Floating Point Processor   Kartikey’s Master Thesis 

34 
 

Mantissa Right Shifter Verilog Code 

 The following figure, Figure 29, shows the code for a mantissa right shifter unit used 

to implement the floating point adder [21].  

The mantissa right shifter unit takes in the smaller mantissa from two inputs, which 

is being selected by the multiplexer described above. The outputted mantissa from 

multiplexer then gets inputted into this barrel shifter that uses multiplexers to shift the 

mantissa by the desired shift value.  

This shift value is achieved from the exponent subtractor unit module. The mantissa 

is shifted the same value as of the difference between the two exponents. 

 
Figure 29 Right Shifter Code 



Floating Point Processor   Kartikey’s Master Thesis 

35 
 

2.3.2.5 Mantissa Adder Multiplexer 

 Similar to its predecessor, this module is also a two-to-one multiplexer. The two 

inputs of this multiplexer are mantissa of input A and input B. The selector for this 

multiplexer is the same select for its predecessor, the Cout output from the exponent 

subtractor module.  

The purpose of this multiplexer is to select the mantissa out of two input mantissas 

with the higher exponent value. It essentially does the opposite of the previous mantissa 

multiplexer as it selects the mantissa with higher exponent value. The output of this 

multiplexer feeds into the mantissa adder.  

This mantissa multiplexer has the same Verilog code, block diagram, and RTL 

diagram as the multiplexer explained in the section above. However, the truth table would 

be inverted for the desired operation as shown in table below: 

 

Input 1 Input 2 Select Output 

A B 0 A 

A B 1 B 

 

Table 6 Multiplexer 2 Table  

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

36 
 

2.3.2.6 Mantissa Carry Look Ahead Adder 

 The next step in the floating point adder algorithm is adding the mantissa of input A 

with the mantissa of input B. The first mantissa for this adder operation will come directly 

from the input’s mantissa. While the other input for this addition will come from the right 

shifter unit that we just described in the section above.  

 To implement the mantissa adder module in hardware implementation, we make 

use of a carry lookahead adder in Verilog language. A Carry Lookahead Adder is composed 

of a variable number of full adders cascaded together, similar to the ripple carry adder 

hardware construction. The number of full adders cascaded in this design, depends on the 

number of input bits to be added.  

 The difference between a ripple carry adder and a carry lookahead adder is that the 

carry lookahead adder is able to compute the Cout value using the input values. This makes 

sure that the Cout is produced before the full adder finishes its operation. The advantage of 

carry look ahead adder is the speed with which it performs these calculations. Since the 

following full adder doesn’t need to wait for the previous full adder to finish operation, all 

the full adders can work in parallel and save a lot of computing time.  

 The drawback of using a carry lookahead adder over a ripple carry adder is that it 

utilizes a lot more logic than a simple ripple carry adder. Using a carry look ahead adder is a 

good lesson to showcase the balance between speed of execution and resources used when 

designing a module on FPGA [22].  

 

 
 

 
 



Floating Point Processor   Kartikey’s Master Thesis 

37 
 

Mantissa Carry Look Ahead Adder Block Diagram 

 The following figure, Figure 30, shows the block diagram for the carry lookahead 

logic. As seen in the block diagram, each bit of both the inputs feed into individual full 

adders which in turn return a S bit that computes the sum for that bit [23].  

 
Figure 30 Mantissa CLA Block Diagram 

 
 The second module seen in that block diagram is the carry look ahead logic block. 

This block takes in the two inputs, the block’s inside mechanism can be explained in two 

parts and two logic equation that ultimately computes a carry output. The three logic steps  

inside the carry look ahead logic block are: 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

38 
 

• Compute generate variable: 

We compute the generate variable by putting the two input bits through an AND 

gate and the output is the generate variable.  

 

Figure 31 Generate AND  

 

• Compute propagate variable: 

We compute the propagate variable by putting the two input bits through an XOR  

gate and the output is the propagate variable. 

 

Figure 32 Propagate OR  

 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

39 
 

• Compute Carry out.  

The circuit schematic shows the way to compute the Carry output that is being 

computed by the carry look ahead logic block. 

 
Figure 33 Carry Out Logic 

 
 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

40 
 

Mantissa Carry Look Ahead Adder Verilog Code 

 The following figure, Figure 34, showcases the Verilog code for a parameterized 

carry look ahead adder that is implemented in this floating point adder design.  

 The carry look ahead adder takes in two 24 bit input labelled A and B, it also shows R 

as a 24 bit output and Cout as a carry out output. Input A of the adder comes from the right 

shifter unit explained in previous section that contains the bit shifted mantissa from one of 

the inputs. Input B contains the value from the mantissa adder multiplexer also explained in 

the previous section. The Cout output will further be used to normalize the mantissa result 

and increment the exponent which will be explained in further sections. 

 Lastly, the module contains Opcode input which defines whether the module does 

addition or subtraction (0 for addition, 1 for subtraction).  

 

Figure 34 Carry Lookahead Adder Code 



Floating Point Processor   Kartikey’s Master Thesis 

41 
 

2.3.2.7 Exponent Increment Multiplexer 

Similar to its predecessor, this module is also a two-to-one multiplexer. The two 

inputs of this multiplexer are exponents of input A and input B. The selector for this 

multiplexer is the same select for its predecessor, the Cout output from the exponent 

subtractor module.  

The purpose of this multiplexer is to select the exponent out of two input exponents 

with the higher exponent value. The output of this multiplexer feeds into the exponent 

incrementor module that we will discuss in later section.  

This exponent multiplexer has the same Verilog code, block diagram, and RTL 

diagram as the multiplexer explained in the sections above. However, the truth table would 

be inverted for the desired operation as shown in table below: 

 

Input 1 Input 2 Select/Cout Output 

EA EB 1 EA 

EA EB 0 EB 

 

Table 7 Multiplexer 3 Table  

 

 

 
 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

42 
 

2.3.2.8 Controlled Incrementor 

 In this section of the thesis, we will move on to the next module of the floating point 

adder unit, the controlled exponent incrementor. This module is similar to the ripple carry 

adder we discussed earlier in the thesis, with slight modifications for our purposes.  

 The controlled exponent incrementor module is built of eight different full adders 

cascaded together with the Cout of each full adder being outputted to the input of the next 

full adder. Additionally, the first input of each full adder is connected to the input  and the 

other input of those full adders are all hard coded with zeroes. Except for the very first full 

adder which takes its second input from the other input to the module.  

Controlled Incrementor Block Diagram  

 The following figure, Figure 35, shows the block diagram used for implementing the 

controlled incrementor module. The block diagram shown below shows the block diagram 

for incrementing a 4-bit number based on select input. The modification to make this 8-bit 

incrementor is shown and explained in the sections below.  

 

Figure 35 Controlled Incrementor Block 



Floating Point Processor   Kartikey’s Master Thesis 

43 
 

Controlled Incrementor RTL Diagram  

 As shown in Figure 36, the RTL diagram of the controlled exponent incrementor 

shows the 8-bit input labelled E, and another 1-bit input labelled select, in addition there is 

an 8-bit output labelled as Out.  

 Each individual bit of the 8-bit input comes directly from the output of the exponent 

incrementor multiplexer that was discussed in the previous section. Each bit of this 8-bit 

input feeds into seven different full adder and one half adder. The other 1-bit input called 

select goes into the first half adder. The output of the first half adder gets cascaded through 

to the next full adders and the outputs are all concatenated together to form the 8-bit 

output that is shown coming out of this RTL diagram.   

 The output of this controlled incrementor depends of the select input. The select 

input comes from the Cout output of the carry look ahead adder. If the select is high it 

signifies that the exponent must be incremented to be normalized for final output. If the 

select is low the exponent is outputted as it was inputted. This output makes up for the final 

exponent part of the 32-bit result. 



Floating Point Processor   Kartikey’s Master Thesis 

44 
 

 

Figure 36 Controlled Incrementor RTL  

 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

45 
 

Controlled Incrementor Verilog Code 

 The following figure, Figure 37, shows the Verilog code used to design the controlled 

incrementor. The module is named exponent incrementor as it takes in the lower exponent 

as input and increments it depending on the select input but shown in the code below. 

 

Figure 37 Controlled Incrementor Code 

 

 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

46 
 

2.3.2.9 Mantissa Normalizer  

 The final module for this floating point adder is the mantissa normalizer. The 

mantissa normalizer is the same module that used before for right shifting the mantissa 

before the mantissa addition carried out by carry lookahead adder. The mantissa normalizer 

module is the same module called mantissa right shifter module that was explained in the 

section above.  

 The 24-bit input for this particular module comes from the output of the carry look 

ahead adder module that computes the mantissa addition. The other 5-bit input for this 

right shifter mantissa normalizer input comes from the Cout output of the same carry look 

ahead adder which signifies how much the mantissa must be shifted (0 bits or 1 bit). 

 The mantissa normalizer shifts the mantissa addition output only when the Cout 

output of the carry look ahead adder is high. The high value from the adder signifies that the 

mantissa addition has a carry of 1 and that signifies that the mantissa needs to be shifted to 

be normalized for the final output. 

 The output of this right shifter is the final mantissa value used to represent the 32 bit 

binary floating point result. 

 Refer to the ‘Mantissa Right Shifter’ section for Verilog code, block diagram, and the 

RTL diagram for this final module.   

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

47 
 

2.4 Floating Point Adder Results 

 The whole floating point adder unit was tested on Quartus’ ModelSim simulation 

software using testbenches and waveforms. The design simulation involved generating 

setup scripts for the simulator, compiling simulation models, running the simulation, and 

viewing the results. 

2.4.1 Floating Point Adder Compilation Report 

 

Figure 38 FPA Compilation Report 

 

 

 

 

 

 

 

 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

48 
 

2.4.2 Floating Point Adder Testbench 
 

A testbench is used to generate the stimulus and applies it to the implemented 

floating point adder and compare the results against our calculations based on the IEEE 754 

floating point convertor online. This online easy to use convertor allows us to input a 

decimal input value and returns a binary or hexadecimal value in 32-bit binary encoding 

format or vice versa [24]. The design was synthesized using precision synthesis tools 

targeting the DE-1 SoC Max 10 FPGA machine family.  

 

Figure 39 FPA Testbench 

 



Floating Point Processor   Kartikey’s Master Thesis 

49 
 

2.4.3 Floating Point Adder Simulation Results 
 

Case A: 

A: 

 
 

B:  

 
 

R: 

 
 
Simulation Results: 

 

 
Figure 40 Case A Result  



Floating Point Processor   Kartikey’s Master Thesis 

50 
 

Case B: 
 
A: 

 

B: 

 

R: 

 

Simulation Result: 

 
Figure 41 Case B Result  



Floating Point Processor   Kartikey’s Master Thesis 

51 
 

Case C: 
 
A: 

 

B: 

 

R: 

 

Simulation Result: 

 
Figure 42 Case C Result 



Floating Point Processor   Kartikey’s Master Thesis 

52 
 

Case D: 

A: 

 

B: 

 

R: 

 

Simulation Result: 

 
Figure 43 Case D Result 



Floating Point Processor   Kartikey’s Master Thesis 

53 
 

2.5 Conclusion  

This section of the thesis presented an implementation of a floating point adder that 

supports the IEEE 754-2008 binary interchange format. The adder implements this 

algorithm using a carry look ahead adder for faster computation and used various different 

modules to compute the final output. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

54 
 

Chapter 3: Floating Point Subtractor 

In this chapter, we describe an efficient implementation of an IEEE 754 single precision 

floating point subtractor targeted for DE-1 Cyclone V FPGA. Verilog is used to implement a 

technology-independent pipelined design. The subtractor implementation handles the 

overflow and underflow cases. Rounding is implemented to give more precision when using 

the Ripple Carry Subtractor for faster calculations. The Floating-Point Subtractor was verified 

by testbench simulations on ModelSim. 

In this chapter we will dive deeper into the floating-point subtractor algorithm, 

architecture, code design, RTL diagram, and simulation results.  

We will talk about the procedure in subtraction operations and a first look at the code 

design in a block diagram way followed by deeper understanding of code development.  

 Floating point subtraction is done by extracting signs, subtracting exponents, 

subtracting mantissa values, and shifting the mantissa for normalization. 

 Floating-Point Subtraction is a mirror image of floating-point addition which is why a 

lot of algorithm steps and modules would be similar or mirror of the previous chapter.   

 There are five basic phases of designing a Floating-Point Subtractor: 

1) Check for Zeroes. 

2) Align the Significands. 

3) Subtract the Significands. 

4) Normalize the Significand 

5) Normalize the Exponent if needed. 

 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

55 
 

3.1 Floating Point Subtraction Algorithm  

As described in the above topics, floating point number is in the format of: 

Z= (-1S) * 2 (E – Bias) * (1.M) 

To subtract two floating point numbers A & B the different steps to follow are [25]: 

1) Extracting sings, exponents and mantissas of both A and B numbers. 

2) Calculating the output sign. 

3) Treating the special cases. 

4) Finding out the data types of numbers given 

5) Subtracting the two exponents. 

6) Shifting the lower exponent number mantissa to the right. 

7) Subtraction of the mantissa values  

8) Normalizing mantissa by bit shifting. 

9) Detecting exception, overflow, and underflow. 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

56 
 

3.1.1 Floating-Point Subtraction Example  

A = 50.5 (base 10) 

B = 21.25 (base 10) 

 

Figure 44 Binary Representation Sub Example  

 
1) S1 = 0, E1 = 10000100, M1 = 10111100000000000000000 

S2 = 0, E2 = 10000011, M2 = 01001000000000000000000 

 
2) Exponent Subtraction 

 

 

             Figure 46 Sub Exponent Subtraction  

 E = 00000001 = 110 

3) Right Shift Mantissa M2 by E1 – E2 (1) 

1.M2 = 1.01001000000000000000000 

Shifted Mantissa = 0.10010000000000000000000 

 



Floating Point Processor   Kartikey’s Master Thesis 

57 
 

4) Subtract the Mantissa 

 

               Figure 47 Subtract Mantissa Subtraction  

5) No normalization needed 

6) No exponent incrementation needed.  

7) Result 

 

                 Figure 48 FPS Example Result 



Floating Point Processor   Kartikey’s Master Thesis 

58 
 

3.2 Floating Point Subtractor Flowchart  

The below, Figure 49, showcases a typical flowchart that is used to design a floating 

point subtractor. The figure shows a step by step narrative and displays the high level 

functions that is required to compute floating point subtraction. The flowchart shows block 

level diagram and each block or element is implemented in hardware and is described in detail 

in the following topics of the thesis [26]. 

 
     Figure 49 Floating Point Subtractor Flowchart 

 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

59 
 

3.3 Floating Point Subtractor Hardware  

In this section of the thesis we will start explaining and diving deeper into the 

hardware implementation of the floating point subtractor. This section will start by 

elaborating the flowchart further with help of showcasing the hardware architecture used to 

design the module followed by detailed description of each module used in the architecture.  

 After understanding the theory of hardware implementation and the architecture of 

floating point subtractor the thesis will show the code development that achieved out final 

objective of building this floating point unit [27]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

60 
 

3.3.1 Floating Point Subtractor Hardware Architecture  

 The below figure, Figure 50, showcases the hardware architecture that was designed 

and coded to implement synthesizable 32-bit floating point subtractor using Verilog.  

 
         Figure 50 Floating Point Subtractor Architecture 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

61 
 

This floating point architecture uses a total of eight modules that serve various unique 

purposes in making the design work. The modules are:  

• Mantissa Shifter Multiplexer 

• Modular Exponent Subtractor 

• Exponent Decrement Multiplexer 

• Controlled Decrement 

• Mantissa Subtract Multiplexer  

• Mantissa Right Shifter 

• Ripple Carry Subtractor 

• Mantissa Normalizer 

3.3.2 Floating Point Subtractor Hardware Implementation 

 In this section, we will discuss the hardware implementation designed for the floating 

point subtractor and explain each module and each algorithm step in detail. 

3.3.2.1 Sign Bit Calculation  

 Subtracting two positive numbers will result in a positive number which makes this 

section easy for us since there will be another module to take care of subtraction. The table 

below shows sign operations for various cases: 

 

 

 
 
 

A’s Sign Symbol B’s Sign Operation 

+ - + + 

+  -  - + 

- - - - 

- - + - 

Table 8 Sign Operations  



Floating Point Processor   Kartikey’s Master Thesis 

62 
 

3.3.2.2 Modular Exponent Subtractor 

 This modular exponent subtractor is responsible for subtracting the exponent of the 

second input from the exponent of the first input. This module of hardware description 

language ensures that the exponent difference value is absolute in nature. Before the 

subtraction operation is performed the program doesn’t know which exponent is higher in 

value. The modular exponent subtractor allows us to not just compute the absolute exponent 

difference, it also allows us to identify the larger exponent which further identifies the 

exponent that will be used for the incrementor module and ultimately computing the result 

of the entire operation.  

 To get detailed description of the modular exponent subtractor, and understand all 

the components of this module by help of block diagrams, RTL diagrams, and code snippets, 

please refer to section 2.3.2.2 in chapter 2: 32-bit Floating Point Adder.  

3.3.2.3 Mantissa Shifter Multiplexer 

 The next module used to design a floating point adder is a 2-to-1 multiplexer. As 

shown in the block diagram in Figure 51, this kind of multiplexer consists of two inputs A 

and B, and one select input called S, and finally one output labelled R.  

 

Figure 51 Mux Block Diagram 2 



Floating Point Processor   Kartikey’s Master Thesis 

63 
 

 The output of the multiplexer is dependent on the select input to the multiplexer 

which connects one of the inputs to the output at a time. Since there are only two input 

signals we only require a 1 bit select signal to link one of the inputs to the output. 

 The objective of this Mantissa Shifter Multiplexer is to connect the lower input out of 

two inputs to the input of a right shifter unit that will be discussed in the next section. The 

decision to select which input is the lower one is taken by Cout of the exponent subtractor 

module.  

The select input coming in from Cout output of the exponent subtractor decides 

which input goes through the multiplexer and gets inputted into the shifter unit. If the Cout 

value is high, mantissa A gets selected for shifter unit and if Cout is low, mantissa B gets 

selected for the output of the shifter unit.  

This operation is described in the truth table below: 

Input 1 Input 2 Select Output 

A B 1 A 

A B 0 B 

 

Table 9 MUX Truth Table 

 
 To get detailed description of the Mantissa Shifter Multiplexer and understand all the 

components of this module by help of block diagrams, RTL diagrams, and code snippets, 

please refer to section 2.3.2.3 in chapter 2: 32-bit Floating Point Adder.  

 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

64 
 

3.3.2.4 Mantissa Right Shifter  

 For the next module of the floating point adder, we implemented a Barrel Shifter 

type of right shifter unit. A barrel shifter is a combinational circuit that facilitates right shift 

for this adder. Unlike regular shifter a barrel shifter is a sequential circuit.  

 If we were to use a regular register based shifter, a 24 bit data shift would take 

around 24 clock cycles to process the shift. However, with this barrel shifter the module will 

only need one clock cycle to compute the shift.  

 To get detailed description of the Mantissa Right Shifter and understand all the 

components of this module by help of block diagrams, RTL diagrams, and code snippets, 

please refer to section 2.3.2.4 in chapter 2: 32-bit Floating Point Adder.  

 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

65 
 

3.3.2.5 Mantissa Subtractor Multiplexer 

 Similar to its predecessor, this module is also a two-to-one multiplexer. The two 

inputs of this multiplexer are mantissa of input A and input B. The selector for this 

multiplexer is the same select for its predecessor, the Cout output from the exponent 

subtractor module.  

The purpose of this multiplexer is to select the mantissa out of two input mantissas 

with the higher exponent value. It essentially does the opposite of the previous mantissa 

multiplexer as it selects the mantissa with higher exponent value. The output of this 

multiplexer feeds into the mantissa adder.  

This mantissa multiplexer has the same Verilog code, block diagram, and RTL 

diagram as the multiplexer explained in the section above. However, the truth table would 

be inverted for the desired operation as shown in table below: 

 

Input 1 Input 2 Select Output 

A B 0 A 

A B 1 B 

 

Table 10 Multiplexer 2 Table  

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

66 
 

3.3.2.6 Mantissa Ripple Carry Subtractor 

 The next step in the floating point subtractor algorithm is subtracting the mantissa of 

input A with the mantissa of input B. The first mantissa for this subtractor operation will 

come directly from the input’s mantissa. While the other input for this subtraction will come 

from the right shifter unit that we just described in the section above. 

 To implement the mantissa subtractor module in hardware implementation, we 

make use of a ripple carry subtractor in Verilog language. A ripple carry subtractor is 

composed of a variable number of full adders cascaded together. The number of full adders 

cascaded in this design, depends on the number of input bits to be added.  

 The 8-bit version of the ripple carry subtractor is described by using block diagram, 

RTL diagram, and Verilog code in the modular subtractor section above. In this section we 

will dive deeper into the ripple carry subtractor and show modifications needed to make the 

subtractor operate on 24 bit numbers.  

Mantissa 24-bit Ripple Carry Subtractor RTL Diagram 

The following figure, Figure 52, shows an RTL diagram of the 24 bit ripple carry 

subtractor that was used to compute the mantissa subtraction and the carry out.  

As it can be seen in the RTL diagram, there are a total of 24 full adders to compute 

the operation for each bit of input and compute a total of 24 bit output. 

 As can also be seen in the RTL diagram the Cout output is computed based on the 

Carry output of the last full adder and the opcode (1 in case of subtraction, 0 in case of 

addition) input for the ripple carry subtractor. The Cout is low when Exponent of input A is 

greater than exponent of input B, and Cout is high for the other way around.  

 



Floating Point Processor   Kartikey’s Master Thesis 

67 
 

 

Figure 52 24 bit Ripple Carry Sub RTL 



Floating Point Processor   Kartikey’s Master Thesis 

68 
 

Mantissa 24-bit Ripple Carry Subtractor Verilog Code 

 The figure below, Figure 53, shows the Verilog code for the 24-bit ripple carry 

subtractor. The module consists of two 24-bit inputs, opcode (1 for negative), 24-bit output, 

and a carry output. The code mainly consists of one for loop that synthesizes a full adder 24 

times for every bit of input and output. 

 

Figure 53 24-bit Ripple Cary Sub Code 

 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

69 
 

3.3.2.7 Exponent Decrement Multiplexer 

Similar to its predecessor, this module is also a two-to-one multiplexer. The two 

inputs of this multiplexer are exponents of input A and input B. The selector for this 

multiplexer is the same select for its predecessor, the Cout output from the exponent 

subtractor module.  

The purpose of this multiplexer is to select the exponent out of two input exponents 

with the higher exponent value. The output of this multiplexer feeds into the exponent 

decrement module that we will discuss in later section.  

This exponent multiplexer has the same Verilog code, block diagram, and RTL 

diagram as the multiplexer explained in the sections above. However, the truth table would 

be inverted for the desired operation as shown in table below: 

Input 1 Input 2 Select/Cout Output 

EA EB 1 EA 

EA EB 0 EB 

 

Table 11 Multiplexer 3 Table  

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 



Floating Point Processor   Kartikey’s Master Thesis 

70 
 

3.3.2.8 Controlled Decrement 

In this section of the thesis, we will move on to the next module of the floating point 

adder unit, the controlled exponent decrement. This module is similar to the ripple carry 

subtractor we discussed earlier in the thesis, with slight modifications for our purposes.  

 The controlled exponent decrement module is built of eight different full adders 

cascaded together with the Cout of each full adder being outputted to the input of the next 

full adder. Additionally, the first input of each full adder is connected to the input  and the 

other input of those full adders are all hard coded with zeroes. Except for the very first full 

adder which takes its second input from the other input to the module. The second input of 

this decrement module is passed through an XOR gate along with an opcode input.  

 The XOR gate converts the select input into a twos complement version and 

performing the addition operation on the twos complement number would give us the 

decremented result.  

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

71 
 

Controlled Decrement Block Diagram  

 The following figure, Figure 54 shows the block diagram used for implementing the 

controlled decrement module. The block diagram shown below shows the block diagram for 

decrementing a 4-bit number based on select input. The modification to make this 8-bit 

decrement is shown and explained in the sections below.  

 
Figure 54 Controlled Decrement Block 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

72 
 

Controlled Decrement RTL Diagram  

 As shown in Figure 55, the RTL diagram of the controlled exponent decrement shows 

the 8-bit input labelled E, and another 1-bit input labelled select, in addition there is an 8-bit 

output labelled as Out, and finally a 1-bit Cin input. 

 Each individual bit of the 8-bit input comes directly from the output of the exponent 

decrement multiplexer that was discussed in the previous section. Each bit of this 8-bit input 

feeds into seven different full adder and one half adder. The other 1-bit input called select 

goes into the first half adder. The output of the first half adder gets cascaded through to the 

next full adders and the outputs are all concatenated together to form the 8-bit output that 

is shown coming out of this RTL diagram.   

 The output of this controlled decrement depends of the select input. The select 

input comes from the Cout output of the carry look ahead adder. If the select is high it 

signifies that the exponent must be decremented to be normalized for final output. If the 

select is low the exponent is outputted as it was inputted. This output makes up for the final 

exponent part of the 32-bit result. 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

73 
 

 

Figure 55 Controlled Decrement RTL 



Floating Point Processor   Kartikey’s Master Thesis 

74 
 

Controlled Decrement Verilog Code 

 The following figure, Figure 56, shows the Verilog code used to design the controlled 

decrement. The module is named exponent decrement as it takes in the lower exponent as 

input and decrements it depending on the select input but shown in the code below. 

 

Figure 56 Controlled Decrement Code 

 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

75 
 

3.3.2.9 Mantissa Normalizer  

The final module for this floating point subtractor is the mantissa normalizer. The 

mantissa normalizer is a variation of the module that used before for right shifting the 

mantissa before the mantissa subtraction was carried out by ripple carry subtractor. The 

mantissa normalizer module is a module called mantissa left shifter module which is the 

opposite of the right shifter module discussed above.  

 For this module of the floating point subtractor, we implemented a Barrel Shifter 

type of left shifter unit. A barrel shifter is a combinational circuit that facilitates left shift for 

this subtractor. Unlike regular shifter a barrel shifter is a sequential circuit.  

Mantissa Left Shifter Block Diagram 

 The block diagram for the mantissa barrel shifter is shown down below in Figure 57. 

The first level showcases a 4 bit left shift, the second level shows a 2 bit left shift, and the 

last level shows a 1 bit left shift [28]. 

 
         Figure 57 Left Shifter Block Diagram 



Floating Point Processor   Kartikey’s Master Thesis 

76 
 

 Mantissa Left Shifter Verilog Code 

The following figure, Figure 58, shows the code for a mantissa left shifter unit used 

to implement the floating point subtractor [29].  

The mantissa left shifter unit takes in the smaller mantissa from two inputs, which is 

being selected by the multiplexer described above. The outputted mantissa from 

multiplexer then gets inputted into this barrel shifter that uses multiplexers to shift the 

mantissa by the desired shift value.  

This shift value is achieved from the exponent subtractor unit module. The mantissa 

is shifted the same value as of the difference between the two exponents. 

 

Figure 58 Left Shifter Code 



Floating Point Processor   Kartikey’s Master Thesis 

77 
 

The 24-bit input for this particular module comes from the output of the ripple carry 

subtractor module that computes the mantissa subtraction. The other 5-bit input for this 

left shifter mantissa normalizer input comes from the Cout output of the same carry look 

ahead adder which signifies how much the mantissa must be shifted (0 bits or 1 bit). 

 The mantissa normalizer shifts the mantissa addition output only when the Cout 

output of the ripple carry subtractor is high. The high value from the subtractor signifies 

that the mantissa subtraction has a carry of 1 and that signifies that the mantissa needs to 

be shifted to be normalized for the final output. 

 The output of this left shifter is the final mantissa value used to represent the 32 bit 

binary floating point result. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

78 
 

3.4 Floating Point Subtractor Results 

 The whole floating point subtractor unit was tested on Quartus’ ModelSim 

simulation software using testbenches and waveforms. The design simulation involved 

generating setup scripts for the simulator, compiling simulation models, running the 

simulation, and viewing the results. 

3.4.1 Floating Point Subtractor Compilation Report 

 
 

Figure 59 FPS Compilation Report 

 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

79 
 

3.4.2 Floating Point Subtractor Testbench 

A testbench is used to generate the stimulus and applies it to the implemented 

floating point subtractor and compare the results against our calculations based on the IEEE 

754 floating point calculator online [30]. The design was synthesized using precision 

synthesis tools targeting the DE-1 SoC Max 10 FPGA machine family.   

 

Figure 60 FPS Testbench  

 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

80 
 

3.4.3 Floating Point Subtractor Simulation Results 
 

Case A: 

A:  

 
 
B: 

 
 
R: 

 
 

Simulation Results: 
 

 
Figure 61 FPS Case A Result 



Floating Point Processor   Kartikey’s Master Thesis 

81 
 

Case B: 
 
A: 

 

B: 

 

R: 

 

Simulation Result: 
 

 
Figure 62 FPS Case B Result 



Floating Point Processor   Kartikey’s Master Thesis 

82 
 

Case C: 
 
A: 

 
 
B: 
 

 
  
R: 
 

 
 
Simulation Result: 
 

 
      Figure 63 Case C Result 



Floating Point Processor   Kartikey’s Master Thesis 

83 
 

Case D: 

A: 

 
 
B: 
 

 
 
R: 
 

          
 
Simulation Result: 
 

 
Figure 64 Case D Result 



Floating Point Processor   Kartikey’s Master Thesis 

84 
 

3.5 Conclusion  

This section of the thesis presented an implementation of a floating point subtractor 

that supports the IEEE 754-2008 binary interchange format. The subtractor implements this 

algorithm using a ripple carry subtractor for faster computation and used various different 

modules to compute the final output.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

85 
 

Chapter 4: 32-bits Floating Point Multiplier  

In this chapter, we describe an efficient implementation of an IEEE 754 single precision 

floating point multiplier targeted for DE-1 Cyclone V FPGA. Verilog is used to implement a 

technology-independent pipelined design. The multiplier implementation handles the 

overflow and underflow cases. Rounding is implemented to give more precision when using 

the Wallace Tree Multiplier for faster calculations. The Floating-Point Multiplier was verified 

by testbench simulations on ModelSim. 

In this chapter we will dive deeper into the floating-point multiplier algorithm, 

architecture, code design, RTL diagram, and simulation results. Floating-point multiplication 

is much less complicated than addition and subtraction as the following discussion 

showcases: 

We will talk about the procedure in multiplication operations and a first look at the 

code design in a block diagram way followed by deeper understanding of code development.  

 Floating point multiplication is done by extracting signs, adding exponents, multiplying 

mantissa values, and shifting the mantissa for normalization [31]. 

 There are five basic phases of designing a Floating-Point Multiplier: 

1) Check for Zeroes. 

2) Add exponents. 

3) Subtract Bias. 

4) Multiply the Significands. 

5) Normalize the Significand. 

6) Normalize the Exponent if needed. 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

86 
 

4.1 Floating Point Multiplication Algorithm  

As described in the above topics, floating point number is in the format of: 

Z= (-1S) * 2 (E – Bias) * (1.M) 

To multiply two floating point numbers A & B the different steps to follow are [32]: 

1) Extracting sings, exponents and mantissas of both A and B numbers. 

2) Calculating the output sign. 

3) Treating the special cases. 

4) Finding out the data types of numbers given 

5) Adding the two exponents. 

6) Subtracting the bias from exponent addition. 

7) Multiplying the mantissa values  

8) Normalizing mantissa by bit shifting. 

9) Normalizing exponent if necessary. 

10) Detecting exception, overflow, and underflow. 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

87 
 

4.1.1 Floating-Point Multiplication Example  

A = 125.125 (base 10) 

B = 12.0625 (base 10) 

 

          Figure 65 Binary Presentation Mul Example 

 
1) S1 = 0, E1 = 10000101, M1 = 11110100100000000000000 

S2 = 0, E2 = 10000010, M2 = 10000010000000000000000 

 

2) Sign bit calculation 

 
               

                Figure 66 XOR Sign Subtraction  

 S3 = 0 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

88 
 

 
3) Exponent Addition  

 

          Figure 67 Mul Exponent Addition  

Unbiased Exponent = 100000111 

4) Subtract Bias 

 

            Figure 68 Mul Bias Subtraction   

 Biased Exponent = 010001000 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

89 
 

 
5) Multiply the Mantissa 

 

                Figure 69 Mantissa Multiplication  

 1.M3 = 10.1111001010101001000000000000000000000000000000 
 

6) Left Shift the Mantissa for normalization 

Left Shifted Mantissa = 1.111100101010100100000000000000000000000000000 

7) Increment the exponent 

 

           Figure 70 Incrementing Exponent  

 E = 10001000 
 

8) Result 
 

 
 

                     Figure 71 FPM Example Result 



Floating Point Processor   Kartikey’s Master Thesis 

90 
 

4.2 Floating Point Multiplier Flowchart  

The below, Figure 72, showcases a typical flowchart that is used to design a floating 

point multiplier. The figure shows a step by step narrative and displays the high level functions 

that is required to compute floating point multiplication. The flowchart shows block level 

diagram and each block or element is implemented in hardware and is described in detail in 

the following topics of the thesis [33]. 

 
      Figure 72 Floating Point Multiplier 



Floating Point Processor   Kartikey’s Master Thesis 

91 
 

4.3 Floating Point Multiplier Hardware  

 In this section of the thesis we will start explaining and diving deeper into the 

hardware implementation of the floating point multiplication. This section will start by 

elaborating the flowchart further with help of showcasing the hardware architecture used to 

design the module followed by detailed description of each module used in the architecture.  

 After understanding the theory of hardware implementation and the architecture of 

floating point multiplication the thesis will show the code development that achieved out 

final objective of building this floating point unit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

92 
 

4.3.1 Floating Point Multiplier Hardware Architecture  

 The below figure, Figure 73, showcases the hardware architecture that was designed 

and coded to implement synthesizable 32-bit floating multiplier adder using Verilog 

 
          Figure 73 Floating Point Multiplication Architecture 

 
 
 

Mantissa 
Right Shifter 



Floating Point Processor   Kartikey’s Master Thesis 

93 
 

This floating point architecture uses a total of ten modules that serve various unique 

purposes in making the design work. The modules are:  

• Exponent CLA Adder 

• Mantissa Append Module 

• 24-bit Wallace Multiplier 

• Exponent Incrementor 

• Compute Flags 

• Data Classifier 

• Modular Subtractor 

• Mantissa Right Shifter 

• Mantissa Product Rounding 

• Compute Output 

 

4.3.2 Floating Point Multiplier Hardware Implementation 

 In this section, we will discuss the hardware implementation designed for the floating 

point multiplier and explain each module and each algorithm step in detail. 

4.3.2.1 Sign Bit Calculation  

 Multiplying two positive numbers will result in a positive number. Multiplying two 

negative numbers will result in a negative number. Multiplying one positive number and one 

negative number will result in a negative number.  The sign bit calculation for this floating 

point multiplication unit is done using an XOR gate.  The table below shows sign operations 

for various cases: 

 
 

A’s Sign Symbol B’s Sign Operation 

+ x + + 

+ x - - 

- x + - 

- x - - 

Table 13 Sign Operations Mul 



Floating Point Processor   Kartikey’s Master Thesis 

94 
 

4.3.2.2 Data Classification Module 

 A 32-bit binary floating point number can be encoded to form a total of six different 

cases based on the value of each data bit. The six different data types and the criteria that 

must be met for their encoding are [34]: 

1) Signalling NaN (sNaN) 

 

Figure 74 sNaN Format  

 If all eight exponent bits are 1. 

 And MSB of mantissa is 0. 

 And at least one bit from the rest of mantissa is 1. 

2) Quiet NaN (qNaN) 
 

 

                              Figure 75 qNaN Format 

 If all eight exponent bits are 1. 

 And MSB of mantissa is 1. 

 And rest of mantissa be zero or non-zero.  



Floating Point Processor   Kartikey’s Master Thesis 

95 
 

3) Negative Infinity (- ∞) 

 

Figure 76 Plus Infinity Format 

If sign bit of the number is 1. 

And all eight exponent bits are 1. 

 And MSB of mantissa is 0. 

 And rest of mantissa bits are also zero.  

4) Positive Infinity (+ ∞) 

 

Figure 77 Negative Infinity Format 

If sign bit of the number is 0. 

And all eight exponent bits are 1. 

 And MSB of mantissa is 0. 

 And rest of mantissa bits are also zero.  

 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

96 
 

5) Positive Zero (+ Z) 

 

Figure 78 Positive Zero Format 

If sign bit of the number is 0. 

 If all eight exponent bits are 0. 

 And MSB of mantissa is 0. 

 And rest of mantissa bits are also 0.  

6) Negative Zero (- Z) 

 

 Figure 79 Negative Zero Format 

 
If sign bit of the number is 1. 

 If all eight exponent bits are 0. 

 And MSB of mantissa is 0. 

 And rest of mantissa bits are also 0.  

 

0 

1 



Floating Point Processor   Kartikey’s Master Thesis 

97 
 

7) Subnormal  

 

Figure 80 Subnormal Format 

 
 If all eight exponent bits are 0. 

 At least one bit from the rest of mantissa is 1. 

8) Normal 
 

 
 

Figure 81 Normal Format  

 If at least one exponent bit is 1. 

 At least one bit from the rest of mantissa is 1. 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

98 
 

Data Classification Module Verilog Code 

 The following figure, Figure 82, shows the Verilog code used for designing the data 

classification model with all the criteria described above: 

 
Figure 82 Data Classification Verilog Code 

 The Verilog code utilizes AND & NOR reduction operators to check all the bits of 

exponents and significands for 1s and 0s respectively. The reduced variable is then used to 

check different cases in accordance with all the criteria defined by IEEE 754 standards.  

 This data classification module is used twice for both A and B inputs for the 

multiplication operation. Input A and Input B are both 32-bit inputs to the two instantiations 

of this module. The output of this module are the various data types, the Zero data type 

output is later used in another module to compute the hidden mantissa bit. 



Floating Point Processor   Kartikey’s Master Thesis 

99 
 

Data Classification Module RTL Diagram 

The following figure, Figure 83, shows the RTL diagram that was outputted when the 

Verilog code shown above was compiled. The RTL diagram’s first level shows the AND & 

NOR reduction operator at work, followed by which there are AND gates at level two that 

finally computes the various data types as high or low. 

 
 Figure 83 Data Classification RTL Diagram 

 
 This RTL diagram is generated twice in the entire floating point multiplication unit as 

it is used to classify both A and B inputs into different data types described above.  

 



Floating Point Processor   Kartikey’s Master Thesis 

100 
 

4.3.2.3 Exponent Carry Lookahead Adder 

 This exponent carry lookahead adder module is the first arithmetic operation 

module that constitutes the floating point multiplication algorithm described in section 4.1 

above in this chapter.  

 This module’s basic task is to add the exponent of input A and exponent of input B. 

The module used to carry out this addition operation is the Carry Lookahead Adder that is 

described in great detail in section 2.3.2.6.  

 The only difference between the carry lookahead adder implemented in section 

2.3.2.6 and this section is that the previous adder worked with 24-bits inputs, whereas this 

adder operates on 8-bits inputs. The carry look ahead adder described in section 2.3.2.6 was 

a parametrized implementation, hence there was only one modification necessary to 

change the input parameter from 24-bits to 8-bits.  

 

Figure 84 Exponent Adder Instantiation  

 Figure 84 shows the instantiation of the exponent carry look ahead adder modified 

for 8-bits operation by changing the value that is assigned to variable N. The output of this 

exponent adder feeds into the next module that is the modular bias subtractor.  

 Please refer to section 2.3.2.6 for details about Carry Look Ahead Adder including 

Verilog code, RTL Diagram, and Block Diagram.  

 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

101 
 

4.3.2.4 Modular Bias Subtractor 

 This modular bias subtractor module is the next arithmetic operation module that 

constitutes the floating point multiplication algorithm described in section 4.1 above in this 

chapter.  

 This module’s primary task is to subtract the fixed bias value of 12710 from the result 

of the exponent carry look ahead adder module. When our design added the two exponent 

values with each other, the bias of those two exponents got doubled. This module subtracts 

the extra bias value and normalizes the exponent back to its correct magnitude.  

 The modular bias subtractor makes use of the same module that was used in section 

2.3.2.2 of chapter two to carry out exponent subtraction. The instantiation for this module 

is shown in Figure 85 below: 

 

Figure 85 Bias Subtraction Instantiation  

 
 As shown in the instantiation above in Figure 85, the inputs to the modular 

subtractor is the output of the exponent addition, along with 0011111112 which is 127 in 

decimal. The modular subtractor is also a parameterized module which has been modified 

to operate on 9-bits for this operation. The output of this module is absolute value and it 

will be fed to the exponent incrementor module discussed in coming sections. 

Please refer to section 2.3.2.2 for details about the modular subtractor and all its 

constituting elements including Verilog code, RTL Diagram, and Block Diagram. 



Floating Point Processor   Kartikey’s Master Thesis 

102 
 

4.3.2.5 Mantissa Append Module 

 This module acts as a preparation step before we get to the most crucial step of the 

floating point multiplication algorithm which is mantissa multiplication. 

 This module’s primary task is to compute the hidden/implied bit of the mantissa that 

exists at the most significant bit spot but hidden for representation purposes. The hidden bit 

of a mantissa depends on the data type of each input. If the data type of the input, as 

computed by the data classification module, is of type Subnormal, then it is computed that 

the most significant bit of the 24-bit mantissa is a 0. If the data type of an input is computed 

as non- Subnormal then it is decided that the most significant bit of the mantissa is a 1. 

Mantissa Append Module Block Diagram 

 The following figure, Figure 86, shows the block diagram for Mantissa Append 

module discussed above. The mantissa append module is essentially a two-to-one 

multiplexer with two inputs and one output.  

 The module has another input labelled as S which selects which input gets linked 

through and outputted out of the module and in turn gets fed into the Wallace multiplier. 

 

Figure 86 Mantissa Append Block Diagram  

 
 



Floating Point Processor   Kartikey’s Master Thesis 

103 
 

Mantissa Append Module Verilog Code 

 The following figure, Figure 87, shows the code for the mantissa append module.  

 

Figure 87 Mantissa Append Verilog Code  

 This module takes in two 23-bits inputs which come directly from the mantissa of 

input A. The input S comes from the Subnormal output of the data classification module. As 

shown in the code, if the select is high ( i.e. input is of type subnormal) then the output of 

the module is the input of the module appended with value of 0. If the select is low the 

output of the module is the input of the module appended with value of 1.  

 The mantissa append module is instantiated and used twice in this operation. The 

first use of this module is deciding on the hidden bit of mantissa of input A as it takes in 

mantissa of input A as its input. The second use of this module is deciding on the hidden bit 

of mantissa of input B as it takes in mantissa of input B as its input.  

 The outputs of both the modules feeds into the two different inputs of the Wallace 

multiplier as the mantissa has now been prepped for multiplication. The output of those 

modules are 24-bits.  

 



Floating Point Processor   Kartikey’s Master Thesis 

104 
 

Mantissa Append Module RTL Diagram 

The figure below, Figure 88, shows the RTL diagram for the mantissa append module 

designed to output the mantissa to be feed to the multiplier unit. 

 

 

Figure 88 Mantissa MUX RTL 

The operation of this module is described in the table below: 

Input 1 Input 2 Select Output 

A B 1 {1’b0,A} 

A B 0 {1’b1,B} 

 

Table 14 Append Mantissa Truth Table 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

105 
 

4.3.2.6 Mantissa 32-bit Wallace Multiplier 

 The 32-bit Wallace tree mantissa multiplier module is the next arithmetic operation 

module that constitutes the floating point multiplication algorithm described in section 4.1 

above in this chapter.  

 This module takes in two 24-bits input A and B and produce a 48-bits output that is 

the multiplication result of inputs A and B. The input A to this module comes from the first 

mantissa append module and the second input, input B, comes from the second mantissa 

append module as described in the section above.  

 This modules carries out the mantissa multiplication operation using a Wallace tree 

multiplier algorithm that facilitates fast calculation and results in an efficient system.  

 Wallace tree multiplier is a multiplication algorithm that uses a tree structure to add 

partial products to obtain the product and carry two numbers. Wallace Tree Multiplier is a 

multiplier that works in parallel by making use of the Wallace tree algorithm. This algorithm 

allows for a fast and efficient multiplication of two integers.  

Wallace tree multiplier is a fast multiplier with medium complexity which can be 

described as its biggest advantage. Although this multiplier does require a large chip area 

due to a large amount of logic in terms of AND gates and full adders.  

  

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

106 
 

Mantissa 32-bit Wallace Multiplier Computation 

 In Wallace multiplier, any three wires with the exact same weights and input into a 

full adder. The result will be an output wire of the same weight and an output wire with a 

higher weight for each of the three input wires. Furthermore, If there are two wires of the 

same weight left, input them into a half adder. And finally, If there is just one wire left, 

connect it to the next layer of full adder or half adder depending on what is available in the 

next level to the immediate adjacent of the result.  

 For a 8 by 8 Wallace multiplier the computation steps are provided below [35]: 

Step 1: Partial product obtained after multiplication is taken at the first stage. The data is 

taken with 3 wires and added using adders and the carry of each stage is added with next 

two data in the same stage. 

 

Figure 89 Wallace Multiplication Stages 

 

 

 

P 
A 
R 
T 
I 
A
L 
 
P
R
O
D
U
C
T
S 

BITS OF MULTIPLIER 



Floating Point Processor   Kartikey’s Master Thesis 

107 
 

Step 2: Partial products reduced to two layers of full adders with same procedure. 

Stage 0: 

 

Figure 90  Wallace Multiplication Stage 0 

Stage 1:  

 

Figure 91 Wallace Multiplication Stage 1 

 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

108 
 

Stage 2: 

 

Figure 92 Wallace Multiplication Stage 2 

Stage 3: 
 

 
 

Figure 93 Wallace Multiplication Stage 3 

Step 3: Use Ripple carry adder or Carry look ahead adder to compute final addition  

 

Figure 94 Wallace Multiplication Step 3 

 
 
 
 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

109 
 

Mantissa 32-bit Wallace Multiplier Flow Diagram 

 The following figure, Figure 95, shows the flow diagram for a Wallace tree multiplier 
[36]. 
 

 

Figure 95 Wallace Multiplier Flow Diagram 

Ripple Carry Adder 
Or 

Carry Look Ahead Adder 



Floating Point Processor   Kartikey’s Master Thesis 

110 
 

Mantissa 32-bit Wallace Multiplier Block Diagram 

 The following figure, Figure 96, elaborates further on the flow diagram shown in the 

section just above. There are three primary levels to this Wallace tree multiplier algorithm 

as apparent from the data flow diagram [37].  

1) The partial product generator generates partial products using a simple two-input 

AND gate that is fed to the Wallace tree adder. 

2) Multiple half and a full adders that does additions in multiple levels and also 

considers carry generated by a previous level adder. 

3) The last level of the Wallace tree adder can be implemented ripple carry adder. To 

improve computation latency, a carry look-ahead adder can also be used. 

 
      Figure 96 Wallace Tree Mul Block Diagram 



Floating Point Processor   Kartikey’s Master Thesis 

111 
 

Mantissa 32-bit Wallace Multiplier Verilog Code 

The following figure, Figure 97, shows a code snippet from the 32-bit Wallace tree 

multiplier code. The code shows two 32 inputs being taken in the Wallace multiplier and a 

64-bit output being outputted.  

This design has been achieved by instantiating four 16-bit Wallace tree multiplier 

which in turn was written using the base 8-bit Wallace multiplier module. The code for all 

these different modules can be found in the annex of this thesis.  

 
      Figure 97 Wallace Multiplier Code 

 
 For our purposes, the floating point multiplier unit passed two 24 bit inputs to this 

multiplier while appending the rest of the bits with 0s to satisfy the 32-bit data requirement. 

Similarly, the 64 bit output was truncated to be 48 bits to get the required length of data 

that is essential to the computation of this multiplication module.  

 



Floating Point Processor   Kartikey’s Master Thesis 

112 
 

Mantissa 32-bit Wallace Multiplier RTL Diagram 

 The following figure, Figure 98, shows the RLT Diagram for a 32-bit Wallace tree 

multiplier. 

 
Figure 98 Wallace Tree 32-bit RTL  

 The following figure, Figure 99, shows the RLT Diagram for a 32-bit Wallace tree 

multiplier. 

 
Figure 99 Wallace Tree 16-bit RTL 

 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

113 
 

 The following figure, Figure 100, shows the RLT Diagram for a 8-bit Wallace 

multiplier. 

 
Figure 100 Wallace Tree 8-bit RTL 



Floating Point Processor   Kartikey’s Master Thesis 

114 
 

4.3.2.7 Mantissa Right Shifter 

 The next module for the floating point multiplication is used to normalize the output 

coming out from the previous module which is the mantissa Wallace multiplier. This module 

takes in the 48-bit mantissa product that is outputted from the previous module and checks 

the most significant bit of the mantissa product to decide for shifting operation. The 

mantissa left shifter shifts the 48-bit product by 1-bit if the most significant bit of the 

product is low which is binary 0.  

 If most significant bit of the mantissa product is 0 then the product is already 

normalized and next 23 bits after most significant bits are taken into consideration for 

further operations by consequent modules.  

if most significant bit of the mantissa product is 1 then it is safe to assume that the 

next bit of the multiplication product is always 1, so starting from next to next bit, next 23 

bits are taken into consideration for further operations by consequent modules.  

 

Figure 101 Right Shifter Instantiation  

 The figure above, Figure 101, shows the instantiation for left shifter module. As 

shown in the figure above, the shift variable depends on the most significant bit of the 

product. 

 Please refer to section 3.3.2.9 labelled Mantissa Normalizer to look at detailed 

description of the Left Shifter module including its workings, Code, & RTL Diagrams.  



Floating Point Processor   Kartikey’s Master Thesis 

115 
 

4.3.2.8 Mantissa Product Rounding 

 The next module for the floating point multiplication is used to round the output 

coming out from the previous module which is the mantissa left shifter module. The general 

rule when rounding binary fractions to the nth place prescribes to check the digit following 

the nth place in the number. If it’s 0, then the number should always be rounded down. If, 

instead, the digit is 1 and any of the following digits are also 1, then the number should be 

rounded up. 

Mantissa Product Rounding Verilog Code 

 The figure below, Figure 102, shows the Verilog code for the mantissa product 

rounding module. The code takes in a 24-bit input and returns a 1-bit output that is the 

product rounded value. The input for this module comes from the output of the previous 

left shifter module. The 24-bit input is sliced from the least significant bit to 24th bit of the 

48-bit output coming from the left shifter module. 

 

Figure 102 Product Rounding Verilog Code 

As shown in the code, we are performing a reductive OR operation on 23-bits of the 

input and then performing an AND operation between the reduced bit and the 24th bit of 

the input. This performs the algorithm described in the above paragraph. The output of this 

module is then used as the least significant bit of the mantissa product value. 



Floating Point Processor   Kartikey’s Master Thesis 

116 
 

Mantissa Product Rounding RTL Diagram 

As shown in Figure 103, the RTL diagram shows the logic that is used to design the 

product rounding module for our purposes. The product rounding module takes in a 24-bit 

input and has a one bit output that is used as the least significant bit for our final mantissa 

value used in computing the final results. 23-bits out of the 24-bits input excluding the most 

significant bit is fed together to an OR gate and reduced to a single bit as the output from 

the OR gate. This output is then inputted to an AND gate along with the most significant bit 

of the input. The output of this AND gate is our rounding result. 

 

Figure 103 Product Rounding RTL Diagram 



Floating Point Processor   Kartikey’s Master Thesis 

117 
 

4.3.2.9 Exponent Incrementor 

 In this section of the thesis, we will move on to the next module of the floating point 

multiplier unit, the controlled exponent incrementor. The exponent incrementor is 

discussed in great detail in section 2.3.2.7 of chapter two of this thesis. As discussed in the 

section mentioned , the controlled exponent incrementor has an 8-bit input labelled E, and 

another 1-bit input labelled select, in addition there is an 8-bit output labelled as Out.  

 Each individual bit of the 8-bit input comes directly from the output of the modular 

bias subtractor module that was discussed previously in this chapter. Each bit of this 8-bit 

input feeds into seven different full adder and one half adder. The other 1-bit input called 

select goes into the first half adder. The output of the first half adder gets cascaded through 

to the next full adders and the outputs are all concatenated together to form the 8-bit 

output that is talked about in section 2.3.2.7.   

 The output of this controlled incrementor depends on the select input. The select 

input comes from the most significant bit of the Wallace tree multiplier result. if most 

significant bit of the Wallace tree multiplier result is 1 then the product is of the form 2’b11, 

and we need to shift the decimal point to left to make the product normalized and 

therefore we add 1 to resultant exponent. If most significant bit of the Wallace tree 

multiplier result is 1 then the product is of the form 2’b01 and  the product is already 

normalized and nothing is added or subtracted to exponent.  

 

Figure 104 Exponent Incrementor Instantiation  



Floating Point Processor   Kartikey’s Master Thesis 

118 
 

4.3.2.10 Compute Flags 

 In this section of the thesis, we will move on to the next module of the floating point 

multiplier unit, the compute flags module. As discussed in chapter 1 of this thesis there are 

certain error flags that must be computed in accordance with the IEEE 754 standard when 

performing binary floating point arithmetic. 

 The flags that are expected to be computed during a floating point arithmetic 

operations are Zero, Exception, Underflow, and Overflow flags. The compute flags achieves 

this desired objective using logical operations on the final exponent and final mantissa value 

computed from modules discussed above [38]. 

• Exception: The exception flag is set to high if either of the two initial exponent values 

are 255 which is an error in the value of the initial exponent.  

• Zero: If the exception flag is set to low and all the final mantissa bits are low in value 

then the mantissa equals a value of zero. This is when the Zero flag is set high.  

• Overflow: If the Zero flag is set to high and the final exponent value in binary is a 

number greater than the upper bound limit of 255, the overflow flag is set to high. 

• Underflow: If the Zero flag is set to high and the final exponent value in binary is a 

number lesser than the lower bound limit of 127, the underflow flag is set to high. 

These four flags are computed in this module using AND and OR gates in association 

with NOT gates that compute the flags required following all required guidelines by the IEEE 

754 standard released in the year 2008. 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

119 
 

Compute Flags RTL Diagram 

The figure on following page, Figure 105, shows the RTL diagram that was resulted 

upon designing the compute flags module.  

 
Figure 105 Compute Flags RTL Diagram 

Exception 

As shown in the RTL diagram above in Figure 105, The exception value is driven using 

the 8-bit exponent values from input A and input B. These two 8-bit inputs are sent to two 

individual 8 input wide AND gates which perform a reductive operation on these bits. The 

output coming from this AND gate is single bit and if each bit of the 8-bit input is 1 the AND 

gate output shows a 1 to signify that the input is 255 in value (8’b11111111).  

Next, the outputs of the two individual AND gates are fed into the inputs of a 2 input 

wide OR gate. If either of the input of the OR gate is a 1 the output is also a 1 which then 

sets the exception flag high signifying at least one of the initial exponent value is 255. 



Floating Point Processor   Kartikey’s Master Thesis 

120 
 

Zero 

 As shown in RTL diagram zero flag is simply a combination of an equal to condition 

statement that compares the final mantissa value received from the left shifter module 

(section 4.3.2.6) with the zero value to check if it is equal to zero.  

Additionally, we employ a multiplexer which selects between the result of this equal 

statement and another zero value. The select to this multiplexer comes from the exception 

value computed in the previous paragraph. 

Overflow 

 As shown in RTL diagram the overflow flag is computed using the most significant bit 

and second most significant bit of the final exponent value computed using the exponent 

incrementor module. The 2-bits of the exponents are fed to two individual 3-input AND 

gate. The most significant bit of exponent is fed as inputted whereas the 7th bit of the final 

exponent is sent through a NOT gate before being fed to the AND gate..  

 Additionally, the third input value in the AND gate is the zero flag set in previous 

section. If the value of the output from this AND gate is set as high, it signifies that the 

exponent value is more than 255 and hence there is an overflow flag displayed.  

Underflow 

 As shown in RTL diagram the underflow flag is computed using the most significant 

bit and second most significant bit of the final exponent value computed using the exponent 

incrementor module. The 2-bits of the exponents are fed to two individual 3-input AND 

gate. Additionally, the third input value in the AND gate is the zero flag set in previous 

section. If the value of the output from this AND gate is set as high, it signifies that the 

exponent value is less than 127 and hence there is an underflow flag displayed.  

 



Floating Point Processor   Kartikey’s Master Thesis 

121 
 

Compute Flags Verilog Code 

The following figure, Figure 106, shows the Verilog code for a compute flag module 

used to implement the floating point multiplier.  The code shows all the assign statements 

that computes all the flags using logic gates discussed in previous sections pertaining to the 

RTL diagram of the module. 

 
Figure 106 Compute Flags Verilog Code 

 As seen in the figure above, the module takes in two 8-bits inputs in form of 

exponent values from input A and input B. Module also takes in the 23-bit final mantissa 

value, and the 8-bit final exponent value as inputs. The outputs of this module are different 

error flags such as Exception, Overflow, Underflow, and finally the Zero flag.  

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

122 
 

4.3.2.11 Compute Output 

 The final module of the floating point multiplication unit is the compute output 

modules. As suggested by the name this final module outputs the result of the entire 

floating point multiplication arithmetic. In this module we are not simply concatenating the 

final exponent value with the final mantissa value along with the sign bit to get the final 

result.  

This module has been designed in accordance with the IEEE 754 standard that 

dictates what the output of the arithmetic should look like based on the error flags that was 

computed in the previous module. The output for each computed error flag is defined by 

IEEE 754 standard is [39]: 

• Exception: 32-bits output with all bits being 0 in value. 

• Zero: The most significant bit of the result will be the sign bit computed previously. 

The rest of the 31-bits of the result will be all 0. 

• Overflow: The most significant bit of the result will be the sign bit computed 

previously. The next 8-bits of the result will be the exponent which will have all 8-

bits set to 1. The final 23 bits will be set to 0. 

• Underflow: The most significant bit of the result will be the sign bit computed 

previously. The rest of the 31-bits of the result will be all 0. 

• No Error: The most significant bit of the result will be the sign bit computed 

previously. The next 8-bits of the result will be the exponent as outputted from the 

exponent incrementor module. used previously in the design.  The final 23-bits of 

the result is as outputted from the left shifter module used previously in the design.  

These are standard output result values in case an error flag is noted by the floating 

point multiplication unit.  



Floating Point Processor   Kartikey’s Master Thesis 

123 
 

Compute Output RTL Diagram  

The figure on following page, Figure 107, shows the RTL diagram that was resulted 

upon designing the compute output module.  

 
Figure 107 Compute Output RTL Diagram 

 As shown in the RTL diagram the module uses four multiplexers hardcoded with the 

IEEE 754 standard as outputs. The select for these multiplexers come from the error flag 

module discussed in previous section.  

Compute Output Verilog Code 

The figure on following page, Figure 108, shows the Verilog code that was used for 

designing the compute output module.  

 
     Figure 108 Compute Output Verilog Code 



Floating Point Processor   Kartikey’s Master Thesis 

124 
 

4.4 Floating Point Multiplier Results 

 The whole floating point multiplier unit was tested on Quartus’ ModelSim simulation 

software using testbenches and waveforms. The design simulation involved generating 

setup scripts for the simulator, compiling simulation models, running the simulation, and 

viewing the results. 

4.4.1 Floating Point Multiplier Compilation Report 

 
Figure 109 FPM Compilation Report 

 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

125 
 

4.4.2 Floating Point Multiplier Testbench 

A testbench is used to generate the stimulus and applies it to the implemented 

floating point multiplier and compare the results against our calculations based on the IEEE 

754 floating point calculator online [40]. The design was synthesized using precision 

synthesis tools targeting the DE-1 SoC Max 10 FPGA machine family.   

 

Figure 110 FPM Testbench 

 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

126 
 

4.4.3 Floating Point Multiplier Simulation Results 
 

Case A: 

A:  

 
 
B: 

 
 
R:  

 

Simulation Results: 

 
     Figure 111 FPM Case A Result 



Floating Point Processor   Kartikey’s Master Thesis 

127 
 

Case B: 
 
A: 

 
 

B: 

 

R: 

 

Simulation Result: 
 

 
       Figure 112 FPM Case B 



Floating Point Processor   Kartikey’s Master Thesis 

128 
 

Case C:  
 
A: 

 

B: 

 
 
R: 

 
 
Simulation Results: 
 

 
  Figure 113 FPM Case C 



Floating Point Processor   Kartikey’s Master Thesis 

129 
 

Case D:  
 
A: 

 
 
B: 

 
 

R: 

 
 
Simulation Result: 
 

 
Figure 114 FPM Case D 



Floating Point Processor   Kartikey’s Master Thesis 

130 
 

Case E:  
 
A: 

 
 
B: 

 
 
R: 

 
 
Simulation Result: 
 

 
Figure 115 FPM Case E 

 



Floating Point Processor   Kartikey’s Master Thesis 

131 
 

4.5 Conclusion  

This section of the thesis presented an implementation of a floating point multiplier 

that supports the IEEE 754-2008 binary interchange format. The multiplier implements this 

algorithm using a Wallace tree multiplier for faster computation and used various different 

modules to compute the final output. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

132 
 

Chapter 5: 32-bits Floating Point Divider  

In this chapter, we describe an efficient implementation of an IEEE 754 single precision 

floating point divider targeted for DE-1 Cyclone V FPGA. Verilog is used to implement a 

technology-independent pipelined design. The divider implementation handles the overflow 

and underflow cases. Rounding is implemented to give more precision to the output of the 

divider operation. The Floating-Point Divider was verified by testbench simulations on 

ModelSim. 

In this chapter we will dive deeper into the floating-point divider algorithm, 

architecture, code design, RTL diagram, and simulation results. Floating-point multiplication 

is much less complicated than addition and subtraction as the following discussion 

showcases: 

We will talk about the procedure in division operations and a first look at the code 

design in a block diagram way followed by deeper understanding of code development.  

 Floating point division is done by extracting signs, subtracting exponents, dividing 

mantissa values, and shifting the mantissa for normalization [41]. 

 There are six basic phases of designing a Floating-Point Multiplier: 

1) Check for Zeroes. 

2) Subtract exponents. 

3) Add Bias. 

4) Divide the Significands. 

5) Normalize the Significand. 

6) Normalize the Exponent if needed. 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

133 
 

5.1 Floating Point Division Algorithm  

As described in the above topics, floating point number is in the format of: 

Z= (-1S) * 2 (E – Bias) * (1.M) 

To divide two floating point numbers A & B the different steps to follow are [42]: 

1) Extracting sings, exponents and mantissas of both A and B numbers. 

2) Calculating the output sign. 

3) Treating the special cases. 

4) Finding out the data types of numbers given 

5) Subtracting the two exponents. 

6) Adding the bias from exponent subtraction. 

7) Dividing the mantissa values  

8) Normalizing mantissa by bit shifting. 

9) Normalizing exponent if necessary. 

10) Detecting exception, overflow, and underflow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

134 
 

5.1.1 Floating-Point Division Example  

A = 127.03125 (base 10) 

B = 16.9375 (base 10) 

 

        Figure 116 Binary Presentation Divide Example 

 
 

9) S1 = 0, E1 = 10000101, M1 = 11111100001000000000000 

S2 = 0, E2 = 10000011, M2 = 00001111000000000000000 

 
10) Sign bit calculation 

 

    Figure 117 XOR Sign Division  

    S3 = 0 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

135 
 

11) Exponent Subtraction  

 

             Figure 118 Divide Exponent Subtraction  

 Unbiased Exponent = 00000010 
 
 

12) Add Bias 

 

Figure 119 Divide Bias Subtraction  

 Biased Exponent = 10000001 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

136 
 

13) Divide the Mantissa 

 

          Figure 120 Mantissa Division  

 1.M3 = 1.11100000000000000000000  
 
 

14) Right Shift the Mantissa for normalization 

No right shift needed. 

Right Shifted Mantissa = 1.11100000000000000000000 
 
 

15) Decrement the exponent 

No decrement for exponent needed. 
 
 

16) Result 

 

Figure 121 FPD Example Result 

 
 
 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

137 
 

5.2 Floating Point Divider Flowchart  

The below, Figure 122, showcases a typical flowchart that is used to design a floating 

point divider. The figure shows a step by step narrative and displays the high level functions 

that is required to compute floating point division. The flowchart shows block level diagram 

and each block or element is implemented in hardware and is described in detail in the 

following topics of the thesis [43]. 

 
Figure 122 Floating Point Divider 



Floating Point Processor   Kartikey’s Master Thesis 

138 
 

5.3 Floating Point Divider Hardware  

 In this section of the thesis we will start explaining and diving deeper into the 

hardware implementation of the floating point division. This section will start by elaborating 

the flowchart further with help of showcasing the hardware architecture used to design the 

module followed by detailed description of each module used in the architecture.  

 After understanding the theory of hardware implementation and the architecture of 

floating point division the thesis will show the code development that achieved out final 

objective of building this floating point unit. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

139 
 

5.3.1 Floating Point Divider Hardware Architecture  

 The below figure, Figure 123, showcases the hardware architecture that was 

designed and coded to implement synthesizable 32-bit floating multiplier adder using 

Verilog following the IEEE 754 standard.  

 

       Figure 123 Floating Point Division 

 
 

Mantissa 
Left Shifter 



Floating Point Processor   Kartikey’s Master Thesis 

140 
 

This floating point architecture uses a total of ten modules that serve various unique 

purposes in making the design work. The modules are: 

• Modular Exponent Subtractor 

• Mantissa Append Module 

• 24-bit Divider 

• Exponent Decrement 

• Compute Flags 

• Data Classifier 

• CLA Bias Adder 

• Mantissa Left Shifter 

• Mantissa Division Rounding 

• Compute Output 

 

5.3.2 Floating Point Divider Hardware Implementation 

 In this section, we will discuss the hardware implementation designed for the 

floating point divider and explain each module and each algorithm step in detail. 

5.3.2.1 Sign Bit Calculation  

 Dividing two positive numbers will result in a positive number. Dividing two negative 

numbers will result in a negative number. Dividing one positive number and one negative 

number will result in a negative number. The sign bit calculation for this floating point division 

unit is done using an XOR gate.  The table below shows sign operations for various cases: 

 

 
 

A’s Sign Symbol B’s Sign Operation 

+ / + + 

+ / - - 

- / + - 

- / - - 

Table 15 Sign Operations Divide 



Floating Point Processor   Kartikey’s Master Thesis 

141 
 

5.3.2.2 Data Classification Module 

A 32-bit binary floating point number can be encoded to form a total of six different 

cases based on the value of each data bit. The six different data types and the criteria that 

must be met for their encoding are: 

1) Signalling NaN (sNaN) 

2) Quiet NaN (qNaN) 

3) Negative Infinity (- ∞) 

4) Positive Infinity (+ ∞) 

5) Positive Zero (+ 0) 

6) Negative Zero (- 0) 

7) Subnormal 

8) Normal 

The Data classification module takes in the two inputs A and B as inputs to the 

module and computes the type of input into 8 different data types. The data types are 

defined in great detail and the criteria necessary for a data to be classified as each type in 

section 4.3.2.2 in the multiplication chapter.  

The data classification module outputs 8-bits of data with each line of data carrying 

one classification for the data input. The output is high for output that the input is classified 

as and low for all the other outputs as an input cannot be classified into more than one data 

type. The Subnormal bit of output is then fed into the mantissa append module discussed in 

one of the sections below.  

The data classification module has been described in great detail in section 4.3.2.2 of 

the multiplication chapter using Verilog code, RTL diagram, and classification examples. 

 



Floating Point Processor   Kartikey’s Master Thesis 

142 
 

The figure below, Figure 124, shows the instantiation of the data classification 

module used to classify the data input B.  

 

Figure 124 Data Classification Instantiation B 

The figure below, Figure 125, shows the instantiation of the data classification 

module used to classify the data input A.  

 

Figure 125 Data Classification Instantiation 

 The above two figures shows the data classification module instantiation used in the 

floating point division module. As shown in figures the two modules have the inputs A and B 

for each module. The figure also shows six different outputs coming out of the data 

classification module. Each of these 6 bits depict each of the data class discussed in the 

paragraph above. These outputs are wires that goes into next modules to assist with 

operations done in consecutive modules. 



Floating Point Processor   Kartikey’s Master Thesis 

143 
 

5.3.2.3 Modular Exponent Subtractor 

 This modular exponent subtractor is responsible for subtracting the exponent of the 

second input from the exponent of the first input. This module of hardware description 

language ensures that the exponent difference value is absolute in nature. Before the 

subtraction operation is performed the program doesn’t know which exponent is higher in 

value. The modular exponent subtractor allows us to not just compute the absolute exponent 

difference, it also allows us to identify the larger exponent. This exponent difference will 

further be sent to the bias addition module, the output of which, will be used for the exponent 

decrement module and ultimately computing the result of the entire operation.  

The figure below, Figure 126, shows the instantiation of the modular exponent 

subtractor used for the floating point divider algorithm. As shown in the figure, the two 

inputs of the modules are exponent of A and B, the output of the module is a wire called 

exponent diff that is fed into the next module discussed in the next section.  

 

Figure 126 Mode Subtractor Instantiation  

 The modular exponent subtractor module has been described in great detail in 

section 2.3.2.2 of the adder chapter using Verilog code, RTL diagram, Block diagram and 

detailed explanation of each module inside the top level subtractor module. 

 



Floating Point Processor   Kartikey’s Master Thesis 

144 
 

5.3.2.4 Carry Lookahead Bias Adder 

 This carry lookahead bias adder module is the next arithmetic operation module that 

constitutes the floating point division algorithm described in section 5.1 above in this 

chapter. This module makes use of the same carry lookahead adder module that was used 

in section 2.3.2.6 of chapter two to carry out exponent addition.  

 This module’s primary task is to add the fixed bias value of 12710 to the result of the 

modular exponent subtractor module. When our design subtracted the two exponent 

values with each other, the bias of those two exponents also got subtracted and cancelled 

out. This module adds the negated bias value and normalizes the exponent back to its 

correct magnitude. The instantiation for this module is shown in Figure 127 below: 

 
 

Figure 127 Bias Addition Instantiation 

As shown in the instantiation above in Figure 127, the inputs to the carry lookahead 

bias adder is the output of the exponent subtraction, along with 0011111112 which is 127 in 

decimal. This module is also a parameterized module which has been modified to operate 

on 8-bits for this operation. The output of this module is absolute value and it will be fed to 

the exponent decrement module discussed in coming sections. 

Please refer to section 2.3.2.6 for details about carry lookahead bias adder and all its 

constituting elements including Verilog code, RTL Diagram, and Block Diagram. 



Floating Point Processor   Kartikey’s Master Thesis 

145 
 

5.3.2.5 Mantissa Append Module 

 This module acts as a preparation step before we get to the most crucial step of the 

floating point division algorithm which is mantissa division. 

This module’s primary task is to compute the hidden/implied bit of the mantissa that 

exists at the most significant bit spot but hidden for representation purposes. The hidden bit 

of a mantissa depends on the data type of each input. 

This module takes in two 23-bits inputs which come directly from the mantissa of 

input A. The input S comes from the Subnormal output of the data classification module. As 

shown in the code, if the select is high ( i.e. input is of type subnormal) then the output of 

the module is the input of the module appended with value of 0. If the select is low the 

output of the module is the input of the module appended with value of 1.  

The operation of this module is described in the table below: 

Input 1 Input 2 Select Output 

A B 1 {1’b0,A} 

A B 0 {1’b1,B} 

 

Table 16 Append Mantissa Truth Table 

 
 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

146 
 

The figure below, Figure 128, shows the instantiation of the mantissa append 

module used to append the mantissa of input A.  

 

Figure 128 Append Mantissa A Instantiation 

The figure below, Figure 129, shows the instantiation of the mantissa append 

module used to append the mantissa of input B. 

 

Figure 129 Append Mantissa A Instantiation 

The above two figures shows the mantissa append module instantiation used in the 

floating point division module. As shown in figures the two modules have the inputs A and B 

for each module. The figure also shows one output coming out of the mantissa append 

module. These outputs are wires that goes into next modules to assist with operations done 

in consecutive module of mantissa division.  

 

 



Floating Point Processor   Kartikey’s Master Thesis 

147 
 

5.3.2.6 Mantissa 24-bit Divider 

 The 24-bit mantissa divider module is the next arithmetic operation module that 

constitutes the floating point division algorithm described in section 5.1 above in this 

floating point division chapter.  

 This module takes in two 24-bits input A and B and produce a 24-bits output that is 

the quotient result of inputs A and B. The input A to this module comes from the first 

mantissa append module and the second input, input B, comes from the second mantissa 

append module as described in the section above [44].  

Mantissa 24-bit Divider Verilog Code 

 
 

Figure 130 24-bit Divider Code  

The following figure, Figure 130, shows a code snippet from the 24-bit mantissa 

divider code. The code shows two 24 inputs being taken in the mantissa divider and a 24-bit 

quotient being outputted.  



Floating Point Processor   Kartikey’s Master Thesis 

148 
 

5.3.2.7 Mantissa Left Shifter 

 The next module for the floating point division is used to normalize the output 

coming out from the previous module which is the mantissa divider module. This module 

takes in the 25-bit mantissa division value that is outputted from the previous module and 

checks the most significant bit of the mantissa division value to decide for shifting 

operation. The mantissa left shifter shifts the 25-bit division result by 1-bit, if the most 

significant bit of the division result is low which is binary 0. 

 If most significant bit of the mantissa division result is 1 then the division value is 

already normalized and next 23 bits after most significant bits are taken into consideration 

for further operations by consequent modules.  

if most significant bit of the mantissa division is 0 then it is safe to assume that the 

next bit of the division value is always 1, so starting from next to next bit, next 23 bits are 

taken into consideration for further operations by consequent modules.  

 
 

Figure 131 Left Shifter Instantiation 

 
 The figure above, Figure 131, shows the instantiation for right shifter module. As 

shown in the figure above, the shift variable depends on the most significant bit of the 

product. 

 Please refer to section 2.3.2.4 labelled Mantissa Right Shifter to look at detailed 

description of the Right Shifter module including its workings, Code, & RTL Diagrams.  



Floating Point Processor   Kartikey’s Master Thesis 

149 
 

5.3.2.8 Mantissa Division Rounding 

 The next module for the floating point division is used to round the output coming 

out from the previous module which is the mantissa right shifter module. 

 The working of the Mantissa Product Rounding module is discussed in great detail in 

section 4.3.2.8 of the multiplication chapter. Please refer to that section to understand the 

inner workings of this module by the help of Verilog code, RTL diagram, and explanation 

 The figure below, Figure 132, shows the instantiation of the division result rounding 

module that was used in this floating point division unit.  

 

Figure 132 Division Rounding Instantiation 

 As shown in the figure above, the input of this module is the least significant bit from 

the result of the mantissa division computed by the module explained in the section above. 

The output of this module is a one bit value which is then concatenated with the rest of the 

quotient value to form the final mantissa value of the floating point division arithmetic 

result.  

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

150 
 

5.3.2.9 Exponent Decrement 

 In this section of the thesis, we will move on to the next module of the floating point 

divider unit, the controlled exponent decrement module. The exponent decrement module 

is discussed in great detail in section 3.3.2.8 of chapter three of this thesis. As discussed in 

the section mentioned , the controlled exponent decrement module has an 8-bit input 

labelled E, and another 1-bit input labelled select, in addition there is an 8-bit output.  

 Each individual bit of the 8-bit input comes directly from the output of the carry 

lookahead bias adder module that was discussed previously in this chapter. Each bit of this 

8-bit input feeds into seven different full adder and one half adder. The other 1-bit input 

called select goes into the first half adder. The output of the first half adder gets cascaded 

through to the next full adders and the outputs are all concatenated together to form the 8-

bit output that is talked about in section 3.3.2.8.   

 The output of this controlled decrement module depends on the select input. The 

select input comes from the most significant bit of the mantissa divider result. if most 

significant bit of the mantissa divider result is 1 then the divider result is of the form 2’b11, 

and we need to shift the decimal point to right to make the divider result normalized and 

therefore we subtract 1 to resultant exponent. If most significant bit of the mantissa divider 

result is 1 then the divider result is of the form 2’b01 and  the divider result is already 

normalized and nothing is added or subtracted to exponent.  

 

Figure 133 Exponent Decrement Instantiation 



Floating Point Processor   Kartikey’s Master Thesis 

151 
 

5.3.2.10 Compute Flags 

 In this section of the thesis, we will move on to the next module of the floating point 

divider unit, the compute flags module. As discussed in chapter 1 of this thesis there are 

certain error flags that must be computed in accordance with the IEEE 754 standard when 

performing binary floating point arithmetic. 

 The flags that are expected to be computed during a floating point arithmetic 

operations are Zero, Exception, Underflow, and Overflow flags. The compute flags achieves 

this desired objective using logical operations on the final exponent and final mantissa value 

computed from modules discussed above. 

 The figure below, Figure 134, shows the instantiation of the compute flags module 

used to compute error flags for the floating point division module.  

 

Figure 134 Compute Flags Instantiation  

 As shown in the figure above, the compute flags module has two 8-bit inputs. The 

first input is the exponent of input A and the second input is the exponent of input B. And 

the figure also shows another two 23-bits input in terms of the two mantissa values. The 

module outputs the four error flags as discussed.  

 Please refer to section 4.3.2.10 from chapter 4 of the thesis for detailed explanation 

into working of this module using block diagram, RTL diagram, and Verilog code. 

 



Floating Point Processor   Kartikey’s Master Thesis 

152 
 

5.3.2.11 Compute Output 

 The final module of the floating point division unit is the compute output modules. 

As suggested by the name this final module outputs the result of the entire floating point 

division arithmetic. In this module we are not simply concatenating the final exponent value 

with the final mantissa value along with the sign bit to get the final result.  

 This module has been designed in accordance with the IEEE 754 standard that 

dictates what the output of the arithmetic should look like based on the error flags that was 

computed in the previous module.  

The figure below, Figure 135, shows the instantiation of the compute output module 

used to compute output for the floating point division module.  

 

 Figure 135 Compute Out Instantiation  

As shown in the figure above, the compute output module has inputs in the form of 

final mantissa and exponent, along with error flags computed in previous module. T  

 Please refer to section 4.3.2.11 from chapter 4 of the thesis for detailed explanation 

into working of this module using block diagram, RTL diagram, and Verilog code. 

 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

153 
 

5.4 Floating Point Divider Results 

 The whole floating point divider unit was tested on Quartus’ ModelSim simulation 

software using testbenches and waveforms. The design simulation involved generating 

setup scripts for the simulator, compiling simulation models, running the simulation, and 

viewing the results. 

5.4.1 Floating Point Divider Compilation Report 

 
Figure 136 FPD Compilation Report 

 
 

 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

154 
 

4.4.2 Floating Point Divider Testbench 

A testbench is used to generate the stimulus and applies it to the implemented 

floating point divider and compare the results against our calculations based on the IEEE 

754 floating point calculator online [45]. The design was synthesized using precision 

synthesis tools targeting the DE-1 SoC Max 10 FPGA machine family.   

 

Figure 137 FPD Testbench  

 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

155 
 

5.4.3 Floating Point Divider Simulation Results 
 

Case A: 

A:  

 
 
B: 

 
 
R: 

 
 
Simulation Results: 
 

 
 Figure 138 FPD Case A Result 



Floating Point Processor   Kartikey’s Master Thesis 

156 
 

Case B: 
 
A: 

 
 
B: 

 
 
R: 

 
 
Simulation Result: 
 

 
                         Figure 139 FPD Case B 



Floating Point Processor   Kartikey’s Master Thesis 

157 
 

Case C:  
 
A: 

 
 
B: 

 
 
R: 

 
 
Simulation Result: 
 

 
Figure 140 FPD Case C 



Floating Point Processor   Kartikey’s Master Thesis 

158 
 

Case D:  
 
A: 

 
 
B: 

 
 
R: 

 
 
Simulation Result: 
 

 
Figure 141 Case D 



Floating Point Processor   Kartikey’s Master Thesis 

159 
 

Case E:  
 
A: 

 
 
B: 

 
 
R: 

 
 
Simulation Result: 
 

 
Figure 142 FPD Case E 

 



Floating Point Processor   Kartikey’s Master Thesis 

160 
 

5.5 Conclusion  

This section of the thesis presented an implementation of a floating point divider 

that supports the IEEE 754-2008 binary interchange format. The divider implements this 

algorithm using a shift divider for faster computation and used various different modules to 

compute the final output. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

161 
 

Chapter 6: Floating Point Unit 

In this chapter, we describe an efficient implementation of an IEEE 754 single precision 

floating point unit targeted for DE-1 Cyclone V FPGA. Verilog is used to implement a 

technology-independent pipelined design. The floating-point unit implementation 

instantiates all the previous operation modules and makes use of an opcode to display one of 

the fours outputs. The Floating-Point Unit was verified by testbench simulations on 

ModelSim. In this chapter we will look at floating-point unit design, architecture, code design, 

and RTL diagram.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

162 
 

6.1 Floating Point Unit Block Diagram 

 The figure below, Figure 143, shows the block diagram that was used as an 

architecture for the final floating-point unit. The block diagram shows all the previous 

operation modules instantiated along with multiple multiplexers to choose input and output 

wires that are fed to input and outputs of the operation modules respectively.  

 

 

 

Figure 143 Floating Point Unit Block Diagram 



Floating Point Processor   Kartikey’s Master Thesis 

163 
 

6.2 Floating Point Unit Verilog Code 

 The figure below, Figure 144, shows a snippet from the Verilog code that was used to 

program and run the final floating-point unit. The Verilog shows all the previous operation 

modules instantiated in a top-level design along with multiple multiplexers that are 

connected to the operation modules using wires. The final multiplexer takes in use of an input 

called the Opcode to compute the final output of the floating-point unit.   

 

 

Figure 144 Floating Point Unit Verilog Code 



Floating Point Processor   Kartikey’s Master Thesis 

164 
 

6.3 Floating Point Unit RTL Diagram 

The figure below, Figure 145, shows the RTL diagram that was generated from the 

Verilog code that was used to program and run the final floating-point unit and discussed in 

the previous section.  

 

 

 

 
 
 
 
 
 

Figure 145 Floating Point Unit RTL Diagram 



Floating Point Processor   Kartikey’s Master Thesis 

165 
 

Chapter 7: Education Module 

 In this chapter of the thesis, we will shift our focus from designing and constructing 

the 32-bit floating point unit to creating various education modules. The purpose of this 

chapter is to provide a road map for a digital logic and design student and facilitate them to 

build their own floating point unit.   

This chapter has been divided into ten different sections. Each section is aimed to act 

as a laboratory assignment with specific guidelines, and theory of the subject matter to 

build each module illustrated in the previous thesis chapters. 

The first section of each lab, it starts the students with educating them regarding the 

purpose and outcome of each laboratory, the purpose section introduces the students to 

the lab assignment and gives them a brief reason as to why the module is being 

implemented. The next section, provides students with the necessary background needed 

to implement the module at hand. This section discusses modules implemented in previous 

labs as well as the computation or algorithm necessary to implement the lab they are 

working on. The next section, walks the student through the design requirement followed 

by the design verification. Finally, the lab assignments have a section that asks students 

important questions regarding their implementation of the design. 



Floating Point Processor   Kartikey’s Master Thesis 

166 
 

 

7.1 Lab 1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name: _______________________________ ID# ______________________ 

Date Submitted: __________________ Lab Section # ___________________ 

CSE [xxxx] Digital Logic                           Fall Semester 2024 

Lab Number 1 – Modular Exponent Subtractor 

Perform [Month] [Date], [Year] 

This lab is performed on the DE10-Lite. 



Floating Point Processor   Kartikey’s Master Thesis 

167 
 

CSE 2441         LABORATORY ASSIGNMENT 1     FALL 2024 

VERILOG MODULAR EXPONENT SUBTRACTOR 

(100 POINTS) 

PURPOSE/OUTCOMES 

To give you experience writing Verilog modules and instantiating these modules to realize 

more complex designs. In this lab you will implement a modular exponent subtractor. You 

will construct a Ripple Carry Subtractor to subtract two exponents and compute the 

difference between the two. Then, you will construct a twos complement to sign magnitude 

convertor to find the absolute value of the difference. This absolute difference will then be 

used  to perform floating point arithmetic in future labs. After completing this lab, you will 

have demonstrated an ability to design eight-bit ripple carry subtractor, eight-bit twos 

complement to sign magnitude convertor, to write Verilog models of adders and 

subtractors, to capture and verify your designs using Model-Sim on Quartus Prime, and to 

realize and test your designs on a DE10-Lite.  

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

168 
 

DESIGN REQUIREMENTS 

In this lab you will construct a modular exponent subtractor unit that consists of three 

individual modules connected together to find the absolute difference between two 8-bits 

input. The top level block diagram is shows in Figure 1.  

 

Figure 1 – Modular Exponent Subtractor 

You will construct the module shown in Figure 1, in the following steps constructing each of 

the underlying module in each step of the process: 

DESIGN REQUIREMENT 

1. Constructing and Testing the Ripple Carry Subtractor 

a) For the first module, the Ripple Carry Subtractor, start by writing a Verilog model of a full-

adder using the circuit shown in Figure 2. Create an instantiation template for this module.  



Floating Point Processor   Kartikey’s Master Thesis 

169 
 

 

Figure 2 – Full Adder Circuit 

b) Secondly, use the instantiation of full adder module created in step ‘a’ to form a ripple 

carry subtractor module in Verilog. For a four-bit ripple carry subtractor, four full adders are 

cascaded together passing the output of the first full adder to the input of the next full 

adder as shown in Figure 3 below. 

 

Figure 3 – Four-bit Ripple Carry Subtractor 

 



Floating Point Processor   Kartikey’s Master Thesis 

170 
 

c) Modify the block diagram shown in Figure 3 for 8-bits subtraction operation. Perform this 

by instantiating eight full adders in chain in a Verilog module. Remember to pass each bit of 

Input B through an XOR gate along with C0 which will be high for subtraction operation.  

2. Constructing and Testing the Twos Complement to Sign Magnitude Convertor 

a) For this second module, start by writing a Verilog model of a half-adder using the circuit 

shown in Figure 4. Create an instantiation template for this module. 

 
Figure 4 – Half Adder Circuit 

 
b) Secondly, use the instantiation of half adder module created in step ‘a’ to form a twos 

complement convertor module in Verilog. For a four-bit twos complement convertor, four 

half adders are cascaded together as shown in Figure 5 below. 

 
Figure 5 – Twos Complement Convertor 



Floating Point Processor   Kartikey’s Master Thesis 

171 
 

c) Modify the block diagram shown in Figure 4 for 8-bits conversion operation. Perform this 

by instantiating eight half adders in chain in a Verilog module. Remember to pass each bit of 

Input A through an XOR gate along with most significant bit of the input. The MSB of input A 

is also the second input of the first half adder.  

3. Constructing Two-to-One Multiplexer  

a) For the last element of this module, write a Verilog module for two-to-one multiplexer. 

The multiplexer should select the A input as output if S input is high and B input as output if 

S input is low in value. Use block diagram in Figure 6 for reference.  

 

Figure 6 – Two-to-One Multiplexer 

b) Create an instantiation template of this module for future use.  

4. Constructing the Modular Subtractor Module 

a) For the final step of the construction, use the block diagram shown in Figure 1 to connect 

all three modules constructed in steps above. Open a new project on Quartus and in a new 

Verilog code file, and declare inputs and outputs as needed. Finally,  instantiate each of the 

three modules discussed above and connect them using wires.  

 

 



Floating Point Processor   Kartikey’s Master Thesis 

172 
 

DESIGN VERIFICATION 

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) 01010101 - 10101010 

(b) 01111111 - 00000001 

(c) 01111111 - 11111111 

(d) 01100110 - 11011101 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in the table below for your report. 

A B R = |A – B| 

01010101 10101010  

01111111 00000001  

01111111 11111111  

01100110 11011101  

 

DE10-Lite IMPLEMENTATION 

1. Implement your design on the DE-10 Lite using the following inputs/outputs using pin 

assignments of your choice.  

Inputs: A0, A1, A2, A3, A4, A5, A6, A7, B0, B1, B2, B3, B4, B5, B6, B7 

Outputs: R0, R1, R2, R3, R4, R5, R6, R7 

2. Include a table of your assignments in your report. 

3. Program the DE10-Lit e with your design. 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

173 
 

CHECK YOUR UNDERSTANDING 

1. Explain how the circuit in Figure 3 computes R = A – B, 

where A = (A3A2A1A0)2 , B = (B3B2B1B0)2 and D = (R3R2R1R0)2 

2. Explain how the circuit in Figure 5 converts twos complement to signed magnitude. 

3. Explain the role of multiplexer in figure 1, what does value of input S signify?  

4. Instantiate the modular exponent subtractor module for future use. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

174 
 

 

7.2 Lab 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name: _______________________________ ID# ______________________ 

Date Submitted: __________________ Lab Section # ___________________ 

CSE [xxxx] Digital Logic                           Fall Semester 2024 

Lab Number 2 – Right & Left Barrel Shifter 

Perform [Month] [Date], [Year] 

This lab is performed on the DE10-Lite. 



Floating Point Processor   Kartikey’s Master Thesis 

175 
 

CSE 2441         LABORATORY ASSIGNMENT 2    FALL 2024 

RIGHT & LEFT BARREL SHIFTER 

(100 POINTS) 

PURPOSE/OUTCOMES 

To give you experience writing Verilog modules and instantiating these modules to realize 

more complex designs. In this lab you will implement a left and right barrel shifter module. 

A regular shift operation done in Verilog using the shift operator (<<,>>) uses a sequential 

circuit. The register based shift operation takes eight clock cycles to shift eight bits of data. 

However, a barrel shifter module uses a combinational circuit to shift eight bits of data by 

only using one clock cycle. The barrel shifter module you will implement in this lab will use 

several multiplexers for each level of data shift. After completing this lab, you will have 

demonstrated an ability to design 8-bit and a 24-bit left and right barrel shifter module, to 

write Verilog models of multiplexers, to capture and verify your designs using Model-Sim on 

Quartus Prime, and to realize and test your designs on a DE10-Lite.  

BACKGROUND 

In Lab 1, you designed, constructed, and tested the two-to-one multiplexer that was used to 

form the modular exponent subtractor module as shown in Figure 1.  

 

Figure 1 – Two-to-One Multiplexer 



Floating Point Processor   Kartikey’s Master Thesis 

176 
 

DESIGN REQUIREMENT - 1 

1. In the first step of the lab you will write the Verilog code for a right barrel shifter unit with 

3-bit shift input and  8-bit data input. This module consists of twenty-four two-to-one 

multiplexers arranged in three levels. Each level signifies one additional bit of data shift. The 

block diagram for the right barrel shifter is shows in Figure 2. 

 
Figure 2 – 8-bit Right Barrel Shifter 

 
2. A0 through A7 is the 8-bit data input to the barrel shifter module. Inputs B0 to B2 are the 3-

bit shift input that defines how many bits does the input need to be shifted. 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

177 
 

DESIGN VERIFICATION - 1 

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) A = 01010101, B = 001 

(b) A = 01111111, B = 010 

(c) A = 01111111, B = 011 

(d) A = 01100110, B = 100 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in a table for your report. 

DE10-Lite IMPLEMENTATION - 1 

1. Implement your design on the DE-10 Lite using the following inputs/outputs using pin 

assignments of your choice.  

Inputs: A0, A1, A2, A3, A4, A5, A6, A7, A8, B0, B1, B2, B3 

Outputs: R0, R1, R2, R3, R4, R5, R6, R7, R8 

2. Include a table of your pin assignments in your report. 

3. Program the DE10-Lite with your design. 

DESIGN REQUIREMENT - 2 

1. Take the block diagram for the right barrel shifter from Figure 2 and modify it to operate 

on a 24-bit data input and equip it to perform a 5-bit data shift on the input. Draw the block 

diagram for the next part of this lab. 

2. Use the block diagram created in step 1 of this section and modify the Verilog code 

written in design requirement section 1 of this lab to operate on 24-bit data input for a 5-bit 

data shift operation.  

 



Floating Point Processor   Kartikey’s Master Thesis 

178 
 

DESIGN VERIFICATION - 2 

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) A = 010101010101010101010101, B = 00001 

(b) A = 011111110111111101100110, B = 00010 

(c) A = 011111110110011001100110, B = 01000 

(d) A = 011001100101010101010101, B = 10100 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in a table for your report. 

DESIGN REQUIREMENT - 3 

1. In the next section, you will write the Verilog code for a left barrel shifter unit with 3-bit 

shift input and  8-bit data input. This module consists of twenty-four two-to-one 

multiplexers arranged in three levels. Each level signifies one additional bit of data shift. The 

block diagram for the left barrel shifter is shows in Figure 3. 

 
Figure 3 – 8-bit Left Barrel Shifter  



Floating Point Processor   Kartikey’s Master Thesis 

179 
 

DESIGN VERIFICATION - 3 

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) A = 01010101, B = 001 

(b) A = 01111111, B = 010 

(c) A = 01111111, B = 011 

(d) A = 01100110, B = 100 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in a table for your report. 

DE10-Lite IMPLEMENTATION - 3 

1. Implement your design on the DE-10 Lite using the following inputs/outputs using pin 

assignments of your choice.  

Inputs: A0, A1, A2, A3, A4, A5, A6, A7, A8, B0, B1, B2, B3 

Outputs: R0, R1, R2, R3, R4, R5, R6, R7, R8 

2. Include a table of your pin assignments in your report. 

3. Program the DE10-Lite with your design. 

DESIGN REQUIREMENT - 4 

1. Take the block diagram for the right barrel shifter from Figure 3 and modify it to operate 

on a 24-bit data input and equip it to perform a 5-bit data shift on the input. Draw the block 

diagram for the next part of this lab. 

2. Use the block diagram created in step 1 of this section and modify the Verilog code 

written in section 3 to operate on 24-bit data input for a 5-bit data shift operation.  

 

 



Floating Point Processor   Kartikey’s Master Thesis 

180 
 

DESIGN VERIFICATION - 4 

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) A = 010101010101010101010101, B = 00001 

(b) A = 011111110111111101100110, B = 00010 

(c) A = 011111110110011001100110, B = 01000 

(d) A = 011001100101010101010101, B = 10100 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in a table for your report. 

CHECK YOUR UNDERSTANDING 

1. What is the advantage of using a barrel shifter instead of the Verilog shift operator 

(<<,>>) which uses a register based shift module? 

2. What do the various levels of multiplexers signify in the different designs?  

3. What would be total number of multiplexers used for a 64-bit shifter design? 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

181 
 

7.3 Lab 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name: _______________________________ ID# ______________________ 

Date Submitted: __________________ Lab Section # ___________________ 

CSE [xxxx] Digital Logic                           Fall Semester 2024 

Lab Number 3 – Controlled Incrementor/Decrementer 

Perform [Month] [Date], [Year] 

This lab is performed on the DE10-Lite. 



Floating Point Processor   Kartikey’s Master Thesis 

182 
 

CSE 2441         LABORATORY ASSIGNMENT 3     FALL 2024 

CONTROLLED INCREMENTOR/DECREMENTER 

(100 POINTS) 

PURPOSE/OUTCOMES 

To give you experience writing Verilog modules and instantiating these modules to realize 

more complex designs. In this lab you will implement a modular controlled incrementor and 

decrementer module. The controlled incrementor module will take an 8-bit input and 

increment it based on a one bit input. The controlled decrement module will take an 8-bit 

input and decrement it based on a one bit input. This module makes use of the ripple carry 

subtractor with minor modification to accomplish this task. After completing this lab, you 

will have demonstrated an ability to design eight-bit ripple carry subtractor, to write Verilog 

models of adders and subtractors, to capture and verify your designs using Model-Sim on 

Quartus Prime, and to realize and test your designs on a DE10-Lite.  

BACKGROUND 

In Lab 1, you designed, constructed, and tested the 4-bit ripple carry adder/subtractor that 

was used to form the modular exponent subtractor module as shown in Figure 1.  

 
Figure 1 – Ripple Carry Adder/Subtractor 



Floating Point Processor   Kartikey’s Master Thesis 

183 
 

Additionally in previous Labs you also designed, constructed, and tested a half-adder as 

shown in Figure 2 below. 

 

Figure 2 – Half-Adder 

DESIGN REQUIREMENT - 1 

1. In the first step of the lab you will write the Verilog code for the 4-bit controlled 

incrementor module by making certain changes to the ripple carry adder that was used in 

lab 1. The modifications to be made are shown in Figure 3 below.  

 
 

Figure 3 – Controlled Incrementor 
 

2. Figure 3 shows 4-bit input that needs to be incremented labelled as A, 1-bit input labelled 

as Select that allows the increment to happen when high.  



Floating Point Processor   Kartikey’s Master Thesis 

184 
 

3. For step 3, modify the Verilog code written for 4-bit controlled incrementor in step 1. 

Write the Verilog code for 8-bit controlled incrementor with four additional full-adders.   

4. Create an instantiation template of this module for future use. 

DESIGN VERIFICATION - 1 

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and Select for your simulation inputs. 

(a) A = 01010101, Select = 1 

(b) A = 01111111, Select = 1 

(c) A = 01111111, Select = 0 

(d) A = 01100110, Select = 1 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in a table for your report. 

DE10-Lite IMPLEMENTATION - 1 

1. Implement your design on the DE-10 Lite using the following inputs/outputs using pin 

assignments of your choice.  

Inputs: A0, A1, A2, A3, A4, A5, A6, A7, Select 

Outputs: S0, S1, S2, S3, S4, S5, S6, S7 

2. Include a table of your assignments in your report. 

3. Program the DE10-Lite with your design. 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

185 
 

DESIGN REQUIREMENT - 2 

1. In the next section of the lab you will write the Verilog code for the 4-bit controlled 

decrementer module. The modifications to be made are shown in Figure 4 below. 

 
Figure 4 – Controlled Decrementer 

2. In this step, modify the Verilog code written for 4-bit controlled decrementer in step 1. 

Write the Verilog code for 8-bit controlled decrementer with four additional full-adders. 

3. Create an instantiation template of this module for future use. 

DESIGN VERIFICATION - 2 

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and Select for your simulation inputs. 

(a) A = 01010101, Select = 1 

(b) A = 01111111, Select = 1 

(c) A = 01111111, Select = 0 

(d) A = 01100110, Select = 1 

 



Floating Point Processor   Kartikey’s Master Thesis 

186 
 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in a table for your report. 

DE10-Lite IMPLEMENTATION - 2 

1. Implement your design on the DE-10 Lite using the following inputs/outputs using pin 

assignments of your choice.  

Inputs: A0, A1, A2, A3, A4, A5, A6, A7, Select, Cin 

Outputs: S0, S1, S2, S3, S4, S5, S6, S7 

2. Include a table of your assignments in your report. 

3. Program the DE10-Lite with your design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

187 
 

7.4 Lab 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name: _______________________________ ID# ______________________ 

Date Submitted: __________________ Lab Section # ___________________ 

CSE [xxxx] Digital Logic                           Fall Semester 2024 

Lab Number 4 – 24-bit Carry Look Ahead Adder 

Perform [Month] [Date], [Year] 

This lab is performed on the DE10-Lite. 



Floating Point Processor   Kartikey’s Master Thesis 

188 
 

CSE 3441         LABORATORY ASSIGNMENT 4     FALL 2024 

24-bit Carry Look Ahead Adder 

(100 POINTS) 

PURPOSE/OUTCOMES 

To give you experience writing Verilog modules and instantiating these modules to realize 

more complex designs. In this lab you will implement a 24-bit Carry Look Ahead Adder using 

Verilog hardware description language. The carry lookahead adder is an upgraded version of 

the ripple carry adder that you have used so far for the addition and subtraction operation. 

In this lab you will also learn how to design a parameterize model for your Verilog code. The 

parameterize model will allow you to scale the module up or down by the number of bits 

that is required in the design. After completing this lab, you will have demonstrated an 

ability to to write Verilog models of adders and subtractors, to capture and verify. 

BACKGROUND 

Ripple-carry adders (RCA), designed in previous labs, as shown in Figure 1 are constructed 

using a simple circuit of cascaded full adders. But the RCA is slow due to the necessity for 

carries to propagate the full length of the chain in the worst case scenario.  

 
Figure 1 – Ripple Carry Adder/Subtractor 



Floating Point Processor   Kartikey’s Master Thesis 

189 
 

A carry-lookahead adder (CLA) overcomes the propagation problem by generating all carries 

at once with two-level logic but at the expense of a much more complex design. The basic 

elements of the CLA is illustrated below.  

Compute generate variable: 

You compute the generate variable by putting the two input bits through an AND gate and 

the output is the generate variable as shown in Figure 2. 

 

Figure 2 – Compute Generate 

Compute propagate variable: 

You compute the propagate variable by putting the two input bits through an XOR  gate and 

the output is the propagate variable as shown in Figure 3. 

 

Figure 3 – Compute Propagate 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

190 
 

• Compute Carry out.  

The circuit schematic shows the way to compute the Carry output that is being 

computed by the carry look ahead logic block. 

Figure 4 – Compute Carry 

The p and g outputs drive carry-generate logic that simultaneously produces the carries for 

all stages of the CLA.  

DESIGN REQUIREMENT – 1  

1. In the first part of lab, you will start by constructing a 4-bit carry look ahead adder as 

shown in the block diagram shown below in Figure 5. The first level of carry look ahead 



Floating Point Processor   Kartikey’s Master Thesis 

191 
 

adder is made of full adders which you designed in previous labs. For the second level of 

logic refer to the background section for help in constructing that level. 

    Figure 5 – Carry Look Ahead Adder Block Diagram 

Helpful Tip: Use two for loops to construct the two levels of logic. Use first for loop for the 

cascaded chain of full adders, and the second for loop for computing the carry look ahead 

logic. Parametrize the for loop to change number of input and output bits. 

DESIGN VERIFICATION - 1 

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) 0101 + 1010 

(b) 0111 + 0001 

(c) 1111 + 1111 

(d) 0110 + 1100 



Floating Point Processor   Kartikey’s Master Thesis 

192 
 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in the table below for your report. 

A B R = A + B 

0101 1010  

0111 0001  

1111 1111  

0110 1100  

 

DE10-Lite IMPLEMENTATION 

1. Implement your design on the DE-10 Lite using the following inputs/outputs using pin 

assignments of your choice.  

Inputs: A0, A1, A2, A3, B0, B1, B2, B3, C0 

Outputs: R0, R1, R2, R3, C4 

2. Include a table of your assignments in your report. 

3. Program the DE10-Lite with your design. 

DESIGN REQUIREMENT – 2 

1.  Construct a 24-bit carry look ahead adder using the design and block diagram illustrated 

in the first design requirement section. You should only be changing the iteration value in 

both your for loops to switch from 4-bits to 24-bits of inputs and outputs.  

2. Parameterize your carry look ahead adder module. After this step you should only need 

to change the variable value at top of design to change the number of bits.  

3. Instantiate the 24-bit  module for future use. 

  

 



Floating Point Processor   Kartikey’s Master Thesis 

193 
 

DESIGN VERIFICATION - 2 

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) 010101010101010101010101  + 101010101010101010101010 

(b) 011111110111111101100110   + 000000010101010101010101 

(c) 011111110110011001100110  + 111111111010101011010101 

(d) 011001101100110100110000 + 011001100110011010101011 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in the table below for your report. 

A B R = A + B 

a.1 a.2  

b.1 b.2  

c.1 c.2  

d.1 d.2  

 

TESTBENCH VERIFICATION 

1. Write a test bench for this 24-bit carry look ahead adder module.  

2. Simulate the test bench using ModelSim on Quartus. 

3. Screenshot your output from the tcl console. 

4. Screenshot your ModelSim simulation results. 

CHECK YOUR UNDERSTANDING 

1. What’s the speed up in operating speed achieved by using CLA instead of RCA? 

2. What’s the increase in complexity, in terms of logic elements, required for CLA compared 

to RCA? 



Floating Point Processor   Kartikey’s Master Thesis 

194 
 

7.5 Lab 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name: _______________________________ ID# ______________________ 

Date Submitted: __________________ Lab Section # ___________________ 

CSE [xxxx] Digital Logic                           Fall Semester 2024 

Lab Number 5 – Floating Point Adder 

Perform [Month] [Date], [Year] 

This lab is performed on the DE10-Lite. 



Floating Point Processor   Kartikey’s Master Thesis 

195 
 

CSE 3441         LABORATORY ASSIGNMENT 5     FALL 2024 

Floating Point Adder 

(100 POINTS) 

PURPOSE/OUTCOMES 

Your purpose in this lab is to design a 32-bit single precision floating point adder that can 

perform 32-bit floating point addition and that produces exception, underflow, overflow, 

zero, and the final output. See Figure 1 for the input/output diagram of the floating point 

adder. The adder component of your floating point adder should use group carry lookahead 

architecture implemented in the previous lab. You will code your design in System Verilog, 

simulate to verify its correctness, and test its functionality using testbenches and ModelSim 

on Quartus. After completing this lab, you will have demonstrated an ability to design a 

floating point arithmetic unit, to write Verilog models of the floating point adder, to capture 

and verify your designs using Model-Sim on Quartus Prime. 

 

 

               Figure 1 – Floating Point Adder 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

196 
 

BACKGROUND 

In this lab you will use the instantiations created in all the previous labs from Lab 1 to Lab 5. 

The modules you need for this lab are: 

1. Lab 1: 8-bit Modular Exponent Subtractor  

2. Lab 1: 24-bit Two-to-One Multiplexer 

3. Lab 1: 8-bit Two-to-One Multiplexer 

4. Lab 2: 24-bit Barrel Right Shifter 

5. Lab 3: 8-bit Controlled Incrementor 

6. Lab 4: 24-bit Carry Look Ahead Adder 

You will use the instantiations for the above mentioned module and connect them together 

using wires in a top level type module design.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

197 
 

DESIGN REQUIREMENT 

1. Write a System Verilog model for a 32-bit single precision floating point adder. In addition 

to the floating point addition, provide functionality for overflow, underflow, zero, & 

exception outputs. Use the architecture or block diagram shown in Figure 2 to understand 

how the modules are interconnected.  

    Figure 2 – Floating Point Adder Architecture 

2. Add logic to compute the final sign bit output depending on the two different input values 

and the sign bit of each input value.  

3. Add logic to compute the various error flags for this module like overflow, underflow etc. 

4. Create an instantiation template for this module for future use.  



Floating Point Processor   Kartikey’s Master Thesis 

198 
 

DESIGN VERIFICATION   

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) A = 32'b01000001001101100000000000000001 //11.375 

        B = 32'b01000000101100100000010000011011 //5.56300 

(b) A = 32'b01000010011011111110101110000101 //59.979 

                    B = 32'b01000000110100000000000000000000 //6.5 

(c) A = 32'b01000100011110100010000000000000 //1000.5 

        B = 32'b01000100011101010110100111011011 //981.654 

(d) A = 32'b01000100000010010111111100101011 //549.987 

        B = 32'b01000000101100100000010000011001 //5.563 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in the table below for your report. 

A B R = A + B Underflow Overflow Zero 

11.375 5.56300     

59.979 6.5     

1000.5 981.654     

549.987 5.563     

 

TESTBENCH VERIFICATION 

1. Write a test bench for this 32-bit floating point adder module using test cases above.  

2. Simulate the test bench using ModelSim on Quartus. 

3. Screenshot your output from the tcl console. 

4. Screenshot your ModelSim simulation results. 



Floating Point Processor   Kartikey’s Master Thesis 

199 
 

CHECK YOUR UNDERSTANDING  

1. Why is the mantissa passed through a mantissa right shifter module, how do you decide 

which mantissa goes into the mantissa right shifter module?  

2. Why is the modular subtractor used to determine the shift value for the right shifter unit? 

3. Why is the exponent incremented before the final output, what case would the exponent 

not be incremented in? 

4. Why do we use the mantissa normalizer unit, what case would we not normalize it? 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

200 
 

7.6 Lab 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name: _______________________________ ID# ______________________ 

Date Submitted: __________________ Lab Section # ___________________ 

CSE [xxxx] Digital Logic                           Fall Semester 2024 

Lab Number 6 – Floating Point Subtractor 

Perform [Month] [Date], [Year] 

This lab is performed on the DE10-Lite. 



Floating Point Processor   Kartikey’s Master Thesis 

201 
 

CSE 3441         LABORATORY ASSIGNMENT 6     FALL 2024 

Floating Point Subtractor 

(100 POINTS) 

PURPOSE/OUTCOMES 

Your purpose in this lab is to design a 32-bit single precision floating point subtractor that 

can perform 32-bit floating point addition and that produces exception, underflow, 

overflow, zero, and the final output. See Figure 1 for the input/output diagram of the 

floating point subtractor. The subtractor component of your floating point subtractor should 

use ripple carry subtractor implemented in previous labs. You will code your design in 

System Verilog, simulate to verify its correctness, and test its functionality using testbenches 

and ModelSim on Quartus. After completing this lab, you will have demonstrated an ability 

to design a floating point arithmetic unit, to write Verilog models of the floating point 

subtractor, to capture and verify your designs using Model-Sim on Quartus Prime. 

 

 

               Figure 1 – Floating Point Subtractor 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

202 
 

BACKGROUND 

In this lab you will use the instantiations created in all the previous labs from Lab 1 to Lab 5. 

The modules you need for this lab are: 

1. Lab 1: 8-bit Modular Exponent Subtractor  

2. Lab 1: 24-bit Two-to-One Multiplexer 

3. Lab 1: 8-bit Two-to-One Multiplexer 

4. Lab 1: 24-bit Ripple Carry Subtractor 

5. Lab 2: 24-bit Barrel Right Shifter 

6. Lab 2: 24-bit Barrel Left Shifter 

7. Lab 3: 8-bit Controlled Decrementer  

You will use the instantiations for the above mentioned module and connect them together 

using wires in a top level type module design.  

 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

203 
 

DESIGN REQUIREMENT 

1. Write a System Verilog model for a 32-bit single precision floating point subtractor. In 

addition to the floating point subtraction, provide functionality for overflow, underflow, 

zero, & exception outputs. Use the architecture or block diagram shown in Figure 2 to 

understand how the modules are interconnected.  

 

   Figure 2 – Floating Point Subtractor Architecture 

2. Add logic to compute the final sign bit output depending on the two different input values 

and the sign bit of each input value.  

3. Add logic to compute the various error flags for this module like overflow, underflow etc. 

4. Create an instantiation template for this module for future use.  



Floating Point Processor   Kartikey’s Master Thesis 

204 
 

DESIGN VERIFICATION   

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) A = 32'b01000010010011010000000000000000 //51.25 

        B = 32'b01000001011101001100110011001101 //15.3 

(b) A = 32'b01000010011011111110101110000101 //59.979 

                    B = 32'b01000000110100000000000000000000 //6.5 

(c) A = 32'b01000011011110101000110011001101 //250.55 

        B = 32'b01000010010011010000000000000000 //51.25 

(d) A = 32'b01000100000010010111111100101011 //549.987 

        B = 32'b01000000101100100000010000011001 //5.563 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in the table below for your report. 

A B R = A - B Underflow Overflow Zero 

51.25 15.3     

59.979 6.5     

250.55 51.25     

549.987 5.563     

 

TESTBENCH VERIFICATION 

1. Write a test bench for this 32-bit floating point subtractor module using test cases above.  

2. Simulate the test bench using ModelSim on Quartus. 

3. Screenshot your output from the tcl console. 

4. Screenshot your ModelSim simulation results. 



Floating Point Processor   Kartikey’s Master Thesis 

205 
 

CHECK YOUR UNDERSTANDING  

1. Explain all the major differences between the floating point adder and the floating point 

subtractor architecture. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

206 
 

7.7 Lab 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name: _______________________________ ID# ______________________ 

Date Submitted: __________________ Lab Section # ___________________ 

CSE [xxxx] Digital Logic                           Fall Semester 2024 

Lab Number 7 – 32-bit Wallace Tree Multiplier 

Perform [Month] [Date], [Year] 

This lab is performed on the DE10-Lite. 



Floating Point Processor   Kartikey’s Master Thesis 

207 
 

CSE 3441         LABORATORY ASSIGNMENT 4     FALL 2024 

32-bit Wallace Tree Multiplier 

(100 POINTS) 

PURPOSE/OUTCOMES 

To give you experience writing Verilog modules and instantiating these modules to realize 

more complex designs. In this lab you will implement a 32-bit Wallace tree multiplier using 

Verilog hardware description language. The advantage of using Wallace tree multiplier is its 

faster speed. The Wallace multiplier has O(log n) reduction layers, but each layer has only  

O(1) propagation delay. After completing this lab, you will have demonstrated an ability to 

write Verilog model for the multiplier, half adder, full adder,  to capture and verify your 

designs using Model-Sim on Quartus Prime. 

BACKGROUND 

Wallace tree multiplier is a multiplication algorithm that uses a tree structure to add partial 

products to obtain the product and carry two numbers. Wallace Tree Multiplier is a 

multiplier that works in parallel by making use of the Wallace tree algorithm. This algorithm 

allows for a fast and efficient multiplication of two integers.  

Step 1: Partial product obtained after multiplication is taken at the first stage. The data is 

taken with 3 wires and added using adders and the carry of each stage is added with next 

two data in the same stage. Refer to Figure 1.  

 
Figure 1 – Step 1 



Floating Point Processor   Kartikey’s Master Thesis 

208 
 

Step 2: Partial products reduced to two layers of full adders with same procedure. 

Stage 0: 

 

Figure 2 – Step 2 Stage 0 

Stage 1:  

 

Figure 3 – Step 2 Stage 1 

Stage 2: 

 

Figure 4 – Step 2 Stage 2 

Stage 3: 
 

 
 

Figure 5 – Step 2 Stage 3 



Floating Point Processor   Kartikey’s Master Thesis 

209 
 

Step 3: Use Ripple carry adder or Carry look ahead adder to compute final addition  

 

Figure 5 – Step 3 

Figure 6 shows the flow diagram for a Wallace tree multiplier. 

 

Figure 6 – Data Flow 

 

 
 



Floating Point Processor   Kartikey’s Master Thesis 

210 
 

DESIGN REQUIREMENT 
 
1. Write a System Verilog model for a 8-bit output Wallace tree multiplier. Use the 

architecture or block diagram shown in Figure 7 to write the Verilog module. 

  
Figure 7 – 4-bit Wallace Tree Multiplier 

2. Modify your Verilog module to work with two 8-bit inputs and produce a 16-bit output.  

3. Instantiate your 8-bit Wallace multiplier to produce a two 16-bit input Wallace multiplier. 

Use the RTL diagram in Figure 9 to create this module. 



Floating Point Processor   Kartikey’s Master Thesis 

211 
 

Figure 9 – 16-bit Wallace Multiplier 

4. Instantiate your 16-bit Wallace multiplier to produce a two 32-bit input Wallace 

multiplier. Use the RTL diagram in Figure 10 to create this module. 

 
Figure 10 – 32-bit Wallace Multiplier 

DESIGN VERIFICATION   

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) A = 32'b01000001001101100000000000000001 //11.375 

        B = 32'b01000000101100100000010000011011 //5.56300 

(b) A = 32'b01000010011011111110101110000101 //59.979 

                    B = 32'b01000000110100000000000000000000 //6.5 



Floating Point Processor   Kartikey’s Master Thesis 

212 
 

(c) A = 32'b01000100011110100010000000000000 //1000.5 

        B = 32'b01000100011101010110100111011011 //981.654 

(d) A = 32'b01000100000010010111111100101011 //549.987 

        B = 32'b01000000101100100000010000011001 //5.563 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in the table below for your report. 

A B R = A * B 

11.375 5.56300  

59.979 6.5  

1000.5 981.654  

549.987 5.563  

 
TESTBENCH VERIFICATION 

1. Write a test bench for this 32-bit Wallace tree multiplier module using test cases above.  

2. Simulate the test bench using ModelSim on Quartus. 

3. Screenshot your output from the tcl console. 

4. Screenshot your ModelSim simulation results. 

CHECK YOUR UNDERSTANDING  

1. What is the one disadvantage of using Wallace tree multiplier over conventional 

multipliers?  

 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

213 
 

7.8 Lab 8  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name: _______________________________ ID# ______________________ 

Date Submitted: __________________ Lab Section # ___________________ 

CSE [xxxx] Digital Logic                           Fall Semester 2024 

Lab Number 8 – Floating Point Multiplier 

Perform [Month] [Date], [Year] 

This lab is performed on the DE10-Lite. 



Floating Point Processor   Kartikey’s Master Thesis 

214 
 

CSE 3441         LABORATORY ASSIGNMENT 8     FALL 2024 

Floating Point Multiplier 

(100 POINTS) 

PURPOSE/OUTCOMES 

Your purpose in this lab is to design a 32-bit single precision floating point multiplier that 

can perform 32-bit floating point multiplication and that produces exception, underflow, 

overflow, zero, and the final output. See Figure 1 for the input/output diagram of the 

floating point multiplier. The multiplier component of your floating point multiplier should 

use the Wallace tree multiplier implemented in the previous lab. You will code your design 

in System Verilog, simulate to verify its correctness, and test its functionality using 

testbenches and ModelSim on Quartus. After completing this lab, you will have 

demonstrated an ability to design a floating point arithmetic unit, to write Verilog models of 

the floating point multiplier, to capture and verify your designs using Model-Sim on Quartus 

Prime. 

 

               Figure 1 – Floating Point Multiplier 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

215 
 

BACKGROUND 

In this lab you will use the instantiations created in all the previous labs from Lab 1 to Lab 5. 

The modules you need for this lab are: 

1. Lab 1: 8-bit Modular Exponent Subtractor  

2. Lab 1: 24-bit Two-to-One Multiplexer 

3. Lab 1: 8-bit Two-to-One Multiplexer 

4. Lab 2: 24-bit Barrel Left Shifter 

5. Lab 3: 8-bit Controlled Incrementor 

6. Lab 7: Wallace Tree Multiplier 

You will use the instantiations for the above mentioned module and connect them together 

using wires in a top level type module design.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

216 
 

DESIGN REQUIREMENT 

1. Write a System Verilog model for a 32-bit single precision floating point multiplier. In 

addition to the floating point multiplication, provide functionality for overflow, 

underflow, zero, & exception outputs. Use the architecture or block diagram shown 

in Figure 2 to understand how the modules are interconnected.  

 

   Figure 2 – Floating Point Multiplier Architecture 



Floating Point Processor   Kartikey’s Master Thesis 

217 
 

2. Add logic to compute the final sign bit output depending on the two different input values 

and the sign bit of each input value.  

3. Design and construct a data classifier module to classify inputs into different data types. 

4. Design and construct a mantissa append module to append based on data type. 

5. Design and construct a product rounding module. 

6. Add logic to compute the various error flags for this module like overflow, underflow etc. 

7. Create an instantiation template for this module for future use.  

DESIGN VERIFICATION   

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) A = 32'h4234_851F // 45.13 

      B = 32'h427C_851F // 63.13 

(b) A = 32'h4049_999A // 3.15 

          B = 32'hC166_3D71 // -14.39 

(c) A = 32'hC152_6666 //-13.15 

        B = 32'hC240_A3D7 // -48.16 

(d) A = 32'h3ACA_62C1 // 0.00154408081 

      B = 32'h3ACA_62C1 // 0.00154408081 

2. Include screen shots of your simulation waveform in your report. 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

218 
 

3. Record the simulation results in the table below for your report. 

A B R = A x B Underflow Overflow Zero 

45.13 63.13     

3.15 -14.39     

-13.15 -48.16     

0.00154408081 0.00154408081     

 

TESTBENCH VERIFICATION 

1. Write a test bench for this 32-bit floating point multiplier module using test cases above.  

2. Simulate the test bench using ModelSim on Quartus. 

3. Screenshot your output from the tcl console. 

4. Screenshot your ModelSim simulation results. 

CHECK YOUR UNDERSTANDING  

1. What is a subnormal data type and how does it affect the appending of both your 

mantissa inputs? 

2. What is the significance of subtracting the bias from added exponent value? 

3. What kind of IEEE 754 rounding did you perform in the mantissa product rounding 

module? What influenced your choice? 

4. Explain the different error flags used and the method of computing those flags? 

 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

219 
 

 

7.9 Lab 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name: _______________________________ ID# ______________________ 

Date Submitted: __________________ Lab Section # ___________________ 

CSE [xxxx] Digital Logic                           Fall Semester 2024 

Lab Number 9 – Floating Point Divider 

Perform [Month] [Date], [Year] 

This lab is performed on the DE10-Lite. 



Floating Point Processor   Kartikey’s Master Thesis 

220 
 

CSE 3441         LABORATORY ASSIGNMENT 9     FALL 2024 

Floating Point Divider 

(100 POINTS) 

PURPOSE/OUTCOMES 

Your purpose in this lab is to design a 32-bit single precision floating point divider that can 

perform 32-bit floating point division and that produces exception, underflow, overflow, 

zero, and the final output. See Figure 1 for the input/output diagram of the floating point 

divider. The divider component of your floating point division can use any fixed point divider 

module of your choice. You will code your design in System Verilog, simulate to verify its 

correctness, and test its functionality using testbenches and ModelSim on Quartus. After 

completing this lab, you will have demonstrated an ability to design a floating point 

arithmetic unit, to write Verilog models of the floating point divider, to capture and verify 

your designs using Model-Sim on Quartus Prime. 

 

               Figure 1 – Floating Point Divider 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

221 
 

BACKGROUND 

In this lab you will use the instantiations created in all the previous labs from Lab 1 to Lab 5. 

The modules you need for this lab are: 

1. Lab 1: 8-bit Modular Exponent Subtractor  

2. Lab 1: 24-bit Two-to-One Multiplexer 

3. Lab 1: 8-bit Two-to-One Multiplexer 

4. Lab 2: 24-bit Barrel Right Shifter 

5. Lab 3: 8-bit Controlled Decrementer 

6. Lab 4: 9-bit Carry Look Ahead Adder 

6. Lab 8: Mantissa Append 

7. Lab 8: Mantissa Rounding 

8. Lab 8: Data Classifier Module 

You will use the instantiations for the above mentioned module and connect them together 

using wires in a top level type module design.  

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

222 
 

DESIGN REQUIREMENT 

1. Write a System Verilog model for a 32-bit single precision floating point divider. In 

addition to the floating point division, provide functionality for overflow, underflow, 

zero, & exception outputs. Use the architecture or block diagram shown in Figure 2 

to understand how the modules are interconnected.  

 

   Figure 2 – Floating Point Divider Architecture 



Floating Point Processor   Kartikey’s Master Thesis 

223 
 

2. Add logic to compute the final sign bit output depending on the two different input values 

and the sign bit of each input value.  

3. Add logic to compute the various error flags for this module like overflow, underflow etc. 

4. Create an instantiation template for this module for future use.  

DESIGN VERIFICATION   

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) A = 32'h4400_1CCD // 512.45 

      B = 32'h4322_570A // 162.34 

(b) A = 32'h43E7_9EB8 // 463.24 

      B = 32'hC263_3333 // -56.80 

 (c) A = 32'hC288_999A //-68.3 

   B = 32'hC1C7_3333 // -24.9 

(d) A = 32'h4455_9AE1 // 854.42 

      B = 32'h4419_E99A // 615.65 

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in the table below for your report. 

A B R = A / B Underflow Overflow Zero 

512.45 162.34     

463.24 -56.80     

-68.3 -24.9     

854.42 615.65     

 

 



Floating Point Processor   Kartikey’s Master Thesis 

224 
 

TESTBENCH VERIFICATION 

1. Write a test bench for this 32-bit floating point divider module using test cases above.  

2. Simulate the test bench using ModelSim on Quartus. 

3. Screenshot your output from the tcl console. 

4. Screenshot your ModelSim simulation results. 

CHECK YOUR UNDERSTANDING  

1. Which fixed arithmetic divider did you use and why? 

2. How does the XOR gate compute the sign of the operation? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

225 
 

7.10 Lab 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name: _______________________________ ID# ______________________ 

Date Submitted: __________________ Lab Section # ___________________ 

CSE [xxxx] Digital Logic                           Fall Semester 2024 

Lab Number 10 – Floating Point Unit 

Perform [Month] [Date], [Year] 

This lab is performed on the DE10-Lite. 



Floating Point Processor   Kartikey’s Master Thesis 

226 
 

CSE 3441         LABORATORY ASSIGNMENT 10     FALL 2024 

Floating Point Unit 

(100 POINTS) 

PURPOSE/OUTCOMES 

Your purpose in this lab is to design a 32-bit single precision floating point unit that can 

perform 32-bit floating point addition, subtraction, multiplication, and division based on a 

given Op code, and that produces exception, underflow, overflow, zero, and the final 

output. See Figure 1 for the input/output diagram of the floating point unit. The floating 

point unit will require multiplexers in order to figure out which operation needs to be done 

based on given opcode. You will code your design in System Verilog, simulate to verify its 

correctness, and test its functionality using testbenches and ModelSim on Quartus. After 

completing this lab, you will have demonstrated an ability to design a floating point 

arithmetic unit, to write Verilog models of the floating point unit, to capture and verify your 

designs using Model-Sim on Quartus Prime. 

 

 Figure 1 – Floating Point Unit 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

227 
 

BACKGROUND 

In this lab you will use the instantiations created in some of the previous labs: 

1. Lab 5: Floating Point Adder  

2. Lab 6: Floating Point Subtractor 

3. Lab 8: Floating Point Multiplier 

4. Lab 9: Floating Point Divider  

DESIGN REQUIREMENT 

Write a System Verilog model for a 32-bit single precision floating point Unit. Use the shown 

in Figure 2 to understand how the modules are interconnected.  

 

        Figure 2 – Floating Point Unit Architecture 



Floating Point Processor   Kartikey’s Master Thesis 

228 
 

DESIGN VERIFICATION   

1. Simulate your design using waveforms to verify its correctness. Use the following values 

of A and B for your simulation inputs. 

(a) A = 32'h4400_1CCD // 512.45 

      B = 32'h4322_570A // 162.34 

Opcode = 1000 //Division 

(b) A = 32'h4234_851F // 45.13 

      B = 32'h427C_851F // 63.13 

            Opcode = 0100 // Multiplication 

 (c) A = 32'h424D_0000 // 51.25 

   B = 32'h4174_CCCD // 15.3 

       Opcode = 0010 // Subtraction 

(d) A = 32'h426F_EB85 // 59.979 

       B = 32'h40D0_0000// 6.5 

      Opcode = 0001 // Addition  

2. Include screen shots of your simulation waveform in your report. 

3. Record the simulation results in a table for your report. 

TESTBENCH VERIFICATION 

1. Write a test bench for this 32-bit floating point unit module using test cases above.  

2. Simulate the test bench using ModelSim on Quartus. 

3. Screenshot your output from the tcl console. 

4. Screenshot your ModelSim simulation results. 

 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

229 
 

Conclusion  
 
 This chapter of the thesis covered ten different laboratory assignments that convert 

the first five chapters of the thesis into an education module. These ten lab assignments are 

ready to be deployed in a Digital Logic & Design course and will equip students with all the 

necessary information and details to design a floating point unit just like the one 

implemented in this thesis. Additionally, the assignments also checks for the student’s 

understanding after every lab section to make sure they understand the material being 

taught and the modules being implemented in a thorough fashion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Floating Point Processor   Kartikey’s Master Thesis 

230 
 

Chapter 8: Conclusion  

This thesis paper consists of a total of eight chapters starting from the introduction 

of the subject matter in form of floating point number and floating point arithmetic. These 

eight chapters are mainly divided into four sections.  

The first section consisted of just the first  chapter that introduced the readers with 

all the basic concepts of floating point number, floating point number representation, and 

floating point arithmetic that is required to understand the consequent chapters of this 

thesis in an easy and secure manner.  

The next section of the thesis dove deeper into what a floating point processor looks 

like and how this processor works. This section ranged from chapter two to chapter five 

which attempts to explain to the readers on how each module of a floating point unit is 

designed, constructed in hardware description language, and then tested using test benches 

and simulation tools in accordance with IEEE 754 online calculator.  

The third section of the thesis acts as an education model. This section of the thesis 

converts the design, construction, and testing performed in the first chapter into an 

education model that makes it accessible for future students of this subject to build and test 

their own floating point unit and perhaps improve on the design in section two. This 

education model turns the entire floating point unit into a total of ten lab assignments with 

each lab working on some component of the unit.  

And finally, the last and fourth section consists of the final conclusion and future 

scope of work, which is this chapter, along with chapter eight and nine which illustrates the 

references used throughout this thesis paper and a section about the author. 

 



Floating Point Processor   Kartikey’s Master Thesis 

231 
 

8.1 Future Scope of Work 

 The Verilog code written for complete 32-bit floating point arithmetic unit has been 

implemented and tested on ModelSim. Once this entire model has been created on the 

Verilog code as shown in this paper, the same can be optimized using system Verilog or 

VHDL and can be regenerated with optimized results.  

 Furthermore, an extension of this project can be construction of a piece of hardware 

that can facilitate the synthesis of this floating point unit on the DE-1 SoC Cyclone V board. 

The suggested piece of hardware will need to be equipped to take in 32-bit inputs and 

should be able to display the 32-bit output using an LCD screen or equivalent.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Floating Point Processor   Kartikey’s Master Thesis 

232 
 

Bibliography  

[1] Russinoff, David M. “Floating-Point Numbers.” Formal Verification of Floating-Point 
Hardware Design, 2021, pp. 47–54., https://doi.org/10.1007/978-3-030-87181-9_4.  

[2] Goldberg, David. “What Every Computer Scientist Should Know about Floating-Point 
Arithmetic.” ACM Computing Surveys, vol. 23, no. 1, 1991, pp. 5–48., 
https://doi.org/10.1145/103162.103163.  

[3] Edwards, Eddie. “Floating Point Numbers.” Floating Point Numbers, 
https://www.doc.ic.ac.uk/~eedwards/compsys/float/.  

[4] Brown, W. S. “A Simple but Realistic Model of Floating-Point Computation.” ACM 
Transactions on Mathematical Software, vol. 7, no. 4, 1981, pp. 445–480., 
https://doi.org/10.1145/355972.355975.  

[5] “Floating-Point Basics and the IEEE-754 Standard.” Documentation – Arm Developer, 
https://developer.arm.com/documentation/den0042/a/Floating-Point/Floating-point-
basics-and-the-IEEE-754-standard.  

[6] “IEEE Annals of the History of Computing.” IEEE Annals of the History of Computing, vol. 
26, no. 2, 2004, pp. 01–01., https://doi.org/10.1109/mahc.2004.1299651.  

[7] “Machine Numbers and the IEEE 754 Floating-Point Standard.” Introduction to Scientific 
and Technical Computing, 2016, pp. 31–37., https://doi.org/10.1201/9781315382395-
3.  

[8] Presuhn, R. “Textual Conventions for the Representation of Floating-Point Numbers.” 
2011, https://doi.org/10.17487/rfc6340.  

[9] Schwarz M. Eric, Trong Dao Son “Introduction to denormalized numbers” Hardware                                                 
Implementation of denormalized numbers. 

[10] Venners, Under the Hood By Bill, and Bill Venners. “Floating-Point Arithmetic.” 
InfoWorld, JavaWorld, 1 Oct. 1996, 
https://www.infoworld.com/article/2077257/floating-point-arithmetic.html.  

[11] Stallings, William. “Floating Point Arithmetic.” Computer Organization and Architecture: 
Designing for Performance, Pearson, New York, NY, 2022.  

[12] Stallings, William. “Floating Point Arithmetic.” Computer Organization and Architecture: 
Designing for Performance, Pearson, New York, NY, 2022.  

 [13] Linhart, Jean Marie. “Mata Matters: Overflow, Underflow and the IEEE Floating-Point 
Format.” The Stata Journal: Promoting Communications on Statistics and Stata, vol. 8, 
no. 2, 2008, pp. 255–268., https://doi.org/10.1177/1536867x0800800207.  



Floating Point Processor   Kartikey’s Master Thesis 

233 
 

[14] “5. Rounding.” Numerical Computing with IEEE Floating Point Arithmetic, 2001, pp. 25–
29., https://doi.org/10.1137/1.9780898718072.ch5.  

[15] Hettiarachchi, Don Lahiru, et al. “Integer vs. Floating-Point Processing on Modern FPGA 
Technology.” 2020 10th Annual Computing and Communication Workshop and 
Conference (CCWC), 2020, https://doi.org/10.1109/ccwc47524.2020.9031118.  

[16] Cavanagh, Joseph. “Floating-Point Addition.” Computer Arithmetic and Verilog HDL 
Fundamentals, 2017, pp. 551–570., https://doi.org/10.1201/b12751-12.  

[17] Stallings, William. “Floating Point Arithmetic.” Computer Organization and Architecture: 
Designing for Performance, Pearson, New York, NY, 2022.  

[18] Doyen, Laurent, et al. “Robustness of Sequential Circuits.” 2010 10th International 
Conference on Application of Concurrency to System Design, 2010, 
https://doi.org/10.1109/acsd.2010.26.  

[19] Carroll Bill. “Twos Complement Convertor.” CSE 5357 Output Unit Lecture. 

[20] “Systemverilog Study Notes. Barrel Shifter RTL Combinational Circuit.” element14 
Community, https://community.element14.com/technologies/fpga-
group/b/blog/posts/systemverilog-study-notes-barrel-shifter-rtl-combinational-
circuit.  

[21] Admin. “8 Bit Barrel Shifter Verilog.” VLSI GYAN, 22 Jan. 2022, 
http://vlsigyan.com/barrel-shifter-verilog /.  

[22] Johri, Raj, et al. “High Performance 8 Bit Cascaded Carry Look Ahead Adder with Precise 
Power Consumption.” International Journal of Communication Systems, vol. 28, no. 8, 
2014, pp. 1475–1483., https://doi.org/10.1002/dac.2727.  

[23] Carroll Bill. “Carry Look Ahead Adder block Diagram” CSE 5357 Carry Look Ahead Adder 
lecture presentation. UTA CSE 5357 

[24] H., Schmidt. “Tools & Thoughts.” IEEE-754 Floating Point Converter, https://www.h-
schmidt.net/FloatConverter/IEEE754.html.  

[25] Boldo, Sylvie, and Marc Daumas. “Properties of the Subtraction Valid for Any Floating 
Point System.” Electronic Notes in Theoretical Computer Science, vol. 66, no. 2, 2002, 
pp. 132–144., https://doi.org/10.1016/s1571-0661(04)80408-0.  

[26] Stallings, William. “Floating Point Arithmetic.” Computer Organization and Architecture: 
Designing for Performance, Pearson, New York, NY, 2022.  

[27] Roy, Dr. Shirshendu. “Floating Point Architectures.” Digital System Design, 13 Mar. 
2021, https://digitalsystemdesign.in/floating-point-architectures/.  

[28] Barrel Shifter, https://esrd2014.blogspot.com/p/barrel-shifter.html.  



Floating Point Processor   Kartikey’s Master Thesis 

234 
 

[29] Barrel Shifter, https://esrd2014.blogspot.com/p/barrel-shifter.html.  

[30] H., Schmidt. “Tools & Thoughts.” IEEE-754 Floating Point Converter, https://www.h-
schmidt.net/FloatConverter/IEEE754.html. 

[31] Al-Ashrafy, Mohamed, et al. “An Efficient Implementation of Floating Point Multiplier.” 
2011 Saudi International Electronics, Communications and Photonics Conference 
(SIECPC), 2011, https://doi.org/10.1109/siecpc.2011.5876905.  

[32] Roy, Dr. Shirshendu. “Floating Point Multiplication.” Digital System Design, 13 Mar. 
2021, https://digitalsystemdesign.in/floating-point-multiplication/.  

[33] Stallings, William. “Floating Point Arithmetic.” Computer Organization and Architecture: 
Designing for Performance, Pearson, New York, NY, 2022.  

[34] Ganssle, Jack. “IEEE 754 Floating Point Numbers.” The Firmware Handbook, 2004, pp. 
203–205., https://doi.org/10.1016/b978-075067606-9/50019-9.  

[35] “Design and Analysis of FIR Filters Using Wallace Tree Multiplier and Carry Select 
Adder.” International Journal of Recent Trends in Engineering and Research, 2018, pp. 
151–153., https://doi.org/10.23883/ijrter.conf.02180328.024.l2uiw.  

[36] Manzoor Qasim, Syed, et al. “Towards Optimised FPGA Realisation of 
Microprogrammed Control Unit Based FIR Filters.” Control Theory in Engineering 
[Working Title], 2019, https://doi.org/10.5772/intechopen.90662.  

[37] Vlsiverify. “Wallace Tree Multiplier.” VLSI Verify, 11 Dec. 2022, 
https://vlsiverify.com/verilog/verilog-codes/wallace-tree-multiplier.    

[38] Aswani, T.S., and B. Premanand. “Area Efficient Floating Point Addition Unit with Error 
Detection Logic.” Procedia Technology, vol. 24, 2016, pp. 1149–1154., 
https://doi.org/10.1016/j.protcy.2016.05.068.  

[39] Maclaren, Nick. “IEEE 754 Error Handling and Programming Languages.” IEEE, Mar. 
2000, https://doi.org/10.3403/01786371u.  

[40] H., Schmidt. “Tools & Thoughts.” IEEE-754 Floating Point Converter, https://www.h-
schmidt.net/FloatConverter/IEEE754.html. 

[41] Grover, Naresh, and M.K. Soni. “Design of FPGA Based 32-Bit Floating Point Arithmetic 
Unit and Verification of Its VHDL Code Using MATLAB.” International Journal of 
Information Engineering and Electronic Business, vol. 6, no. 1, 2014, pp. 1–14., 
https://doi.org/10.5815/ijieeb.2014.01.01.   

[42] Roy, Dr. Shirshendu. “Floating Point Division.” Digital System Design, 13 Mar. 2021, 
https://digitalsystemdesign.in/floating-point-division/.  

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html


Floating Point Processor   Kartikey’s Master Thesis 

235 
 

[43] Stallings, William. “Floating Point Arithmetic.” Computer Organization and Architecture: 
Designing for Performance, Pearson, New York, NY, 2022.  

[44] Green, Will. “Division in Verilog.” Project F, 1 Mar. 2023, 
https://projectf.io/posts/division-in-verilog/.  

[45]  H., Schmidt. “Tools & Thoughts.” IEEE-754 Floating Point Converter, https://www.h-
schmidt.net/FloatConverter/IEEE754.html. 

[46] Design of Single Precision Float Adder (32-Bit Numbers) According to ... 
https://upcommons.upc.edu/bitstream/handle/2099.1/15467/32BitFloatingPointAdd
er.pdf?sequence=4.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html


Floating Point Processor   Kartikey’s Master Thesis 

236 
 

About the Author 

Kartikey Sharan, born in Bihar, India, is a Master’s 

student at University of Texas at Arlington. Kartikey 

moved to United States at the age of 17 to attend 

University of Texas at Arlington BS in Computer 

Engineering. He has 4 years of experience writing 

Verilog modules and has worked on projects such 

as designing and coding TRISC processor, and 

designing and coding a SPI IP Core with Linux Device Drivers. He has a keen interest in the 

field of FPGA based digital system designs. Presently, he is a working as a graduate teaching 

assistant under Dr. Bill Carroll for the Advanced Digital Logic & Design course at UTA. 


	DESIGN OF SINGLE PRECISION FLOATING POINT UNIT (32-BIT NUMBERS) ACCORDING TO IEEE 754 STANDARD USING VERILOG, AND CREATION OF AN EDUCATION MODEL FOR ADVANCED DIGITAL LOGIC AND DESIGN COURSES
	Recommended Citation

	tmp.1725462723.pdf.fVO5E

