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ABSTRACT 

The dissertation explores into structural damage identification and prediction through the application of 

machine learning. Firstly, it enhances impact echo delamination mapping by incorporating two signal image 

parameters—signal duration and starting time after zero-crossing. The research also explores the efficiency 

of machine learning concerning image resolution and the number of images. This approach refines the 

evaluation of bridge damage in field tests. Two crucial signal parameters are investigated: signal duration 

and signal starting time after the zero-crossing point. These parameters exert a direct impact on the 

frequency domain, a crucial metric in impact echo analysis. This metric discerns signals reflected from 

areas with delamination and those from non-delaminated areas by assessing the accumulated low-frequency 

energy within the range of 1kHz to 5kHz. Considering the complexity of signals collected during field tests, 

artificial neural network (ANN) and convolution neural network (CNN) are employed to identify 

delamination signals using these two parameters. The study reveals that a signal duration of 1 millisecond 

with a starting time at 0.1 millisecond yields the highest accuracy in damage identification. A comparative 

analysis between delamination maps before and after applying deep learning (DL) suggested signal 

parameters demonstrates the updated results' enhanced accuracy in distinguishing delamination areas 

correctly. 

Secondly, the study differentiates between homogeneous and inhomogeneous mediums with random 

aggregate sizes and distributions, utilizing wave scattering models and wave response variations. The 

internal crack geometry is identified through wave response variation with machine learning, and the finite 

element model design for random aggregate is detailed. Analyzing cracks at different depths, the wave 

response variation (WRV) study observes lower impulse frequencies for shallower cracks, computed from 

forward and incident waves, and higher frequencies for deeper cracks. Inhomogeneous medium (IHM) 

complexity increases with random aggregate size and distribution, where larger aggregates significantly 

impact the WRV pattern, causing more energy attenuation in the forward wave than smaller aggregates. 

Machine learning (ML) techniques accurately predict cracks and elucidate the black box process, 
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emphasizing the impact of aggregate information on WRV. The study outlines the framework of internal 

damage in IHM using ML technology. 

Lastly, the dissertation employs bridge weight-in-motion signals to predict varying levels of structural 

damage. A finite element model using the kinetic contact method is developed and verified with bridge-

vehicle motion theory. The study focusses on the development of moving load FE model. It introduces a 

comprehensive assessment of 1) a unique finite element (FE) simulation approach, which leverages the 

kinematic contact enforcement (KCE) method, verified with the vehicle-bridge interaction (VBI) theory, 2) 

laboratory tests and field test were conducted and performed to calibrate and verify the FE model, and 3) 

ML techniques to identify and automatically predict structural damages from the structural response. The 

KCE method is a new approach to simulating vehicle motion in a BWIM model, which is used to carry out 

actual structural responses to motion. By providing contact conditions between elements, including contact 

type, material properties, and element speed, the KCE method enables realistic simulation of both vehicle 

motion and structural response. The responses generated by the FE simulation are further analyzed using a 

feature selection method that ranks the importance of various ML models. Specifically, the prediction model 

includes a decision tree, a support vector machine (SVM), backpropagation (BP), and XGBoost. The results 

show that XGBoost with its assembly decision tree provides the most reliable outcomes. Three distinct 

studies leverage machine learning algorithms for tasks such as signal identification, damage identification, 

and the prediction of structural damages. 
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CHAPTER 1 INTRODUCTION 

1.1 Problem Statement 

The maintenance of transportation infrastructures (e.g., bridges and pavements) has become a major 

concern for safety and economic loss with many factors such as increasing traffic volumes, deterioration. 

In particular, deterioration (e.g., external and internal damages) of infrastructures can significantly impact 

infrastructure service life and often require extensive repairs or replacements. For improving service life, a 

structure survey of its condition is required for transportation agencies not only to ensure roadway safety 

but also to provide proper time for appropriate preservation and rehabilitation treatments. 

In practical field tests, however, the acquired signals often deviate significantly from the clean and 

controlled signals obtained in laboratory settings. Field signals exhibit inherent complexity attributed to 

various environmental factors, including ambient noise, road surface conditions, and slope angles (Baggens 

& Ryden, 2015; Carino, 2001). These external interferences, ranging from varying road surface conditions 

to fluctuations in slope angles, exert a substantial influence on the signals obtained during field evaluations 

(Kang et al., 2021; Yoon et al., 2022). These interferences introduce complexities that can distort the raw 

data, potentially leading to inaccurate estimations and erroneous assessments of structural conditions 

(Carino, 2001). The daunting challenge lies in mitigating these interferences, as their presence significantly 

compromises the reliability of data collected during field evaluations (Gucunski et al., 2008; Liu et al., 

2023). Besides, the material of field is varied combined with inhomogeneous medium (IHM), which affect 

testing results. Despite the progress in understanding WRV in both homogeneous medium (HM) and IHM, 

notable research gaps persist. While extensive studies in HM have focused on the behavior of 

electromagnetic waves in isotropic environments, particularly in scattering phenomena, there remains a 

lack of comprehensive exploration of wave response variation (WRV) patterns, especially in situations 

where media properties may exhibit variations. Moreover, the understanding of WRV in IHM, such as 

concrete, remains limited due to challenges posed by random aggregate size and distribution. The 
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complexities introduced by factors like material properties, wave frequency, crack size and shape, and the 

surrounding environment hinder the development of analytical solutions. 

 

1.2 Objectives and Approach 

The primary goal is to evaluate, identify, and predict structural damage in infrastructure using various types 

of machine learning (ML) techniques and diverse study cases and input data. The initial objective is to 

enhance impact-echo (IE) signal post-processing through an ML-based signal extraction approach. 

Improvements in IE delamination results are achieved by utilizing IE signal images to identify under or 

overrated data points due to field test environmental conditions. The efficiency of ML is further investigated 

with varying image resolutions and numbers of images to understand the impact of input parameters on ML 

computation time and model accuracy. Chapter 3 concentrates on IE laboratory test results with an artificial 

delamination slab, employing convolutional neural network (CNN) to identify damages and presenting a 

study on ML efficiency. Chapter 4 outlines the enhancement of IE field test results using CNN to improve 

the accuracy of signal extraction. The second objective is to explore WRV patterns in HM and IHM with 

random aggregates and random distribution, considering eight different internal crack geometries. Chapter 

5 provides a description of the developed finite element (FE) model with infinite elements for both HM and 

IHM. The study also explores into the prediction of internal crack geometry using WRV. The third objective 

is to predict structural damage using structural performance data collected from the bridge weigh-in-motion 

(BWIM) signal. FE simulations are carried out with the kinematic contact enforcement (KCE) method to 

simulate the effect of a moving vehicle load. Chapter 6 provides a detailed account of the development of 

KCE, outlines the structural features, and presents a comparison between four types of ML algorithms. By 

conducting these studies, structural damage can be assessed and predicted based on either the IE signal or 

the structural performance, providing insights and timelines for better preventive structural maintenance. 
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CHAPTER 2 BACKGROUND 

2.1 Overview 

This chapter furnishes the fundamental background essential for understanding the studies conducted in 

this dissertation. It encompasses the types of bridge defects that are the focus of our research, non-

destructive testing (NDT) technology, and the machine learning algorithms applied in the dissertation. 

 

2.2 Bridge Defects 

 Delamination and cracks 

Delamination and cracks are structural issues that commonly occur in various materials, including concrete 

and composites. Delamination refers to the separation or detachment of layers within a material, often 

manifesting as the peeling or flaking of one layer from another. This phenomenon weakens the structural 

integrity, compromises load-bearing capacity, and can be caused by factors such as moisture ingress, freeze-

thaw cycles, or inadequate bonding during construction. On the other hand, cracks are linear fissures or 

fractures that develop in a material due to stress, temperature fluctuations, or structural movements. 

Delamination and cracks share a relationship as delamination can contribute to the initiation and 

propagation of cracks. For instance, the presence of delamination weakens the material, making it more 

susceptible to crack formation under external forces or environmental conditions. In turn, the development 

of cracks may exacerbate delamination by providing pathways for further separation between layers. 
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Figure 2.1. The delamination and cracks. Delamination and cracks are interconnected, with 
delamination weakening the material and contributing to crack initiation, while cracks can exacerbate 
delamination by providing pathways for further separation between layers (Reilly et al., 2014).  

 

 Structural Damage 

Structural damage in bridges encompasses a range of issues that compromise the integrity and safety of the 

infrastructure. This can include phenomena such as delamination, where layers of the bridge material 

separate, and the formation of cracks due to stress, temperature fluctuations, or other environmental factors. 

Additionally, structural damage may result from the wear and deterioration of materials over time, exposure 

to harsh weather conditions, or inadequate construction practices. Identifying and addressing these 

problems is essential to prevent further deterioration, ensure the structural stability of the bridge, and 

ultimately guarantee the safety of both pedestrians and vehicular traffic. Various NDT technologies and ML 

algorithms are often employed to assess and predict the extent of structural damage, aiding in timely and 

effective maintenance and repair strategies for bridge infrastructure. 
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Figure 2.2. The example of structural damage (Peris-Sayol et al., 2017)  

 

2.3 Nondestructive Testing 

 Wave propagation 

Wave propagation refers to the transmission and spread of waves through a medium or space. Waves, which 

can be of various types such as mechanical, electromagnetic, or acoustic, carry energy and information as 

they travel. The behavior of wave propagation is governed by the properties of the medium through which 

the waves travel, including its density, elasticity, and other material characteristics. Waves can exhibit 

phenomena such as reflection, refraction, diffraction, and interference, depending on the nature of the 

medium and the specific conditions of the propagation. Understanding wave propagation is crucial in 

diverse fields, from physics and engineering to telecommunications and seismology, where it plays a 

fundamental role in describing how disturbances, signals, or energy propagate through different mediums 

over time and space. 
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Figure 2.3. The ground surface motion of Rayleigh waves (Hishamuddin et al., 2021). 

 

 Wave attenuation 

Wave attenuation refers to the gradual decrease in the intensity or amplitude of a wave as it propagates 

through a medium. This phenomenon occurs due to the dissipation of energy through various mechanisms, 

such as absorption, scattering, or conversion into other forms of energy. In the context of different wave 

types, including acoustic, electromagnetic, or seismic waves, attenuation manifests as a reduction in the 

wave's strength over distance. The extent of attenuation is influenced by the properties of the medium 

through which the wave travels, such as its composition, density, and viscosity. 

 

 Impact-echo 

IE is an NDT technique used to assess the condition of structures by analyzing the acoustic response 

generated when a mechanical impact, typically in the form of a transient force or stress wave, is applied to 

the material. This method relies on the detection and analysis of echoes produced by internal structural 

features, such as delaminations, voids, or other anomalies, as the impact-induced waves interact with these 

features and reflect back to the surface. By analyzing the time delay and characteristics of these echoes, 

practitioners can infer valuable information about the structural integrity and identify potential defects 

within the material. Impact echo testing is widely employed in civil engineering for assessing concrete 

structures, providing insights into the internal condition without the need for invasive measures. 
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Figure 2.4. The IE testing configuration (Carino, 2001). 

 

2.4 Signal Identification & Damage Prediction 

 Machine learning 

ML is a branch of artificial intelligence (AI) that focuses on developing algorithms and statistical models 

enabling computer systems to perform tasks without explicit programming. It involves the use of data-

driven techniques, where computers learn patterns and make predictions or decisions based on input data. 

Machine learning encompasses various approaches, including supervised learning, unsupervised learning, 

and reinforcement learning. In supervised learning, algorithms are trained on labeled datasets to make 

predictions or classifications, while unsupervised learning involves extracting patterns from unlabeled data. 
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Figure 2.5. The dataflow of ML (Sarker, 2021) 

 

 

 Artificial neural network   

Artificial neural network (ANN) is a computational model inspired by the structure and functioning of the 

human brain's neural networks. Comprising interconnected nodes, or artificial neurons, organized into 

layers, ANNs process information through a series of weighted connections that adjust during training. 

Input data is fed into the input layer, undergoes transformations through hidden layers using learned 

weights, and produces an output in the final layer. The strength of ANNs lies in their ability to learn complex 

patterns and relationships from data, making them valuable for tasks like classification, regression, and 

pattern recognition. 
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Figure 2.6. The structure of ANN (Kulkarni et al., 2017). 

 

 Support vector machine 

Support vector machine (SVM) is an algorithm used to classify or regress for features. Similar to the 

regression curve, the border called hyperplane divides two different classes of data. SVM is used to find 

the optimized hyperplane with the largest margin range. The goal is to find an optimized hyper-plane that 

has a maximum margin range, the distance between any point in space 𝑥 to hyper-plain. The optimized 

hyper-plane, which has the largest margin range, defines the best classification border of data, as shown in 

Figure 2.7.  
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Figure 2.7. The concept of SVM. The distance between features and hyper-plane can calculate the 

optimized hyper-plane with the maximum margin range. The optimized hyper-plane has a 
maximum margin range, which defines the best classification border of features. Therefore, 
the optimized hyper-plane can classify features with high accuracy. 

 

 Decision tree 

Decision tree (DT) is an optimized regression method presenting by tree structure where each node displays 

one attribute, each branch displays one decision, and each leaf indicates one outcome. The algorithm makes 

the decision in each node depends on the threshold, as known as information entropy. Based on the attribute 

of features and threshold calculated from entropy, the features will be classified into different branches and 

leaves in different classes to give the optimized classification: the lower the entropy value, the more similar 

the features in the dataset. 
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Figure 2.8. The simple binary decision tree model. Each node displays one attribute, each branch 
displays one decision based on the entropy threshold calculated in nodes, and each leaf indicates one 
output. 

 

 Extreme gradient boosting  

XGBoost is known as extreme gradient boosting, which combined the benefits of tree boosting and tree 

assemble. Tree boosting, known as gradient boosting, is used to find the best answer with the lowest error 

by using the loss function (e.g., mean square error). The tree assembles mean considering the results from 

all decision trees to vote (or sum) the output with the highest score (e.g., weight)—the simple model of 

XGBoost with tree ensemble concept as shown in Figure 2.9 (T. Chen & Guestrin, 2016). Similar to a 

decision tree, in the tree ensemble, each tree has its own threshold (e.g., entropy) in nodes to classify data, 

and the final prediction is based on the sum of predictions from each tree. In XGBoost, the first and second-

order derivative of Taylor polynomial is used for finding the best prediction results.  
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Figure 2.9. XGBoost model with tree ensemble (T. Chen & Guestrin, 2016). 

 

 Convolution neural network 

Convolutional neural network (CNN) is a specialized type of artificial neural network designed for 

processing and analyzing structured grid data, such as images. CNNs excel at image recognition tasks by 

leveraging convolutional layers that apply filters to input data, capturing spatial hierarchies and features. 

These layers are followed by pooling layers, which reduce spatial dimensions while retaining essential 

information. CNNs are characterized by their ability to automatically learn hierarchical representations of 

features from raw data, enabling effective pattern recognition. This architecture is widely used in computer 

vision applications, including image classification, object detection, and facial recognition. 

 

Figure 2.10. The structure of CNN (Hou & Li, 2020) 
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 Accumulated local effects 

Accumulated local effects (ALE) in machine learning refers to a method used for model interpretation and 

understanding the impact of input features on a model's predictions. ALE plots visualize the average effect 

of a single feature by accumulating the individual effects at different values of that feature while keeping 

other features constant. It helps to uncover non-linear relationships and interactions within the data, 

providing insights into how changes in a specific feature influence the model's output. 

 

 Generative adversarial network 

Generative adversarial network (GAN) consists of two neural networks, a generator and a discriminator, 

engaged in a adversarial training process. The generator aims to produce realistic data samples from random 

noise, while the discriminator attempts to differentiate between real and generated samples. The two 

networks are trained iteratively, with the generator trying to improve its ability to create realistic data, and 

the discriminator refining its ability to distinguish between real and generated data. This adversarial 

interplay results in the generator creating increasingly authentic-looking data. 

 

Figure 2.11. The structure of GANs (Aggarwal et al., 2021) 
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 Confusion matrix 

A confusion matrix serves as a crucial visualization tool in ML, essential for evaluating the performance of 

a classification algorithm. Its significance arises when the model's predictions are juxtaposed with the actual 

outcomes, offering a comprehensive breakdown of the model's accuracy and its capability to accurately 

classify different classes. This matrix provides detailed insights, enabling a thorough assessment of the 

model's predictive accuracy and its effectiveness in classifying distinct categories.  

Table 2.1. The example of a confusion matrix 

 Actual Positive (1) Actual Negative (0) 

Predicted Positive (1) True Positive (TP) False Positive (FP) 

Predicted Negative (0) False Negative (FN) True Negative (TN) 

 

True positive (TP) is the model correctly predicted positive outcome while true negative (TN) is the model 

correctly predicted negative outcome; false positive (FP) is the model incorrectly predicted positive 

outcome, and false negative (FN) is the model incorrectly predicted negative outcome. The model accuracy 

can be expressed by: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 

(2.1) 
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CHAPTER 3 IE DAMAGE IDENTIFICATION & CNN EFFICIENCY  

3.1 Chapter overview 

This chapter encompasses two distinct objectives. The first objective revolves around exploring the 

capabilities of CNN in identifying damage within impact echo signals of varying types, including time-

domain signals, frequency-domain signals, and STFT representations. The study examines the training, 

validation, and testing accuracy of the damage identification model, aiming to discern the network's 

proficiency in accurately categorizing different forms of structural impairment within these diverse signal 

formats. The second objective is centered on evaluating the efficiency of ML models, specifically focusing 

on both accuracy and computation time. This aspect explores the delicate balance between precision and 

computational speed, emphasizing the significance of achieving accurate results within a reasonable 

timeframe. The choice of employing an image-based CNN over a signal-based approach is rooted in the 

capacity of image data to convey more intricate spatial and local patterns. When examining the initial peak 

of the impact-echo signal for delamination mapping, a consistent amplitude range emerges due to a fixed 

impact power within our system. This waveform pattern consistently features a pronounced peak succeeded 

by attenuation. By harnessing convolution to extract more nuanced spatial details, the image-based CNN 

demonstrates superior capability in handling these impact-echo signals, adept at capturing essential features 

for accurate analysis. By exploring the efficiency metrics, the study demonstrates the practical applicability 

of the developed AI techniques, elucidating the trade-offs between accuracy and computational resources. 

The research flowchart as shown in Figure 3.1. The dataset utilized in this study originates from conducted 

laboratory tests on artificial delamination slabs. The comprehensive data collection process involves the 

creation of energy intensity maps through frequency analysis. In pursuit of our first objective, leveraging 

this laboratory data, the realm of multi-input CNN is applied. Here, the power of advanced ML techniques, 

specifically the multi-input CNN model, is harnessed to enhance the precision of damage identification. 

Through this approach, comprehensive and precise delamination maps, providing insights into the structural 

integrity of the materials under examination are created. Simultaneously, our second objective involves a 



16 
 

thorough investigation of the efficiency of CNN. This exploration transcends mere accuracy, aiming to 

pinpoint the delicate balance between accuracy and computation time. The study rigorously dissects the 

relationship between the complexity of the input data, represented by variables such as image resolution 

and the number of images, and the computational demands incurred. Unraveling this intricate interplay 

provides invaluable insights into optimizing CNN models for real-time assessments, ensuring that both 

accuracy and efficiency are at the forefront of structural evaluation methodologies. 

 

Figure 3.1. The flowchart of Chapter 3. The research pursues two key objectives: firstly, employing the 
collected data, it explores the realm of multi-input CNN to enhance damage identification 
precision. This innovative approach involves harnessing the power of advanced ML 
techniques, specifically the multi-input CNN model, to generate detailed and accurate 
delamination maps, illuminating the structural integrity of the materials studied. 
Concurrently, the study focuses into the nuanced interplay between precision and 
computation time within CNN efficiency. 

 

3.2 Data preparation 

 Impact echo laboratory test data 
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The testing slab dimensions measure 2.1 meters by 1.7 meters, incorporating six strategically placed 

artificial delamination of varying sizes and depths. These delaminations, mimicking real-world scenarios, 

serve as crucial indicators of structural integrity. The experiment utilizes three distinct thin plastic plate 

sizes: 46 cm × 46 cm, 30 cm × 30 cm, and 20 cm × 20 cm, positioned at depths of 4 cm and 10 cm within 

the slab shown in Figure 3.2. In our previous study (Kang et al., 2022), a standard impact diameter of 12 

millimeters, providing consistency in our testing methodology using non-contact micro-electromechanical 

system (MEMS) are established. Specifically, delamination D1 to D3 are positioned at a depth of 4 cm, 

while delamination D4 to D6 are located at a depth of 10 cm. The slab's dimensions result in a total of 1280 

testing points arranged in a grid of 32 by 40, with a 5-centimeter spacing between each testing point. This 

comprehensive configuration is visually represented in Figure 3.3 illustrating the meticulous placement of 

delamination and plastic plates across the testing slab. The impact echo algorithm is detailly described in 

previous study (Kang et al., 2022), a 1 kHz to 5 kHz frequency range is considered as vibration mode on 

our targeted size of delamination by increasing the frequency range. Thus, the energy intensity (EI) can be 

expressed as: 

 

𝐸𝐼(𝑓) = ∫ 𝛹(𝑓)



𝑑𝑓 =  ∑ 𝛹(𝑓)ே

ୀଵ , (𝑓ଵ = 𝑓 , 𝑓ே = 𝑓), 

 
(3.1) 

 

where 𝐸𝐼(𝑓) is energy intensity of nth MEMS sensor; 𝛹(𝑓) is the spectral energy density of nth MEMS 

sensor, 𝛹(𝑓) = |𝑋(𝑓)|ଶ, with a magnitude of the frequency component 𝑋(𝑓)); 𝑓 and 𝑓 are the low and 

high-boundary frequency (i.e., 1 kHz and 5 kHz in our system). The obtained EI related to flexural vibration 

mode is processed to create a two-dimensional (2-D) scanning image, or 2-D colormap, presenting 

delamination. All-post-processing is performed with MATLAB mathematical computing software. The 

testing signal samples are illustrated in Figure 3.4 and the severity of the damage is identified based on the 

energy of the target frequencies ranges. Typically, higher energy levels indicate a higher likelihood of 

delamination, whereas lower energy levels correspond to non-delamination cases. The objective of this test 

is to gather data, prepare inputs for the CNN model, and validate the predictions made by the CNN model.  
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Figure 3.2. The artificial delamination slabs, with three different size and two deployed depths cited from 
(Kang et al., 2022). There are a total of 1280 testing points on the slab, arranged in a grid of 32 by 40, 
with a spacing of 5 centimeters. 

 

Figure 3.3. The testing configuration includes the use of non-contact MEMS sensors. The data 
acquisition system is developed using National Instruments (NI), and LabVIEW software is utilized to 
save the data. 

 

 (a) (b) 
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Figure 3.4. Impact echo signal samples reveal delamination. Higher energy (1kHz to 5kHz) indicates 
severe delamination, while lower energy signifies intact structures. Shown in (a) non-delamination and 
(b) delamination cases. 

 

 Multi-input data of damage identification model 

In this study, four distinct CNN models, each utilizing different types of input data as shown in Figure 3.5 

is investigated. The first model referred to as F relies on frequency-domain signals to provide insights into 

the frequency components of the data. The second model referred to as TF combines time-domain signals 

with frequency-domain signals, capturing a broader range of information for a more comprehensive 

analysis. The third model referred to as FSTFT incorporates frequency-domain signals with STFT, 

enhancing the model's ability to analyze time-varying frequencies and offering a more detailed 

understanding of signal dynamics. Lastly, the fourth model referred to as TFSTFT utilizes an image 

composed of time-domain signals, frequency-domain signals, and STFT, integrating these elements into a 

unified image format. By considering multiple data representations, the model gains a nuanced perspective 

on the input, enriching the analysis. The input image samples are shown in Figure 3.5. This study comprises 

seven classifications (D1 to D6 and non-delamination). For model training, 70% of the samples will be 

utilized, while the remaining 30% will be reserved for testing the damage identification model. 

 

                            

 (a) (b) 
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 (c) (d) 

Figure 3.5. Examples of input images include: (a) frequency-domain signal input (F), (b) multi-input 
with time-domain and frequency-domain signals (SF), (c) multi-input with frequency-
domain signal and STFT (FSTFT), and (d) multi-input with time-domain signal, frequency-
domain signal, and STFT (TFSTFT). 

 

Table 3.1. The total number of samples correct from laboratory test. 

Classification D1 D2 D3 D4 D5 D6 ND 

Number of samples 64 36 25 64 36 25 1030 

 

 Graphical-CNN efficiency study data 

In addition to our primary goal of advancing the structural performance prediction model in this chapter, 

embarking on a parallel quest to explore the efficiency of AI, in particular, graphical ML such as CNN, in 

achieving a delicate balance between accuracy and computation time. Within this pursuit, two important 

factors come under scrutiny: image resolution and database or training size. These factors are crucial for 

optimizing ML models to achieve a balanced relationship between accuracy and computation time. 

Traditionally, lower-resolution images tend to yield quicker computation time but at the expense of 

accuracy, while higher-resolution images promise enhanced accuracy but demand longer computation time. 

However, the relationship between accuracy and computation time isn't a straightforward linear inverse 

correlation; in fact, achieving even a marginal 1% increase in accuracy may entail a substantial computation 

time increase of over 30 minutes. To explore deeper into this complex interplay and provide valuable 

insights for improving NDT results, understanding CNN efficiency becomes instrumental in guiding 
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decisions regarding image resolution and database size selection. To illustrate this, an example in Figure 

3.6, which showcases varying image resolutions is present. Ten different resolutions ranging from 10 by 10 

to 500 by 500 pixels, encompassing a total of 3000 images is considered. Each of the ten resolution cases 

consists of 300 images, enabling a comprehensive exploration of the impact of resolution on the trade-off 

between accuracy and computation time. Additionally, our study looks into training database size 

considerations, examining the effects of 40-image and 100-image databases across the same range of 

resolutions from 100 by 100 to 800 by 800 pixels. Through this multifaceted investigation, the valuable 

guidance for making informed decisions regarding image resolution and database size is provided, 

ultimately optimizing impact echo results while managing computational efficiency effectively. 

 

 

Figure 3.6. The image example of resolution study. Ten different resolutions ranging from 10 by 10 to 
500 by 500 pixels, encompassing a total of 3000 images is considered. Each of the ten 
resolution cases consists of 300 images, enabling a comprehensive exploration of the impact 
of resolution on the trade-off between accuracy and computation time. 

 

 𝐴𝐼 efficiency = 
ே௭ௗ ௨௬

ே௭ௗ ௨௧௧ ௧.
   (3.2) 

 

3.3 Result and discussion 
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In this section, a comprehensive analysis that encompasses three key findings are unveiled. Firstly, the 

impact echo laboratory test results demonstrate its capability to identify variations in depth or size of 

delamination. Secondly, our exploration into CNN damage identification yields groundbreaking results.  

 Impact echo laboratory testing result 

The IE testing results, illustrated in Figure 3.7, provide valuable insights into the delamination damage of 

the artificially damaged concrete slab. Significantly, areas exhibiting higher energy levels within this 

frequency spectrum are indicative of a higher likelihood of delamination. Upon closer examination, the 

locations labeled D1 to D6 exhibit notably higher energy levels compared to non-delaminated (ND) cases. 

The color bar represents the accumulated EI in the low-frequency range between 1 kHz to 5 kHz. Higher 

EI values are depicted in red, indicating highly delaminated areas, while lower EI values appear in blue, 

representing areas with minimal damage. A particularly intriguing observation emerges when comparing 

areas of varying depths. The top three regions (D1-D3), corresponding to shallow delaminations, display 

significantly higher energy levels compared to the bottom three regions (D4-D6) housing deeper 

delaminations. This disparity underscores the impact of depth on the behavior of mechanical waves. As the 

waves travel to deeper layers, the mechanical waves tend to disperse their energy. Consequently, this 

phenomenon causes a decrease in energy levels, thereby revealing a distinct pattern influenced by the depth 

of delamination. In essence, this nuanced analysis not only provides a clear understanding of the presence 

of delamination but also unravels the intricate dynamics of energy dispersion concerning the depth of the 

affected layers.  
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Figure 3.7. The laboratory impact echo test was conducted on a slab featuring artificial delaminations. 
The color bar represents the accumulated EI in the low-frequency range between 1 kHz to 5 
kHz. Higher EI values are depicted in red, indicating highly delaminated areas, while lower 
EI values appear in blue, representing areas with minimal damage. A noteworthy observation 
from the test results is the way energy diffusion varies with the depth of delamination. The 
upper three regions (D1-D3), indicative of shallow delaminations, exhibit markedly higher 
energy levels than the lower three regions (D4-D6) housing deeper delaminations. 

 

 Damage identification result 

In evaluating the performance of ML models, three distinct metrics come into play: training accuracy, 

validation accuracy, and test accuracy. Training accuracy serves as a crucial measure, depicting the model's 

ability to comprehend and interpret input data, discerning the intricate features in the data alongside their 

corresponding labels. Generally, a training accuracy exceeding 90% is anticipated, although this figure can 

vary based on the complexity of the input data. Once the training accuracy meets a predefined threshold, 

typically indicating a comprehensive understanding of the training dataset, the focus shifts to validation 

accuracy. Validation accuracy acts as a critical safeguard against overfitting, a scenario where the model 

learns the training data too well, capturing even insignificant features. Its role is to assess the model's 

capacity to generalize its knowledge to unseen data samples. This metric essentially tests the model's self-
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evaluation ability, ensuring it can identify samples it has never encountered during training. Ideally, the 

validation accuracy should closely align with the subsequent test accuracy, reflecting the model's robustness 

and its competence in dealing with unfamiliar data. In this section, the accuracy metrics in the context of 

four different input datasets are explored. Through rigorous examination, not only discuss the nuances of 

training, validation, and test accuracy but also study into the intricacies of model predictions. A key output 

of this analysis is the predicted delamination map, which visually represents the model's insights into the 

structural condition. This map acts as a tangible representation of the model's learning, providing a valuable 

visual aid for understanding the distribution and severity of delaminations within the material. By 

considering these accuracy metrics alongside the corresponding delamination map, a comprehensive 

assessment of the ML model's performance and predictive capabilities is achieved. 

The comparative analysis of four distinct input types is detailed in Figure 3.8. Notably, the final training 

accuracy for all inputs converges close to the 90% mark (as illustrated in Figure 3.8 (a)). However, it's 

intriguing to observe that the frequency-domain model (denoted as F) remarkably reaches its peak accuracy 

faster, typically within approximately 12 epochs, which means that the model remarkably reaches its peak 

accuracy faster. In other words, after iterating through the entire training dataset about 12 times, the model 

achieves optimal performance, demonstrating efficiency in learning and adaptation. This swift convergence 

suggests that the data in this category might be comparatively simpler, facilitating quicker model training. 

In contrast, the other three models require a more extended training period, around 25 epochs, to achieve 

their maximum accuracy. This discrepancy hints at the potential richness of information when using 

combined images, offering intricate details that demand a more thorough training process for the model to 

grasp. Figure 3.8 (b) further illustrates the training loss curves during the iterative training process. 

Consistently, F model demonstrates a rapid decline in loss, indicating a more efficient training process. 

Conversely, the other three models exhibit longer training times, signifying a more intricate learning curve. 

Upon achieving commendable training accuracies, the focus shifts to evaluating the validation curves, 

providing a crucial measure of the model's ability to generalize its knowledge to unseen data. These insights 
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into both training and validation processes serve as pivotal indicators of the model's robustness and 

predictive capabilities. 

  

   (a) (b) 

Figure 3.8. The ML training accuracy and loss curves of four different models: (a) The training 
accuracy, and (b) training loss. The training accuracy and loss patterns for the four distinct 
models are evident. Notably, F model stands out with its rapid training process compared to 
the other three models, swiftly reaching maximum accuracy and minimal loss. This 
observation underscores that the data within category F is more easily learned by the model, 
indicating its simplicity in training. 

 

 

The validation accuracy and loss for various models are detailed in Figure 3.9 to Figure 3.12. An intriguing 

observation across all cases is the consistent trend: validation accuracy is lower than training accuracy, 

while validation loss surpasses training loss. This phenomenon is both reasonable and expected. During 

validation, the model undergoes a self-assessment process. It encounters a subset of input data, pretending 

to be unfamiliar with the corresponding answers for validation samples. This intentional lack of knowledge 

mimics real-world scenarios where the model encounters previously unseen data. Hence, the lower accuracy 

and higher loss in validation results can be attributed to the model's effort to generalize its learned patterns 

to unfamiliar samples, a crucial aspect in ensuring the model's robustness in practical applications.  

Validation accuracy serves as a criterion to discern whether an ML model is well-trained or susceptible to 
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overfitting. The validation accuracy curves of the four models consistently increase with training epochs, 

indicating a lack of overfitting. The incremental trends in accuracy curves are similar across all models, 

with the F model and TFSTFT model achieving maximum accuracy in fewer epochs.  

This observation can be attributed to the complexity of the data and the impact of extraneous feature details. 

In cases where data is overly complex with unnecessary feature details, more training epochs are typically 

required. Among the four different models, the F model (Figure 3.9 (b)) exhibits the lowest validation loss, 

indicating that training with a single-frequency input image is easier and faster for CNN compared to other 

multi-input models. The F model reaches its minimum validation loss by epoch 30, outpacing the other 

three models. The validation and training curve for the SF model (Figure 3.10 (b)) reflects a larger gap 

between the two losses, suggesting lower model performance in learning SF data. SF data tends to provide 

excessive detail, requiring more epochs to reach the minimum loss value, and the minimum validation loss 

is the highest among the models. Conversely, the FSTFT and TFSTFT models show more similar trends to 

the F model and SF model, indicating that the data furnishes sufficient information for the models to 

understand features and enhances their ability to identify unlabeled or unclassified data (Figure 3.11 (b) and 

Figure 3.12 (b)). In addition, a notable trend is observed when comparing the training and validation curves. 

The validation curves consistently require more epochs to reach their peak values. This discrepancy 

underscores a fundamental principle in ML: the model's ability to generalize learned patterns to new, unseen 

data.  
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   (a) (b) 

Figure 3.9. Validation and training curves for F model: (a) accuracy curves, and (b) loss curves. The 
validation curves require more epochs to reach their peak values, indicating the model's adaptability in 
unpredictable environments with unknown data. 

 

   (a) (b) 

Figure 3.10. Validation and training curves for SF model: (a) accuracy curves, and (b) loss curves. 
Compared with Figure 3.9, the validation loss takes more epochs to reach its minimum value, indicating 
the SF model has higher complexity compared to model F. 
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   (a) (b) 

Figure 3.11. Validation and training curves for FSTFT model: (a) accuracy curves, and (b) loss curves. 
The validation accuracy and loss are meet to threshold value around 40 epochs. 

 

   (a) (b) 

Figure 3.12. Validation and training curves for TFSTFT model: (a) accuracy curves, and (b) loss curves. 
The validation accuracy meets to threshold value around 30 epochs. 

 

The testing accuracy serves as a vital metric, gauging the model's proficiency in identifying unknown 

samples, which were not included in the training process. It's important to note that the testing sample 

constitutes 30% of the total laboratory testing data, ensuring a diverse and representative subset. The results 

are comprehensively depicted in the confusion matrix, showcased in Figure 3.13. Comparing the four 
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models, it becomes evident that the FSTFT model outperforms others, achieving the highest accuracy rate 

at 87%. In contrast, F model demonstrates an accuracy of 78%, while the remaining models maintain a 

solid 76% accuracy. These results are further detailed in Table 3.2, offering a nuanced understanding of the 

models' proficiency in damage identification. Remarkably, the FSTFT model exhibits exceptional accuracy 

in identifying delaminations across all depths (D1-D6). Additionally, the TFSTFT model displays 

commendable performance in recognizing D3 and D4, while the F model excels in identifying D4 and D5. 

This detailed breakdown underscores the specific strengths of each model in pinpointing different 

delamination levels, providing valuable insights for practical applications. Overall, these results underscore 

the nuanced capacities of the models and emphasize their potential in real-world scenarios where accurate 

damage identification is crucial. 
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   (a) (b) 

 

   (c) (d) 

Figure 3.13. The confusion matrix of testing accuracy: (a) F model, (b) SF model, (c) FSTFT model, 
and (d) TFSTFT model. Overall, the FSTFT has the highest testing accuracy to show a better ability to 
identify delamination. 
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Table 3.2. The accuracy of each damage of four models. Unit (%) 

 D1 D2 D3 D4 D5 D6 ND Total 

F 70.5 55 50 62.5 55 44 80.3 78 

SF 82.3 55 50 50 44 44 78 76 

FSTFT 88 66 66 62.5 55 66 88.8 87 

TFSTFT 76.4 55 66 62.5 44 44 80 76 

 

The damage prediction maps, as displayed in Figure 3.14, provide a comprehensive overview of the models' 

predictive capabilities to detect different damage sizes and depths. In the training process, 70% of the 

samples were utilized, while the remaining 30% were dedicated to testing. Each testing sample was 

examined, with known sample locations serving as reference points to obtain the predicted results from the 

CNN. These predictions were then used to construct the damage maps. Upon analysis, it becomes evident 

that the FSTFT model shown in Figure 3.14 (c) outperforms the others, demonstrating fewer incorrect 

predictions. This superior performance can be attributed to the validation and testing accuracy metrics. The 

FSTFT model boasts an impressive 87% test accuracy, while the other three models achieve around 75% 

accuracy. This disparity is pivotal; it indicates that the FSTFT model provides crucial features that enable 

the model to distinguish between damaged and undamaged areas more accurately. The nuanced insights 

from these maps offer valuable implications. Not only do they highlight the FSTFT model's superior 

predictive abilities, but they also underscore the importance of selecting inputs with higher accuracy rates. 
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  (a) (b) 

 

  (c) (d) 

Figure 3.14. The CNN prediction delamination map: (a) F model, (b) SF model, (c) FSTFT model, and 
(d) TFSTFT model. The results presented in (c) demonstrate the most accurate delamination map among 
all cases.  

 

 CNN efficiency analysis result 

During the damage identification process, the computation time for each training iteration is recorded. The 

relationship between computation time, accuracy, image resolution, and the number of training images is 

illustrated in Figure 3.15. The triangles, circles, and rectangles marked with the same color in both Figure 

3.15 (a) and Figure 3.15 (b) represent CNN accuracy values obtained from the corresponding testing 

models. In Figure 3.15 (a), it becomes evident that higher image resolutions lead to increased accuracy. For 
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instance, with 100 images, a 600x600 resolution image attains 72% accuracy (blue rectangular mark), while 

a 100x100 resolution image achieves only 58% accuracy (blue triangle mark). However, this improvement 

in accuracy comes at a cost. The computation time exponentially increases. For the cases, the 600x600 

resolution image requires 300 seconds, whereas the 100x100 resolution image demands only 50 seconds 

for processing. Similarly, with 240 images, the 600x600 resolution image achieves 74% accuracy, while a 

100x100 resolution image attains 70% accuracy. However, the computation time drastically differs by 1600 

seconds for the former versus 80 seconds for the latter. This comparison reveals that although a 4% accuracy 

difference exists between these two cases, the higher accuracy demands significantly more time for 

processing. Figure 3.15 (b) echoes these trends. When comparing models using 40 images and 100 images 

with an 800x800 resolution, the 100-image model attains close to 70% accuracy with a 1600-second 

computation time. In contrast, the 40-image model achieves 58% accuracy with a 700-second computation 

time. These phenomena highlight a critical relationship: image resolution and the number of training 

samples dramatically affect both computation time and accuracy, especially after reaching a certain 

threshold. Notably, resolutions larger than 600x600 lead to exponentially increased computation time. To 

strike a balance between accuracy and processing time, a comprehensive analysis is imperative. 

Determining this equilibrium point will be pivotal in optimizing the model's performance for practical 

applications. 
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  (a) (b) 

Figure 3.15. The computation time and accuracy curves: (a) different number of images study, and (b) 
different image resolution study. The accuracy and computation time are significantly 
influenced by the number of images and the image resolution. However, beyond a specific 
threshold, such as 600x600 resolution, the computation time exponentially increases for a 
mere 2% improvement in accuracy. 

 

To find out the threshold, the changing difference between each increment is calculated, for example, 

analyze the difference between the computation time with 200x200 resolution image and the 100x100 

resolution image, to identify how the resolution affect computation time. The number of image study with 

computation time and accuracy are shown in Figure 3.16 and Figure 3.17. Examining Figure 3.16 (b), a 

significant slope peak occurs with the 600x600 resolution image within the range of 200 to 240 images. 

This observation clarifies that for a 600x600 resolution image, utilizing more than 200 images results in an 

exponential increase in computation time, as evident in Figure 3.16 (a). Hence, the threshold for the number 

of images, concerning computation time, for the 600x600 resolution image is set at 200 images. In the 

analysis of accuracy slopes depicted in Figure 3.17 (b), two distinct slope peaks are evident, corresponding 

to the cases of 600x600 and 100x100 resolution images. Figure 3.17 (a) illustrates this phenomenon through 

the increase in accuracy, notably with the 600x600 resolution image when transitioning from 40 to 60 

images, and with the 100x100 resolution image when increasing from 100 to 120 images. Consequently, 
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the number of images threshold, concerning accuracy, is set at 60 images for the 600x600 resolution and 

120 images for the 100x100 resolution image. These thresholds represent crucial points where the balance 

between computational efficiency and accuracy is effectively maintained. 

 

  (a) (b) 

Figure 3.16. The slope analysis of computation time with number of image study: (a) the curves of 
computation time and accuracy, and (b) the slope analysis of computation time. For 600x600 resolution 
image, the number of image threshold for computation time is 200 images. 
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  (a) (b) 

Figure 3.17. The slope analysis of accuracy with number of image study: (a) the curves of computation 
time and accuracy, and (b) the slope analysis of accuracy.  For 600x600 resolution image, 
the number of image threshold for accuracy is 60 images, while for 100x100 resolution 
image the threshold is 120 images. 

 

The analysis of slopes pertaining to resolution is presented in Figure 3.18 and Figure 3.19, considering 

inputs of 40 images and 100 images, respectively. In Figure 3.18 (b), a discernible slope occurs when the 

image resolution transitions from 600x600 to 700x700, as illustrated in Figure 3.18 (a). This delineates the 

threshold for computation time, signifying that a resolution of 600x600 provides a more efficient processing 

time. Examining the accuracy slopes in the resolution study, depicted in Figure 3.19 (b), two prominent 

peaks indicate significant accuracy enhancements. These observations are detailed in Figure 3.19 (a). The 

initial boost occurs when the resolution increases from 50x50 to 100x100, and the subsequent boost is 

observed from 150x150 to 200x200. Notably, resolutions exceeding 200x200 yield marginal increases in 

accuracy. This nuanced analysis underscores the critical impact of resolution on accuracy, emphasizing 

specific points where resolution adjustments significantly affect computational efficiency and model 

performance. 
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  (a) (b) 

Figure 3.18. The slope analysis of computation time with image resolution study: (a) the curves of 
computation time and accuracy, and (b) the slope analysis of computation time. For 100 images input, 
the image resolution threshold for computation time is 600x600. 

 

  (a) (b) 

Figure 3.19. The slope analysis of accuracy with image resolution study: (a) the curves of computation 
time and accuracy, and (b) the slope analysis of accuracy.  For 100 images input, the image resolution 
threshold for accuracy is 200x200. 

 

The efficiency curves calculated using Eq. 3.2 are depicted in Figure 3.20 and Figure 3.21. Figure 3.20 (a) 

reveals that efficiency values are higher when the number of images is below 100. However, these values 

must be evaluated in conjunction with the accuracy and computation time thresholds discussed in Figure 
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3.16 to Figure 3.19. For instance, the input featuring a 600x600 resolution with 20 images exhibits the 

highest efficiency. Despite this, the accuracy only reaches 56%, falling short of the accuracy threshold of 

72% (the red mark in Figure 3.20 (b)). Therefore, even though the efficiency is high, it cannot be directly 

utilized for CNN model input setting. Similar trends are evident in Figure 3.21 (a), where high efficiency 

is observed with a 50x50 resolution image, but the accuracy is only 53% (as shown in Figure 3.21 (b)). 

Taking both accuracy and computation time into account, the optimal setting identified in this study is a 

200x200 resolution with 100 images input (the red mark in Figure 3.21 (b)). This configuration achieves 

high accuracy while maintaining a rapid computation time, striking a balance that ensures both precision 

and efficiency in the CNN model. 

 

  (a) (b) 

Figure 3.20. The CNN efficiency study with image resolution: (a) The efficiency curve of number of 
image study: (b) the curves of computation time and accuracy. The analysis indicates that 
efficiency values tend to be higher with fewer than 100 images. However, these values need 
to be carefully considered alongside accuracy and computation time thresholds.  
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  (a) (b) 

Figure 3.21. The CNN efficiency study with number of images: (a) The efficiency curve of image 
resolution study. (b) the curves of computation time and accuracy. A high efficiency is noted with a 
50x50 resolution image, but the accuracy remains at 53%.  
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CHAPTER 4 IE SIGNAL EXTRACTION STUDY 

4.1 Chapter overview 

Given the existing difficulties in signal extraction from advanced impact echo data in the field test, arising 

from diverse environmental conditions or multiple impact sources, the use of ML emerges as a potential 

solution. This study primarily employs image-based CNN to analyze various signal types. Additionally, a 

comparison is conducted with data-based ANN to evaluate the features usage of signal identification. 

In order to extract signals effectively from massive data collect, this advanced model plays an important 

role in categorizing three distinct signal types: delamination signals, non-delamination signals, and noise 

or insignificant signals, as illustrated in the flowchart in Figure 4.1. In the first objective, our exploration 

involves two comprehensive signal studies: exploring different signal durations (𝐷௧) and examining 

various signal starting times (𝑆௧).  In the second objective, the CNN-recommended signal parameters of 

𝐷௧  and 𝑆௧ are applied to update the impact echo results, leading to a remarkable enhancement in map 

accuracy. It's noteworthy that the data utilized for training the CNN and ANN models is sourced directly 

from rigorous field tests. The integrity of the impact echo system used for data collection has been 

previously verified and published (Kang et al., 2022). 
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Figure 4.1. The flowchart of Chapter 4. Objective 1 focuses on signal extraction through deep learning, 
aiming to determine the signal parameters such as time duration and starting time, crucial 
for accurate damage identification. In Objective 2, these identified parameters are utilized to 
update the impact echo results. 

 

   

4.2 Field test environment 

The bridge field tests, and system configuration are illustrated in Figure 4.2 and Figure 4.3. The field test 

faced significant challenges due to environmental interferences and machine-related factors affecting signal 

clarity, including issues such as potholes and the slope of the scanning path, as depicted in Figure 4.4. These 

surface irregularities significantly impact the accuracy of impact echo data analysis, influencing the quality 

and reliability of the results obtained. Potholes and surface damage can disrupt the impactor’s contact with 

the bridge, leading to variations in the generated mechanical waves; The impactor’s ability to generate 

mechanical waves, crucial for the echo signal, is directly influenced by the ground surface condition. If the 

surface is uneven or damaged, the impactor may not strike the ground effectively, leading to lower energy 

signals.  
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These low-energy signals pose a challenge during impact echo data analysis, as they might be overlooked, 

resulting in inaccurate delamination map outcomes. Furthermore, since our system includes nine motor 

drivers to generate waves, and each motor has a 20-millisecond delay, signals generated by other motors 

may be observed by each sensor. This is a challenge because signals from distant impacts could potentially 

affect the data from the nearest impact (Kang et al., 2022). These undesirable signals, despite having lower 

amplitude, remain discernible in the data. To address these challenges arising from natural environmental 

interference and the multi-impact signals during field tests, our study explored signal extraction techniques 

enhanced through ML methods, as discussed in the subsequent sections. 

     

 (a) (b) 

Figure 4.2. Field testing photo - (a) scanned area of the bridge, and (b) system and safety control. 

 

Figure 4.3. The ACES scanning system encompasses impact-echo and GPR technologies cited from 
(Kang et al., 2022). 
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Figure 4.4. The surface condition highlights prevalent issues such as potholes and damaged surfaces. 
Potholes and surface damage can disrupt the impactor's contact with the bridge, leading to variations in 
the generated mechanical waves.  

 

In Chapter 4, the goal is to enhance signal extraction leveraging ML aimed at overcoming prevalent 

challenges in impact echo testing, such as environmental interferences and machine-related factors affecting 

signal clarity. The example signals as shown in Figure 4.5. Analyzing extensive scanning datasets from 

field tests covering entire bridges, often surpassing 30 million samples and susceptible to environmental 

variations, poses a challenge in accurately identifying target signals. Factors like delayed impact and 

diminished mechanical wave amplitudes add complexity, making the use of uniform mathematical methods 

difficult. The precision of delamination identification relies on accurate signal extraction. To address these 

challenges, two powerful DL algorithms are employed: data-based ANN and image-based CNN. These 

methods help to classify signals, distinguishing delamination, non-delamination, and insignificant signals, 

aiming to enhance signal extraction accuracy from real-world impact echo testing data. 
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Figure 4.5. The impact echo algorithm aims to generate a delamination map, but it encounters a 
significant challenge: processing over 30 million sample data points within a single scan 
time and the effect of multi-impact. Identifying the precise target peaks using traditional 
mathematical algorithms becomes daunting due to this vast dataset. To address this 
challenge, DL algorithms are employed to accurately identify signals. 

 

4.3 Signal extraction ML algorithm 

 ANN 

ANN consists of interconnected nodes or neurons organized in layers, including an input layer, one or more 

hidden layers, and an output layer. These networks are trained using the backpropagation (BP) algorithm, 

a supervised learning technique tailored for neural networks. The BP updating error equation can be 

expressed by: 

 𝛿 = (𝑂𝑢𝑡)(1 − 𝑂𝑢𝑡)𝑤,୧ିଵ𝛿  (4.1) 

 

 𝛿ଵ = 𝑂𝑢𝑡ଵ( 1 − 𝑂𝑢𝑡ଵ)𝑤ଶ,ଵ𝛿ଶ (4.2) 

 

 𝛿ଶ = 𝑂𝑢𝑡ଶ( 1 − 𝑂𝑢𝑡ଶ)𝑤,ଶ𝛿 (4.3) 

where 𝑤 represents data weights,  𝛿 signifies the error value in neuron 𝑖, L is the last layer neuron and 𝑂𝑢𝑡 

represents the output data from neuron i as shown in Figure 4.6. During training, BP calculates the error 
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between the predicted output and the actual target values. It then adjusts the weights and biases of the 

network, working backward from the output layer to the input layer, in order to minimize this error. This 

iterative process continues until the network's predictions closely align with the desired outcomes. 

Figure 4.6 as example, the output from neuron 0 is used to input for next layer neurons (e.g., neuron 1), and 

the error 𝛿 from neuron 1 is updated from output of neuron 1, data weight, and error from neuron 2 as 

described in Eq. 4.3. As a result, ANNs become adept at recognizing intricate patterns, enabling accurate 

predictions and classifications. The inputs for neuron 0 consist of features derived from signals described 

in Eq. 4.4 to Eq. 4.7. The updated calculated weight from neuron 0 serves as input for the next layer neuron, 

such as neuron 1. The final output of the last neuron encompasses three types of damage identification. 

 

Figure 4.6. Schematic representation of the ANN architecture. In the training process, BP computes the 
error by comparing predicted and actual outputs. It then iteratively adjusts the network's 
weights and biases from the output layer to the input layer to minimize this error. The input 
features consist of frequency and time-domain signals, with the output focused on damage 
identification. 

 

The time-domain peak serves as a direct representation of the impactor energy and the energy of mechanical 

waves in the impact echo signal. A higher amplitude indicates correct impactor hitting conditions, although 

sometimes environmental interferences and machine-related factors can lead to lower amplitudes. These 

time-domain peaks have a direct impact on the frequency-domain energy, affecting the accumulated energy 

as well. To enhance the granularity of features used for training and testing the ANN model, four distinct 

feature values are introduced to characterize the impact echo signal: 1) the maximum peak in the time-
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domain, 2) the maximum peak in the frequency-domain, 3) the accumulated energy between 1kHz to 5kHz, 

and 4) the accumulated energy between 7kHz to 11kHz, as expressed in Eq. 4.4 to Eq. 4.7: 

 

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 1 = 𝑚𝑎𝑥൫𝐴𝑚𝑝(𝑡)௫,௬൯ (4.4) 

   

 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 2 = 𝑚𝑎𝑥൫𝐴𝑚𝑝(𝑓)௫,௬൯ (4.5) 

   

 
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 3 =  𝐸(𝑓)

ହு௭

ଵு௭

 
 

(4.6) 

   

 
𝐹𝑒𝑎𝑡𝑢𝑟𝑒 4 =  𝐸(𝑓)

ଵଵு௭

ு௭

 
 

(4.7) 

 

where 𝐴𝑚𝑝(𝑡)௫,௬ and 𝐴𝑚𝑝(𝑓)௫,௬ are amplitude of time-domain (t) and frequency-domain(f) with time and 

amplitude value, separately.  

 

 CNN 

The CNN model is leveraged to process time-domain signals accompanied by damage labels, distinguishing 

between delamination, non-delamination, and insignificant signals. Two parameters associated with various 

signal windows, namely starting time signal (𝑆௧) and different duration signal (𝐷௧) of the input signal, are 

used to identify damage labels. Afterward, the CNN output, which furnishes the 𝑆௧ and 𝐷௧ values 

associated with the highest accuracy in damage identification, will be implemented to enhance the 

extraction algorithm, thereby improving the final delamination map. The CNN's operation entails intricate 

layers, including convolutional layers and pooling algorithms. These layers examine input images, utilizing 
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convolution with smaller elements to deconstruct the image into more manageable feature images, as 

depicted in Figure 4.7. It is crucial to highlight that our input data originates from both field and laboratory 

tests, encompassing real-world scenarios. This approach ensures the CNN model's practical applicability.  

 

Figure 4.7. The CNN model comprises a convolution layer for feature extraction and a pooling layer to 
reduce dimensions, retaining essential features. Extracted features are connected to a flatten layer and 
a neural network for training and testing purposes. 

 

The cornerstone of our methodology is the construction of a comprehensive database, tailored to signal 

parameters, encompassing variations in the starting time and duration of signals. This parameter-driven 

database serves as the bedrock for our efforts to differentiate between significant signals, which are 

instrumental in producing precise impact echo results, and insignificant signals that might introduce noise 

or interfere with accurate assessments. The sample of different 𝑆௧ and 𝐷௧ in time-domain as shown in 

Figure 4.8 and Figure 4.9. The signal duration study depicted in Figure 4.8, a range of 10 different durations 

spanning from 0.2 milliseconds to 2 milliseconds (e.g., 𝐷௧ଵ=0.2 millisecond, 𝐷௧ଶ=0.4 millisecond and 𝐷௧ =

𝑖 × 0.2 millisecond) are examined. Each duration represents a distinct temporal window within which the 

signal is analyzed. Furthermore, for the 𝑆௧ study, eight different starting time scenarios (e.g., 𝑆௧ଵ = 0 

millisecond after zero-crossing point, 𝑆௧ଶ=0.1 millisecond after zero-crossing point and 𝑆௧ = (𝑖 − 1) × 0.1 

millisecond after zero-crossing point) are investigated. The initial case of 𝑆௧ଵ commenced precisely at the 

zero-crossing point, aligning with the moment just before the acquisition of the structural signal. For 
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instance, the initiation of 𝑆௧ଶ occurred 0.1ms after the zero-crossing point, and 𝑆௧ଷ subsequently followed 

with a delay of 0.2ms delay, as exemplified in Figure 4.9. In 𝐷௧ study, a total of 3000 images were analyzed. 

This encompassed 10 distinct cases, with each 𝐷௧ variant comprising a dataset of 300 images. Similarly, in 

the starting time study, a substantial dataset comprising 2400 images was employed. This comprehensive 

dataset included eight different 𝑆௧ scenarios, with each scenario comprising a collection of 300 images. 

This extensive dataset facilitated an in-depth exploration of the effects of varying starting times on our 

signal analysis.  

Figure 4.8. The CNN inputs for signal extraction, examining various durations (𝑫𝒕𝒊) of time-domain 
impact echo signals. A total of 10 different durations, ranging from 0.2 milliseconds to 2 milliseconds, 
are analyzed. Each dataset (e.g., 𝑫𝒕𝟏 dataset) comprises 300 images obtained from field tests. 

 

Figure 4.9. The study explores CNN inputs for signal extraction, varying the starting time (𝑺𝒕𝒊) after the 
zero-crossing point. A total of eight different signals are considered, ranging from the immediate zero-
crossing point to 0.7 milliseconds after it. 

 

4.4 Results and discussions 
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This section provides results from two aspects. Firstly, the precise classification of signals into 

delamination, non-delamination, and insignificant signal categories utilizing time-domain signals. This 

classification is conducted across diverse 𝐷௧ and 𝑆௧ after the zero-crossing point. Secondly, the impact 

echo delamination maps are refined using results obtained from our CNN-based signal extraction process. 

The enhancements are achieved by incorporating optimized values for 𝐷௧ and 𝑆௧ , ensuring a more accurate 

and detailed delamination mapping process. 

 

 CNN Signal extraction result 

The CNN's signal extraction testing accuracy of 𝐷௧ଵ=0.2 millisecond case is depicted in Figure 4.10 (a), 

where it is essential to note that there were 210 images utilized for training and 90 images for testing. As 

an example, Figure 4.10 (a) show the 33.3% accuracy for non-delamination class that is calculated by 

dividing the 30 of correctly predicted sample number over the total 90 testing images, resulting in 33.3%. 

The figure also presents a value of 85.7% at the bottom, derived from the correctly predicted samples within 

each class (30 out of 35), accounting for 85.7%. The overall accuracy of the CNN model is represented by 

76.3%, calculated as the sum of the correct predictions for each class (33.3% for non-delamination, 24.2% 

for delamination, and 18.8% for insignificant signal). Compared to result in Figure 4.10 (a), Figure 4.10 (b) 

represents the signal identification result for the case with 𝐷௧ଶ=0.4 milliseconds model, showing a slightly 

higher accuracy (76.6%). However, its ability to identify non-delamination has a slightly lower accuracy at 

80%. Figure 4.10 (d) exhibits a higher model accuracy (78.4%) with 𝐷௧ହ=1 millisecond model. 
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 (a) (b) 

 

 (c) (d) 

Figure 4.10. The confusion matrix illustrates the identification of different duration signals, categorizing 
them into non-delamination, delamination, and insignificant signal classes. (a) 𝑫𝒕𝟏 = 0.2ms, (b) 𝑫𝒕𝟐 = 
0.4ms, (c) 𝑫𝒕𝟒 = 0.8ms, and (d) 𝑫𝒕𝟓 = 1ms.  

 

In-depth analysis of testing accuracy across different 𝐷௧୧ presents distinctive outcomes, as illustrated in 

Figure 4.11. Particularly, when 𝐷௧ହ= 1ms, a notably higher prediction accuracy is achieved. This highest 

accuracy can be attributed to the focused 1ms window, efficiently capturing crucial impact signals 

indicative of structural interior damage. However, as the duration extends to 1.2ms, insignificant tail noise 

in the red box begins to be considered as shown in Figure 4.12, leading to a slight decline in CNN 
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classification accuracy. Further increasing the duration to 1.6ms results in a significant drop in accuracy, 

and at 𝐷௧ଵ= 2ms, the accuracy diminishes further, encompassing a broader spectrum of insignificant 

signals such as tail resonance or noise. This broader inclusion leads to a notable decrease in accuracy, 

highlighting the critical importance of selecting an optimal signal duration for accurate classification. In 

conclusion of the duration study, it is evident that signals with a duration of 1ms contain sufficient 

information, minimizing the impact of tail noise or insignificant signals, enabling effective damage 

identification. 

 

Figure 4.11. The outcomes of the varied signal duration study are evident. Specifically, when duration 
is 1ms, a significantly higher prediction accuracy is achieved. This is because within the 
1ms window, crucial impact signals reflecting structural interior damage are effectively 
captured. In contrast, when duration=2ms is considered, the accuracy drops significantly. 
This decrease is attributed to the broader duration including a multitude of insignificant 
signals, such as tail resonance or noise, resulting in decreased accuracy. 
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Figure 4.12. The interpretation of signal extraction accuracy with varying duration cases reveals distinct 
patterns. 𝑫𝒕𝟏 and 𝑫𝒕𝟐, characterized by limited signal information, result in lower CNN 
identification accuracy. In contrast, 𝑫𝒕𝟓 exhibits a precise signal group, leading to higher 
CNN accuracy. However, 𝑫𝒕𝟔 includes more signals, including tail insignificant signals, 
which adversely affect accuracy.  

 

The outcomes from various 𝑆௧୧, for three different 𝐷௧୧ are depicted in Figure 4.13. A consistent trend is 

observed across all six cases: the highest accuracy is achieved when 𝑆௧ଶ=0.1ms or 𝑆௧ଷ=0.2ms. This result 

can be attributed to the exclusion of the front part surface wave, which significantly affects signal behavior. 

The surface wave occurs exclusively during the first half cycle of the wave, after which the subsequent 

signal consists entirely of mechanical echoes originating from the combination of surface wave and the P-

wave reflections, either from delamination or the solid depth. Conversely, when 𝑆௧=0.5ms, the accuracy 

decreases as the signal primarily encompasses tail noise and insignificant signal. Additionally, the accuracy 

observed in laboratory test data mirrors these trends: the highest accuracy in damage identification occurs 

when 𝑆௧ଶ=0.1ms or 𝑆௧ଷ=0.2ms. It's worth noting that the laboratory test data, being clearer with distinct 

target peaks and signals free from noise, validates the accuracy and value of the information derived from 

the field test data. Despite being trained with field test data, the CNN model's correct identification of 

laboratory test data underscores the authenticity and importance of the field test findings.  
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Figure 4.13. The outcomes of various signal starting times 𝑺𝒕𝒊 across three different durations, including 
lab test delamination data, exhibit a consistent pattern. In all six scenarios, the highest 
accuracy is achieved when 𝑺𝒕𝟐=0.1m or 𝑺𝒕𝟑=0.2ms. This heightened accuracy can be 
attributed to the exclusion of the initial surface wave, a component that significantly 
influences signal behavior. 

 

The detailed explanation for the CNN accuracy findings can be elucidated using Figure 4.14. In the case 

where 𝑆௧ଵ=0ms and 𝐷௧ଵ=1ms, the initial half of the signal primarily comprises a pure surface wave, as 

indicated in the top red box of Figure 4.14. However, this surface wave does not contribute significantly to 

the impact echo flexural mode. Across all signals, the surface wave provides similar information, making 

it a relatively insignificant feature in CNN training. It's noteworthy that the P-wave, which is utilized to 

identify delamination, occurs after the pure surface wave. 

Conversely, when 𝑆௧ଶ = 0.1ms and 𝑆௧ଷ = 0.2ms, the pure surface wave is eliminated, focusing the CNN on 

the target signal that is combination of impact echo signal and surface wave while incorporating more tail 

noise. These signals can be effectively identified by CNN due to the richer information from input data. 

However, when 𝑆௧ସ=0.3ms, the absence of the target signal results in a decrease in accuracy, particularly 
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when the input data contains a higher proportion of tail noise, as indicated in 𝑆௧ସ result located in the bottom 

red box of Figure 4.14. 

 

Figure 4.14. The explanation of CNN accuracy shown in Figure 4.13.  At 𝑺𝒕𝟏=0ms, both surface wave 
and target wave are present, but the surface wave offers similar information across all 
signals, making it less significant for CNN training. When 𝑺𝒕𝟐=0.1ms and 𝑺𝒕𝟑=0.2ms, the 
elimination of the surface wave focuses CNN on the target signal while introducing more 
tail noise. These signals are effectively identified due to their richer information. However, 
at 𝑺𝒕𝟒=0.3ms, the exclusion of the target signal results in decreased accuracy. 

 

The results of ANN using four features processing from Eq. 4.4 to Eq. 4.7 as shown in Figure 4.15.. 

In this ANN study, the 𝐷௧ହ=1ms is fixed while varying 𝑆௧୧. This is because the ANN feature nearly 

reaches its maximum amplitude when the duration reaches the first peak. Therefore, increasing the 

duration does not significantly impact the features of the ANN. The observed trend aligns with the 

findings from the starting time study (Figure 4.14), indicating that 𝑆௧ଶ=0.1ms to 𝑆௧ସ=0.3ms yield the 

highest CNN accuracy. In the case of ANN, a sharp decline in accuracy occurs at 𝑆௧ହ=0.4ms due to 

the signal being impacted by tail-end noise, mirroring the observations in Figure 4.14. Overall, the 
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analysis of various starting times reveals that 𝑆௧ଶ=0.1ms and 𝑆௧ଷ=0.2ms offer crucial information for 

accurate damage identification using impact echo signals. This valuable insight serves as a foundation 

for enhancing delamination results, a topic explored in the subsequent section. 

 

Figure 4.15. The ANN accuracy with four features from Eq. 4.4 to Eq. 4.7. The observed pattern 
correlates with the results from the starting time study in Figure 4.14, showing that 
𝑺𝒕𝟐=0.1ms to 𝑺𝒕𝟒=0.3ms provides the highest CNN accuracy. Conversely, for ANN, 
accuracy sharply decreases at 𝑺𝒕𝟓=0.4ms due to the signal being influenced by tail-end 
noise, consistent with the observations in Figure 4.14. 

 

 Delamination results from field test 

Due to the environmental interferences and machine-related factors in the field test, often obscure 

delamination signals, leading to challenges in accurate detection. Signals may be either too faint, leading 

to their dismissal, or excessively amplified, creating false impressions of damage severity. To address this 

issue, the time-domain signals with varying durations and starting times to mitigate these interferences are 

systematically examined. In this section, further investigation is performed with a detailed discussion and 

comparison of the field test delamination results before and after implementing CNN-recommended signal 
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parameters, specifically focusing on starting time and signal duration adjustments. Marked differences are 

carefully analyzed, and both time-domain and frequency-domain signals are scrutinized to assess the 

reasonableness of the generated delamination maps.  

The delamination maps before and after applying CNN-recommended signal parameters are depicted in 

Figure 4.16. A careful comparison between Figure 4.16 (a) and Figure 4.16 (b) reveals distinct differences: 

certain points exhibit altered colors, with some points becoming visible and others disappearing upon the 

application of CNN-recommended signal parameters. Take Region A, for instance, in Figure 4.16 (a), the 

accumulated energy between 1kHz to 5kHz is low, suggesting a non-delamination area. However, when 

plotted using CNN-recommended signal parameters (𝐷௧ହ=1ms with 𝑆௧ଶ=0.1ms) in Figure 4.17 (a), a clear 

low-frequency peak indicative of delamination becomes visible. This phenomenon can be explained by the 

original signal in Figure 4.16 (a) having an extended duration, encompassing excessive high-frequency 

noise that diminishes the influence of low-frequency energy.  

Consider Region C as another example: Figure 4.16 (a) indicates a non-delamination case, whereas Figure 

4.16 (b) suggests slight damage in that area. The signal, as depicted in Figure 4.17 (c), showcases a distinct 

lower-frequency peak for delamination, although the energy level is not notably high. This lower amplitude 

signal could result from the impactor failing to strike the surface accurately at the correct angle, possibly 

due to surface conditions like potholes where the impactor may become stuck and vibrate.  

Region D offers a valuable insight: Figure 4.16 (a) depicts a large delamination area, while Figure 4.16 (b) 

indicates minor damage. The signal at Region D, shown in Figure 4.17 (d), demonstrates a peak in a high-

frequency region, indicating a highly non-delamination case. This example emphasizes that when the 

impactor strikes the surface accurately with sufficient energy, the reflected mechanical waves also carry 

higher energy compared to inaccurate hits. However, higher energy alone is not a sufficient criterion to 

distinguish between delamination and non-delamination; the specific location of frequency peaks is equally 

crucial. By analyzing these cases, it becomes evident that the CNN-recommended signal parameters used 
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to generate Figure 4.16 (b) effectively enhance the delamination maps while mitigating the impact of 

environmental factors in field tests. 

 

(a) 

 

(b) 

Figure 4.16. The delamination maps of scanning path 1. (a) Original algorithm, and (b) CNN-suggestion 
signal parameter from signal extraction study (e.g., 𝑫𝒕𝟓=1ms and 𝑺𝒕𝟐=0.1ms). Consider 
point C as another example: Figure 4.16 (a) indicates a non-delamination case, whereas 
Figure 4.16 (b) suggests slight damage in that area. This lower energy could result from the 
impactor failing to strike the surface accurately at the correct angle, possibly due to surface 
conditions like potholes where the impactor may become stuck and vibrate. 
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 (a) (b) 

 

 (c) (d) 

 

  (e)  (f) 

Figure 4.17. The verification of Figure 4.16. The samples in Figure 4.16 depict the time-domain and 
frequency-domain signals for different cases: (a) Region A, (b) Region B, (c) Region C, 
(d) Region D, (e) Region E, and (f) Region F. Consider sample C as an illustration; despite 
the relatively low energy, a distinct low-frequency peak indicates a delamination case. 
Utilizing the CNN-recommended signal parameters depicted in Figure 4.16 (b) results in 
accurate identification of the delamination in this sample. 
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CHAPTER 5 INTERNAL CRACK IDENTIFICATION IN IHM MEDIUM 

5.1 Chapter overview 

The primary goal of this study is to advance the understanding of a WRV is the wave response ratio of 

scattering waves to incident waves according to specific wave frequency and crack geometry in particular, 

an internal vertical crack in IHM. Initially, the focus shifted to establishing the mathematical relationship 

between wave response in HM and analyzing WRV patterns. Given the limited research on WRV in IHM 

like concrete, the developed FE model from Kang (2021) is applied and conducts laboratory tests with IHM 

to understand these unique patterns (Kang et al., 2021). 

The flowchart in Figure 5.1 outlines the research steps. First, the FE model was applied and verified through 

laboratory tests with artificial crack specimens. Second, the WRV patterns between HM and IHM were 

analyzed, considering the effects of aggregate size and distribution. Third, GANs and CNN were employed 

to develop an internal crack prediction model, which was tested with field test data. 
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Figure 5.1. Overview of research steps. In this study, a sequential research approach was conducted, 
divided into several tasks. The process began with a comprehensive review of wave response 
theory, establishing a foundation. Subsequently, the focus shifted to the mathematical 
relationship between wave response in HM, and WRV patterns were analyzed. Due to limited 
research on WRV in IHM like concrete, a FE model was developed, and IHM laboratory 
tests were conducted, confirming the FE model's validity with varied crack geometries. 
Machine learning techniques were applied to enhance the database and predict crack depth 
based on understood WRV patterns. Additionally, exploration of GANs was undertaken to 
generate more WRV data. The study culminated in a field test, evaluating the accuracy of 
machine learning in identifying damages. 

 

5.2 Wave response variation  

 Mathematical formulation with the relation between the wave scattering and various 

material-crack properties in an elastic medium 

The investigation of the analytical solution of WRV in HM using various numerical integration methods is 

studied (Kang et al., 2020).  A vertical internal crack geometry is shown in Figure 5.2. The r and θ are 

components of the polar coordinate, “a” represents the distance between the surface and the top of the crack 

tip referred to as depth-to-crack; “b” is crack size. Assuming that the surface wave direction is aligned with 

the x-axis and the crack is in a vertical direction, the wave split into two parts when it encounters the crack, 

depending on the wave direction. The wave that propagates forward is referred to as forward scattering, 

while the reflected wave is called backward scattering. In theory, if the wave energy is not dispersed in the 
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medium, the sum of the amplitudes of forward and backward scattering should be equal to that of the 

incident wave (Kang et al., 2021). 

 

Figure 5.2. The wave scattering mechanism involves the incident wave energy splitting into backward 
and forward scattering upon encountering an internal crack. In this context, "r" and "θ" 
are polar coordinate components, "a" represents the depth-to-crack (distance between the 
surface and the top of the crack tip), and "b" signifies the crack size. 

 

The displacement potentials are defined in the scattered field and meet the radiation condition of the elliptic 

boundary-value problem proposed by Wickham (Wickham, 1977).  
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(5.1) 

 

where A constant, 𝑘ோ, 𝑘, and 𝑘் are the wavenumbers of Rayleigh, longitudinal, and transverse waves, 

respectively. The variable 𝑟 and 𝜃 represent the components of polar coordinates (𝑟, 𝜃). The ± signs denote 

forward direction (+), and backward direction (−). The formula for the constant A is expressed as per 

Gregory (Gregory, 1975): 
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The integration component in (5.2 are: 
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and (5.5 can be expressed with integration formula: 
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Eq. 5.5 can be applied with various polynomial equations to solve the integration problem. There are five 

different methods of Gaussian quadrature were considered, including Legendre quadrature (GLEQ), Gauss-

Chebyshev quadrature (GCQ), Gauss-Jacobi quadrature (GJQ), Gauss-Hermite quadrature (GHQ), and 

Gauss-Laguerre quadrature (GLAQ), as outlined in Table 5.1 (Kang et al., 2020). Additionally, FE model 

to with different WRV patterns under varying crack geometries are developed, and the verification study 



63 
 

between the analytical solutions and the FE model are conducted. Specifically, for this study, the Gauss-

Legendre quadrature method is applied. 

Table 5.1. Five different integral methods used in WRV analytical solution 

Integral method Weight function 

Gauss-Legendre quadrature 𝑤 =
2

(1 − 𝑥
ଶ)[𝑃′(𝑥)]ଶ

, 

Gauss-Chebyshev quadrature 𝑤 = ඥ(1 − 𝑥ଶ). 

Gauss-Jacobi quadrature 𝑤 = (1 − 𝑥)ఈ(1 + 𝑥)ఉ. 

Gauss–Hermite quadrature 𝑤 =
2ିଵ𝑛! √𝜋

𝑛ଶ[𝐻ିଵ(𝑥)]ଶ
, 

Gauss–Laguerre quadrature 𝑤 =
𝑥

(𝑛 + 1)ଶ[𝐿ାଵ(𝑥)]ଶ
, 

 

Thus, the expression of incident and forward wave applied Table 5.1 can be (Achenbach & Brind, 1981; 

Gregory, 1975; Kang et al., 2020):  

 𝑢௫
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(5.7) 

   

𝑀(𝑦) = න 𝑑𝑦൛𝑑௬(𝑦)𝑅(𝑦) + 𝑖𝑑௫(𝑦)𝑄(𝑦)ൟ




 

 

 

(5.8) 
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(5.9) 

 

where 𝑢௫
 is incident surface wave displacement; 𝑢௫

௦ is forward wave displacement; 𝐴ோ is the wavelength 

of the incident Rayleigh wave. 𝐾ோ is the wave-number of a Rayleigh wave. The displacement variation ratio 

(𝑢௫
௦

/𝑢௫
) are presented by the incident wave frequency and crack geometry variables, 𝑘ோ𝑎, representing 

the energy diffusion before and after encountering the crack. 

 

 Comparative study of wave response variation in different geometry sizes using an infinite 

element in homogeneous medium 

Figure 5.3 displays a representative example of the FE model utilized in this study, preprocessing through 

the HyperMesh software, and solved using Abaqus. To mitigate noise and reflected waves from the 

boundaries, an infinite element and dampers were incorporated (Oh et al., 2012). Ten layers of dampers 

were implemented, each possessing a distinct damping value. The red damper had the lowest damping value 

(1000) as the initial damping factor, with an incremental damping factor of 5000 for the subsequent layer. 

The infinite element was positioned at the last damper (black), as outlined in Table 5.2. The utilization of 

ten layers with varying damping values ensured that wave responses, such as amplitude or waveform, did 

not undergo drastic changes. This approach guaranteed the accurate preservation of the wave shape for 

comprehensive analysis. The test specimen was assumed to possess typical solid material properties 

(𝜌=2400 𝑘𝑔/𝑚ଶ, 𝐸=35 GPa, and 𝜐=0.2). The model for the ABAQUS solver was constructed using a two-

dimensional (2-D) four-node plane strain element (CPE4R) with a 2 mm mesh size for the solid medium 

group and dampers, except for the infinite element (CINPE4). The input pulse employed was a three-cycle 

sine wave with frequencies ranging from 10kHz to 200kHz. 
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Figure 5.3. This FE model example includes listening nodes N1 and N2. N1 captures incident and 
reflected waves, while N2 captures forward waves. Ten layers of dampers are incorporated to minimize 
boundary reflections. 

 

Table 5.2. The damper coefficient is denoted by Damper 1 for the inner one attached to the specimen, 
while Damper 10 refers to the outer damper. 

Damper  
1 

Damper  
2 

Damper  
3 

Damper  
4 

Damper  
5 

Damper  
6 

Damper  
7 

Damper  
8 

Damper  
9 

Damper  
10 

1000 6000 11000 16000 21000 26000 31000 36000 41000 46000 

 

The WRV pattern is computed by considering the incident and forward/backward amplitudes. Figure 5.4 

illustrates an example of N1 listening points along the x-axis in Figure 5.3. The wave with a higher 

amplitude represents the incident wave (blue), whereas the wave with a lower amplitude corresponds to the 

forward wave (red). The scattering amplitude is reduced due to energy being transferred to backward 

scattering and diffusing within the medium. To validate the FE model simulation against the analytical 

solution, the wave response pattern is calculated using the first peak of the wave amplitude, its 

corresponding wavelength, and crack depth for comparison. 
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Figure 5.4. An example of the incident wave and forward wave in the laboratory test is shown in Figure 
5. The incident wave (blue solid line) has a higher amplitude, while the forward wave (red solid line) has 
a lower amplitude due to the presence of a crack. 

 

The signal reflection validation from the IHM model, applied with and without the infinity element, is 

shown in Figure 5.5. The model dimensions are the same as the laboratory specimen size. When comparing 

the two signals, the infinity element signal exhibits less reflection in the tail part, while the initial front peak 

is not significantly affected by reflection. A similar waveform can be observed in the model without the 

infinity element, where the front waveform matches the infinity element model, demonstrating that the front 

signal is not significantly affected by reflection. The WRV is calculated from the first peak of the incident 

wave and forward scattering wave. 
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Figure 5.5. The reflection validation from FEM. The model with the infinity element (blue) and without 
the infinity element (orange) experiences less reflection in the front first peak. The WRV is calculated 
from the first peak of the incident wave and forward scattering wave. 

 

 

 Develop the damage prediction model using ML technology 

To gather sufficient data for damage identification in the later stages of the study, creating numerous 

specimens with varying depths of cracks in the laboratory within the given project timeframe can be 

challenging. To address this limitation, FE models are employed to generate additional data. The IHM 

design closely resembles that of the HM, with the primary distinction being the use of random aggregates 

in the IHM specimens. The method for creating random aggregates has been validated in previous research 

studies (Yun et al., 2020). The study explores different aggregate sizes with the same portion ratio, as 

depicted in Figure 5.6. The larger aggregates are denoted as L1-L6, and the smaller aggregates are denoted 

as S1-S6. L1-L6 represent exclusively utilize larger aggregates, while S1-S6 represent only smaller 

aggregates but with a random distribution. Additionally, ten different aggregate patterns are investigated 

illustrated in Figure 5.7. These patterns encompass varying numbers and sizes of aggregates, as detailed in 
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Table 5.3. By comparing the waveforms and WRV patterns, the differences and effects of different 

aggregate configurations can be studied effectively. 

Table 5.3. The aggregate detail of ten patterns 

Cases Aggregate 

portion (%) 

Total number 

0 < dia. ≤ 4 

Total number 

4 < dia. ≤ 7 

Total number 

7 < 𝑑𝑖𝑎. ≤ 10 

Minimum 

dia. 

Maximum 

dia. 

L1 28.12 0 0 100 7.02 9.58 

L2 28.54 0 0 100 7.11 9.43 

L3 28.26 0 0 100 7.15 9.68 

L4 27.91 0 0 100 7.18 9.34 

L5 27.27 0 0 100 7.05 9.47 

L6 28.66 0 0 100 7.07 9.51 

S1 26.51 100 0 0 1.17 3.63 

S2 26.22 100 0 0 1.14 3.70 

S3 25.91 100 0 0 1.16 3.63 

S4 25.93 100 0 0 1.14 3.55 

S5 26.18 100 0 0 1.13 3.57 

S6 27.37 100 0 0 1.14 3.65 

P1 29.27 53 28 7 2.27 11.31 

P2 29.84 62 22 9 2.36 11.68 

P3 29.22 59 29 7 2.27 11.12 

P4 30.44 67 24 8 2.35 11.62 

P5 29.59 59 30 6 2.41 11.62 

P6 31.81 53 22 13 2.41 11.00 

P7 30.04 62 24 11 2.35 10.02 

P8 31.59 66 18 11 2.37 10.36 

P9 30.39 61 22 10 2.29 11.69 

P10 29.74 60 34 5 2.41 11.69 
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Figure 5.6. Different aggregate size study. Two study groups were defined: L1-L6, consisting of larger 
aggregates exclusively, and S1-S6, comprising smaller aggregates with a random distribution. These 
cases maintained a similar aggregate portion ratio. 

 

 

Figure 5.7. Ten patterns were created using random aggregate sizes and distributions, offering diverse 
designs for the study. 

 

 Laboratory test 

The study of IHM, particularly the WRV phenomenon, has been a challenging endeavor due to its intricate 

nature influenced by diverse factors such as material properties, wave frequency, crack size and shape, and 

environmental conditions. To address these complexities, laboratory tests are used to validate our IHM FE 

model. In the laboratory, an 8 x 8 x 4-inch specimen container with a water-to-cement (w/c) ratio of 0.5 is 

utilized. An artificial crack was created using a 0.5-millimeter-thick plastic shim, which was removed after 

2 hours of mixing to achieve the desired conditions based on the laboratory environment. Four types of 

crack specimens were generated: 1) mortar with a constant 1-inch depth-to-crack, 2) mortar with a diagonal 

depth-to-crack ranging from 0.5 to 2 inches, 3) concrete with a constant 1-inch depth-to-crack, and 4) 

concrete with a diagonal depth-to-crack ranging from 0.5 to 2 inches. Figure 5.8 illustrates the process of 
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creating these artificial cracks and the final specimens. Impact tests were conducted using a 0.5-inch impact 

ball at a frequency of approximately 12 kHz (Kang et al., 2022). The testing setup, depicted in Figure 5.9, 

utilized two MEMS sensors as receivers and one DC motor to generate the mechanical wave. 

     

 (a) (b) (c) 

  

  (d) (e) 
Figure 5.8. Artificial internal crack samples. (a) the specimen container with dimensions 8x8x4 inches; 

(b) the fresh concrete mixture; (c) a model with a constant depth-to-crack of 1 inch; (d) a top-
view of diagonal depth-to-crack ranging from 0.5 inch to 2 inches; and (e) the DC motor used 
in the testing setup. These components were essential in simulating and studying crack 
patterns within IHM. 
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Figure 5.9. The laboratory test setup involved the use of a DC motor to generate mechanical waves, while 
MEMS sensors were employed to capture the incident wave, reflected wave, and forward wave. 

 

5.3 Develop the damage prediction model 

 Develop the damage prediction model using ML  

To acquire a sufficient dataset, the GANs framework involves training two models simultaneously: a 

generator that produces synthetic data and a discriminator that assesses the authenticity of the generated 

data. In this adversarial training, the generator aims to deceive the discriminator, while the discriminator 

endeavors to distinguish between real and synthetic data (Goodfellow et al., 2014).  

The nonlinear modal analysis of WRV in IHM presents challenges due to limited understanding of its 

characteristics, including random scattering, variations in internal crack size and wavelength, wave energy 

attenuation due to IHM damping, and environmental factors like temperature. To address these 

complexities, two machine learning methods were employed in this study. The first method utilized GANs 

to generate valuable IHM scattering pattern data. The second method focused on developing a damage 

identification model using CNN, aiming to enhance the accuracy of damage detection and characterization. 

GANs, a deep learning architecture, consist of two neural networks: a generator network (G) and a 

discriminator network (D). The generator aims to produce synthetic data (x') that closely resembles real 

data (𝑥), while the discriminator attempts to distinguish between the real and synthetic data generated by 
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the generator. The training process operates as a minimax game between the generator and discriminator, 

with the objective function 𝐽(𝐺, 𝐷)  defined as follows: 

 𝐽(𝐺, 𝐷)  =  𝑚𝑖𝑛 𝑚𝑎𝑥 𝑉(𝐷, 𝐺) 

 

(5.10) 

where 𝑉(𝐷, 𝐺) is the value function defined as: 

 
𝑉(𝐷, 𝐺)  =  𝐸௫[𝑙𝑜𝑔 𝐷(𝑥)]  +  𝐸

௫′
[𝑙𝑜𝑔 (1 −  𝐷(𝐺(𝑥′)))] 

 

(5.11) 

where 𝐸 is loss value from real data 𝑥 and fake data 𝑥′. The GANs training process involves iteratively 

training both the generator and discriminator. In each iteration, the discriminator is updated to maximize 

the value function, while the generator is updated to minimize it. The training continues until the generator 

produces synthetic data that is indistinguishable from the real data, indicating that the GANs has converged 

to an optimal solution. A concept of GANs architecture showing in Figure 5.10. A generator network 𝐺 and 

a discriminator network 𝐷, with the generator taking a random noise vector 𝑧 as input and producing 

synthetic data 𝑥′, which is passed through the discriminator to produce a binary classification output. The 

generator and discriminator are trained in an adversarial manner, where the generator tries to produce 

synthetic data that resembles the real data, and the discriminator tries to distinguish between the real data 

and the synthetic data. 
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Figure 5.10. The concept of GANs model. A generator network (G) and a discriminator network (D) 
operate in tandem, with the generator taking a random noise vector (z) as input and 
generating synthetic data (x').  The generator and discriminator are trained adversarially: 
the generator strives to create synthetic data resembling real data, while the discriminator 
aims to differentiate between real and synthetic data. The input and generated data in this 
study is WRV pattern. 

 

After generating new WRV samples using GANs, the CNN algorithm is utilized to identify the WRV pattern 

and predict internal crack depth. CNN extracts feature from convolution and pooling layers, which are 

employed to train the model. The neural network processes these features and calculates classification and 

prediction results, as illustrated in Figure 5.11. The input for the internal crack prediction CNN model 

comprises WRV curves calculated from wave incident and forward energy, while the output includes 

internal crack geometry and depth. Furthermore, this study explores the influence of the quantity of 

synthetic data samples on improving the accuracy of CNN-based crack prediction. Six distinct CNN models 

were implemented using varying numbers of synthetic samples. The initial model was trained on 40 images 

featuring patterns P1 to P5 in the IHM dataset, while another 40 images encompassing patterns P6 to P10 

were used for training. The subsequent five models incorporated additional synthetic samples for both 

training and testing, building upon the first CNN model as outlined in Table 5.4. The limitation of CNN lies 

in its lack of interpretability, a challenge that can be partially addressed by visualizing the impact of features 

on the response. This visualization helps reveal patterns of effects at local levels for individual features' 
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values. Accumulated local effect (ALE) plots serve as a valuable tool for visually assessing the influence 

of each feature, taking into account the effects of other features. 

 

Figure 5.11. The CNN model comprises a convolution layer for feature extraction and a pooling layer 
to reduce dimensions, retaining essential features. Extracted features are connected to a flatten layer 
and a neural network for training and testing purposes. 

 

Table 5.4. The training sample and testing sample of CNN with different number of GANs samples. 

Model No. Real train samples 

(from FEM) 

Fake train samples 

(from GANs) 

Total train samples Test samples 

1 40 0 40 40 

2 40 40 80 80 

3 40 120 160 160 

4 40 200 200 240 

5 40 400 440 440 

6 40 1080 1120 480 

 

 Field test verification 

The field test aims to validate the CNN model trained on FEM simulation results of both HM and IHM. It 

provides a real-world context, allowing us to understand how realistic internal crack patterns differ from 

ideal FEM results. Our focus is on developing a damage identification model using data from this test, 

analyzing WRV differences between HM and IHM with varying crack geometry (Kang et al., 2022). 
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Conducted at an airport runway, Figure 5.12 and Figure 5.13 depict the scanning location and system setup. 

The collected data is processed using our model, enabling a comprehensive analysis to assess its accuracy 

in identifying damage and defects in the runway. 

Figure 5.12. The field test is conducted on an airport runway, where the bottom layer consists of a 
concrete slab with potential internal cracks. This scenario raises concerns about the presence of hidden 
defects within the structure. 

 

 

Figure 5.13. The ACES system configuration cited from (Kang et al., 2022). 

 

5.4 Result and discussion 

This section is divided into three parts that discuss the results obtained. The first part presents the results o

f the WRV pattern in HM, which includes the experimental findings, FE simulation, and analytical solutio

n. The second part deals with the WRV pattern in IHM, for which only the experimental and FE simulatio

n comparisons are available since there is currently no analytical solution. Additionally, the study examine

s the WRV pattern in IHM with different aggregate sizes with a random distribution. The third part explor

es ML applications, specifically the approach used to enhance the database with GNAs and the use CNN 
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model for damage prediction. 

 

 WRV study in homogenous medium  

The analytical solution offers a clear signal devoid of laboratory measurement interferences, making it 

challenging to generate a diverse set of crack specimens to establish a comprehensive database for ML 

damage prediction. Consequently, an efficient approach is adopted, wherein a FE model is utilized to 

generate this database. The validation of the FE model is conducted through laboratory tests and analytical 

solutions. In Figure 5.14, a comparison between the FE simulation and experimental data is presented. As 

the WRV is computed from the first peak ratio of the incident wave and the forward wave, it is crucial to 

validate the ratio between experimental and FE data. The experimental data exhibits reflections in the tail 

part, which do not impact the WRV value. Figure 5.14 (a) illustrates the incident wave, while Figure 5.14 

(b) depicts the forward wave response. For the FE simulation, the impulse frequency was determined based 

on the impact frequency (12 kHz) and the impact size. In Figure 5.14 (a), the experimental results 

(represented by the red solid line) display more noise and wave reflection from the bottom of the specimen, 

whereas the simulation signal (indicated by the blue dotted line) demonstrates a significant impulse. The 

disparity between the experimental and simulation signals in Figure 5.14 (a) arises because the FE 

simulation incorporated infinite elements, gradually decreasing the reflected signal and resulting in a 

cleaner waveform. The WRV value ratio between the experiment and FE simulation is consistent, 

approximately around 0.15, affirming the suitability of the FE model for generating subsequent WRV data. 
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 (a) (b) 
Figure 5.14. The comparison between experiment and FE simulation. (a) incident wave, and (b) forward 
wave. 
 

Figure 5.15 presents a comparison of WRV patterns between FE simulation and experimental data, along 

with a comparison between the analytical solution and the FE model. On the y-axis, the normalized forward 

wave is depicted, representing the ratio of the first peak by dividing the forward wave 𝐸௪ amplitude by 

the incident wave amplitude 𝐸. The x-axis represents the product of crack depth, "a" and wavenumber, 

𝑘ோ. In Figure 5.15 (a) and Figure 5.15 (b), the WRV patterns from analytical, FE model, and experimental 

data are displayed. However, the experimental data only covers a limited range of the x-axis due to the fixed 

testing impact frequency (12 kHz) and the specimen "a" ranging from 0.5 inches to 2 inches. To incorporate 

cases with deeper cracks, enlarging the specimen by increasing its length and width becomes necessary. 

However, this approach is less economical and involves a slower process of experimental preparation. 

Moreover, the reflected signal from the boundary may interfere with the target signal, posing challenges in 

current WRV experiments. 

Figure 5.15 (a) and Figure 5.15 (b) illustrate the WRV patterns for different crack depths. The shallower 

crack case (a=12.7mm) exhibits a peak at a lower impulse frequency, while the deeper crack (a=50.8mm) 

shows the WRV peak at a higher frequency. This variation occurs because different impulse frequencies 

have varying abilities to propagate through deeper mediums, influenced by their wave speed and 
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wavelength. Figure 5.15 (c) to Figure 5.15 (f) compare the analytical solution and FE simulation for 

different crack depths. All these figures demonstrate similar WRV trends, including the peak occurring 

within a specific frequency range and comparable impulse peak amplitudes. It is important to note that there 

is no manual adjustment of peak values (y-axis) between the FE model and analytical solution, ensuring 

the accuracy of the comparison. 

 

 (a) (b) 
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 (e) (f) 

Figure 5.15. Normalized WRV of FE simulation and analytical solutions in HM. On the y-axis, the 
normalized forward wave is depicted, representing the ratio of the first peak by dividing 
the forward wave 𝑬𝒇𝒘 amplitude by the incident wave amplitude 𝑬𝒊𝒏. The x-axis represents 
the product of "a" and wavelength. (a) the analytical solution results with different a. (b) 
the FE simulation results with different a. (c)-(f) shows the comparison between FE 
simulation and analytical solution with different a. The shallower crack case (a=12.7mm) 
exhibits a peak at a lower impulse frequency, while the deeper crack (a=50.8mm) shows 
the WRV peak at a higher frequency. This variation occurs because different impulse 
frequencies have varying abilities to propagate through deeper mediums, influenced by 
their wave speed and wavelength. 

 

 IHM numerical simulation model verified with laboratory test 

Figure 5.16 presents a comparison of sensing data between the experiment and FE simulation in IHM. The 

ratio of the incident wave to the forward wave in both the experiment and FE simulation is approximately 

0.11. Compare with HM sensing data (Figure 5.14), IHM exhibits more reflected signals, signifying a more 

intricate interaction between random aggregates and their random distribution within the medium. 
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 (a)  (b) 

Figure 5.16. The example of sensing data comparison between experiment and simulation. (a) the 
incident wave, and (b) the forward wave. 

 

Figure 5.17, the study investigates different aggregate sizes with random distribution, utilizing the models 

introduced in Table 5.3. The WRV results, depicted Figure 5.17 (a), reveal a slightly lower amplitude for 

the large aggregate group (L1-L6) compared to the small aggregate group (S1-S6). This difference may 

stem from larger aggregates dissipating more energy, causing the wave to be influenced by the aggregate 

size before passing through completely. The random distribution of aggregates further impacts WRV, 

evident in the varied amplitude of L1-L6, despite having a similar aggregate portion with the same size. 

However, organizing the diverse patterns among different aggregate sizes and their distributions proves 

challenging. Figure 5.17 (b) illustrates the comparison between experimental and simulation results. The 

limited number of "a" specimens and a fixed impact frequency in laboratory tests resulted in a restricted 

range of results. Nevertheless, these outcomes still reflect WRV trends, affirming the feasibility of the FE 

model. Figure 5.17 (c) and (d) present box plots for large and small aggregate groups, respectively. These 

plots calculate the range of one standard deviation between each WRV for various 𝑘ோ values. In Figure 5.17 

(c), WRV for low 𝑘ோ values exhibit similar amplitudes, becoming more diverse at higher 𝑘ோ values. This 

variation might be attributed to the lower frequency impulse's initial peak having a lower speed to pass 

through larger aggregates, while the signal's tail part has not yet entered the aggregate. Conversely, higher 
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frequency impulses possess greater speed, and the three-cycle pulse wave is simultaneously affected by the 

aggregates, resulting in a more complex reflection. A similar trend is observed in the small aggregate group 

in Figure 5.17 (d), where higher impulse frequency leads to a more varied amplitude, commencing from 

lower frequency ranges due to the smaller aggregate size. Figure 5.18 compares WRV trends between HM 

and IHM for the same crack case, demonstrating similar patterns. However, identifying the parameters and 

their impact on the WRV phenomenon remains challenging. 
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 (a) (b) 

 

 (c) (d) 

Figure 5.17. The WRV pattern with different aggregate size with random distribution (a) the WRV with 
two aggregate sizes, (b) the comparison between experiment and P1 simulation (c) the 
boxplot of large aggregate group and (d) the boxplot of small aggregate group. It reveals a 
slightly lower amplitude for the large aggregate group (L1-L6) compared to the small 
aggregate group (S1-S6). This difference may stem from larger aggregates dissipating more 
energy, causing the wave to be influenced by the aggregate size before passing through 
completely. 
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  (a) (b)  

 

  (c) (d)  

Figure 5.18. The WRV comparison between HM and IHM. On the y-axis, the normalized forward wave 
is depicted, representing the ratio of the first peak by dividing the forward wave 𝑬𝒇𝒘 
amplitude by the incident wave amplitude 𝑬𝒊𝒏. The x-axis represents the product of "a" and 
wavelength.  (a) a=12.7mm, (b) a=25.4mm, (c) a=38.1mm, and (d) a=50.8mm. 

 

Figure 5.19 presents ten distinct WRV patterns arising from random aggregate sizes and distributions with 

the same aggregate proportion. Among these patterns, crack depth, a=6.3 consistently yields lower 

amplitude, while a=50.8mm exhibits higher amplitude, indicating that forward wave energy is readily 

diffused in shallow cracks. A comparison of patterns like P1 and P2 at a=6.3mm demonstrates that aggregate 

size and distribution impact energy attenuation, even at the same depth-to-crack ratio. The WRV results are 

intricate due to reflections between particles, making them challenging to interpret. Figure 5.20, different 
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"a" case within the same crack exhibit similar WRV waveforms but varying amplitudes. The WRV curves 

are influenced by the random distribution and aggregate size. The box plots in Figure 5.21 depict the diverse 

and intricate WRV values due to different aggregates in IHM. The red plus marks denote values falling 

outside the standard deviation range, indicating significant differences in forward amplitude from other 

cases. 
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 (e) (f) 
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Figure 5.19. Ten pattern WRV results with 8 different “a” value. On the y-axis, the normalized forward 
wave is depicted, representing the ratio of the first peak by dividing the forward wave 𝑬𝒇𝒘 
amplitude by the incident wave amplitude 𝑬𝒊𝒏. The x-axis represents the product of "a" and 
wavelength.  (a) P1, (b) P2, (c) P3, (d) P4, (e) P5, (f) P6, (g) P7, (h) P8, (i) P9 and (j) P10. 

 

 (a) (b) 

 

 (c) (d) 

E
fw

/E
in

E
fw

/E
in

E
fw

/E
in

E
fw

/E
in



87 
 

 

 (e) (f) 

 

 (g) (h) 

Figure 5.20. The ten-pattern comparison by different “a” value. On the y-axis, the normalized forward 
wave is depicted, representing the ratio of the first peak by dividing the forward wave 𝑬𝒇𝒘 
amplitude by the incident wave amplitude 𝑬𝒊𝒏. The x-axis represents the product of "a" and 
wavelength.  (a) a=6.3mm, (b) a=12.7mm, (c) a=18.9mm, (d) a=25.4mm, (e) a=31.5mm, (f) 
a=38.1mm, (g) a=44.1mm, and (h) a=50.8mm. Within the same crack, different "a" cases 
exhibit similar WRV waveforms but varying amplitudes. The WRV curves are influenced 
by the random distribution and aggregate size. 
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  (g) (h) 

Figure 5.21. The boxplot of ten pattern comparison by different “a” value. (a) a=6.3mm, (b) a=12.7mm, 
(c) a=18.9mm, (d) a=25.4mm, (e) a=31.5mm, (f) a=38.1mm, (g) a=44.1mm, and (h) 
a=50.8mm. The red plus marks denote values falling outside the standard deviation range, 
indicating significant differences in forward amplitude from other cases. 

 

 Field test damage prediction 

The WRV pattern is highly intricate and challenging to interpret, making it difficult to discern differences 

among various crack depth, "a" value. To overcome this challenge, machine learning techniques such as 

GANs are employed to classify the WRV patterns more effectively. Since further CNN classification 

necessitates a larger database of images, GANs are utilized to generate new image samples with features 

similar to our real training data. The GAN training input consists of WRV waveforms from the FE model, 

accompanied by eight labels representing the eight different "a" value, as illustrated in Figure 5.22. Figure 

5.23 showcases the results obtained from the GANs, producing 200 images for each "a" value group and 

totaling 1600 images as input for CNN damage prediction. In GANs, a black background provides high 

contrast against the generated image, enhancing visibility and enabling a detailed assessment of the 

generated image quality. Consequently, the real sample is inverted to achieve a black background with a 

white waveform. 
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Figure 5.22. Example of training input of GANs. There are 8 different groups depends on “a” value with 
10 patterns. 

 

Figure 5.23. The output of GANs. In each “a” value, there are 200 images, total has 1600 images.  

 

ALE is a technique employed in machine learning and statistical modeling to analyze the relationship 

between a feature (or predictor) and a model's output. The ALE plot offers insights into the predicted 
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fluctuations, specifically in crack geometry within this paper, when adjusting a single factor while keeping 

others constant. Figure 5.24 displays the ALE plot, showcasing the results of the ALE analysis conducted 

with the developed FE model. The investigation encompasses four features: the number of aggregates with 

small diameter, the number of aggregates with large diameter, the minimum aggregate diameter, and the 

maximum aggregate diameter. According to the findings, the number of small aggregates exhibits a 

decreasing effect, while the number of large aggregates shows an increasing effect on the model's output. 

This observation aligns with the conclusions as depicted in Figure 5.19 (a), where larger aggregates exert a 

more substantial impact (e.g., reducing the WRV amplitude) on the WRV pattern compared to smaller ones. 

Figure 5.24 (c) and (d) portray the ALE results for the minimum and maximum aggregate diameters, 

respectively. The outcomes indicate that a decrease in the minimum aggregate diameter results in a minor 

effect on WRV, whereas an increase in the maximum aggregate diameter significantly influences the WRV 

outcomes. While these four ALE results offer valuable insights into the varying WRV patterns associated 

with changes in aggregate size and number, there remain other unidentified factors that require further 

exploration in the future, such as aggregate distribution. 
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  (a) (b) 

 

  (c) (d) 

Figure 5.24. The ALE plot: (a) the number of small size aggregate, (b) the number of large size 
aggregate, (c) the minimum aggregate diameter, and (d) the maximum aggregate diameter. 
According to the findings, the number of small aggregates exhibits a decreasing effect, 
while the number of large aggregates shows an increasing effect on the model's output. 
This observation aligns with the conclusions as depicted in Figure 5.19(a), where larger 
aggregates exert a more substantial impact (e.g., reducing the WRV amplitude) on the 
WRV pattern compared to smaller ones. Figure 5.24(c) and (d) portray the ALE results for 
the minimum and maximum aggregate diameters, respectively. 
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The two CNN testing accuracy confusion matrices are presented in Figure 5.25. Figure 5.25 (a) depicts the 

CNN model results only without using any fake GAN samples, while Figure 5.25 (b) illustrates the CNN 

model results with the additional 1080 fake GAN samples. The model without using fake samples achieves 

a 76.9% accuracy, whereas the model using 1080 fake samples attains an accuracy of 87.7%. The increase 

in accuracy with the number of fake samples underscores the effectiveness of WRV data in identifying wave 

propagation patterns. The accuracy rate of 87.5% for the testing model demonstrates its proficiency in 

identifying diverse wave propagation patterns associated with different aggregate sizes and distributions in 

IHM. These outcomes strongly suggest that machine learning techniques have the potential to accurately 

predict damage using WRV data, opening promising avenues for further research and practical applications. 

The study of the number of fake samples is presented in Figure 5.26. The CNN accuracy curve increases as 

the number of fake samples increases, demonstrating that GANs can be used to enhance the dataset and 

improve the training of the CNN model. The difference in accuracy between 400 fake samples and 1080 

samples is only 1%, indicating that the accuracy saturates after using 400 fake samples. 

 

 (a) (b) 



94 
 

 

 (c) (d) 

 

 

 (e) (f) 

Figure 5.25. The confusion matrix of CNN model: (a) the CNN model without using fake samples, (b) 
with 40 fake sample, (c) with 120 fake samples, (d) with 200 fake samples, (e) with 400 fake 
samples and (f) with 1080 fake samples. The increase in accuracy with the number of fake 
samples underscores the effectiveness of WRV data in identifying wave propagation 
patterns. 
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Figure 5.26.  The CNN accuracy curves vary with different numbers of fake samples. The curves show 
variations with different numbers of fake samples. The accuracy is 76% without fake samples, while 
using 400 fake samples can boost accuracy to 86%, reaching a saturated level. 

 

The impact echo delamination field test results are depicted in Figure 5.27. The image displays two distinct 

regions of interest, indicating the presence of defects on the tested surface. A comparative analysis between 

the CNN predictions and crack length evaluations obtained from Rayleigh wave analysis is presented in 

Figure 5.28.  The WRV can accurately identify and predict internal cracks with an error margin of 0.2 

inches. Area-A prediction results indicate that the field test estimated a crack depth of 0.8 inches, whereas 

the CNN prediction using WRV suggests a depth of 0.6 inches. For Area-B, the field test estimated a crack 

depth of 0.4 inches, while the CNN prediction using WRV indicates a depth of 0.7 inches. 
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Figure 5.27. The delamination results of impact echo. The yellow solid line denotes the scanning path. 

 

 

        (a)  (b) 

Figure 5.28. The comparison between CNN crack length prediction and the crack estimation from 
Rayleigh wave(Kang et al., 2021). (a) the area-A prediction result. The field test estimated 
crack depth is 0.8 inch, while the CNN prediction using WRV is 0.6 inch. (b) the area-B 
prediction result. The field test estimated crack depth is 0.4 inch, while the CNN prediction 
using WRV is 0.7 inch. 
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CHAPTER 6 STRCUTRUAL DAMAGE PREDICTION 

6.1 Chapter overview 

The aim of this chapter is to fill the aforementioned information gaps by developing a reliable FE model 

that incorporates SHM inspection for use in efficient AI, with a focus on deep learning techniques for 

predicting structural damage. Three objectives were identified: 1) to present the results of a fundamental 

study on FE models with a time-dependent moving load, verified through laboratory and field tests, 2) to 

design a reliable FE model with a moving load and its responses to structural damage, and 3) to apply 

several ML models to different types of damage, resulting in the development of a highly accurate and 

reliable damage prediction model. The research is divided into two stages, as shown in Figure 1. Stage 1 

provides realistic structural responses using both static and moving loads, with the FE model calibrated and 

verified through analytical solutions, two laboratory tests, and one field test. In Stage 2, feature selection is 

applied to extract the most important data collected from Stage 1 as input for ML models, improving the 

accuracy of damage prediction. Results of the comparison between four different ML models are presented, 

demonstrating prediction accuracy. 
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Figure 6.1. A flowchart depicting the two stages of developing a more accurate structural prediction 
model. Stage 1 involves data collection from FE modeling, and Stage 2 shows the implementation of AI 
application for feature selection and damage prediction. 

 

6.2 Develop moving load FE model 

 Kinetic contact enforcement method 

A 3-D FE model of concrete structures is simulated using ABAQUS/EXPLICT. The model includes an 

isotropic, elastic plate with the same Young's modulus (E), Poisson's ratio, and thickness as the structure. 

The element type used is a four-node plane strain element called C3D8R. The mesh size for the solid 3-D 

simulation is set at 25 mm. The material properties assumed for concrete are typical values (2400 kg/𝑚ଷ, 

E = 30 GPa, and t = 0.2), while those for tires are 700 kg/𝑚ଷ, E = 1 MPa, and t = 0.3. The computations are 

carried out using a computer workstation with eight CPUs clocked at 1.90 GHz, 16 GB RAM, and a 250 

GB hard drive. 

For the static load FE model, the dimensions used are 0.5 m x 15 m x 0.1 m. In Figure 6.2, 30 sensing points 

are shown under the bridge deck and numbered from S1 to S30. The red dots represent S1 to S10, which 
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are applied on the right bottom edge, while S11 and S20 are applied on the bottom of the centerline. S21 to 

S30 are applied on the left bottom edge but are not marked in the figure to maintain clarity. The figure also 

displays three different crack locations and three different static load locations. Figure 6.2 shows a sectional 

view of the three different internal cracks, which are identified by the yellow area. The crack size is 

determined by taking different fractions of the side section area of each simulated concrete specimen, such 

as 10%, 25%, and 45%. Each missing element is then defined as a mild, moderate, and severe crack, 

respectively. The study of the static load-based model involves 12 models, which provide 900 data sets 

collected from 30 sensing points originating from various models with three crack locations (CL) and three 

load locations (LL). Table 6.1 displays the CL and LL of the static load model. 

 

 

Figure 6.2. The model of static load design. The design of the static load FE model with three different 
load locations (LL 1-3) and three different crack locations (CL1-3). The dimensions of the 
model are 1 m × 5 m × 0.02 m, and it features thirty sensing points (S1-S30) positioned 
underneath. The model simulates mild, moderate, and severe cracks with 10%, 25%, and 
45% of the missing elements, respectively, in the side section area. 
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Table 6.1. The locations (x-axis) in Figure 2 of the static load model’s crack load (CL) and (LL) load. 
Unit: meter 

LL1 LL2 LL3 CL1 CL2 CL3 

𝑥 = 1 𝑥 = 6 𝑥 = 11 𝑥 = 3 𝑥 =8.5 𝑥 =13 

 

The one-way moving-load model is implemented using the KCE method shown in Figure 6.3, where the 

green area represents the region of contact. The KCE method is utilized for simulating the actual 

movement of a vehicle. This method employs a master layer and a slave layer, where the force is 

transmitted through contact with the surface of these two layers. The master layer is the area where the 

external force is applied and is transferred to the slave layer. The contact conditions between the master 

and slave layers are typically referred to as contact discretization, and they are an example of surface-to-

surface conditions, as illustrated in Figure 6.4. For linear problems, the contact surface must satisfy 

equilibrium, the expression: 

 
 

 𝑭𝑵 = ∑ 𝑭𝑴𝒊
𝟒
𝒊ୀ𝟏       (6.1) 
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Figure 6.3. The one-way FE model moving load applied with KCE 

 
Figure 6.4. The 3-D model of surface-to-surface contact in KCE, where 𝑭𝒔 and 𝑭𝑴 denote the nodal 
force on both the slave surface and master surface; k is the contact stiffness between the master and 
slave elements, and 𝑭𝑵 represents an equilibrium of forces. 

 

In order to simulate an actual moving load using KCE, a specific surface interaction boundary condition is 

required. The augmented Lagrangian method (Hirmand et al., 2015; Simo & Laursen, 1992) and Coulomb's 

law of friction are used to establish a "linear" FE simulation, as the time-dependent moving load can be 

transferred to the bridge as a linear impulse. By defining the contact condition, such as contact 

discretization, and surface interaction property, the transmitting force can be calculated using the augmented 

Lagrangian method. The force is then used to simulate the moving load by assigning a specific direction 
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and velocity (Hirmand et al., 2015; Simo & Laursen, 1992). Table 6.2 provides the material properties and 

details for the KCE-based one-way moving load model, which shares the same properties as the static-load 

model. 

Table 6.2. The setting for one-way moving load detail and material properties 

 
 
Velocity 

 
Concrete 
Density 

Concrete 
Poisson 
ratio 

Concrete 
Elastic 
modulus 

 
Tire 
Density 

Tire 
Poisson 
ratio 

Tire 
Elastic 
modulus 

 
Load 
Applied 

6 mph  2400 kg/m3 0.2 30 GPa 700 kg/m3 0.3 1 GPa 1 Hz 

 

 

 Analytical solutions for moving vehicle 

In order to demonstrate the feasibility of the KCE-based moving load FE simulation results, the analytical 

solution of VBI is utilized for comparison. The VBI concept is based on the interdependence between 

moving vehicles and bridge responses. The model considers a passing vehicle and a simple bridge, as 

depicted in Figure 6.5, where L represents the length of the bridge, while 𝐸, 𝐼, and 𝜔 are the bridge moduli 

of elasticity, the bridge second moment of area, and the bridge's first natural frequency, respectively. 

Additionally, the mass of the vehicle, vehicle's first natural frequency, and vehicle stiffness are denoted as 

𝑚௩ , 𝑘௩, and 𝜔௩ = ඥ 𝑘௩/𝑚௩, respectively. 
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Figure 6.5. The simple model considered passing vehicle and bridge, where L is the length of the bridge, 
𝑬, 𝑰, 𝒂𝒏𝒅 𝝎𝒃 are the bridge modulus of elasticity, bridge second moment of area and bridge 
first natural frequency, while 𝒎𝒗 , 𝒌𝒗 ,𝒂𝒏𝒅  𝝎𝒗 = ඥ 𝒌𝒗/𝒎𝒗  are the mass of the vehicle, 
vehicle first natural frequency, and vehicle stiffness, separately.  

 

The equation of motion for the moving mass over a beam can be written as (Yang et al., 2014): 

�̈�𝒗(𝒕) =
∆𝒔𝒕𝝎𝒗

𝟐

𝟐(𝟏ି𝒔𝟐)
 ቂ𝑨𝟏𝒄𝒐𝒔𝝎𝒗𝒕 + 𝑨𝟐𝒄𝒐𝒔

𝟐𝝅𝒗𝒕

𝑳
+ 𝑨𝟑 𝒄𝒐𝒔 ቀ𝝎𝒃 −

𝝅𝒗

𝑳
ቁ 𝒕 + 𝑨𝟒 𝒄𝒐𝒔 ቀ𝝎𝒃 +

𝝅𝒗

𝑳
ቁ 𝒕ቃ  

 (6.2) 

and the first mode structural response of the bridge can be expressed as: 

𝒖(𝒙, 𝒕) = ∑
∆𝒔𝒕

𝟏ି𝒔𝟐 ቄ𝒔𝒊𝒏 ቀ
𝝅𝒙

𝑳
ቁ ቂ𝒔𝒊𝒏 ቀ

𝝅𝒗𝒕

𝑳
ቁ − 𝒔 ∙ 𝒔𝒊𝒏 (𝝎𝒃𝒕)ቃቅ   (6.3) 

and 

�̈�(𝒙, 𝒕) = ∑
∆𝒔𝒕

𝟏ି𝒔𝟐 ቄ𝒔𝒊𝒏 ቀ
𝝅𝒙

𝑳
ቁ ቂ൫𝝎𝒃

𝟐 ∙ 𝒔൯ 𝒔𝒊𝒏(𝝎𝒃𝒕) −(
𝝅𝒗

𝑳
)𝟐 ∙ 𝒔𝒊𝒏 (

𝝅𝒗𝒕

𝑳
)ቃቅ   (6.4) 

 

where �̈�௩(𝑡) is the acceleration of the vehicle at the moment 𝑡; 𝑢(𝑥, 𝑡) and �̈�(𝑥, 𝑡) are the displacement and 

acceleration of the bridge with a specific location(𝑥) and time(𝑡);  ∆௦௧ is the approximate static deflection 

at the beam’s mid under the gravity action of 𝑚௩;  𝑠 is the bridge coefficient related with bridge properties, 

and 𝐴ଵ, 𝐴ଶ, 𝐴ଷ, and 𝐴ସ determine the relative contributions of each component to the total acceleration 

response (Yang et al., 2014). Figure 6.3 displays the unit of properties used as inputs. Figure 6.4 showcases 

the results of three different case studies conducted with varying material properties and input values such 

as elastic modulus, density, depth, and width for both FE modeling and analytical solutions. In Case 1, 
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different values of elastic moduli are examined. In Case 2, different densities are explored, and in Case 3, 

varying depths are analyzed. 

Table 6.3. The properties of bridges and moving vehicle 

Properties Unit Symbol 

Length 𝑚 𝐿 

Mass of bridge 𝑘𝑔 𝑚 

Modulus of elasticity N/𝑚ଶ 𝐸 

First moment of inertia 𝑘𝑔 − 𝑚ଶ 𝐼 

First natural frequency 𝐻𝑧 𝜔 

Mass of vehicle  𝑘𝑔 𝑚௩ 

Speed of vehicle 𝑚/𝑠 𝑣 

Stiffness of vehicle 𝑁/𝑚 𝑘௩ 

 

 

Table 6.4. Detailed variables of parameters between FE modeling and analytical solutions 

 Elastic moduli 
(GPa) 

Density 
(𝑘𝑔 𝑚ଷ⁄ ) 

 
Depth (m) 

 
Width (m) 

Case 1 30, 33, 35, 38, 41 2400 0.1 0.5 
Case 2 30 100, 1000, 2400, 3000, 6000 0.1 0.5 
Case 3 30 2400 0.1, 0.2, 0.3, 0.4, 0

.5 
0.5 

 

 Feature selection and damage prediction model  

Data features are important for training the ML model and are extracted from structural responses in FE 

simulation results. They include statistical indicators such as acceleration, stress, displacement, and 

spectrum analysis from fast Fourier transform. The authors also considered these structural responses as 

features. The statistical indicator is shown in Table 6.5.  
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Table 6.5. Statistical indicator and FE modeling information used for data features (Finotti et al., 2019) 

Peak Mean Mean square Root  Mean 
square 

Variance 

𝑚𝑎𝑥|𝑥| 1

𝑛
 𝑥



ୀଵ

 
1

𝑛
(𝑥)ଶ



ୀଵ

 
ඩ

1

𝑛
(𝑥)ଶ



ୀଵ

 

1

𝑛
(𝑥 − �̅�)ଶ



ୀଵ

 

Standard 
deviation 

Skewness Kurtosis Crest factor K-factor 

ඩ
1

𝑛
(𝑥 − �̅�)ଶ



ୀଵ

 

1
𝑛

∑ (𝑥 − �̅�)ଷ
ୀଵ

𝜎ଷ
 

1
𝑛

∑ (𝑥 − �̅�)ସ
ୀଵ

𝜎ସ
 

𝑥

𝑥௦
 𝑥 ∙ 𝑥௦ 

 

To avoid overfitting during training, the authors use feature selection to rank the positive correlations 

between features and predicting results. The embedded approach is used, incorporating other ML algorithms 

like random forest to calculate the weight of features. Random forest, composed of several decision trees, 

calculates impurity by randomly selecting features and assigning weights based on their importance. This 

approach filters out irrelevant and redundant features and provides better feature selection results. The four 

most commonly used types of impurity are shown in Table 6.6. The authors also used the Gini impurity. 

 

Table 6.6. Four commonly used impurities in random forest 

 
Gini impurity 

 
Entropy 

Mean Square 
Error(MSE) 

Mean Absolute 
Error(MAE) 

 𝑥(1 − 𝑥)
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  −𝑥 logଶ 𝑥
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1
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ୀଵ
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The methods include two types of ML (DT and SVM) and two types of DL algorithms (BP and XGBoost). 

DT is an optimized regression method using a tree structure (Loh, 2011), SVM is an algorithm for regression 

and classification tasks (H. F. Chen, 2009) 

Table 6.7. The final setting of each machine learning model 

Machine 
learning models 

 
 
BP 

 
 
SVM 

 
 
DT 

 
 
XGBoost 

 
 

Settings 

Neurons:3 
Layer:4 
Active function: 
Sigmoid 

Kernel: Sigmoid 
Gamma: scale 
Degree:3 
 

Criterion: Gini 
Splitter: best 
Depth:5 
 

Eta: 0.4 
Depth:5 
Learning: Gamma 
regression 

 

6.3 Verification of FEM model 

This section presents two laboratory tests and one field test which are used to calibrate and verify the 

developed KCE model. The purpose of these tests is to gather reference data for comparing the performance 

of experimental data with the FE model simulation. Once the confirmation between experiment and 

simulation data is completed, the FE model simulation can provide reliable data to the ML work. The 

laboratory tests were conducted at the civil engineering laboratory building (CELB) in UTA. 

 Laboratory sensor calibration test 

The primary objective of the first laboratory experiment is to validate the sensitivity, calibration, and overall 

performance of the sensors. The experimental setup for this test is depicted in Figure 6.6, with a test 

specimen that measures 20 inches in length, 6 inches in height, and 6 inches in width. In this configuration, 

the moving element is a wheel, and the sensors are positioned underneath the middle of the concrete beam. 

Three sensor types are utilized, which include linear variable differential transformer (LVDT), linear 

potentiometer position sensor, and draw-wire displacement linear sensor. Data from the various sensors are 

gathered using two distinct data acquisition (DAQ) systems. The Vishay Precision Group (VPG) DAQ is 
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used for LVDT data collection, while the National Instrument (NI) DAQ is employed for the linear 

potentiometer position sensor. 

 

 

Figure 6.6. Testing configuration of the sensor performance laboratory test. 
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Figure 6.7. Testing sensors and DAQ. (a) LVDT, (b) linear potentiometer position sensor, (c) draw-wire 
displacement linear sensor, (d) VPG DAQ, and (e) NI DAQ. 

 

The full-scale laboratory test involves a large beam structure with LVDT sensors placed beneath the middle 

of the specimen, as depicted in Figure 6.8. The specimen has dimensions of 3m (118 in.) in length, 0.4m 

(16 in.) in width, and 0.6m (24 in.) in height. Five prestressing strands with a diameter of 0.5 inches (ASTM 

A416, Grade 270, stress relieved) and a total of 16 #10 stirrups are utilized. Each strand was initially 

prestressed at 1201MPa (174 ksi), resulting in an average initial prestress of 2.48 MPa (359 psi) in the 

beams. In addition to the prestressing strands, non-prestressed mild steel reinforcement (Grade 60) is also 

employed. The shear span to effective depth ratio is set at 3.0, which corresponds to slender beams and 

typically results in the lowest shear strength for beams without stirrups. A static load is applied to the top 

middle surface of the beam, and data is primarily collected on the displacement and strain prior to the failure 

of the concrete beam. 
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Figure 6.8. A testing configuration with concrete bean in full-scale laboratory test. 

 

 Field test 

This field test aims to validate the accuracy of the KCE-based moving load FE simulation results and to 

evaluate the effectiveness of the sensors and DAQ systems in collecting data. The field test location for this 

study is S Mesquite St, Arlington. A retaining wall is available for device support, which eliminates the 

requirement for sensing wire length as shown in Figure 6.9. The bridge has a total of 7 girders and 3 one-

way lanes. For this study, two sensors, namely LVDT and linear potentiometer position sensor, are deployed 

on the middle lane under the bridge deck at mid-span. The VPG DAQ and NI DAQ are used to collect data 

from the different sensors. Four different types of vehicles are used for the field test, including trucks, vans, 

SUVs, and sedans, with GVW of 9000 lbs, 5950 lbs, 4455 lbs, and 4431 lbs, respectively. The test is 

conducted at three different speeds, namely 10 mph, 25 mph, and 40 mph. To ensure accurate sensing data, 

tests are scheduled during non-peak traffic hours with one vehicle passing at a time. 
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Figure 6.9. The location of bridge 

 

6.4 Result and discussion 

 FEM simulation and analytical solution result 

Bridge displacements obtained from KCE-based FE simulation under moving loads with varying 

parameters: elastic modulus (E), bridge density (D), depth (H), and width (b). The comparison of elastic 

modulus results between simulation and analytical solution the from Eq. 6.4 is shown in Figure 6.10. The 

displacement results show linear change with different elastic moduli because the bridge frequency is =

గమ

మ
ට

ாூ


. Additionally, the FE simulation and analytical results have different amplitudes due to stiffness 

updates between contact layers (master and slave layer) during penalty calculation and contact shell 

movement. Therefore, the FE model may not produce an exact value as the analytical solution, but it does 
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confirm the same trend of bridge displacement. The KCE approach uses the Lagrangian method to 

automatically determine stiffness (Hirmand et al., 2015; Simo & Laursen, 1992).  

 

 
 (a) (b) 

Figure 6.10. The bridge displacement of (a) the FE simulation and (b) the analytical solution.  

 

The comparison density (D) results between simulation and analytical solution are shown in Figure 6.11. 

The results show a similar trend when D = 100𝑘𝑔 𝑚ଷ ⁄ , presenting the negative maximum displacement of 

different density cases The lower density model has a higher displacement amplitude in both results. In the 

simulation results, the displacement does not start at 0 when the bridge density is 100 𝑘𝑔 𝑚ଷ⁄  due to the 

higher moving element density 700𝑘𝑔 𝑚ଷ⁄ , causing deformation occurrence in the beginning. 
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 (a) (b) 

Figure 6.11. The comparison of density results between FE simulation and analytical solution. The plot 
shows a similar trend among different density cases, verifying the accuracy of the FE 
model. The displacement in the simulation results starts at a non-zero value (when D = 100 
𝒌𝒈 𝒎𝟑⁄ ) due to the higher density of the moving element (700 𝒌𝒈 𝒎𝟑⁄ ) compared to the 
bridge density (100 𝒌𝒈 𝒎𝟑⁄ ). 

 

Figure 6.12 shows displacement responses for various bridge depths (H). Thinner depth bridges show a 

higher displacement amplitude, but the waveform is affected by high frequency reflected waves from the 

bottom sides due to vehicle vibration. According to Figure 6.12 (c) and (d), the H=0.1 m model (10ିଵ) 

shows more reflection than the 0.5 m model (10ିଵଶ). The larger specimen has less reflection in FEM. The 

H=0.5 m depth model shows more high-frequency noise with its maximum displacement shifting to the left 

due to different depths and number of layers; the H=0.1m model has only one layer while the H=0.5m 

model has five layers. More layers with thicker dimensions may cause more reflected waves. Figure 6.13 

shows the loss (%) of maximum bridge displacement, which exhibits similar values among all cases that 

demonstrate FE simulation from KCE. The elastic modulus study shown in Figure 6.13 (a) and density 

study shown in Figure 6.13 (b). Each study shows similar patterns between analytical solution and KCE 

model results.  
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Figure 6.12. The comparison of depth results between simulation and analytical solutions. The results 
show the trend where the lower depth is shown as (e) a higher displacement. However, the waveform is 
substantially affected by high frequency reflected waves from (c) the bottom sides caused by (d) a thicker 
dimension.   
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 (a)  (b) 

Figure 6.13. The loss (%) of maximum displacement. The value between FE simulation and analytical 
solution demonstrates similar energy loss, which means the developed FE simulation from KCE and 
analytical solution has a similar pattern between moving vehicles. (a) elastic modulus study, and (b) 
density study. 

 

 Laboratory test results  

The purpose of the first laboratory test is to calibrate sensor sensitivity. Lab test in Figure 6.14 (a) shows 

LVDT provides high-resolution continuous data of max amplitude, while linear position sensor slightly 

differs from LVDT. This is because the movable steel bar in the linear position sensor can only be pushed 

or pulled by the bridge deck displacement, whereas the LVDT has an additional spring that can push the 

pointer back. Draw-wire displacement linear sensor has 0.1 mm resolution and only detects variations 

>=0.1mm. It was not used in the field test due to potential lower displacement. In the sensor calibration 

laboratory test, LVDT provided the best resolution among all displacement sensors. Thus, LVDT data was 

chosen as a reference for verifying FE simulation results. Figure 6.14 (b) compares deflection results from 

the full-scale laboratory test with FE simulation. The x-axis represents mid-span sensor deflection, and the 

y-axis represents load. The concrete beam deflection is recorded before it fractures. Both the simulation 

and experiment show the same pattern as the load increases. At 400kN load, the deflection increases at a 

faster rate in both cases. It should be noted that the FE simulation uses static load simulation, while the field 

test applies a moving load. 
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Figure 6.14. The Laboratory test results: (a) the displacement result of the sensor calibration laboratory 
test. The draw-wire displacement linear sensor provides low-resolution results and, therefore, will not be 
used in the field test. (b) The comparison between full-scale laboratory tests and KCE simulation. 

 

 Field test results 

Figure 6.15 shows results of the field test with two displacement sensors. Figure 6.15 (a) is for a truck with 

a speed of 10mph, while Figure 6.15 (b) is for a truck with a speed of 40mph. The LVDT (blue dash line) 

provided higher displacement compared to the linear potentiometer (red line) in both cases. The LVDT had 

a clearer waveform and was less affected by vibration after the vehicle passed due to the presence of a 

spring. The displacement duration for the 10mph case was longer than for the 40mph case due to the slower 

vehicle speed. The displacement amplitudes were similar in both cases, with the maximum displacement 

of the LVDT being 0.1mm and the linear potentiometer position sensor being 0.07mm. The comparison 

between KCE FE model and field test as shown in Figure 6.16. The van and sedan cases at 25 mph shown 

in Figure 6.16 (a) and (b), separately. A van moving at 25 mph caused a maximum displacement of 0.1 

mm, while a sedan caused a maximum displacement of 0.04 mm. These results demonstrate the reliability 

of the developed FE simulation model with moving load in simulating reality VBI. Overall, the weight of 

the vehicle affects displacement and acceleration, and the moving speed affects acceleration response, 

which are important factors to consider in the data analysis of the field test. 



116 
 

 

Figure 6.15. The example of field test results: (a) with truck 10mph, and (b) with truck 40mph. 

 

 

 
Figure 6.16. The comparison between KCE FE model and field test: (a) with van 25 mph and (b) with 
sedan 25 mph 

 

 Feature selection results 

Once the FE model was calibrated and verified with analytical solutions, laboratory tests, and field tests, a 

set of FE models was created for the damage prediction database. The structural response to static and 
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moving loads with CL1 is shown in Figure 6.17. Moving load acceleration shows more complex patterns 

than static load acceleration due to the vehicle's continuous impulse generation through vibrations. Despite 

having the same crack location and size, the structural response varies significantly based on the load 

applied. ML is used to identify patterns in different crack cases across crack and load locations. 

 

 
Figure 6.17. Examples of structural acceleration responses: (a) under static loads and (b) under moving 
loads, presenting more complex wave response patterns.   

 

Due to the black-box nature of most ML techniques, feature significance and model interpretation can be 

complex. Only a small number of features may have a significant impact on the response, while the majority 

of features may be irrelevant. Gini importance can be used to determine the contribution of each feature in 

predicting the response, providing a better understanding of feature relevance and their correlation to the 

ML prediction model. Features with higher importance have a greater effect on the prediction model. Figure 

6.18 shows the importance rank calculated from acceleration (A), displacement (D), and stress (S), with 

mean acceleration having the highest importance for damage prediction. Using the Gini importance, 

features with a score over 0.3 were selected for training an ML model, with the permutation method 

providing correction for bias and reducing prediction uncertainty. 
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Figure 6.18. The importance ranking is calculated from the random forest with Gini impurity. The first 
capital alphabet presents what data used for indicators. “A” means the indicator calculated 
from acceleration; “D” means the indicator calculated from displacement and “S” means 
the indicator calculated from stress. The acceleration provides the highest importance 
feature for ML prediction results. The features with Gini importance over 0.3 are used in 
ML training data for damage prediction. 

 

 Damage prediction results 
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In this section, the damage prediction of four classes of static loads and moving loads in FE models are 

explored, using four different ML models. While static loads are more straightforward to comprehend, 

moving loads are closer to real-world scenarios. To obtain damage prediction results, the static load 

simulation outcomes as depicted in Figure 6.19. The four classes of damage severity are healthy (intact), 

mild cracking, moderate cracking, and severe cracking, based on the FE model design. The predicted results 

are presented as matching matrices, where the actual class is the known information from FE simulation 

results, and the predicted class is the output from the ML model. The accuracy of damage prediction is 

shown by the diagonal line. Accuracy for prediction means that the predicted class matches the actual class. 

For example, according to Figure 6.19 (a), the accuracy of healthy, mild cracking, moderate cracking, and 

severe cracking between the real class and predicted class is 27.7% for a predicted healthy class, 14.4% for 

a predicted mild cracking class, 22.6% for a predicted moderate cracking class, and 25.6% for a predicted 

severe cracking class. The 27.7% value is calculated based on the fraction of all testing samples, including 

the healthy real class sample (78 270⁄ ∗ (75 78) ∗ 100%)⁄ , where 78 is the total of healthy samples in a 

real class; 270 is the sum total of all tested samples and (75 78) ∗ 100%)⁄  is the accuracy percentage of 

ML prediction in the healthy class compared to the other class totals. The total accuracy is the sum of these 

four values, demonstrating an accuracy of 90.3%. For the static load model, XGBoost showed the highest 

accuracy (92.6%) in predicting cracks. BP achieved an accuracy of 90.3%. SVM and DT had lower 

prediction outcomes. 
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Figure 6.19. The damage prediction results were derived by using static load FE simulation results from 
(a) BP, (b) SVM, (c) decision tree and (d) XGBoost algorithms.  

 

The prediction results under each moving load are shown in Figure 6.20. XGBoost has the highest 

prediction accuracy (83.3%), followed by BP, DT, and SVM with an accuracy of 80.5%, 77.9%, and 76.3%, 

respectively. In comparison to the static load prediction model, the moving load model exhibits lower 

accuracy in damage prediction due to the more intricate input signals from structural response. In the 

moving load model, the impulse signal is consistently impacted by the reflection generated from passing 

vehicles, while the bridge response is influenced by complex impulse signals, resulting in a lower accuracy 
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in damage prediction, as anticipated, summarizes the prediction accuracy of each model, with XGBoost 

showing the best damage prediction ability for the four crack cases. 

 

Figure 6.20. The damage prediction results after processing the moving load FE simulation results from 
(a) BP, (b) an SVM, (c) a decision tree, and (d) the XGBoost algorithm 
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CHAPTER 7 CONCLUSION 

The dissertation focuses on infrastructure damage detection using advanced AI techniques, encompassing 

IE signals, WRV, and structural performance. In chapter 3, the damage identification using various impact 

echo signals, including time-domain, frequency-domain, and STFT signals is explored. Unlike conventional 

methods reliant on a specific frequency range (1kHz to 5kHz), which can be influenced by testing 

conditions, this research explores the potential of using diverse input signals for damage identification 

through CNN. Among the four models tested, the one employing composite images generated from 

frequency and STFT data achieves the highest testing accuracy. The study emphasizes the significance of 

validation accuracy as a critical metric for assessing model performance, ensuring it doesn't overfit the data. 

Furthermore, the research investigates the efficiency of CNN models with different image resolutions and 

varying numbers of images. The slope analysis between computation time and resolution provides crucial 

insights, highlighting thresholds for optimal input settings. By exploring multiple input signal types and 

evaluating their performance comprehensively, this study contributes valuable insights into enhancing the 

accuracy and efficiency of damage identification methods using advanced ML techniques.  

Based on our findings, the following conclusions can be drawn: 

 The multi-input approach combining frequency and STFT referred to as FSTFT achieves an 

impressive 87% testing accuracy in identifying damages during impact echo tests. 

 Among all CNN models, FSTFT demonstrates superior capabilities in identifying specific damages 

(D1 to D6), while F and TFSTFT exhibit comparable accuracy in identifying D3 to D5. 

 Validation accuracy serves as a crucial metric, ensuring the models effectively handle unknown 

inputs without overfitting issues, a vital aspect studied in all four models. 

 Efficiency analysis reveals a stark trade-off: a significant exponential increase in computation time 

yields only a marginal 2% increase in accuracy. 

 Considering the thresholds of accuracy and computation time is paramount in the efficiency 

analysis, enabling the identification of an optimal balance between speed and precision. 
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 The efficiency analysis demonstrates that an image resolution of 200x200 with 100 images strikes 

the most balanced equilibrium between accuracy and computation time, providing valuable insight 

for practical implementation. 

 

In chapter 4, the study introduces a novel approach to signal extraction leveraging ANN and CNN to 

enhance the accuracy of impact echo results while mitigating the influence of environmental factors in field 

test data. Through deep learning, it was determined that a signal duration of 1 millisecond and a starting 

time of 0.1 millisecond after the zero-crossing point yielded optimal results for the DL model. These 

identified DL-suggested signal parameters were incorporated into the impact echo delamination calculation, 

leading to significant improvements as validated through a thorough examination of both time-domain and 

frequency-domain signals. This methodology effectively reduced signal dismissals and exaggerations 

caused by variations in impactor energy and ground surface conditions. The application of this approach, 

as detailed in this chapter, offers a more accurate and reliable analysis of impact echo results when dealing 

with field test data. In future research, expanding the signal extraction process to incorporate various signal 

types, such as short-time Fourier (STFT), and employing multi-input CNN algorithms could enhance the 

dataset and improve the model's identification capabilities. Based on our findings, the following 

conclusions can be drawn: 

 In a comprehensive DL analysis of NDT time-domain signals, an optimal image parameter for 

accurate damage identification was identified. 

 Deep learning revealed that a signal duration of 1 millisecond and a starting time of 0.1 millisecond 

after the zero-crossing point provided optimal outcomes for the DL model. 

 The signal extraction approach significantly reduces signal dismissals and exaggerations caused by 

environmental interferences in field test data. 

 Utilizing DL-suggested signal parameters ensures a more precise and dependable analysis of 

impact echo results, particularly in the context of field test data. 
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In chapter 5, the comparison and examinations of wave response patterns between HM and IHM is studied. 

The wave response pattern in HM is validated through laboratory tests and analytical solutions, revealing 

differences in noise and wave reflection between experimental and simulated signals. Despite 

dissimilarities, the signal frequency and waveform align for the first three significant cycles, affirming the 

suitability of the FE model for generating subsequent wave response pattern data. The study explores 

variations in the wave response pattern for cracks at different depths, noting distinct peaks for shallower 

and deeper cracks. In IHM, larger aggregates exert a greater impact on the wave response pattern, causing 

more energy attenuation in the forward wave compared to smaller aggregates. The study utilizes ML 

techniques, including ALE and CNN, to analyze and predict cracks with high accuracy. The application of 

GANs contributes to generating synthetic samples for training purposes. While shedding light on internal 

damage in IHM using AI technology, future work considerations include developing an analytical solution 

for IHM, investigating varied depth-to-crack specimens for detailed wave response patterns, and exploring 

different impact sizes during laboratory testing to enhance understanding and control of wave response 

characteristics. The summary of this paper is shown below:  

 In HM, the shallower crack (a=12.7mm) showed a peak at a lower impulse frequency, while the 

deeper crack (a=50.8mm) exhibited its WRV peak at a higher frequency. 

 In IHM, larger aggregates exerted a more significant impact on the WRV pattern than smaller 

aggregates, causing increased energy attenuation in the forward wave. 

 The combination of random aggregate size and distribution results in a more intricate WRV pattern. 

 GANs can generate synthetic samples based on images, creating a robust database for training 

purposes. 

 ALE elucidates the ML model's black box process, specifically highlighting the impact of aggregate 

information on the WRV. 

 The CNN achieved an impressive training accuracy of 87.5% when using WRV images with 

varying internal crack information. 
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The study presents the framework for detecting internal damage in IHM using AI technology. However, 

future work should focus on 1) developing an analytical solution for IHM to enhance parameter control and 

deepen understanding of WRV; 2) exploring varied depth-to-crack specimens for more detailed WRV 

curves; 3) employing different impact sizes in laboratory testing to generate detailed WRV patterns with 

varying impact frequency. These tasks aim to facilitate a more comprehensive study of the WRV pattern. 

 

In chapter 6, the study's primary focus was to develop a moving load FE model capable of simulating 

vehicle motion using KCE and conducting a comprehensive parameter study of the model. To ensure the 

model's accuracy, it was verified against VBI analytical solutions, laboratory tests, and field tests. The study 

examined solutions using ML methods for damage prediction and compared the results of the static load 

prediction model with the moving load prediction model. The latter showed lower accuracy due to the 

complicated nature of the structural response signal that serves as input for the ML model. XGBoost, 

particularly in deep learning, had the highest accuracy for both models, with 92.6% for the static load and 

83.3% for the moving load. The results highlight the potential for improved damage prediction through the 

use of BWIM responses. The main findings are summarized as follows. 

 The KCE-based simulation for a moving load is feasible. The structural responses were verified 

with a VBI analytical solution, and two laboratory tests and field test supported by parameter 

studies. The loss (%) of maximum displacement between FE simulation results and VBI analytical 

solutions shows a similar value. 

 Feature selection is required for ML to avoid overfitting and to minimize the situation where the 

ML prediction model is not well trained to increase the accuracy of damage prediction.  

 The prediction accuracy of the moving load is lower than static load accuracy because the structural 

response to a moving load is much more complicated than the response to a static load model 

 By comparing the most recent ML methods, XGBoost combined the assembly decision tree and 

gradient boosting technology, allowing us to predict damage with the highest accuracy. 
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 The series of procedures presented in this report estimates and predicts structural damage from 

BWIM signals, which provides a new strategy for lowering SHM. Such information will help 

structural engineers take preventive or proactive actions to improve the drivers’ safety and protect 

and preserve the transportation infrastructure. 

The series of procedures presented in this chapter estimates and predicts structural damage from BWIM 

signals, which provides a new strategy for lowering SHM. Such information will help structural 

engineers take preventive or proactive actions to improve the drivers’ safety and protect and preserve 

the transportation infrastructure. Further research of the KCE concept with a moving load will be further 

verified through the field test with actual semi-truck. And consider two-way vehicle effect.  It is possible 

to monitor the health condition of a bridge structure in real-time by using BWIM responses.  
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