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Abstract 

Proactive Seismic Rehabilitation Decision-Making Model for Water Pipe Networks Under 

Network Uncertainties and Degradation 

Abhijit Roy 

The University of Texas at Arlington, 2023 

Supervising Professor: Mohsen Shahandashti 

Past earthquakes have revealed that earthquakes disrupt operations of underground water 

infrastructure systems. Assessment of the seismic vulnerability of underground water pipe 

networks plays a critical role in formulating preventive rehabilitation decision making to ensure 

maximum serviceability after an earthquake event and avoid high repair costs. Although existing 

seismic vulnerability assessment methods and seismic rehabilitation decision-making models are 

sensitive to water pipe network uncertainties (e.g., uncertainties in nodal demand, reservoir head, 

and pipe roughness coefficient) and pipes’ degradation, the extent of the effects of the network 

uncertainties and pipes’ degradation on the postearthquake serviceability of the network and 

seismic rehabilitation decision-making has not been examined. The serviceability and damage of 

a water network after a seismic event depends on the hydraulic properties and physical properties 

of the network. The hydraulic properties and physical properties of the network are sensitive to 

network uncertainties and degradation. So, it is necessary to investigate the effects of network 

uncertainties and degradation of proactive seismic rehabilitation decision-making of water 

distribution networks. This research is divided into three sections to investigate the effects of water 

networks uncertainties and pipes’ degradation on seismic vulnerability assessment models and 

seismic rehabilitation decision-making. In the first section, this research investigates the effects of 

water pipe network uncertainties on the seismic vulnerability assessment of networks. The 

approach was tested on two networks (New York Tunnel Network and Oberlin Network). The 

statistical analysis results indicated that the combined impact of the three selected water pipe 

network uncertainties on the seismic vulnerability assessment of networks is statistically 

significant. Nodal demand and pipe roughness coefficient uncertainties did not individually have 

a statistically significant effect. The individual effect of reservoir head uncertainty was statistically 

significant. Sensitivity analysis determined the minimum value of the coefficient of variation to 
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have a statistically significant effect. The results from sensitivity analysis showed that a small 

uncertainty in reservoir head results in a statistically significant effect on seismic vulnerability 

assessment. By contrast, the coefficient of variation for uncertainties in nodal demand and pipe 

roughness has to be quite large to significantly affect seismic vulnerability assessment. The next 

section aims to explore the impacts of water network uncertainties on proactive seismic 

rehabilitation decision-making. Pipe roughness coefficient, demand, and reservoir head were 

selected as uncertain network parameters for this study. Critical pipes were identified for a limited 

budget constraint considering these three network uncertainties individually and combinedly. 

Sensitivity analysis was performed to quantify selected network uncertainties. A stochastic 

combinatorial optimization problem was formulated considering network uncertainties and 

seismic ground motion intensities to identify the most critical pipes of a network for limited 

rehabilitation budget. A simulated-annealing algorithm was used to solve the stochastic 

combinatorial optimization problem. Modena network was used to demonstrate the method. The 

optimization results showed that the selected network uncertainties significantly affect the 

identified critical pipes of the water pipelines. Also, the maximum achievable serviceability index 

for selected rehabilitation budget reduces significantly if network uncertainties are considered. 

This index has been reduced by 3%−4% due to the consideration of all three network uncertainties. 

This third part of the research aims to investigate the effects of the degradation of pipes on the 

seismic rehabilitation decision-making of water distribution networks. Simulation experiments 

were designed to investigate the effects of degradation on the inside surface of pipes and on the 

outside surface of pipes individually and combinedly. Seismic repair rate was calculated 

considering the effects degradation based on the probabilistic stress change of pipe with age. The 

probabilistic nature of the pipes’ outside degradation rate was considered to determine the 

probabilistic value of stress change. A probabilistic pipe roughness growth rate model was used to 

modify the hydraulic modeling of pipe considering pipes’ inside degradation. A simulated 

annealing-based optimization approach was used to identify the critical pipes and associated 

maximum serviceability for each experiment and each budget constraint. The Analysis of Variance 

(ANOVA) test and Tukey statistical tests were conducted to identify the statistical significance of 

the effect of integrating degradation. The application of the proposed approach was illustrated on 

Modena network. Five rehabilitation budget constraints were selected for this study. Critical pipes 

were identified for each rehabilitation budget constraint based on the optimization algorithm. The 
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results for each simulation experiment showed that the identified critical pipes were different. The 

associated maximum serviceability was reduced for the same budget constraints if outside and 

inside degradation was considered individually and combinedly. The changes in identified critical 

pipes and associated maximum serviceability due to the consideration of outside and inside 

degradation implies the dependency of proactive seismic rehabilitation decision-making model on 

outside and inside degradation. The statistical test results imply that the degradation of pipes of 

the water distribution network has an impact on seismic rehabilitation decision-making models of 

water distribution networks. Therefore, it is recommended to integrate the degradation effect with 

existing seismic rehabilitation decision-making models. 
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CHAPTER 1 : INTRODUCTION 

Water pipe networks are among the lifelines of modern cities (Eidinger and Avila 1999). Past 

earthquakes (e.g., the San Fernando earthquake of 1971, the Northridge earthquake of 1994, the 

Kobe earthquake of 1995) and some recent earthquakes (e.g., the Christchurch earthquake of 2011, 

the East Japan earthquake of 2011, the Gorkha earthquake of 2015, and the Central Mexico 

earthquake of 2017) have divulged the vulnerability of the underground water pipe networks 

(Knight 2017; Thapa et al. 2016; O' Rourke et al. 2014; Maruyama et al. 2011; Cubrinovski et al. 

2011; O’Rourke 1996). Residential, industrial, and commercial activities get disrupted due to the 

damage to the water pipe networks.  Earthquake impacts on water supply networks can result in 

enormous direct losses (e.g., cost of repair) and indirect losses (e.g., disruption in water 

distribution) (Yerri et al. 2017) and severely limit capacity to control conflagrations following 

earthquakes (Selina et al. 2008). In the Northridge earthquake of 1994, utilities performed around 

1400 repairs in water pipes, of which approximately 100 repairs were carried out in pipes with 

large diameters (O’Rourke 1996). About 50,000 people were disconnected from the drinkable 

water supply for over seven days after the Northridge earthquake (Scawthorn et al. 2005). The 

Kobe earthquake caused damage at 23 locations of the water pipeline (Yoo et al. 2016). These 

facts highlight the significance of seismic vulnerability assessment of water pipe networks and 

mitigation of such vulnerabilities. A seismic vulnerability assessment of water supply networks 

estimates the likelihood of damage to pipelines and degradation of service after seismic events. 

Several seismic vulnerability assessment models have been proposed to address these challenges. 

Figure 1.1 shows a general methodology of existing proactive seismic rehabilitation decision-

making model.  
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Figure 1.1: General methodology of existing proactive seismic rehabilitation decision-making model 

In the current practice of vulnerability assessment of underground water pipe networks subjected 

to seismic events, it is implicitly assumed that currently established hydraulic network analysis 

models can accurately estimate reliability and serviceability measures. However, several studies 

have identified significant shortcomings of the hydraulic models representing actual networks 

(Sabzkouhi and Haghighi 2016; Seifollahi-Aghmiuni et al. 2013; Lansey et al. 2001; Bargiela 

and64Hainsworth 1989). These shortcomings are mostly due to the high sensitivity of hydraulic 

models to their input variables. The bottleneck is the highly limited knowledge about the actual 

input values, which drive the hydraulic models. These values include nodal demands, pipe 

roughness coefficients, reservoir head, pipe material, pipe age, and pipe diameter (Kang and 

Lansey 2009, Shibu and Janga Reddy 2011). Sabzkouhi and Haghighi (2016) showed that a slight 

15% uncertainty in a demand and pipe’s roughness coefficient could cause around 11% deviation 

in predicted nodal pressures and 50% deviation in flow velocities. These results represent the high 

sensitivity of network hydraulic analysis models to uncertainties. Therefore, it is crucial to 

investigate the effects of water pipe network uncertainties on seismic vulnerability assessment of 

the networks.  
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Current seismic rehabilitation decision-making models depend a lot on the network hydraulics and 

seismic fragility curves to integrate the damages with the original network and to determine the 

pipe failure rate, respectively. Hydraulic modeling of water distribution networks depends on the 

pipe internal roughness (Christensen 2009; Abdel-Monim et al. 2005), while the seismic fragility 

curve depends on time-dependent maximum tensile stress on pipes (Ji et al. 2017). Although 

internal roughness of pipes and maximum tensile stress on pipes can be affected by degradation, 

existing seismic rehabilitation decision-making models ignored the effects of degradation. 

United States’ drinking water distribution network comprises of 2.2 million miles (about 

3,540,556.8 km) of underground pipes to supply reliable water to people. The average age of the 

1.6 million miles (about 2574950.4 km) of pipes in the United States is 45 years (ASCE 

Infrastructure Report Card 2021).   

Due to this aging effect, degradation along the outside surface of the pipes and deposition along 

the internal surface of the pipes can change the maximum stress on the pipe (Ji et al. 2017) and the 

roughness of the pipe (Christensen 2009). Therefore, it is essential to investigate the effects of 

pipes’ degradation on seismic rehabilitation decision-making of water distribution networks. Due 

to the random nature of the degradation and deposition, the probabilistic effects of degradation 

should be integrated with seismic rehabilitation decision-making.  

The ultimate goals of this research are to (i) characterize and integrate the water pipe network 

uncertainties with a seismic vulnerability assessment model and identify the effects on the 

maximum serviceability of a water pipe network; (ii) identify the effects of network uncertainties 

on seismic rehabilitation decision-making of water pipe networks.; (iii) identify the effects of water 

pipe on seismic rehabilitation decision-making of water pipe networks.The works performed to 

achieve the goals of the research are outlined in the following ways. 

Chapter 2 provides a comprehensive review of the literature on existing seismic vulnerability 

assessment and seismic rehabilitation decision-making models, effects of water pipe network 

uncertainties on design phase and operational phase, and existing water pipe network degradation 

models. Chapter 2 also provides the gaps in knowledge and research objective. Chapter 3 discusses 

the methodology of identification and quantification of water pipe network uncertainties and 

integrating them with an existing seismic vulnerability assessment model. Chapter 3 also presents 

the application of the model by applying it to existing water networks and identifying the effects 
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of water pipe network uncertainties integration by conducting statistical tests. Chapter 4 proposes 

a methodology to identify the roles of water pipe network uncertainties in identifying critical pipes 

of water pipe networks for proactive seismic rehabilitation decision-making. Chapter 4 also 

presents the application of the model by applying it to an existing water network and identifying 

the critical pipes of water pipe networks for proactive seismic rehabilitation decision-making. 

Chapter 5 proposes a methodology to identify the roles of water pipe network degradation on the 

maximum serviceability of a water pipe network for a predefined resource-constraint and on 

identifying critical pipes of water pipe networks for proactive seismic rehabilitation decision-

making. Chapter 6 presents the conclusion of this study. 
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CHAPTER 2 : BACKGROUND 

 EXISTING SEISMIC VULNERABILITY ASSESSMENT MODELS 

Component-level and system-level seismic vulnerability assessments are two broadly classified 

categories of methods for assessing the vulnerability of water pipe networks subjected to seismic 

events. Individual components can be evaluated by component-level assessment models. The 

seismic performance of an entire network can be evaluated by system-level assessment models. 

The methods for assessing the vulnerability of individual pipes can be further divided into two 

categories: analytical and empirical. Newmark and Rosenblueth (1971) proposed an analytical 

method to investigate the response of an underground pipeline assuming negligible soil-pipe 

interaction. Since then, these interactions have been studied using quasi-static analysis (Singhal 

and Zuroff 1990; Wang et al. 1982), shell theory (Liu et al. 2004; Luco and De Barros 1994), 

dynamic plain-strain modeling (Datta et al. 1984), finite element analysis (Saberi et al. 2014; 

Vazouras et al. 2010), probabilistic fault displacement hazard analysis and beam-type finite 

element modeling (Melissianos et al. 2016), and nonlinear modeling of seismic response (Hosseini 

and Tahamouli Roudsari 2010). Honegger and Eguchi (1992) estimated the failure rate of brittle 

pipes subjected to permanent ground deformation. American Lifeline Airlines (ALA 2001) 

formulated seismic fragility relations for a wide range of pipes based on 81 data points from 12 

earthquakes. Although these component-level models are useful to gain a good insight into failure 

mechanisms of small-scale cases, they are impractical for large-scale vulnerability assessment 

(Hosseini and Tahamouli Roudsari 2010).  

While it is necessary to understand the performance of individual pipes, their network resilience 

depends on these pipes’ dynamic interactions. Advancements in network simulation, probabilistic 

modeling, and computational engineering have helped researchers to conduct system-level seismic 

vulnerability assessments of networks (Pudasaini et al. 2017; Wang et al. 2010; Shi 2006). 

Individual pipe failure probabilities are used to generate damage in pipes for system-level 

vulnerability assessment (Pudasaini and Shahandashti 2020b). Damages were integrated with 

hydraulic models using Monte Carlo simulation. Shi (2006) combined fragility relations with 

hydraulic principles to model the seismic response of water networks. Shi’s methodology was 

further expanded to generate various system serviceability and reliability indices (Wang et al. 
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2010; Huang et al. 2008). System serviceability index (SSI) was used by Wang et al. (2010) to 

measure the performance of a water pipe network susceptible to seismic damages. SSI was used 

to locate the critical pipes of the network and rank them accordingly. Networks’ spatial 

distributions and correlations related to ground motion intensities were not taken into consideration 

in their analysis.  

Several seismic rehabilitation decision-making models have already been developed based on the 

existing seismic vulnerability assessment models. Pudasaini and Shahandashti (2018) developed a 

genetic algorithm-based optimization algorithm to develop a seismic rehabilitation decision-

making model. Shahandashti and Pudasaini (2019) proposed a simulated annealing-based 

methodology to identify critical pipes of a water distribution network considering budget 

limitation, spatial correlation between seismic intensities, and the correlation between the effects 

of pipes’ damages on the network serviceability. Roy et al. (2021) and Roy et al. (2022) identified 

the effects of network uncertainties on seismic vulnerability assessment of water distribution 

networks. Sharveen et al. (2022) developed a risk-based algorithm to identify critical pipes. Roy 

et al. (2023) investigated the effects of water network uncertainties on proactive seismic 

rehabilitation decision-making of water distribution networks. 

 EFFECT OF NETWORK UNCERTAINTIES ON DESIGN PHASE AND 

OPERATIONAL PHASE 

Although the impacts of uncertainties on the seismic vulnerability assessments are unknown, 

uncertainty quantification and analysis have been applied to study the effects of water pipe network 

uncertainties on their no-hazard design and operation procedures. For example, Seifollahi-

Aghmiuni et al. (2011) combined a shuffled frog algorithm with Monte Carlo simulation to 

examine water network efficiency considering the uncertainty of demand. Their study was 

primarily focused on identifying the effects of demand uncertainty on operation using a 

probabilistic normal distribution. They concluded that network efficiency decreases if demand 

uncertainty is not considered while operating a network. Seifollahi-Aghmiuni et al. (2013) used a 

similar methodology to examine water network performance in its operational period considering 

pipe roughness uncertainty. They concluded that if pipe roughness uncertainty increases, network 
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performance decreases. Xu and Goulter (1998) proposed a methodology for assessing water pipe 

networks considering uncertainties in pipe capacity, nodal demands, and reservoir/tank levels.   

Lansey et al. (1989) developed a methodology to determine an optimal design process for water 

pipe networks. They considered several network uncertainties, such as pressure head requirements, 

future demands, and pipe roughness. They illustrated that uncertainties in those parameters have 

substantial effects on the network design process. Kapelan et al. (2005) defined the water 

distribution design problem as a multi-objective optimization problem under uncertainty. They 

considered pipe roughness coefficient and water consumption as uncertain variables. Probability 

density functions were used to model the uncertain variables. The obtained results demonstrated 

that the proposed methodology could identify robust Pareto optimal solutions in spite of the 

considerably less calculation effort. Sabzkouhi and Haghighi (2016) introduced a methodology to 

analyze water pipe networks considering uncertainty based on fuzzy set theory. They showed that 

uncertainties in network input parameters lead to imprecise hydraulic responses. Implementing the 

method in a real-time network revealed that a 15% change in the nodal demand and pipes’ 

roughness could result in -41.7% to +50.1% uncertainty in the pipe velocities and -11.2% to +6.4% 

uncertainty in the nodal pressures.   

 EXISTING WATER PIPE DEGRADATION MODEL 

Existing degradation models can be broadly classified into two major categories: deterministic 

model and probabilistic model. 

Deterministic models can be further classified into two sections based on the type of equation to 

predict the degradation rate: exponential models (e.g., Shaban et al. 2023; Pouri and 

Heidarimozaffar 2022; Barton et al. 2022; Clark et al. 1982; Walski and Pelliccia 1982; Shamir 

and Howard 1979) and linear models (Jacobs and Karney 1994; Kettler and Goulter 1985; 

McMullen 1982). Deb (2002) used a deterministic model of water pipe degradation to identify 

optimal replacement strategy of a water distribution network. Farshad (2004) used a deterministic 

model of water pipe degradation to predict the service life of a water distribution network using 

basic regression and standard extrapolation method. Seica and Packer (2004) developed a method 

to determine the mechanical strength of pipes using finite element evaluation model of water pipe 
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degradation. Seica and Packer (2006) proposed a different method to predict the mechanical 

strength of pipes using a simplified numerical method of water pipe degradation.  

The probabilistic models of water pipe degradation can be divided into five models: Bayesian 

diagnostic model (e.g., Watson et al. 2004), cohort survival model (e.g., Deb et al. 1998; Herz 

1996), break clustering model (e.g., Goulter et al. 1993; Goulter and Kazemi 1988), Semi-Markov 

chain (e.g., Gustafson and Clancy 1999), and data filtering (e.g., Mavin 1996).  Sadiq et al. (2004) 

developed a probabilistic approach to conduct risk analysis due to degradation associated failures 

in cast iron pipes. Davis et al. (2008) used a probabilistic approach of pipe degradation to predict 

the failure rate and scheduling of replacement for a water pipe network. Watson et al. (2004) 

identified maintenance scheduling using a Bayesian-based pipe degradation model. Christodoulou 

et al. (2003) used neuro-fuzzy systems and statistical modeling techniques to evaluate the 

structural degradation of the water distribution network in an urban setting. Al Barqawi and Zayed 

(2006) and Al Barqawi and Zawad (2008) used two different artificial neural network (ANN) based 

approaches of pipe degradation to predict ratings of pipelines. Punurai and Davis (2017) 

considered degradation to develop a prioritization technique using Monte Carlo simulation. Ji et 

al. (2017) developed an approach to model corroded cast iron pipes for lifetime prediction. 

Tavakoli et al. (2020) predicted useful remaining life of water pipe network using artificial neural 

networks and an adaptive neuro-fuzzy model of pipe degradation.  

Degradation of pipe is also a function of pipe age (Annus and Vassiljev 2015; St. Clair and Sinha 

2012). The age of the pipe has a direct effect on the hydraulic model and seismic fragility curves 

of the water pipe network. Extensive research has already been conducted that showed the effect 

of age on the pipe roughness coefficient (e.g., Herwig et al. 2008; Shin et al. 2016; Boxall et al. 

2004; Sharp and Walski 1988; Mamrelli and Streicher 1962; Williams and Hazen 1960; Colebrook 

and White 1937a, b). Seismic fragility functions can also be affected due to the age of the pipes 

(Wang 1990; Eidinger 1998; Mazumder et al. 2019).  

 GAPS IN KNOWLEDGE 

1. Existing methods for assessing the seismic vulnerability of water pipe networks did not 

consider the network uncertainties. 
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2. Existing seismic vulnerability assessment models and seismic rehabilitation decision-

making models for water pipe networks do not consider the effects of degradation. 

 RESEARCH OBJECTIVE  

1. Characterize and integrate the water pipe network uncertainties with a seismic vulnerability 

assessment model and identify the effects on the maximum serviceability of a water pipe 

network. 

2. Identify the effects of network uncertainties on seismic rehabilitation decision-making of 

water pipe networks. 

3. Identify the effects of water pipe on seismic rehabilitation decision-making of water pipe 

networks. 
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CHAPTER 3 : EFFECT OF NETWORK UNCERTAINTY ON SEISMIC 

VULNERABILITY ASSESSMENT OF WATER PIPE NETWORKS  

Although existing seismic vulnerability assessment methods are sensitive to water pipe network 

uncertainties (e.g., uncertainties in nodal demand, reservoir head, pipe roughness coefficient), the 

extent of the effects of these uncertainties on post-earthquake serviceability of the networks has 

not been examined. This research investigates the effects of water pipe network uncertainties on 

the seismic vulnerability assessment of networks. The methodology includes seven steps: 

uncertainty identification and quantification, design of experiments, integrated multi-physics 

modeling, seismic repair rate calculations, Monte Carlo simulation, statistical analysis of the data 

(Analysis of Variance (ANOVA), and Tukey tests), and sensitivity analysis. Uncertainties in nodal 

demand, reservoir head, and pipe roughness coefficient were examined in this study. An integrated 

multi-physics model was created to simulate hydraulic network behavior and seismic vulnerability 

assessment. The approach was tested on two networks (New York Tunnel Network and Oberlin 

Network). 

 METHODOLOGY 

The methodology includes seven steps: uncertainty identification and quantification, design of 

experiments, integrated multi-physics modeling, seismic repair rate calculations, Monte Carlo 

simulation, statistical analysis of the data (ANOVA test and Tukey Test), and sensitivity analysis.  

Figure 3.1 demonstrates the methodology adopted for this study.  
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Figure 3.1: Methodology for investigating effects of network uncertainties 

3.1.1. Uncertainty Identification and Quantification 

Sources of water pipe network uncertainties were identified and quantified based on the literature. 

Probability and possibility models were used to characterize pipe network uncertainties. Table 3.1 

summarizes the previous efforts to characterize the network uncertainties. Normal and uniform 

distributions were two widely used probability models (Seifollahi-Aghmiuni et al. 2013; Lansey 

et al. 2001). Alternatively, fuzzy logic was used as a possibility model (Sabzkouhi and Haghighi 

2016; Shibu and Janga Reddy 2011).  

Table 3.1: Water network uncertainty models in the literature 

Parameters 

Probability and 

Possibility Models References 

Pipe 

Roughness 

Coefficient 

Normal Distribution 
Seifollahi-Aghmiuni et al. (2013); Lansey et al. (2001); 

Xu and Goulter (1998); Lansey et al. (1989) 

Uniform Distribution 
Kang and Lansey (2009); Kapelan et al. (2005); Xu and 

Goulter (1998) 

Fuzzy Numbers 
Pandey et al. (2020); Dongre and Gupta (2017); 

Sivakumar et al. (2016); Sabzkouhi and Haghighi 
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(2016); Haghighi and Asl (2014); Shibu and Janga 

Reddy (2011)  

Nodal 

Demand 

Normal Distribution 
Seifollahi- Aghmiuni et al. (2013); Lansey et al. (2001); 

Xu and Goulter (1998); Lansey et al. (1989)  

Uniform Distribution Kang and Lansey (2009) 

Fuzzy Numbers 

Pandey et al. (2020); Dongre and Gupta (2017); 

Sivakumar et al. (2016); Sabzkouhi and Haghighi 

(2016); Haghighi and Asl (2014)  

 Reservoir 

Head 

Normal Distribution Xu and Goulter (1998) 

Fuzzy Numbers Sabzkouhi and Haghighi (2016) 

Pipe 

Materials 
Uniform Distribution Kang and Lansey (2009) 

Age 
Uniform Distribution Kang and Lansey (2009) 

Fuzzy Numbers Braun et al. (2020) 

Diameter  Uniform Distribution Kang and Lansey (2009) 

Through a thorough literature review, three water pipe network uncertainties were selected: nodal 

demand, pipe roughness coefficient, and reservoir head. These uncertainties are widely 

acknowledged in the literature as critical sources of uncertainties for performance modeling and 

analysis of the water pipe networks (Table 3.1). It is assumed nodal demands, pipe roughness 

coefficient, and reservoir head to be normally distributed. The coefficient of variation (CoV) was 

used to investigate the effect of uncertainty. CoV is the ratio between the mean and standard 

deviation. The value of CoV was initially assumed to be 0.2 (Seifollahi-Aghmiuni et al. 2013). 

Later, different values of CoV were used to conduct the sensitivity analysis.  

3.1.2.  Design of Experiments 

The experiments were designed as a full factorial design. Each of the three parameters considered 

in this study was studied at two levels: including uncertainty and excluding uncertainty. The levels 

were coded as +1 (including uncertainties) and –1 (excluding uncertainties). Table 3.2 shows 

selected water pipe network uncertainties with their levels for the experiment. 
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Table 3.2: Water pipe network uncertainties with their levels for the experiment 

Name of water pipe network 

uncertainty 

Notation of 

uncertainty 

Levels 

Including 

Uncertainty 

Excluding 

Uncertainty 

Nodal Demand A +1 -1 

Pipe Roughness Coefficient B +1 -1 

Reservoir Head C +1 -1 

 

It is essential to analyze all the two-factor interactions to identify the effects of all three selected 

water pipe network uncertainties. Therefore, a 23 full factorial design was chosen for this 

experiment. The coded design for the experiment is shown in Table 3.3. 

Table 3.3: Design matrix of the experiment 

Experiment 

Name 

Experiment 

Notation 
A B C 

Experiment 1 Com_Exp 1 -1 -1 -1 

Experiment 2 Com_Exp 2 +1 -1 -1 

Experiment 3 Com_Exp 3 -1 +1 -1 

Experiment 4 Com_Exp 4 -1 -1 +1 

Experiment 5 Com_Exp 5 +1 +1 -1 

Experiment 6 Com_Exp 6 -1 +1 +1 

Experiment 7 Com_Exp 7 +1 -1 +1 

Experiment 8 Com_Exp 8 +1 +1 +1 

 

3.1.3. Seismic Repair Rate Calculation 

Figure 3.2 illustrates the steps to calculate the seismic repair rate for each pipe. 
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Figure 3.2: Steps of calculating seismic repair rate of each pipe 

At the beginning of the seismic repair rate calculation, an earthquake scenario was identified based 

on deaggregation analysis using USGS (2018b) considering the spatial relationship among seismic 

intensities (Zanini et al. 2017; Zanini et al. 2016; Weatherill et al. 2013; Jayaram and Baker 2009; 

Adachi 2007). Deaggregation maps were generated using USGS (2018b). Deaggregation analysis 

was conducted using the spectral acceleration of 1.0-s. The earthquake that had the highest 

percentage of contribution was selected from the deaggregation analysis. 

Next, for the selected earthquake scenario, peak ground velocity (PGV) was determined. PGV was 

used as the intensity parameter because of its direct relationship with the induced transient strains 

in the soil during a seismic event. These induced strains are major causes of underground pipe 

damage (Pineda-Porras and Najafi 2010).  

A spatially correlated peak ground velocity field was produced using the ground motion prediction 

equation (GMPE) (Abrahamson and Silva 2007, Zanini et al. 2016, Zanini et al. 2017). The general 

equation is given by Eq. (3.1). 

log10 (PGVab) = f (Ma, Rab, θa) + ϬB va + Ϭwεab      (3.1) 

where PGVab = value of peak ground velocity at location b  from source a; Rab = distance between 

location a and location b; Ma  = earthquake magnitude; θa = fault geological parameters at location 

a. ϬB va is the interevent residual, and Ϭwεab is the intra-event residual. Initially, the peak ground 

velocity map, i.e., f (Ma, Rab, θa) was created based on Abrahamson and Silva (2007). A peak 
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ground velocity map was created using the scenario shake map calculator (Field et al. 2005). In 

the following step, the interevent and intra-event variabilities were incorporated in this map. Εab 

and va are random variables with normal distribution which has a mean value (K) of 0 and standard 

deviations of ϬB and Ϭw. The value of εab was calculated using Eq. (3.2) (Zanini et al. 2016; 

Weatherill et al. 2013).  

ε =K+ Z*L           (3.2) 

where K = 0; L = Lower triangular matrix; Z = vector of random variables with normal distribution. 

The value of L was calculated by applying the Cholesky decomposition method, such that LLT
 = 

P. P is the positive-definite covariance matrix. The value of P can be calculated using Eq. (3.3).  

P =  [

1 Ϭ(𝑑1,2) ⋯ Ϭ(𝑑1, 𝑁)
⋮ 1 ⋯ Ϭ(𝑑2, 𝑁)
⋮ ⋮ ⋱ ⋮

𝑠𝑦𝑚 ⋮ ⋯ 1

]       (3.3) 

where Ϭ(d a,b) is a correlation coefficient between intra-event residuals for location a and location 

b. N is the total number of locations. The value of Ϭ(da,b) can be calculated using Eq. (3.4) 

(Jayaram and Baker 2009). 

Ϭ(da,b) = 𝑒(
−3𝑑𝑎,𝑏

ℎ
)
          (3.4) 

where da,b = distance between location a and location b. h is the intersite distance among which 

spatial relationships can be neglected. According to Wang and Takada (2005), when peak ground 

velocity is used to calculate spatial correlation, the value of h can be considered between 20 km to 

40 km. For this study, the value of h was selected to be 30 km. This process was repeated for M 

times to create M random peak ground velocity fields (Zanini et al. 2017). The value of PGV for 

each pipe was calculated. Seismic pipe repair rates were then determined based on ALA (2001) 

using Eq. (3.5). 

RRk,m = C * 0.00187 * PGVk,m         (3.5) 

where RRk,m is the seismic repair rate per 1000 ft of pipe k for the mth seismic PGV field, C is the 

modification factor, and PGVk,m is the peak ground velocity at the location of pipe k for the mth 

seismic PGV field (in./s). The modification factor (C) adjusts the value of the repair rate 

considering the corrosivity of soil, pipe diameter, pipe material, and pipe joint characteristics. 
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3.1.4. Integrated Multi-physics Modeling and Monte Carlo Simulation 

The System Serviceability Index (SSI) database was created using Monte Carlo simulation. SSI is 

a post-earthquake serviceability indicator that measures the serviceability of a water network after 

a seismic event. SSI is the ratio between demand fulfilled after a seismic incident and the total 

demand of the network at the regular operational period (Wang et al. 2010; Shi 2006). For this 

study, it was assumed that the demand is fulfilled at a node if the pressure at that node is more than 

a threshold pressure. Using the definitions, SSI is formulated as Eq. (3.6) 

                                                                SSI = 
∑ 𝑥𝑛∗𝐷𝑛𝑇𝑁

𝑛=1

∑ 𝐷𝑛𝑇𝑁
𝑛=1

     (3.6) 

subject to 

xn = 1 if Pn ≥ Pthreshold 

xn = 0 if Pn < Pthreshold 

where SSI is the system serviceability index; Dn is the demand at node n; TN is the nodes in the 

network; Pthreshold is the minimum pressure required at the node, which is selected by the demand 

for firefighting, and Pn is the pressure at node n. Hydraulic pressure of 20 psi (0.14 MPa) was used 

as the Pthreshold (Trautman et al. 2013). 

Seismic damage (breaks and leaks) were modeled using the Poisson process. The location of the 

pth damage (break or leak) in a pipe k was determined by Eq. (3.7).  

𝑙𝑘,𝑝 = 𝑙𝑘,𝑝−1 −
1

𝑅𝑅𝑘,𝑚  
∗ ln(1 − 𝑄1)    𝑤ℎ𝑒𝑟𝑒   𝑙𝑘,0 = 0       (3.7)                                                       

where l𝑘,𝑝 is the distance of pth damage (break or leak) in pipe k from its start node, RRk,m  is the 

seismic repair rate of pipe k, and Q1 is a uniformly distributed random number. The value of Q1 

ranges from 0 to 1. If the distance of initial damage (break or leak), i.e., 𝑙𝑘,1  was less than the total 

length of pipe k, then another random number (Q2) between 0 and 1 was generated. The value of 

Q2 classifies the damage as either a leak or a break.  If the value of Q2 was not more than 0.8, it 

was considered a leak; otherwise, it was considered a break (Shi 2006). The diameter of each leak 

was determined by further classifying those leaks based on Shi (2006). This process was repeated 

until the value of 𝑙𝑘,𝑝 is more than the total length of the pipe.  
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After locating all the damages (breaks and leaks) and determining the diameters of all damages for 

each pipe of the network for the present Monte Carlo simulation, the damages (breaks and leaks) 

were combined into the hydraulic model of the original network. Pressure at each node (Pn) was 

determined. Pressure-driven steady-state hydraulic analysis was used to calculate the pressure at 

each node. The demand-driven analysis considers that the demand at every node is obtained, and 

this consideration is not a valid consideration for water networks disrupted by seismic events ( Shi 

2006; Cheung et al. 2005). To investigate the performance of actual networks after earthquakes, 

the following two assumptions are necessary according to Shi (2006): 

• water demand at each node is not always obtained.  

• nodes cannot have negative pressure. 

For every run of the Monte Carlo simulation, the following steps were followed: 

1) Analyzing hydraulic model of the network including seismic damages (breaks and leaks) 

2) Removing any nodes having negative pressure 

3) Step 1 and step 2 were repeated if there is any node with negative pressure.  

Hydraulic pressure at each node (Pn) was calculated and recorded. SSI was calculated based on 

the demand at available nodes after removing all nodes with negative pressure for the predefined 

maximum Monte Carlo runs using Eq. (3.8): 

𝑆𝑆𝐼𝑟 = 
1

𝑀
∗  ∑ 𝑆𝑆𝐼𝑚

𝑀
𝑚=1           (3.8) 

where 𝑆𝑆𝐼𝑟 is the average value of SSI for rth Monte Carlo simulation; 𝑆𝑆𝐼𝑚 is the value of SSI 

calculated using Eq. (3.6) for the mth PGV field; M is the total number of PGV fields generated for 

the selected earthquake scenario.  

The value of SSI for each Monte Carlo run was then recorded to create the SSI database. The SSI 

database was used for statistical analysis (ANOVA test and Tukey test). The steps of the Monte 

Carlo simulation to create the database are shown in Figure 3.3. 
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Figure 3.3: Steps of Monte Carlo simulation to create SSI database for each experiment for a 

given earthquake scenario for the mth PGV field 
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3.1.5. Statistical Analysis of the SSI Database 

The one-way analysis of variance (ANOVA) and the Tukey test were used for statistical analysis 

of the SSI database. ANOVA is a statistical tool that determines any significant difference between 

the means of SSI of individual experiment groups. The following null hypothesis is tested: 

H0: µ1 = µ2 = µ3 =………… = µk        (3.9) 

where µ is the mean of the individual experiment group, and k is the total number of individual 

experiment groups. If the result is significant from the ANOVA test, the null hypothesis is rejected, 

which implies that a minimum of two individual experiment groups are statistically different from 

each other. 

The one-way ANOVA cannot determine which specific experiment groups are statistically 

different from each other. A Tukey test was performed to determine which particular groups 

differed from each other.  

 APPLICATION AND RESULTS 

Two different networks were selected to demonstrate the application of the methodology. The first 

network was the New York Tunnel network (Water Distribution System Research Database), 

having 42 pipes,19 junctions, and one reservoir. The second network was the Oberlin network 

(Water Distribution System Research Database), having 289 pipes, 262 junctions, and one 

reservoir. The Oberlin network is in Harrisburg, Pennsylvania.  
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Figure 3.4: Layout of New York Tunnel network  

 

Figure 3.5: Layout of Oberlin network 

  

The material of pipes having diameters less than 12 inches (300 mm) was assumed to be cast iron. 

The joint type for the cast-iron pipe was considered lead joints. If the diameter of the pipes were 

greater than 12 inches (300 mm), then the material was considered to be ductile iron. The joint 

type for the ductile iron pipe was considered rubber-gasketed joints.  

To select an earthquake scenario to thoroughly analyze the impact of uncertainties on the seismic 

vulnerability assessment, networks’ centroid was presumed to be in Pasadena, California 

(34.146267ᵒ N, 118.144040ᵒ W) for the deaggregation analysis. Deaggregation analysis was 

conducted using USGS (2018b). For the deaggregation analysis, the return period was selected to 

be 2,475 years. From the deaggregation results conducted in Pasadena, California, an earthquake 

at the Raymond fault was selected as the scenario earthquake (magnitude 7.13) for this study as it 

had the highest contribution ratio (13.96%). 

In the following step, a peak ground velocity field was generated using scenario shake-map 

calculator (Abrahamson and Silva 2007; Field et al. 2005). Inter-event and intra-event residuals 

were not considered in the shake-map calculator. The generated peak ground velocity field is 

shown in Figure 3.6. Figure 3.7 shows the same peak ground velocity field magnified to the scale 

of the network for New York Tunnel network. Figure 3.8 shows the peak ground velocity field 

magnified to the scale of the network for Oberlin network. 
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Figure 3.6: Peak ground velocity field die to the selected earthquake scenario without intraevent 

and interevent residuals 

 

Figure 3.7: Peak ground velocity field due to the selected earthquake scenario without intraevent 

and interevent residuals zoomed to network scale for New York Tunnel network 
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Figure 3.8: Peak ground velocity field due to the selected earthquake scenario without intraevent and 

interevent residuals zoomed to network scale for Oberlin network 

Each junction and four equally spaced nodes along the length of each pipe were chosen to generate 

the intra-event and inter-event residuals. These residual vectors were combined with a peak ground 

velocity field to generate twenty random PGVs (M=20). The average PGV was quantified for each 

pipe using the PGV determined at the start junction of the pipe, at the end junction of the pipe, and 

four intermediate points along the pipe. The average PGV of each pipe was then used to measure 

the SSI of the network. 

A convergence study was conducted to determine the suitable number of Monte Carlo runs (Figure 

3.9). Oberlin network (Water Distribution System Operations) was selected to conduct the 

convergence study. Experiment 8, for the selected earthquake, was selected for the convergence 

study. The same number of Monte Carlo runs that was found from the convergence study was used 

both for both New York Tunnel network and the Oberlin network (Water Distribution System 

Operations). From the convergence study result shown in Figure 3.9, it was concluded that 3000 

Monte Carlo runs were sufficient for this study.  
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Figure 3.9: Convergence study using Oberlin network to identify sufficient Monte Carlo runs 

A one-way ANOVA test was conducted (considering a 5% level of significance) to determine if 

the experimental results were statistically significant. Table 3.4 and Table 3.5 summarize the mean 

and variance of SSI for each experiment for the New York Tunnel network and Oberlin network, 

respectively.  

Table 3.4: Mean and variance of SSI of each experiment for New York Tunnel network 

Experiment Name Average  Variance  

Com_Exp 1 0.327 0.033 

Com_Exp 2 0.323 0.031 

Com_Exp 3 0.318 0.034 

Com_Exp 4 0.405 0.024 

Com_Exp 5 0.312 0.034 

Com_Exp 6 0.407 0.023 

Com_Exp 7 0.411 0.025 

Com_Exp 8 0.408 0.024 
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Table 3.5: Mean and variance of SSI of each experiment for Oberlin network 

Experiment Name Average  Variance  

Com_Exp 1 0.705 0.198 

Com_Exp 2 0.708 0.197 

Com_Exp 3 0.674 0.210 

Com_Exp 4 0.755 0.139 

Com_Exp 5 0.669 0.212 

Com_Exp 6 0.750 0.138 

Com_Exp 7 0.753 0.140 

Com_Exp 8 0.748 0.141 

 

For the ANOVA test, a null hypothesis (H0) and an alternative hypothesis (H1) were selected.   

Null hypothesis, H0: µ1 = µ2= …  …  …= µ8  

Alternative hypothesis, H1: Not all µ are equal. 

Level of Significance: 5% 

From the ANOVA test results, the p-values for New York Tunnel and Oberlin networks were 

much less than 0.05. Therefore, there were significant differences between the means of SSI in 

different groups or different experiments. The ANOVA test could not determine which specific 

experiments were statistically different from each other. It only implies that at least two 

experiments were statistically significant. The Tukey test that is often used for multiple pairwise 

comparisons was conducted to determine which experiments have significantly different means.  

As this study was only considering the effects of uncertainty, the Tukey test was conducted only 

for seven pairs, comparing no-uncertainty experiment (Com_Exp 1) with the other experiments: 

(Com_Exp 1, Com_Exp 2); (Com_Exp 1, Com_Exp 3); (Com_Exp 1, Cop_Exp 4); (Com_Exp 1, 

Com_Exp 5); (Com_Exp 1, Com_Exp 6); (Com_Exp 1, Com_Exp 7); (Com_Exp 1, Com_Exp 8). 

Table 3.6 and Table 3.7 summarize the results of the Tukey test for the New York Tunnel network 

and Oberlin network, respectively. 
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Table 3.6: Results of Tukey test for New York Tunnel network 

Group 1  Group 2  meandiff  p -adj  Lower  Upper  Reject  

Com_Exp 1 Com_Exp 2 -0.0035 0.9000 -0.0167 0.0097 FALSE 

Com_Exp 1 Com_Exp 3 -0.0086 0.4942 -0.0219 0.0046 FALSE 

Com_Exp 1 Com_Exp 4 0.0783 0.0010 0.0651 0.0916 TRUE 

Com_Exp 1 Com_Exp 5 -0.0154 0.0099 -0.0286 -0.0022 TRUE 

Com_Exp 1 Com_Exp 6 -0.0800 0.0010 0.0668 0.0933 TRUE 

Com_Exp 1 Com_Exp 7 -0.0839 0.0010 0.0707 -0.0971 TRUE 

Com_Exp 1 Com_Exp 8 -0.086 0.0010 0.0683 0.0948 TRUE 

 

Table 3.7: Results of Tukey HSD test for Oberlin network 

Group 1 Group 2 meandiff p -adj Lower Upper Reject 

Com_Exp 1 Com_Exp 2 0.0029 0.9000 -0.0295 0.0353 FALSE 

Com_Exp 1 Com_Exp 3 -0.0311 0.0717 -0.0635 0.0013 FALSE 

Com_Exp 1 Com_Exp 4 0.0499 0.0010 0.0174 0.0823 TRUE 

Com_Exp 1 Com_Exp 5 -0.0365 0.0152 -0.0689 -0.0040 TRUE 

Com_Exp 1 Com_Exp 6 0.0454 0.0010 0.0129 0.0778 TRUE 

Com_Exp 1 Com_Exp 7 0.0476 0.0010 0.0152 -0.0801 TRUE 

Com_Exp 1 Com_Exp 8 0.0432 0.0014 0.0108 0.0757 TRUE 

The Tukey test results of both the New York Tunnel network and Oberlin network show that 

demand uncertainty (Com_Exp 2) and pipe roughness coefficient uncertainty (Com_Exp 3) do not 

have statistically significant individual effects; the null hypothesis could not be rejected. For all 

other pairwise comparisons, the null hypothesis was rejected, and it was concluded that the effects 

of uncertainty are significant considering a 5% level of significance. 

From the ANOVA and Tukey test results, it can be concluded that uncertainty of demand and pipe 

roughness coefficient uncertainty do not have statistically significant effects. On the other hand, 

the effects of reservoir head uncertainty are statistically significant. The combined effect of the 

three selected water pipe network uncertainties is statistically significant for the selected value of 
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CoV. In the next part of the study, sensitivity analysis was conducted to find the minimum value 

of CoV to create a statistically significant effect.    

 SENSITIVITY ANALYSIS 

Sensitivity analysis was conducted to find the minimum value of the coefficient of variation (CoV) 

for which water pipe network uncertainties were statistically significant. Sensitivity analysis was 

divided into three major parts based on the effect of water pipe network uncertainties: 

(i) Effect of uncertainties in demand, pipe roughness coefficient, and reservoir head 

individually 

(ii) Combined effects of uncertainties in 

(a) demand and pipe roughness coefficient.  

(b) pipe roughness coefficient and reservoir head. 

(c) demand and reservoir head 

(iii) Combined effect of uncertainties in demand, reservoir head, and pipe roughness 

coefficient 

3.3.1. Effect of Individual Water Pipe Network Uncertainties 

All three water pipe network uncertainties were studied individually for both networks. The results 

for both the networks are shown graphically in Table 3.8. 

Table 3.8: Minimum value of CoV for each network uncertainties 

Network Name: New York Tunnel Network 

Network Uncertainty  Minimum Value of CoV 

Demand 1.00 

Pipe Roughness Coefficient 0.40 

Reservoir Head 0.01 

Network Name: Oberlin Network 

Network Uncertainty Minimum Value of CoV 

Demand 0.50 

Pipe Roughness Coefficient 0.30 

Reservoir Head 0.01 
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From the sensitivity test result of both the networks, the minimum value of CoV for reservoir head 

uncertainty is 0.01, indicating that a small uncertainty in reservoir head results in a statistically 

significant SSI change in both networks. By contrast, the CoV value for uncertainties in nodal 

demand and pipe roughness has to be quite large, more than the 0.2 value assumed in the literature 

(Seifollahi-Aghmiuni et al. 2013), to significantly affect mean SSI.  

3.3.2. Joint Effect of Water Pipe Network Uncertainties 

Two water pipe network uncertainties were considered together here: 

(i) Joint effect of uncertainties in demand and pipe roughness coefficient 

(ii) Joint effect of uncertainties in pipe roughness coefficient and reservoir head 

(iii) Joint effect of uncertainties in demand and reservoir head 

The analysis result of all three sections for both the networks are shown graphically from Figure 

3.10(a) to Figure 3.10(f). The marked zone indicates the area inside which the joint effect of the 

water pipe network uncertainties is not statistically significant.  

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

Figure 3.10: Result of sensitivity analysis with two water pipe network uncertainties (a) demand 

and pipe roughness coefficient for New York Tunnel network (b) demand and pipe roughness 

coefficient for Oberlin network (c) pipe roughness coefficient and reservoir head 

Figure 3.10(a) and Figure 3.10(b) show that the minimum value of CoV for either uncertainty of 

demand or uncertainty of pipe roughness coefficient has to be high to results in a statistically 

significant change in SSI for both networks. By contrast, while checking the combined effects with 

reservoir head, the minimum value of CoV does not depend on the pipe roughness coefficient or 

demand to result in statistically significant SSI change for both networks as the value of SSI 

changes for any uncertainty in reservoir head.    
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3.3.3. Combined Effect of Three Water Pipe Network Uncertainties 

All three water pipe network uncertainties were considered here. The results of the sensitivity 

analysis for both the networks are shown in Figure 3.11(a) and Figure 3.11(b). The marked zone 

indicates the zone inside which the combined effect of the water pipe network uncertainties is not 

statistically significant.  

  

(a) (b) 

D = CoV of uncertainty of demand; P = CoV of uncertainty of pipe roughness coefficient; R= 

CoV of uncertainty of reservoir head 

Figure 3.11: Result of sensitivity analysis with three water pipe network uncertainties (a) New 

York Tunnel network (b) Oberlin network 

Figure 3.11(a) and Figure 3.11(b) show that the minimum value of CoV to have a statistically 

significant effect on the value of SSI does not depend on the uncertainty of demand and pipe 

roughness coefficient. A small uncertainty in reservoir head results in a statistically significant 

change in SSI for both networks. 

 DISCUSSION 

Water pipe network hydraulic parameters are uncertain and probabilistic in nature. The 

probabilistic nature of network hydraulic parameters has a significant impact on hydraulic 

modeling of water pipe networks. Proactive seismic rehabilitation decision-making models are 

dependent on network hydraulic parameters. A methodology has been developed to integrate 
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uncertainties of network hydraulic parameters with existing network seismic vulnerability 

assessment methods and identify the effects of water pipe network uncertainties on seismic 

vulnerability assessment of networks. Three water pipe network hydraulic parameters were 

selected: uncertainties in nodal demand, reservoir head, pipe roughness coefficient. These selected 

parameters were considered probabilistic in nature with a fixed value of coefficient of variation. 

Two different networks were used to apply the proposed methodology.  

The statistical analysis results show that the individual effect of probabilistic demand uncertainty 

and uncertainty of pipe roughness coefficient does not have a statistically significant effect. On the 

contrary, the individual effect of probabilistic reservoir head uncertainty is statistically significant. 

The statistical analysis results show that the joint effects these uncertainties (joint effect of 

uncertainty of demand and pipe roughness coefficient; joint effect of uncertainty of pipe roughness 

coefficient and reservoir head; joint effect of uncertainty of demand and reservoir head) are 

statistically significant. The combined effect of all three uncertain network parameters is 

statistically significant. An additional study was conducted to identify the minimum value of CoV 

to have a statistically significant impact on post-earthquake serviceability index for these three 

selected network hydraulic parameters. 
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CHAPTER 4 : IMPACT OF WATER NETWORK UNCERTAINTIES ON 

SEISMIC REHABILITATION DECISION-MAKING FOR WATER PIPELINES  

Although water pipe network uncertainties play a critical role in seismic vulnerability assessment 

methods, the impacts of these uncertainties have not been explored in optimal proactive seismic 

rehabilitation decision-making. Extant pertinent literature ignores the uncertainty related to water 

network properties. This research aims to explore the impacts of water network uncertainties on 

determining the most critical pipes vulnerable to seismic events within a limited budget constraint. 

Pipe roughness coefficient, demand, and reservoir head were selected as uncertain network 

parameters for this study. Sensitivity analysis was performed to quantify selected network 

uncertainties. A stochastic combinatorial optimization problem was formulated considering 

network uncertainties and seismic ground motion intensities to identify the most critical pipes of 

a network for limited rehabilitation budget. A simulated-annealing algorithm was used to solve the 

stochastic combinatorial optimization problem.  Modena network was used to demonstrate the 

method. 

 METHODOLOGY 

The methodology for exploring the impacts of water network uncertainties on optimal seismic 

rehabilitation decision-making is described in Figure 4.1. 

 

Figure 4.1: Methodology of exploring the impacts of water network uncertainties on optimal 

seismic rehabilitation decision-making 
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4.1.1. Selection of Network 

The Modena network was used in this study (Center of Water Systems 2018). Modena network is 

a benchmark network with 268 junctions, 317 pipes, and 4 reservoirs. The total length of the pipes 

of the entire network is 71,806.11 m. For the calculation of seismic repair rate, pipes with diameters 

less than 300 mm (12 in.) were considered as cast-iron pipes with lead joints, whereas pipes with 

diameters greater than 300 mm (12 in.) were considered as ductile iron pipes with rubber-gasketed 

joints. Figure 4.2 shows the layout of the Modena network.  

 

Figure 4.2: Layout of Modena network 

4.1.2. Uncertainty Quantification 

Three water network parameters were selected for this study: pipe roughness coefficient, nodal 

demand, and reservoir head. The probabilistic distribution for these parameters was assumed- 

‘Normal distribution’. CV was used as the parameter to quantify the uncertainties in this study 

(Roy et al. 2021The minimum value of CV was used in this study. The minimum value of CV was 

determined using sensitivity analysis. Using the minimum value of CV ensures the integration of 

network uncertainty with the optimization algorithm. This study could have been conducted using 

a fixed value of CV (Roy et al. 2021). Selecting the fixed value of CV is not feasible for the 

optimization problem as there are chances of no effects for the predefined value of CV. The 

selected values of CV for all three uncertain parameters are listed in Table 4.1. 
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Table 4.1: Sensitivity analysis result 

Network Uncertainty Parameter Minimum Value of CV 

Pipe Roughness Coefficient 0.15 

Demand 0.50 

Reservoir Head 0.10 

 

4.1.3. Design of Experiments 

To explore the effects of network uncertainty on optimal proactive seismic rehabilitation decision-

making, this study was constructed as a full factorial design. All three selected network parameters 

were studied at two levels: uncertainty included (coded as 1) and uncertainty excluded (coded as -

1) (Roy et al 2021). Table 4.2 shows the design of experiments for this study.  

 

Table 4.2: Name of the experiments along with design matrix 

Experiment 

Name/Notation 

Pipe Roughness 

Coefficient 
Demand Reservoir Head 

Exp A -1 -1 -1 

Exp B -1 1 -1 

Exp C 1 -1 -1 

Exp D -1 -1 1 

Exp E 1 1 -1 

Exp F 1 -1 1 

Exp G -1 1 1 

Exp H 1 1 1 

 

4.1.4. Calculating PSSI for Each Random PGV Field 

Post-earthquake system serviceability index (PSSI) is used as a serviceability measure for this 

study (Wang 2010; Shi 2006). The same methodology described in section 3.1.3 and 3.1.4 was 

used to calculate the seismic repair rate of each pipe. After calculating the repair rate of each pipe, 
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PSSI was calculated for each random PGV (Shahandashti and Pudasaini 2019). The generated 

peak ground velocity field is shown in Figure 4.3. Figure 4.4 shows the same peak ground velocity 

field magnified to the scale of the network for Modena network. 

 

Figure 4.3: Peak ground velocity field due to the selected earthquake scenario without intraevent and 

interevent residuals 

 

Figure 4.4: Peak ground velocity field due to the selected earthquake scenario without intraevent and 

interevent residuals zoomed to network scale for Modena network 



 

35 
 

4.1.5. Determining a Sufficient Number of Monte Carlo Runs 

A sufficient number of Monte Carlo runs was identified based on a convergence study (Figure 

4.5). From the convergence study, 3000 Monte Carlo runs were selected for this analysis. 

 

Figure 4.5: Result of convergence study 

4.1.6. Optimization Problem Formulation 

The problem targets maximizing the expected PSSI. The mathematical model can be represented 

by Eq. (4.1).  

max𝑥∈X 𝐸[𝑃𝑆𝑆𝐼(𝑥)]         (4.1) 

Subject to 

𝐶𝑜𝑠𝑡(𝒙) ≤  𝐶𝑜𝑠𝑡𝑚𝑎𝑥                              (4.2) 

where all rehabilitation policies are denoted by set X, and 𝐶𝑜𝑠𝑡(𝒙) is the cost of rehabilitation to 

implement policy x, 𝐶𝑜𝑠𝑡𝑚𝑎𝑥 is the budget.  

The combinatorial stochastic optimization problem was solved using a simulated-annealing-based 

optimization algorithm (Shahandashti and Pudasaini 2019). This study was conducted for five cost 

limits: $2.5 million, $5 million, $7.5 million, and $10 million. One method to ensure this is to 

replace the critical pipes with earthquake-resistant ductile iron (DI) pipes. These pipes have no 

record of any leaks and breaks in some major earthquakes in Japan in which almost all other 

utilities and infrastructures were severely affected (Haddaway 2015). Therefore, for this study, the 

critical pipes were assumed to be replaced with earthquake resistant pipes during seismic 
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rehabilitation of the pipe network. The cost data used for the rehabilitation are summarized in 

Table 4.3. The material costs and bare costs for installing ductile iron pipes manufactured in United 

States were obtained from RSMeans (2017). The backfill cost was obtained from JM Eagle (2017). 

These costs were added to get the total cost for installing ductile pipes manufactured in United 

States. Then the cost of installing earthquake-resistant Japanese ductile iron pipe was obtained by 

adjusting the price of US-manufactured pipe. The adjustment was based on the fact that the 

earthquake-resistant Japanese ductile iron pipe can be 3 times the price of US-manufactured ductile 

iron pipes (Haddaway 2015). The information regarding the earthquake resistant pipes’ readily 

available diameters was obtained via correspondence with one of the major manufacturers of the 

pipes to formulate a practical rehabilitation policy. Using the created approach and the normalized 

cost vector (last column of Table 4.3), rehabilitation policies were identified for different 

rehabilitation budget constraints for the Modena network. 

Table 4.3: Rehabilitation costs adopted for this study 

Pipe 

diameter 

(mm) 

US-manufactured ductile iron pipe Earthquake-resistant Japanese ductile iron pipe 

Material 

costa 

(USD) 

Bare 

cost 

without 

backfill 

costa 

(USD) 

Backfill 

costb 

(USD) 

Total cost with 

backfill cost 

(USD) 

Bare cost 

without 

backfill costc 

(USD) 

Total cost 

with backfill 

cost (USD) 

Normalized 

cost terms of 

101.6-mm 

diameter 

pipe 

101.60 30.50 42.58 4.49 47.07 103.58 108.07 1.00 

152.40 26.50 41.57 5.15 46.72 94.57 99.72 0.92 

203.20 44.50 62.62 5.83 68.45 151.62 157.45 1.46 

254.00 58.50 79.61 6.50 86.11 196.61 203.11 1.88 

304.80 79.00 101.94 7.20 109.14 259.94 267.14 2.47 

355.60 93.00 117.16 7.91 125.07 303.16 311.07 2.88 

406.40 94.50 127.50 8.63 136.13 316.50 325.13 3.01 

457.20 126.00 160.80 9.37 170.17 412.80 422.17 3.91 

508.00 127.00 169.10 10.12 179.22 423.10 433.22 4.01 

609.60 141.00 192.25 11.66 203.91 474.25 485.91 4.50 
a Based on RSMeans (2017) data for Class 50 water piping with 5.4864-m (18-ft.) length. 
bBased on JM Eagle (2017). Backfill is assumed to be 30.48 cm (1 ft) above the top of the pipe, 

the backfill cost is assumed to be $0.015/kg, and the density of the backfill is assumed to be 

2,162.49 kg/m3 (135 lb/ft3).   
cAssumes that material cost of Kubota-manufactured earthquake-resistant DI pipes is 3 times the 

cost of DI pipes manufactured in the US based on Haddaway (2015). 
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 RESULTS AND DISCUSSION 

In the following section, the result from the simulated-annealing based optimization is 

demonstrated. Tables 4.4 to 4.7 show the maximum expected PSSI and actual cost of rehabilitation 

for different experiments of this study. Figure 4.6 to Figure 4.9 display the most critical pipes for 

each experiment considering the budget limitation. The actual cost was calculated based on the 

cost of rehabilitation for each pipe (Shahandashti and Pudasaini 2019). The critical pipes are 

highlighted using bold red marks.  

Table 4.4: Maximum expected PSSI and actual cost of rehabilitation (Budget $2.5 million) 

Experiment Name Actual Cost (USD) Expected PSSI Solution Time (h) 

Exp A             2,446,678.00  0.891 301.5 

Exp B             2,424,668.00  0.878 311.0 

Exp C             2,463,208.00  0.875 302.0 

Exp D             2,456,355.00  0.879 291.5 

Exp E             2,425,674.00  0.866 308.0 

Exp F             2,486,782.00  0.868 312.0 

Exp G             2,410,406.00  0.872 302.5 

Exp H             2,494,608.00  0.855 307.0 

 

Table 4.4 indicates that the value of maximum expected PSSI decreases by 2% for consideration 

of single uncertain parameter, while this value reduces by 3% for consideration of two uncertain 

parameters combinedly. The maximum expected PSSI decreases by 4%, if we consider three 

uncertain parameters (Exp H)  
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Figure 4.6: Critical pipes identified for different experiments (Budget $2.5 million) 

Table 4.5: Maximum expected SSI and actual cost of rehabilitation (Budget $5 million) 

 

Table 4.5 indicates that the value of maximum expected PSSI decreases by 1% for consideration 

of single uncertain parameter, while this value reduces by 2% for consideration of two uncertain 

parameters combinedly. The maximum expected PSSI decreases by 3%, if we consider three 

uncertain parameters (Exp H). 

Experiment Name Actual Cost (USD) Expected PSSI Solution Time (h) 

Exp A                 4,934,951.00  0.903 292.5 

Exp B                 4,950,760.00  0.897 320.0 

Exp C                 4,944,896.00  0.892 322.0 

Exp D                 4,964,729.00  0.900 315.5 

Exp E                 4,984,016.00  0.883 303.0 

Exp F                 4,969,680.00  0.886 294.5 

Exp G                 4,981,897.00  0.889 294.5 

Exp H                 4,993,186.00  0.877 312.45 
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Figure 4.7: Critical pipes identified for different experiments (Budget $5 million) 

 

Table 4.6: Maximum expected SSI and actual cost of rehabilitation (Budget $7.5 million) 

 

Table 4.6 indicates that the value of maximum expected PSSI decreases by 1% for consideration 

of single uncertain parameter, while this value reduces by 2% for consideration of two uncertain 

Experiment Name Actual Cost (USD) Expected PSSI Solution Time (h) 

Exp A            7,459,747.00  0.921 283.0 

Exp B            7,427,873.00  0.915 293.0 

Exp C            7,499,606.00  0.916 289.0 

Exp D            7,409,873.00  0.914 282.5 

Exp E            7,484,499.00  0.905 293.5 

Exp F            7,461,260.00  0.907 294.5 

Exp G            7,453,703.00  0.906 299.0 

Exp H            7,472,017.00  0.894 294.5 
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parameters combinedly. The maximum expected PSSI decreases by 3%, if we consider three 

uncertain parameters (Exp H)  

 

Figure 4.8: Critical pipes identified for different experiments (Budget $7.5 million) 

Table 4.7: Maximum expected SSI and actual cost of rehabilitation (Budget $10 million) 

 

Table 4.7 indicates that the value of maximum expected PSSI remains same for consideration of 

single uncertain parameter, while this value reduces by 1% for consideration of two uncertain 

parameters combinedly. The maximum expected PSSI decreases by 3%, if we consider three 

uncertain parameters (Exp H) 

Experiment Name Actual Cost (USD) Expected PSSI Solution Time (h) 

Exp A              9,907,578.00  0.940 279.0 

Exp B              9,954,539.00  0.934 285.0 

Exp C              9,966,649.00  0.932 282.0 

Exp D              9,983,350.00  0.935 281.5 

Exp E              9,930,516.00  0.924 296.0 

Exp F              9,944,433.00  0.927 281.0 

Exp G              9,988,639.00  0.926 287.0 

Exp H              9,851,909.00  0.918 300.0 
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Figure 4.9: Critical pipes identified for different experiments (Budget $10 million) 

 DISCUSSION 

A methodology was developed to integrate the uncertainties of network hydraulic parameters with 

a proactive seismic rehabilitation decision-making model and identify the critical pipes of the 

network for a limited budget-constraint. Three network hydraulic parameters were selected, and a 

full-factorial design of experiment was developed to identify the individual and combined effect 

of the selected parameters. The analysis was conducted for four budget constraints. The maximum 

value of expected PSSI was impacted due to the integration of uncertainties of network hydraulic 

parameters. The value of PSSI depends on the hydraulic simulation of the network and the 

uncertainty associated with hydraulic network parameters impact the seismic rehabilitation 

decision and identified critical pipes for same budget constraint.  

 

 

 

 

 

 

 

 



 

42 
 

 

CHAPTER 5 : EFFECTS OF DEGRADATION ON SEISMIC REHABILITATION 

DECISION-MAKING FOR WATER PIPE NETWORKS   

Proactive seismic rehabilitation decision-making methods are necessary to ensure maximum 

serviceability after a seismic event. Most recent proactive seismic rehabilitation decision-making 

models of water distribution networks are sensitive to network hydraulics and pipe fragilities. 

Although network hydraulics and pipe fragilities are influenced by the pipe degradations, the 

effects of degradation on proactive seismic rehabilitation decision-making were not studied. The 

probabilistic nature of the water pipe degradation makes the consideration of degradation 

challenging. This research aims to investigate the effects of the degradation of pipes on the seismic 

rehabilitation decision-making of water distribution networks. The methodology includes (1) 

designing simulation experiments; (2) integrating the effects of inside and outside degradation with 

seismic rehabilitation decision-making; (3) conducting statistical analysis to identify the effects of 

integrating the pipe degradation. The simulation experiments were designed to investigate the 

effects of degradation on the inside surface of pipes and on the outside surface of pipes individually 

and combinedly. Fragility curves were modified to consider degradation based on the probabilistic 

stress change of pipe with age. The probabilistic nature of the pipes’ outside degradation rate was 

considered to determine the probabilistic value of stress change. A probabilistic pipe roughness 

growth rate model was used to modify the hydraulic modeling of pipe considering pipes’ inside 

degradation. Modified seismic fragility curves and the modified value of the Hazen-Williams 

roughness coefficient were integrated to consider the effects of degradation based on the designed 

simulation experiment. A simulated annealing-based optimization approach was used to identify 

the critical pipes and associated maximum serviceability for each experiment and each budget 

constraint. The Analysis of Variance (ANOVA) test and Tukey statistical tests were conducted to 

identify the statistical significance of the effect of integrating degradation. The application of the 

proposed approach was illustrated on a benchmark network. Five rehabilitation budget constraints 

were selected for this study. Critical pipes were identified for each rehabilitation budget constraint 

based on the optimization algorithm. The results for each simulation experiment showed that the 

identified critical pipes were different. The associated maximum serviceability was reduced for 

the same budget constraints if outside and inside degradation was considered individually and 
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combinedly. The changes in identified critical pipes and associated maximum serviceability due 

to the consideration of outside and inside degradation implies the dependency of proactive seismic 

rehabilitation decision-making model on outside and inside degradation. The statistical test results 

imply that the degradation of pipes of the water distribution network has an impact on seismic 

rehabilitation decision-making models of water distribution networks. Therefore, it is 

recommended to integrate the degradation effect with existing seismic rehabilitation decision-

making models. 

 METHODOLOGY 

To investigate the effects of the pipes’ outside and inside degradation on the seismic rehabilitation 

decision-making for water distribution networks, this study was divided into three steps: (1) 

designing simulation experiments; (2) integrating the effects of inside and outside degradations 

with seismic rehabilitation decision-making; (3) conducting statistical analysis to identify the 

impacts of integrating the pipe degradation. Each step is discussed in the subsequent section of the 

paper. 

5.1.1. Design of Simulation Experiment              

The effects of degradation of pipes of a water distribution network can be classified into two 

groups: reduction of thickness due to corrosion at the outer surface of pipes (Ji et al. 2017, 

Mazumder et al. 2020a; Mazumder et al. 2020b) and change in the roughness of pipes due to 

deposition inside the pipes (Seifollahi- Aghmiuni et al. 2013; Abdel-Monim et al. 2005).  

To investigate the combined and individual effects of these two classified groups of degradation, 

simulation experiments were designed. Each of the two above-mentioned degradation types 

(outside surface of pipes and inside surface of pipes) was studied at two levels. Therefore, a 22 

full factorial design was selected for this study. The levels were coded as +1 (including the effect 

of that type of degradation) and –1 (excluding the effect of that type of degradation). Table 5.1 

presents the selected degradation type with their levels (including effects and excluding effects). 

The coded design for all simulation experiments is provided in Table 5.2.  

Table 5.1: Types of degradation in pipes with their levels of experiment 

Types of Degradation Notation Level 
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Including Effect Excluding Effect 

Degradation on Outside 

Surface of Pipes  
A +1 -1 

Degradation on Inside 

Surface of Pipe  
B +1 -1 

 

Table 5.2:Simulation experiment design matrix 

Experiment Name Experiment Notation A B 

Experiment 1 Exp_001 -1 -1 

Experiment 2 Exp_002 +1 -1 

Experiment 3 Exp_003 -1 +1 

Experiment 4 Exp_004 +1 +1 

 

5.1.2. INTEGRATION OF EFFECT OF DEGRADATION ON OUTSIDE SURFACE OF 

PIPE 

The reduction of thickness due to corrosion on the pipes can be classified as general corrosion, 

patch corrosion, and pitting corrosion (Rajeev et al. 2014). Pitting corrosion is considered more 

dangerous than uniform corrosion because it generates more stress in the pipeline (Mazumder et 

al. 2020b). In this study, pitting corrosion was considered to investigate the effects of thickness 

loss on the outer surface of the pipes.  

In existing seismic rehabilitation decision-making models, the pipe damage rate after earthquakes 

is represented by the repair rate, defined as the number of repairs per pipe unit length. To 

investigate the influence of degradation on the seismic performance of water distribution networks, 

a modified ALA equation was used to calculate the seismic repair rate (Mazumder et al. 2020b). 

The repair rate was calculated using Eq. (5.1). 

𝑆𝑒𝑖𝑠𝑚𝑖𝑐 𝑅𝑒𝑝𝑎𝑖𝑟 𝑅𝑎𝑡𝑒, 𝑆𝑅𝑅 = 𝐾𝑝 ∗ 𝐾1 ∗ 0.00187 ∗ 𝑃𝐺𝑉                                                                   (5.1) 

where, 𝐾𝑝 is the physical modification factor calculated based on time variant stress on pipeline, 

K1 is the modification factor that was obtained from ALA.  
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𝐾𝑝 was defined as the ratio of the corroded pipe’s stress to the uncorroded pipe’s stress. The value 

𝐾𝑝 was calculated using Eq. (5.2) (Mazumder et al. 2020b).  

                           𝐾𝑝 =  
𝜎𝑇

𝜎𝑇0

                                                                                                                                         (5.2) 

where, 

𝜎𝑇 =   Stress at the time T due to pitting corrosion at outside surface of pipes  

𝜎𝑇0
= Stress on the pipeline at the time of installation 

The value of 𝜎𝑇0
 was calculated using Eq. (5.3) (Robert et al. 2016) 

𝜎𝑇0∗𝐷2

𝑊+𝛾∗𝐷2∗ℎ
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where, 𝜖 is the model uncertainty coefficient; W is the traffic load (kN); 𝛾 is the unit weight of soil 

(kN/m3); D is the nominal diameter of the pipeline after time T (mm); h is the buried depth of 

pipeline (m); 𝑃0 is the water pressure of the pipeline (kPa); d is the pipes’ wall thickness (mm) 

;𝐸𝑝 is the elastic modulus of pipe material (MPa), 𝐸𝑠 is the elastic modulus of soil (MPa), Model 

coefficients, 𝛼  and 𝛽 , can be taken from Robert et al. (2016) (𝛼 1: 0.12, 𝛼 2: 4.08, 𝛼 3: 1.76E+06, 

𝛼 4: 7.65E+04, 𝛼 5: 4.17E+06, 𝛼 6: -3.23E+07, 𝛼 7: -3.55E+07, 𝛽 1: 0.086, 𝛽 2: 0.94, 𝛽 3: 0.89, 

𝛽 4: 0.88, 𝛽 5: 0.94, 𝛽 6: -0.51, 𝛽 7: -0.71).  

Stress on a pipeline after time T was calculated by substituting 𝑑𝑒 in place of d in Eq. (3), where 

𝑑𝑒 is the effective remaining wall thickness after time T. The value of effective thickness was 

calculated using Eq. (5.4) (Ji et al. 2017). 

𝑑𝑒 = 𝑑 − 𝜏(𝑇)                                                                      (5.4) 

where 𝜏(𝑇) is the corroded depth when the pipe age is T years. The value of 𝜏(𝑇) is probabilistic 

in nature and follows generalized extreme value (GEV) distribution. Eq. (5.5) was used to predict 

the value of 𝜏(𝑇) (Wang et al. 2019).  

𝜏(𝑇) = (ρn + √1 − 𝜌2𝑛∗)𝑇𝑛       (5.5) 

where, [𝑛, 𝑛∗: 𝐺𝐸𝑉(𝜇𝐺 , 𝜎𝐺 , 𝜀)]; 

ρ =  −0.55; 𝜇𝐺 = 0.6204; 𝜎𝐺 = 0.2919; 𝜀 = −0.2816. 

Pipe stress varies due to uncertainties of pipe geometries, pipe material, and external loads. To 

consider the stress variation, probability-based analysis was performed in the present study. Six 
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parameters (bury depth, soil elastic modulus, soil unit weight, traffic load, pipe’s wall thickness, 

and model uncertainty) were selected as random variables. The mean value, coefficient of 

variance, and distribution type for the six variables are presented in Table 5.3.  

Table 5.3: Typical statistical information of physical properties in pipeline analysis 

Physical 

Parameter 
 Mean 

Coefficient 

of 

Variation 

(CV) 

Distribution Reference 

Location Bury depth, ℎ 0.8 m 0.25 Normal 

Ji et al. 

2017; 

International 

Plumbing 

Code 2015 

Backfill Soil 

Elastic 

Modulus, 𝐸𝑠 
25 MPa 0.3 Lognormal 

Empirical 

Value 

Unit Weight, 𝛾 
20 

kN/m3 
0.1 Lognormal 

Empirical 

Value 

Load Traffic Load, 𝑊 50 kN 0.3 Normal Ji et al. 2017 

Model 

Uncertainty 
∈ 1 0.15 Normal 

Ji et al. 2017 

Pipe Properties 
Wall thickness, 

d 

12-20 

mm 
 Beta 

Ji et al. 2017 

5.1.3. Integration of Effect of Degradation on Inside Surface of Pipes 

The Hazen-Williams equation was used in this study for hydraulic analysis. The Hazen-Williams 

equation to calculate the flow velocity is as follows: 

𝑣 = 𝑘 ⋅ 𝐶 ⋅ 𝑅0.63 ⋅ 𝑆0.54                                                                                   (5.6) 

where, k is the conversion factor, C is the roughness coefficient, R is the hydraulic radius in ft or 

m, S is the slope of the energy line, and v is the velocity of water in ft/s or m/s. 
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Water pipes tend to accumulate corrosion byproducts and suspended particles. The roughness of a 

pipe changes due to the accumulation of corrosion byproducts. The value of C reduces with respect 

to time because of degradation (Seifollahi-Aghmiuni et al. 2013; Jacimovic et al. 2015). The value 

of C was determined in different time steps for modeling the effects of degradation. Eq. (5.7) was 

used to calculate the value of the value of C after a certain age (Sharp and Walski 1988).  

𝐶𝑝
𝑇 = 18 − 37.2 ∗ log (

𝑒0𝑝
𝑇 +𝑇∗𝑎𝑝

𝑇

𝐷𝑝
)            (5.7) 

Where, 𝐶𝑝
𝑇 is the Hazen-Williams coefficient in pipe p at year T, 𝑒0𝑝

𝑇  is the initial roughness of the 

pipe; 𝑎𝑝
𝑇 is the roughness growth rate of the pipe, 𝐷𝑝 is the diameter of pipe p (mm). The value of 

𝑒0𝑝

𝑇  and 𝑎𝑝
𝑇 was calculated using Eq. (5.8) and Eq. (5.9). 

log (𝑒0𝑝

𝑇 ) =  
𝐶𝑝

𝑇−1−18

−37.2
+ log(𝐷𝑝)        (5.8) 

𝑎𝑝
𝑇 =  

10
0.5∗𝐶𝑝

𝑇−1−18

−37.2 ∗𝐷𝑝− 𝑒0𝑝
𝑇  

50
         (5.9) 

In Eq. (5.8) and Eq. (5.9), 𝐶𝑝
𝑇−1 was considered equal to the value C which is obtained from 

network properties at time T=0. 

To consider the associated uncertainties, the value of the C was considered normally distributed 

for this study with a coefficient of variation (CV) value equal to 0.2 (Roy et al. 2021). The 

procedure of calculating the probabilistic value of Hazen-Williams roughness coefficient for pipe 

p after year T (𝐶𝑝
𝑇) is described in Figure 5.1.  
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Figure 5.1: Steps of calculating the probabilistic value of Hazen-Williams roughness coefficient 

for pipe p after year T (𝐶𝑝
𝑇) 

5.1.4. Seismic Rehabilitation Decision-Making 

The objective was to maximize the serviceability of a water distribution network after an 

earthquake event for a specific budget limit and propose an optimal rehabilitation policy to achieve 

that serviceability. Post-earthquake Serviceability Index (PSSI) was used as a post-earthquake 

serviceability indicator (Roy et al. 2022; Wang et al. 2010).  

The objective function for the optimization problem was developed as follows:  

max𝒙∈𝐗 𝐸 [PSSI (𝒙)]                                                                                                          (5.10) 
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subject to  

𝐶(𝒙) ≤ 𝐶𝑚𝑎𝑥  

where, X is the set of all rehabilitation policies, 𝐶(𝒙) is the total cost to rehabilitate based on policy 

x, 𝐶𝑚𝑎𝑥 is the maximum available budget for rehabilitation. 𝐸 [PSSI (𝒙)] is the average value of 

PSSI for all Monte Carlo runs and all random peak ground velocity fields. The equation for 

calculating the value of  𝐸[𝑃𝑆𝑆𝐼(𝑥)] is as follows (Shahandashti and Pudasaini 2019): 

𝐸[𝑃𝑆𝑆𝐼(𝑥)] =  
∑ ∑ 𝑃𝑆𝑆𝐼𝑀

𝑚=1
𝑘
𝑖=1

𝑘⋅𝑀
                                                                                                   (5.11) 

where, k is the total number of random peak ground velocity fields and M is the maximum number 

of Monte Carlo runs. The maximum number of Monte Carlo runs was selected based on a 

convergence study (Shahandashti and Pudasaini 2019).  

The average value of PSSI for each random peak ground velocity field was calculated based on 

Eq. (5.12). 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑆𝑆𝐼 =  
(∑ 𝑃𝑆𝑆𝐼𝑀

𝑚=1 )

𝑀
                                                                                                     (5.12) 

The steps for calculating the value of 𝐸[𝑃𝑆𝑆𝐼(𝑥)] for each rehabilitation policy and the average 

PSSI for each peak ground velocity field are demonstrated in Figure 5.2 (Shahandashti and 

Pudasaini 2019).  
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Figure 5.2: Steps of determining the value of E[PSSI(x)] for each rehabilitation policy and 

average PSSI for each PGV field 

The effects of degradation on the inside surface of the pipes and the outside surface of pipes were 

integrated according to the design of experiment. The same methodology described in section 3.1.3 

and 3.1.4 was used to calculate the seismic repair rate of each pipe. Using a simulated-annealing 

(SA) -based optimization algorithm, the critical pipes were identified, and the maximum value of 

𝐸[𝑃𝑆𝑆𝐼(𝑥)]was calculated for each experiment and for the maximum rehabilitation budget 

available (Shahandashti and Pudasaini 2019). The values of average PSSI for each random peak 

ground velocity field of the optimized rehabilitation policy were stored for statistical analysis.  

5.1.5. Statistical Analysis to Investigate the Effect of Degradation 

Two statistical tests were conducted to investigate both combined and individual effects of two 

types of degradation on seismic rehabilitation decision-making models of water pipe networks. 

The ANOVA test and the Tukey test were used in this study. For each simulation experiment, the 
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ANOVA test can determine the difference among the average PSSI. The null hypothesis 

mentioned in Eq. (5.13) was tested in the ANOVA test: 

𝐻0 =  𝜇1 =  𝜇2 =. . . . . . =  𝜇𝑘          (5.13) 

where μ is the maximum E[PSSI] value for each experiment; and k is the number of experiments. 

If the ANOVA test result is not significant (i.e., p value is less than the level of significance), the 

null hypothesis is accepted, implying that the change in the values of average PSSI due to the 

consideration of impacts of outside and inside degradation is not statistically significant. If the 

ANOVA test result is significant, the null hypothesis is rejected. The rejection of the null 

hypothesis implies that there are at least two different individual simulation experiments.  

The Tukey test was conducted to identify which simulation experiments differed as the ANOVA 

test could not identify which specific simulation experiments were different. 

 APPLICATION AND RESULTS 

5.2.1. Selection of Network 

Modena network (Figure 5.3) was used to illustrate the approach described in this study (Center 

of Water Systems 2018). The properties of the Modena network are tabulated in Table 5.4. 

Table 5.4: Properties of Modena network 

Junction 268 

Pipes 317 

Reservoirs 4 

Total Length of Pipe 71,806.11m 
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Figure 5.3: Layout of Modena network 

5.2.2. Assumptions for this study 

Pipe Materials and Joints of Modena Network 

For the properties of pipe materials, pipes were assumed to consist of two types: cast-iron (diameter 

less than 300 mm or 12 inched) pipes with lead joints and ductile-iron pipes (diameter more than 

300 mm or 12 inches) with rubber gasketed joints. 

Age of Pipes of Modena Network 

As the Modena network is a benchmark network for study purposes only, the age of the network 

pipes was not available. For this study, the age of each pipe was assumed randomly between 30 

years to 70 years. The age of the pipes of the Modena network is demonstrated in Figure 5.4.  
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Figure 5.4: Layout of Modena network with ages (in year) of different pipes 

5.2.3. Cost Boundaries 

The study was conducted for five cost boundaries: $2.5 million, $5 million, $7.5 million, $10 

million, and $12.5 million. Following the previously described approach, the critical pipes were 

replaced with earthquake-resistant ductile iron (DI) pipes as these pipes have no record of any 

leaks and breaks in some major earthquakes in Japan in which almost all other utilities and 

infrastructures were severely affected (Haddaway 2015). Therefore, for this study, the critical 

pipes were assumed to be replaced with earthquake resistant pipes during seismic rehabilitation of 

the pipe network. The cost data used for the rehabilitation are summarized in Table 4.3. 

5.2.4. Deaggregation Analysis and Calculation of PGV 

For the deaggregation analysis, we assumed that the centroid of the network was in California (city 

of Pasadena). Deaggregation analysis was conducted at the location of the network (34.146267° 

N, 118.144040° W) to identify the scenario earthquake (Shahandashti and Pudasaini 2019).  
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For the selected scenario earthquake, the value of PGV (Peak Ground Velocity) for each pipe was 

calculated (Shahandashti and Pudasaini 2019; USGS 2018a; USGS 2018b). For this study, 20 

random PGV fields were generated by integrating probabilistic inter-event and intra-event 

residuals (k= 20). The peak ground velocity (PGV) for each pipe was determined for each random 

peak ground velocity field. 

Post-earthquake system serviceability index (PSSI) is used as a serviceability measure for this 

study (Wang 2010; Shi 2006). The same methodology described in section 3.1.3 and 3.1.4 was 

used to calculate the seismic repair rate of each pipe. After calculating the repair rate of each pipe, 

PSSI was calculated for each random PGV (Shahandashti and Pudasaini 2019). The generated 

peak ground velocity field is shown in Figure 4.3. Figure 4.4 shows the same peak ground velocity 

field magnified to the scale of the network for Modena network. 

5.2.5. Selection of the maximum number of Monte Carlo runs: 

A convergence study was conducted to identify the maximum number of Monte Carlo runs 

considering pipe degradation. The results of the convergence study are shown in Figure 5.5. 

 

Figure 5.5: Summary of convergence study result 

According to the convergence study, approximately 3000 Monte Carlo runs were sufficient for the 

analysis (M = 3000).  
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5.2.6. Results: Identification of Critical Pipes 

Using the described approach for each cost boundaries, critical pipes were identified for each 

experiment for the Modena network. Figure 5.6 shows the value of maximum E[PSSI] for each 

experiment and each cost boundary.  

 

 

Figure 5.6: Value of maximum E[PSSI] for each cost boundary 

The maximum value of E[PSSI] is changing due to the consideration of pipes’ inside and outside 

degradation. For the same budget limitation, the value of maximum E[PSSI] is reduced by 3-4% 

due to pipes’ outside degradation. The value of E[PSSI] is getting reduced by 2-3% due to pipes’ 

inside degradation. The value of E[PSSI] is getting reduced by 6-7% due to the consideration of 

pipe’s inside and outside degradation combinedly.   

The critical pipes identified for each experiment are shown in Figure 5.7 using highlighted lines 

for rehabilitation budget of 2.5 million. The critical pipes are highlighted with black color.  
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Figure 5.7: Identified critical pipes for different experiments using a cost boundary of 2.5 million 

Similarly, the critical pipes identified for each experiment are shown in Figure 5.8 using 

highlighted lines for rehabilitation budget of 5 million. 

 

Figure 5.8: Identified critical pipes for different experiments using a cost boundary of 5 million 
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The critical pipes identified for each experiment are shown in Figure 5.9 using highlighted lines 

for rehabilitation budget of 7.5 million. 

 

Figure 5.9: Identified critical pipes for different experiments using a cost boundary of 7.5 million 

The critical pipes identified for each experiment are shown in Figure 5.10 using highlighted lines 

for rehabilitation budget of 10 million. 
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Figure 5.10: Identified critical pipes for different experiments using a cost boundary of 10 

million 

The critical pipes identified for each experiment are shown in Figure 5.11 using highlighted lines 

for rehabilitation budget of 12.5 million. 
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Figure 5.11: Identified critical pipes for different experiments using a cost boundary of 12.5 

million 

Identified critical pipes shown in Figure 5.7 to Figure 5.11 indicate the effect of degradation on 

seismic rehabilitation decision-making. Figure 5.7 to Figure 5.11 demonstrate that the 

consideration of the effects of outside degradation and inside degradation of pipes both 

individually and combinedly has an impact on selection of critical pipes.  

Table 5.5 summarizes the total simulation hours to solve the optimization problem using simulated 

annealing-based optimization algorithm along with the actual cost to adopt the optimized 

rehabilitation policy for each experiment and for each cost boundary. 

Table 5.5: Summary of solution of simulated annealing optimization 

Cost 

Boundary 

(Million) 

Exp_001 Exp_002 Exp_003 Exp_004 

Simulation 

Hours (h)a 

Actual Cost 

(USD) 

Simulation 

Hours (h)a 

Actual Cost 

(USD) 

Simulation 

Hours (h)a 

Actual Cost 

(USD) 

Simulation 

Hours (h)a 
Actual Cost 

2.5 298.47 2,499,895.84 295.53 2,499,940.86 293.37 2,499,450.11 292.61 2,499,244.81 

5.0 296.12 4,999,732.47 297.82 4,990,751.39 290.97 4,999,680.29 295.09 4,999,637.22 

7.5 288.96 7,4999,917.51 292.31 7,499,881.68 289.29 7,493,899.13 288.62 7,4959,397.51 

10.0 284.51 9,999,312.92 283.58 9,999,476.44 288.42 9,999,360.33 289.88 9,999,841.92 
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12.5 291.81 12,499,431.09 289.62 12,490,762.99 291.53 12,499,422.62 285.51 12,499,169.09 

a Solution time using AMD Ryzen 5 5500U with Radeon Graphics 2.10 GHz Processor with 16.0 

GB Ram and 64-bit operating system 

5.2.7. Results: Statistical Analysis 

To identify the statistical significance of integrating water pipe degradation, the null hypothesis 

(H0) and the alternative hypothesis (H1) were identified.  

Null hypothesis, H0: µ1 = µ2= …  …  …= µ4  

Alternative hypothesis, H1: µ1 ≠ µ2≠ …  …  … µ4 

Level of Significance: 5% 

The one-way ANOVA test result shows that the value p was 0.0257, 0.0324, 0.0231, 0.0219, and 

0.0268 for cost boundaries 2.5 million, 5 million, 7.5 million, 10 million, and 12.5 million 

respectively, which are less than 0.05 (5% level of significance). Therefore, there were statistically 

significant differences between the values of average E[PSSI] for at least two different simulation 

experiments. The Tukey test (multiple pairwise comparisons test) was conducted to identify the 

simulation experiments that have statistically significant differences.  As this study was conducted 

to determine the effects of degradation, three pairs were used for the Tukey test, comparing the 

no-degradation experiment (Exp_001) with the other experiments: (Exp_001, Exp_002); 

(Exp_001, Exp_003); (Exp_001, Exp_004). Table 6 summarizes the results of the Tukey test. 

Table 5.6: Summary of Tukey test result 

Cost 

Boundary 
Group 1 Group 2 meandiff p -adj Reject 

$2.5 

million 

Exp_001 Exp_002 0.0301 0.0013 TRUE 

Exp_001 Exp_003 0.0207 0.0014 TRUE 

Exp_001 Exp_004 0.0565 0.0010 TRUE 

$5 million 

Exp_001 Exp_002 0.0375 0.0012 TRUE 

Exp_001 Exp_003 0.0255 0.0012 TRUE 

Exp_001 Exp_004 0.0693 0.0009 TRUE 

$7.5 

million 

Exp_001 Exp_002 0.0357 0.0014 TRUE 

Exp_001 Exp_003 0.0277 0.0012 TRUE 



 

61 
 

Exp_001 Exp_004 0.0218 0.0009 TRUE 

$10 

million 

Exp_001 Exp_002 0.0294 0.0013 TRUE 

Exp_001 Exp_003 0.0218 0.0013 TRUE 

Exp_001 Exp_004 0.0639 0.0010 TRUE 

12.5 

million 

Exp_001 Exp_002 0.0272 0.0013 TRUE 

Exp_001 Exp_003 0.0209 0.0012 TRUE 

Exp_001 Exp_004 0.0544 0.0010 TRUE 

 

The Tukey test results for the Modena network show that the null hypothesis was rejected for all 

three pairwise comparisons, and it was concluded that the effects of the pipe degradation were 

significant. 

It was be concluded from the ANOVA test and Tukey test results that the effect of degradation on 

the outside surface of pipes (Exp_002) and the inside surface of pipes (Exp_003) has a statistically 

significant impact on the proactive seismic rehabilitation decision-making models. The combined 

effect (Exp_004) of degradation on outside surface of pipes and inside surface of pipes also 

statistically significant on proactive seismic rehabilitation decision-making models.  

 DISCUSSION 

Existing seismic rehabilitation decision-making models depends on the hydraulic properties of 

water pipe network to identify the performance of the network after the seismic event and physical 

properties of the network to identify the probabilistic location of the damages after an earthquake 

event. Degradation of pipes of a water pipe network can affect both hydraulic properties and 

physical properties of a water pipe network.  A methodology has been proposed to identify the 

effects degradation on seismic rehabilitation decision-making of water pipe networks. A 

simulation experiment has been developed to investigate the effects of degradation on the outside 

surface and inside surface of pipes individually and combinedly. A method was developed to 

integrate the probabilistic nature of water pipe degradation.  

The maximum value of expected PSSI and the identified critical pipes for same amount of budget 

constraint were impacted due to the integration of degradation. The value of repair rate and the 

value of PSSI depends on the physical properties and hydraulic properties of the network 
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respectively. The probabilistic nature of degradation is impacting the hydraulic properties and 

physical properties of the network and impacting the decision-making. 

To identify the statistical significance of this difference, two statistical tests were conducted for all 

budget constraints. The statistical analysis results show that the effect degradation is statistically 

significant for all budget constraints considering a 5% level of significance.  
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CHAPTER 6 : CONCLUSION 

 SUMMARY OF RESULTS 

In chapter 3, a methodology has been proposed to identify the effects of water pipe network 

uncertainties on seismic vulnerability assessment of networks. Three water pipe network 

uncertainties were selected: uncertainties in nodal demand, reservoir head, pipe roughness 

coefficient. Two different networks were used to apply the proposed methodology.  

The statistical analysis results show that the individual effect of uncertainty of demand and 

uncertainty of pipe roughness coefficient can be ignored for the fixed value of coefficient of 

variation (CoV = 0.2). On the contrary, the individual effect of uncertainty of reservoir head is 

statistically significant for the selected value of CoV (CoV = 0.2). The combined effect of 

uncertainty of the selected water pipe network uncertainties is statistically significant. 

Based on the results from sensitivity analysis, the individual effect of uncertainty of reservoir head 

is found to be statically significant, even at low levels of uncertainty (minimum value of CoV = 

0.01). By contrast, the individual effects of demand and pipe roughness coefficient uncertainties 

are statistically significant for higher levels of uncertainties (CoV ranges from 0.03 to 1).  

Based on the results of statistical analysis and sensitivity analysis, it can be concluded that selected 

water pipe network uncertainties have statistically significant effects on the value of SSI. 

Therefore, it is highly recommended that water pipe network uncertainties be integrated with 

seismic vulnerability assessment of water pipe networks.  

From the analysis and optimization results of chapter 4, it can be concluded that there is a 

significant impact of selected network uncertainties on proactive seismic rehabilitation decision-

making for the selected values of coefficient of variation. The value of PSSI reduces by 3-4% due 

to the consideration of all three network uncertainties. The value of PSSI reduces by 1-2% if only 

one network uncertainty is considered. So, it is recommended to include selected water network 

uncertainties with the current seismic rehabilitation decision-making model. Future studies are 

recommended to investigate the impact of other water pipe network uncertainties that were not 

considered in this study. 
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From the analysis and results of chapter 5, a methodology has been proposed to identify the effects 

degradation on seismic rehabilitation decision-making of water pipe networks. A simulation 

experiment was developed to investigate the effects of degradation on the outside surface and 

inside surface of pipes individually and combinedly. A method was developed to integrate the 

probabilistic nature of water pipe degradation. The Modena network was used to apply the 

proposed methodology. Five different cost boundaries were selected for the study. A simulated-

annealing based approach was used to identify the critical pipes for seismic rehabilitation and 

associated serviceability for each budget constraint.  

The optimization results show a difference in the maximum value of serviceability for each budget 

constraint. The maximum value of serviceability can be reduced by 3-4% for the same budget 

constraints if the degradation on the outside surface of the pipes is considered. The maximum value 

of serviceability can be reduced by 2-3% for the same budget constraints if the degradation at the 

inside surface of the pipes is considered. The maximum value of serviceability can be reduced by 

6-7% for the same budget constraints if the degradation on the outside surface and insider surface 

are considered combinedly.  

To identify the statistical significance of this difference, two statistical tests were conducted for all 

budget constraints. The statistical analysis results show that the effect degradation is statistically 

significant for all budget constraints considering a 5% level of significance.  

Based on the results of simulated annealing and statistical analysis, it can be concluded that 

degradation of a water pipe network has statistically significant effects on seismic rehabilitation 

decision-making. Therefore, it is highly recommended that the effects of degradation of water pipe 

networks should be integrated with existing seismic rehabilitation decision-making models of 

water pipe networks. 

In the analysis and optimization result of chapter 5, a methodology has been proposed to identify 

the effects degradation on seismic rehabilitation decision-making of water pipe networks. A 

simulation experiment was developed to investigate the effects of degradation on the outside 

surface and inside surface of pipes individually and combinedly. A method was developed to 

integrate the probabilistic nature of water pipe degradation. The Modena network was used to 

apply the proposed methodology. Five different cost boundaries were selected for the study. A 
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simulated-annealing based approach was used to identify the critical pipes for seismic 

rehabilitation and associated serviceability for each budget constraint.  

The optimization results show a difference in the maximum value of serviceability for each budget 

constraint. The maximum value of serviceability can be reduced by 3-4% for the same budget 

constraints if the degradation on the outside surface of the pipes is considered. The maximum value 

of serviceability can be reduced by 2-3% for the same budget constraints if the degradation at the 

inside surface of the pipes is considered. The maximum value of serviceability can be reduced by 

6-7% for the same budget constraints if the degradation on the outside surface and insider surface 

are considered combinedly.  

To identify the statistical significance of this difference, two statistical tests were conducted for all 

budget constraints. The statistical analysis results show that the effect degradation is statistically 

significant for all budget constraints considering a 5% level of significance.  

Based on the results of simulated annealing and statistical analysis, it can be concluded that 

degradation of a water pipe network has statistically significant effects on seismic rehabilitation 

decision-making. Therefore, it is highly recommended that the effects of degradation of water pipe 

networks should be integrated with existing seismic rehabilitation decision-making models of 

water pipe networks.  

 APPLICATION TO INDUSTRY 

Water pipe networks must be rehabilitated to improve their resilience against earthquakes and to 

reduce the direct and indirect losses due to earthquake-induced water main failures. However, one 

large obstacle to such a task is the huge infrastructure funding gap. This leads to the conclusion 

that current water pipe networks are highly vulnerable to earthquakes, but the lack of rehabilitation 

resources renders utilities unable to rehabilitate their entire networks. In such a situation, utilities 

must identify critical pipes in their networks to maximize the benefit of the limited seismic 

rehabilitation they can perform. Although many researchers have proposed approaches for seismic 

vulnerability assessment for the water pipe networks, approaches to identify critical pipes for 

seismic rehabilitation of a water pipe network are rare. However, even these rare ignored the 

effects of network uncertainties and pipe degradation. As such, there was a need of an approach to 

identify critical pipes for proactive seismic rehabilitation of water pipe network that is based on 



 

66 
 

comprehensive seismic vulnerability assessment; that considers the effect of network 

uncertainties; pipe degradation; along with the consideration of spatial correlation between seismic 

intensities; limited rehabilitation budget; and does not ignore the correlation between the effect of 

pipes’ damages on the network serviceability. This model will be beneficial to water utilities of 

seismic zones to identify the critical pipes of their network considering network uncertainties and 

pipe degradation for seismic rehabilitation when there is a limited budget available to them.  

 FUTURE WORK 

This study was conducted to identify the effects of water network uncertainties and effects of 

degradation of pipe on seismic vulnerability assessment and seismic rehabilitation decision-

making of water pipe networks. It is also recommended to consider methods for the investment 

evaluation under uncertainty, e.g., real option analysis (Zahed et al. 2020; Shahandashti et al. 2023) 

when evaluating various investment decisions to enhance seismic resiliency of water pipe 

networks. Role of pipe cost forecasting on proactive seismic rehabilitation decision-making of 

water pipe networks was not within the scope of this study. Further analysis can be conducted to 

integrate the role of pipe cost forecasting on proactive seismic rehabilitation decision-making (Kim 

et al. 2020; Kim et al. 2021a; Kim et al. 2021b). This study was not conducted considering demand 

surge and life-cycle cost. Further studies can be conducted to identify the role of demand surge 

(Ahmadi and Shahandashti 2020) and role of life-cycle cost analysis on seismic vulnerability 

assessment and proactive seismic rehabilitation decision-making of water pipe networks.  
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