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ABSTRACT 

 

TRI-DIMENSIONAL SEGMENT-BASED URBAN TRAFFIC CRASH MODELS 

 

Farzin Maniei, Ph.D. 

 

The University of Texas at Arlington, 2023 

 

Supervising Professor: Stephen P. Mattingly, Ph.D. 

       The continuous expansion of highway and freeway networks further exacerbates the risk of traffic 

crashes and highlights the critical importance of freeway safety management. To improve overall road 

safety, many organizations acknowledge the necessity of pinpointing locations experiencing higher-than-

expected crashes (known as hotspot identification, HSID), identifying the factors contributing to traffic 

crashes, and determining the most effective preventive measures. Previous studies highlighted two 

major drawbacks associated with this approach: (1) HSID based on the total number of crashes 

can lead to incorrectly identifying hazardous areas; (2) the arbitrary selection of a fragment size 

(due to the lack of explicit recommendations) used for dividing the highway and freeways into 

small segments to aggregate data may affect the factors that correlate with crash rates in predictive 

models. This study addresses the urgent need for investigating the merits of expanding traffic crash 

analysis from total crashes to traffic crash subsets and providing a standard approach for 

recommending the fragment size when aggregating crash groups and roadway data based on three 

crash characteristics (i.e. crash units, manner of collision, and crash severity). The study performs 

feature selection with a unique approach that harnesses the Laplacian score joined with a distance-
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based entropy measure, called LSDBEM. followed by an unsupervised clustering method, K-

means clustering, to provide a recommended fragment size (RFS) for data aggregation. The 

LSDBEM is utilized to satisfy prior to clustering. After the feature selection, the method applies 

an unsupervised clustering method, K-means clustering, to capture the pattern of traffic crashes on 

freeways within Dallas County. The investigation considers the LSDBEM/K-means method for 

fragment sizes ranging from 0.10 mile to 0.25 mile with an increment of 0.01 mile. To evaluate 

the use of crash features or the total crash rate (TCR) to establish the clustering pattern and the 

recommended fragment size (RFS), the study compares the LSDBEM/K-means method results for 

TCR and FCRs. The dissertation assesses the impacts of using higher dimensions of traffic crash 

characteristics (across four different scenarios) for crash prediction models on model performance, 

the statistical significance of crash contributing factors, and the identification of crash hot spots. 

The investigation of higher dimensions of traffic crash characteristics estimates many count data 

regression models including Poisson, negative binomial (NB), negative binomial type P (NBP), 

zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated negative 

binomial type P (ZINBP), generalized Poisson type 1 (GP-1), generalized Poisson type 2 (GP-2), 

and Hurdle regression models. 

       The dissertation evaluates the performance and suitability of the RFS across the four scenarios 

of traffic crash characteristic dimensions. This analysis estimates crash prediction models with 

fragment sizes  ranging from 0.10 mile to 0.25 mile with 0.01-mile increments. The evaluation 

focuses on comparing crash prediction model performance using the root mean square error 

(RMSE) for the testing dataset. The investigation determines the circumstances that support the 

adoption of the RFS as the standardized approach for data aggregation.  
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       The study results show that LSDBEM/K-means clustering method provides a standardized 

approach to determine a recommended fragment size for data aggregation. The clustering results 

demonstrate that FCR-based clustering creates more cohesive clusters than TCR-based clustering, 

which promotes the use of three traffic crash dimensions for safety analysis and modeling. The 

additional crash dimensions indicate substantially different top ten hotspots for each crash group, 

especially when compared to hotspots identified using the total number of crashes (scenario 1). 

The crash prediction models for scenario 4, formed by all three dimensions, provides a better 

understanding of the crash mechanisms, but scenario 4 may not always work for all crash groups 

due to insufficient observations. The investigation of RFS reveals that it minimizes the 

multicollinearity among the explanatory variables. The evaluation of the testing RMSE shows that 

the minimum RMSE (𝑅𝑀𝑆𝐸!"#) occurs at the RFS for some SV-related and MV-related crash 

groups. Moreover, the crash groups with sufficient non-zero observations generate a RMSE for 

the RFS (𝑅𝑀𝑆𝐸$%&) remains within the proximity (20%) of 𝑅𝑀𝑆𝐸!"#, which makes the RFS an 

acceptable approach for standardized  data aggregation when sufficient non-zero observations 

exist. The future studies need to confirm the benefit of the RFS for data aggregation, its appropriate 

use cases, and its impact on crash prediction models by examining other highways and freeways. 
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CHAPTER 1.  INTRODUCTION AND BACKGROUND 

 
1.1. BACKGROUND      

       Traffic crashes stand as a major cause of both fatalities and injuries on a global scale (World 

Health Organization (WHO), 2018). With the rapid expansion of highway and freeway networks, 

the potential for traffic crashes also rises, underscoring the vital importance of managing freeway 

safety. Many agencies recognize the need to identify crash contributing factors and locations 

experiencing higher than expected crashes; they may use this information to enhance overall road 

safety by locating hazardous areas and identifying and prioritizing effective preventive measures. 

       These traffic crash hotspots denote places where traffic crashes happen more frequently, or 

the probability of crashes is notably higher than nearby spots along a specific route or throughout 

a network. Identifying these hotspots (HSID) enables targeted interventions to reduce the 

likelihood of crashes and enhance safety in these risky zones by comprehending the factors 

contributing to such crashes. One of the popular approaches to HSID uses crash prediction models 

based on the total number of crashes. Previous research indicates two major shortcomings related 

to this approach: (1) HSID based on the total number of crashes may result in misidentifying the 

hazardous areas; (2) the predictive models at the aggregate level suffer from the arbitrary selection 

of the segment length used for dividing the highway and freeways into small segments to aggregate 

data.  

       Although many HSID studies concentrate on the total crash count, a handful of recent 

investigations identify crash hotspots by traffic crash subsets, such as the number of vehicles 

involved in crashes (crash units), the manner of collision, and the crash severity. The findings from 

these HSID studies demonstrate that crash hotspots identified using any of these traffic crash 
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characteristics diverge from those identified based on the total number of crashes. Excluding any 

of these three characteristics could disrupt the comprehension of traffic crashes, the factors at play, 

and the identification of hotspots (Wang & Feng, 2019).  However, the merits of simultaneously 

including all three traffic crash characteristics require evaluation due to a lack of quality data on 

all three characteristics and computation complexity. This study investigates the effect of including 

all three traffic crash characteristics in traffic safety studies. 

       As shown in previous studies, the hotspots for single-vehicle (SV) crashes and multi-vehicle 

crashes may occur in different locations along a corridor with minor overlaps while HSID based 

on total number of crashes fails to detect some of those hotspots (Wang & Feng, 2019). Moreover, 

different crash groups likely vary in the crash contributing factors or in the intensity of their impact. 

For instance, multi-vehicle sideswipe crashes more likely occur when narrower lanes, poor 

pavement, and low visibility exist, but single-vehicle fixed-object related crashes are more likely 

when no paved shoulder is provided, or shoulder width is narrow. 

       The low frequency of traffic crashes forces crash prediction models to rely heavily on the 

aggregation of diverse datasets, encompassing traffic crash, traffic characteristics, and geometric 

characteristics data (Wang & Feng, 2019). In most studies, data aggregation requires dividing 

highways or freeways into small segments using a consistent length known as the "segment 

length." However, this study employs the term "fragment size" to avoid any potential confusion 

with the geometric attributes of the highway, like the distance between ramps. Earlier work 

(Pedregosa, et al., 2011) criticizes the arbitrary selection of fragment size (for aggregating crash 

data in crash frequency analysis because as Ahmed and Abdel-Aty (2012) notes a change in the 

fragment size for data aggregation can result in changes in the statistical significance of 

explanatory variables. This instability of the explanatory variable significance indicates that crash 
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frequency analysis based on total crashes may capture correlated patterns rather than causal 

factors.  Despite the evident effects of fragment size (segment length) on the aggregation of traffic 

crash data, no explicit recommendations exist to guide the selection or determination of the 

fragment size (segment length) for aggregating crash-related data. These concerns demonstrate an 

urgent need to consider crash subsets and to establish a standard approach for establishing the 

fragment size when identifying hot spots.   

       To ensure appropriate data aggregation for urban/suburban highways and freeways, it is 

advised not to employ a segment length smaller than 0.1 mile, as recommended by the American 

Association of State Highway and Transportation Officials (2010). Similarly, a spacing interval 

exceeding 0.25 mile for traffic operational characteristics is discouraged, following the guidance 

of the Alabama Department of Transportation  (2015).  

       This research seeks to address the major shortcomings associated with HSID using predictive 

models and other crash frequency modeling: (a) arbitrary selection of fragment size for roadway 

segmentation; (b) non-comprehensive consideration of some of crucial traffic crash characteristics. 

The study investigates the effect of fragment size used to segmentize a roadway for aggregating 

data and clustering roadway segments by including three crucial traffic crash characteristics for 

crash prediction models and HSID: the number of vehicles involved in the crash (crash units), 

manner of collision (crash type), and crash severity simultaneously. Also, it introduces a method 

to define a recommended fragment size (RFS) to overcome the arbitrary selection of fragment size 

(segment length) because a standardized approach for aggregation may support future metanalyses 

across crash prediction models to identify contributing factors more explicitly rather than 

correlated patterns in a particular dataset. In addition, this study investigates the effect of crash 

dimensions in identifying crash hotspots and contributing factors by defining four scenarios using 
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traffic crash characteristics. The study compares the prediction model performances across four 

scenarios using the Akaike Information Criterion (AIC) and investigates the top ten segments 

hotspots for each crash group to discover the differences or commonalities in HSID results across 

the four scenarios. Using the four-scenario structure, the research evaluates the impacts of 

transitions between scenario levels on the intensity and significance of the contributing factors and 

the merits of using all three crash dimensions when creating crash prediction models.  Since the 

fragment size selection has a ripple effect in the modeling process, the study examines the impact 

of fragment size on the crash count prediction modeling process by performing prediction models 

for various fragment sizes ranging from 0.10 mile to 0.25 mile with an increment of 0.01 mile. 

Finally, the study investigates the potential benefit of the RFS to improve crash count prediction 

model performance and accuracy, leading to justifiable and reliable fragment size selection for 

data aggregation. 

1.2. LITERATURE REVIEW      

      Many traffic safety studies focus on traffic crash hotspot identification (HSID) using 

Geographic Information Systems (GIS) based spatial analysis, statistical models, and machine 

learning.  The GIS-based HSID conventionally provides crash concentration maps using Kernel 

Density Estimation (KDE) and absolute counts of crashes. The GIS-based HSID results carry two 

main issues: the accuracy of the concentration maps and only relying on total number of crash 

(Truong & Somenahalli, 2011). Among these approaches, statistical models (predictive models) 

hold substantial appeal in practice by offering engineers valuable insights into traffic crash 

contributing factors through a timely efficient computing method.  The statistical model drawbacks 

include using total crash count for HSID and applying an arbitrary fragment size to divide a 

corridor into small fragments for aggregating data during the model estimation or application 
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process. HSID based on total crash count conceals some crucial information needed to properly 

identify hotspots, understand the crash contributing factors and propose effective countermeasures 

to mitigate traffic crashes. In fact, previous traffic crash investigations that rely on total crash 

counts have displayed limitations in identifying certain contributing factors and have shown a 

tendency for false positive outcomes in hotspot identification (Cheng, et al., 2017). 

       For understanding traffic crashes, previous research utilized different traffic crash dimensions 

including crash units, manner of collision, and crash severity. Previous research indicates that 

whether adopting an aggregated or disaggregated approach, crashes should be analyzed by 

focusing on crash units (i.e. single-vehicle (SV) and multi-vehicle (MV)) (Yu, et al., 2013). 

Another study confirms the need to incorporate crash units to distinctively delineate single-vehicle 

(SV) and multi-vehicle (MV) crash hotspots due to their different spatial distributions and 

underlying factors (Wang & Feng, 2019). Another essential characteristic of traffic crashes, the 

manner of collision (crash type), or the first event in a crash, is highlighted as a critical dimension 

to be included in the analysis of traffic crashes (Pande, et al., 2010) because crash type helps in 

revealing the underlying contributory factors associated with each specific crash type (Valent, et 

al., 2002). By incorporating crash types, many traffic safety studies reveal hidden details about 

traffic crashes (Golob, et al., 2004a; Cheng, et al., 2017). For instance, one study shows that rear-

end traffic crashes concentrate in regimes with variable speed and heavily congested flow or free 

flow while lane-changing crashes concentrate in regimes of variable speed and only free flow 

(Golob, et al., 2004a). Crash severity introduces another complexity to understanding traffic 

crashes and previous studies demonstrate that collapsing all crashes into a single analysis may 

obscure the varying degrees of injury severity (Valent, et al., 2002). Compared to the total crash 

count, the level of significance or the magnitude of crash contributing factors may vary for 
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different crash severity (Zeng, et al., 2019). In addition, incorporating traffic crash dimensions 

helps to address some of the potential unobserved heterogeneity (Mannering & Bhat, 2014).   

While previous studies identify the importance of including the different crash dimensions in crash 

studies, this research specifically investigates the implications of including additional dimensions 

in a crash study through an innovative four scenario investigation of including additional crash 

dimensions. This dissertation evaluates the impact using modeling performance/HSID. 

       As aforementioned, the selection of fragment size (segment length) for roadway segmentation 

and data aggregation (including traffic and crash data) has a direct influence on traffic safety 

modeling results, potentially influencing the statistical significance of variables. Therefore, 

research needs to undertake an in-depth exploration into data aggregation using fragment size 

(segment length) and its impacts on HSID and crash modeling. Thomas (1996) highlights the 

impact of segment length (fragment size in this study) on a statistical description of crash count 

data, described as the “size problem,” which results from the arbitrary selection of segment lengths 

for data aggregation. Several studies investigate other alternatives to roadway segmentation using 

roadway attributes including continuous risk profile (Kwon, et al., 2013), sliding moving window 

(Qin & Wellner, 2012; Kwon, et al., 2013), peak searching (Kwon, et al., 2013), fixed length and 

variable length segmentation (Koorey, 2009), clustering methods (Valent, et al., 2002; Depaire, et 

al., 2008; Lu, et al., 2013). However, no specific approach or guideline finds a recommended 

fragment size (RFS) for roadway segmentation and data aggregation. As an approach to roadway 

segmentation, the AASHTO Highway Safety Manual (2010) suggests that creating segments with 

consistent geometry and Annual Average Daily Traffic (AADT) could mitigate this concern. 

However, this approach introduces new challenges including producing inconsistent segment 

length (small segment lengths or very large segment length) and dependency on the universally 
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available quality data (on geometric characteristics and traffic operational characteristics) across 

all segments (Ghadi & Torok, 2019). Selecting segment lengths to aggregate crash data holds 

significance in identifying crash hotspots (Cook, et al., 2011) and maintaining the consistency of 

hotspot identification (Geyer, et al., 2008). Moreover, the outcomes of safety analyses can be 

influenced by selecting extraordinarily long or short roadway segments (Lu, et al., 2013). Despite 

its crucial importance, the need for more comprehensive guidance regarding the optimal fragment 

length for model performance still exists. 

1.3. STUDY OBJECTIVES AND STRUCTURE     

       This study provides an innovative method to overcome the issue of arbitrary selection of 

fragment size by introducing a recommended fragment size (RFS) for data aggregation. Also, it 

evaluates the advantages of incorporating higher dimensions of traffic crash characteristics, 

including crash units, manner of collisions (crash type), and crash severity, in crash modeling, 

examining crash prediction models, significance of crash contributing factors, and examining 

HSID for different crash groups defined under four scenarios. In addition, the research examines 

the impact of fragment size (ranging from 0.10 mile to 0.25 mile with an increment of 0.01 mile) 

on crash prediction model performances and accuracy. The investigation evaluates the potential 

benefit of the RFS to improve crash prediction model results under the four crash modeling 

dimension scenarios to confirm its suitability for a standardized data aggregation method; this 

would resolve the shortcoming of traffic safety study results affected by the arbitrary selection of 

fragment size. 

       This dissertation consists of five chapters. Chapter 2 establishes a methodology to provide a 

recommended fragment size (RFS) for crash data aggregation to overcome the arbitrary selection 

of fragment size. This chapter calculates featured crash rates (FCRs) for different crash groups 

based on three crash characteristics (i.e. crash units, manner of collision, and crash severity). The 
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study performs feature selection with a unique approach that  harnesses the Laplacian score joined 

with a distance-based entropy measure, called LSDBEM, followed by an unsupervised clustering 

method, K-means clustering, to provide a recommended fragment size (RFS) for data aggregation. 

The LSDBEM is utilized to satisfy prior to clustering. After the feature selection, the method 

applies an unsupervised clustering method, K-means clustering, to capture the pattern of traffic 

crashes on freeways within Dallas County. The investigation considers the LSDBEM/K-means 

method for fragment sizes ranging from 0.10 mile to 0.25 mile with an increment of 0.01 mile. To 

evaluate the use of crash features or the total crash rate (TCR) to establish the clustering pattern 

and the recommended fragment size (RFS), the study compares the LSDBEM/K-means method 

results for TCR and FCRs. 

       Chapter 3 examines the effect of higher dimensions of traffic crash characteristics on crash 

prediction models and crash hotspots identified using crash prediction models. To do this, the study 

defines four scenarios based on the dimensions of traffic crash characteristics involved to form 

crash groups with the RFS of 0.10 mile. This research estimates several count data regression 

models including Poisson, negative binomial (NB), negative binomial type P (NBP), zero-inflated 

Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated negative binomial type P 

(ZINBP), generalized Poisson type 1 (GP-1), generalized Poisson type 2 (GP-2), and Hurdle 

regression models for all scenarios’ crash groups. For each crash group, t the study determines the 

outperforming models based on AIC and uses them to identify hotspots. To deal with the traffic 

crash fluctuation, the study applies the empirical bayes method and the potential for safety 

improvement, known as PSI, to rank the traffic crash hotspots for each crash group. The study 

evaluates the modeling impact of the higher dimensions by comparing the crash prediction model 

performance and accuracy. The dissertation investigates crash hotspots under different scenarios 
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and reveals the effect of the higher dimensions of traffic crash characteristics on changes in the 

significance and magnitude of contributing factors.  The new HSID methodology provides a 

strategy for identifying hotspots with specific contributing factors that may impact crash mitigation 

strategies. 

       Chapter 4 explores the impact of various fragment sizes on crash prediction model 

performance and accuracy under four scenarios and examines the potential benefit of RFS to the 

model performance, ultimately affecting the HSID results. The crash data for each scenarios’ crash 

group is aggregated for fragment sizes ranging from 0.10 mile to 0.25 mile with an increment of 

0.01. For each fragment size, the study estimates crash prediction models for each crash group and 

identifies the outperforming models. The chapter evaluates the RFS and identifies the study 

contexts where it should be adopted. Finally, the discussion, conclusions, and the future extension 

of work are provided in Chapter 5. 
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CHAPTER 2.  Unsupervised Approach to Investigate Urban Traffic Crashes Based on Crash 

Unit, Crash Severity, and Manner of Collision 

 
2.1. INTRODUCTION 

   Traffic crashes represent one type of “incident,” defined as an “unplanned randomly occurring 

traffic event that adversely affects normal traffic operation” (Wang & Feng, 2019). Previous 

studies arbitrarily select the segment length as a constant value between 0.1 mi. and 1.0 mi (or, in 

some studies, 100 m to 1.6 km) based on the study’s objectives (Texas Department of 

Transportation (TxDOT) - Traffic Safety Division, 2020). Choosing different segment lengths for 

aggregation may result in some variables becoming either statistically significant or insignificant 

(Ahmed & Abdel-Aty, 2012). It is recommended not to use a segmentation length smaller than 0.1 

mile (American Association of State Highway and Transportation Officials, 2010) or a spacing 

interval greater than 0.25 mile to segment and aggregate traffic data for urban/suburban highways 

and freeways (Alabama Department of Transportation, 2015); however, no specific method 

currently exists to select segment length. This paper adopts the term fragment size to avoid 

confusion because the tern “segment length” is used to refer to not only explanatory variable 

representing the length of roadway section in some studies but also the length selected to divide a 

roadway to smaller units for data aggregation in some other studies. This study proposes an 

innovative method to provide a recommended fragment size for data aggregation based on 

historical crash risk. 

Since selecting of fragment size (segment length) for aggregation may cause variables to become 

statistically significant or insignificant, creating a standard methodology for selecting a suitable 

fragment size (segment length) for aggregation appears essential for future research. Previous 

studies argue that the selection of arbitrary fixed-size fragments (segments) for aggregating crash 
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data generates fundamental problems in crash frequency analysis (Pedregosa, et al., 2011). 

Previous research fails to provide any standardized guidance or methodology to select the fragment 

size (segment length) to aggregate crash data. Since the selection of fragment size (segment length) 

impacts traffic safety research, this study seeks to investigate and propose a method to find a 

recommended segment length. 

Generally, safety studies can investigate traffic crashes based on different crash characteristic 

dimensions such as number of vehicles involved (Xu, et al., 2018), manner of collision (Cheng, et 

al., 2017; Bhowmik, et al., 2018; Mahmud & Gayah, 2021), and crash severity (Yu & Abdel-Aty, 

2013a; Afghari, et al., 2020). This study also seeks to capture the crash patterns and transitions 

between crash combinations across highways based on three major traffic crash characteristics: 

number of vehicles involved in crashes (crash units), manner of collision, and crash severity, 

simultaneously.  

   The number of vehicles involved in a crash represents an important crash characteristic 

dimension that will affect the results of aggregate traffic crash analyses. Previous studies 

investigate traffic crashes based on number of vehicles involved by grouping the crashes into two 

categories: single-vehicle (SV) and multi-vehicle (MV) crashes because the crash contributing 

factors may differ or demonstrate different impacts for SV and MV crashes (Abdel-Aty, et al., 

2006; Ivan, et al., 1999; Islam & Pande, 2020b). Yu and Abdel-Aty  (Yu & Abdel-Aty, 2013a) 

show that the selected crash contributing factors have different impacts on SV and MV crashes 

and recommend that future safety analyses need to consider the number of vehicles involved as a 

traffic characteristic for both aggregate and disaggregate approaches. This study includes the 

number of vehicles involved in crashes by creating SV and MV categories for crash features. The 

manner of collision, which refers to the first event in a crash, represents another important traffic 
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crash characteristic. Some previous studies refer to the manner of collision as crash type and show 

that including the manner of collision (crash type) reveals facts about traffic crashes that traffic 

studies conducted based on total crashes would fail to recognize (Golob, et al., 2008). This and 

other studies (Islam, et al., 2017; Cheng, et al., 2017) support the importance of including the 

manner of collision in safety analyses; therefore, the authors integrate the manner of collision as 

another traffic crash feature dimension. Several studies also investigate the impact of traffic crash 

contributing factors on crash severity (Abdel-Aty M. A., 2003; Islam & Pande, 2020b). This study 

combines crash severity as a crash feature with the number of vehicles involved and the manner 

of collision to create a more refined crash combination than TCR. 

   This study investigates the effect of segment length for aggregating data and clustering roadway 

segments using the number of vehicles involved in the crash, manner of collision, and crash 

severity simultaneously. The clustering approach is selected for roadway segmentation because it 

can mitigate crash heterogeneity for within-group elements by grouping roadway segments with 

similar crash distributions into homogeneous groups, according to (Lu, et al., 2013). The focus on 

the crash characteristics makes grouping the data based on the crash characteristics critical for 

understanding patterns in the crash data. However, some temporal instability (Islam & Mannering, 

2020a) and unobserved heterogeneity associated with environmental characteristics and driver 

behaviors (Islam, et al., 2020c) may affect the study result. To reduce computation complexities 

and ease implementation, the study excludes the temporal instability and unobserved heterogeneity 

associated with environmental characteristics and driver behaviors. The authors also propose a 

standard method to provide a recommended fragment size (RFS) for aggregating crash data that 

can be used as a foundation for all future traffic crash analyses requiring data aggregation, which 
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may reduce the impact of arbitrary selection of fragment size (segment length) on crash frequency 

analysis (CFA). 

2.2. LITERATURE REVIEW 

2.2.1. Fragment Size (Segment Length) 

   As aforementioned, selecting the segment length to aggregate traffic and crash data impacts both 

CFA and RTCPM since it may affect the variables’ statistical significance; therefore, the impact of 

segment length on safety analyses requires further investigation. Thomas (Thomas, 1996) studies 

the effect of segment length on crash count and density. Thomas (Thomas, 1996) argues that the 

arbitrary selection of segment length to aggregate data creates an unaddressed problem called a 

“size problem”. According to AASHTO Highway Safety Manual (2010), creating segments with 

consistent geometry and Annual Average Daily Traffic (AADT) may address this concern. 

However, it introduces new issues due to the inconsistent and small segment lengths and the need 

for universal data availability for all segments (Ghadi & Torok, 2019). Segment length selection 

to aggregate crash data impacts the identification of crash hotspots (Cook, et al., 2011) and affects 

the consistency of hotspot identification (Geyer, et al., 2008). Also, the safety analysis outcomes 

can be affected for both extremely long and short roadway segments (Lu, et al., 2013). Despite the 

importance of segmentation length, there is minimal guidance on segmentation. 

2.2.2. Segmentation Approaches 

   Various approaches to segmentize a roadway using a subset of sources, including traffic data, 

roadway characteristics, and traffic crash data exist but a typical approach segments a roadway 

based on its characteristics to account for unobserved heterogeneity. However, roadway 

segmentation by roadway characteristics may lead to long segments since many roadways may 

have little to no variation in roadway attributes over a long stretch (Green, 2018). For example, a 
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very long segment length may occur because a long stretch of a highway has constant shoulder 

width, the number of lanes, cross slope, and median width on a straight section (Green, 2018). 

While a homogeneous long segment can be divided to smaller segments to redistribute traffic 

crashes into resulting smaller segments, dividing the homogeneous long segments into small 

segments may lead to an arbitrary selection of break points or selection of a (segment) length with 

no specific guidelines (Green, 2018). Besides, quality roadway characteristics data may not be 

available, requiring costly data collection. Other than roadway characteristics, traffic data can be 

used to develop a homogenous segment when variation in roadway attributes is negligible (Borsos, 

et al., 2014). Even though traffic data may help to divide long segments into smaller segments, it 

may not be helpful for roadways with limited access over a long distance due to minor changes in 

traffic volume (Green, 2018).  

   Other alternatives to roadway segmentation by roadway attributes exist. These alternatives 

include continuous risk profile (Kwon, et al., 2013), sliding moving window (Qin & Wellner, 2012; 

Kwon, et al., 2013), peak searching (Kwon, et al., 2013), fixed length and variable length 

segmentation (Koorey, 2009), clustering methods (Valent, et al., 2002; Depaire, et al., 2008; Lu, 

et al., 2013). Among these alternatives, the clustering techniques are beneficial for roadway 

segmentation using traffic crash data, especially when quality data on traffic and roadway 

attributes are unavailable because they may reveal undiscovered relationships in traffic crash data 

(De Luca, et al., 2012; Depaire, et al., 2008; Golob, et al., 2004a; Lu, et al., 2013). Valent et al. 

(2002) applied a clustering method using a specific crash type to analyze traffic crashes. The 

clustering method can mask the underlying contributing factors for the specific crash type (Valent, 

et al., 2002). Depaire et al. (2008) utilized latent class clustering by using the heterogeneity of 

traffic crash data to segment a roadway. Lu et al. (2013) used Fisher’s clustering to create a 
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segmentation based on sections with similar crash distributions. The segmentation produced by 

Fisher’s clustering improved the predictive model performance. Due to the lack of quality data on 

roadway attributes,  this study performs the clustering method using the heterogeneity of crash 

data.  

   An essential aspect of traffic safety studies is unobserved heterogeneity. Studies can only include 

some information to capture data for all potentially contributing causes of traffic crashes (Chang, 

Yasmin, Huang, & Chan, 2021; Mannering, Shankar, & Bhat, 2016). A popular approach to address 

unobserved heterogeneity is to group the traffic crash data into homogeneous groups by different 

attributes (Mannering & Bhat, 2014). Some traffic crash attributes are crash units (number of 

vehicles involved in crashes), crash type (manner of collision), and level of crash severity. 

Generally, previous research classifies crashes based on crash units by grouping crashes into two 

major classic groups: single-vehicle (SV) and multi-vehicle (MV). Previous traffic crash studies 

based on total crashes have failed to identify some contributing factors and hotspots with a false 

positive tendency (Cheng, et al., 2017). Regardless of applying an aggregate or disaggregate 

approach, a crash analysis should be performed based on the crash units (number of vehicles 

involved in crashes) (Yu, et al., 2013b). Another typical dimension in traffic safety studies is the 

manner of collision (crash type), which refers to the first event in a crash; other studies refer to it 

as crash type. Previous studies document the importance of including the manner of collision 

(crash type) in traffic crash analysis (Pande, et al., 2010). The traffic crash type can be considered 

a dimension of group traffic crashes since it helps mask the underlying contributing factors 

associated with a manner of collision (Valent, et al., 2002). It is also highlighted that the traffic 

crashes need to be separately investigated by manner of collision since the crash mechanism may 

potentially vary for different manner of collision (Bhowmik, Yasmin, & Eluru, 2018). The previous 
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studies confirm that the contributing factors and their statistical significance are different for 

various manner of collisions (Mahmud & Gayah, 2021). Crash severity represents another 

dimension to consider in capturing the heterogeneity of traffic crashes. According to Xu et al. 

(Yang, et al., 2009), crash severity is determined by the most seriously injured individuals in the 

crash, ranging from low-cost property damage to extremely costly severe injuries or fatalities. The 

analysis of all crashes together may conceal the injury level of crashes (Valent, et al., 2002). For 

unobserved heterogeneity, this study considers crash severity alongside the crash unit (number of 

vehicles involved in the crash) and the crash type (manner of collision).  

   This study proposes a method to identify a RFS using an unsupervised clustering method on 

traffic crash data. The study addresses the heterogeneity of traffic crash data by grouping traffic 

crashes based on crash unit, crash type, and crash severity. A feature for each group of crashes is 

defined, and its corresponding crash rate is calculated, known as the featured crash rate (FCR). To 

discover the most critical features for clustering, the Laplacian score with distance-based entropy 

measure (LSDBEM) is used for K-means clustering feature selection identifies the features 

providing the most information to capture the similarities between segments. The LSDBEM-

selected features significantly improve K-mean clustering results by forming homogeneous 

clusters (Liu, et al., 2009). Additional dimensions, such as roadway geometry, can be included and 

investigated in future studies to address unobserved spatial heterogeneity. While roadway 

geometry attributes may represent a better approach to form homogeneous segments. In the 

absence of quality geometry attributes, the proposed K-means clustering using crash units, crash 

type, and crash severity provides another strategy for crash data aggregation. 

2.3. DATA DESCRIPTION 

   This study uses crash data from the network of urban freeways within Dallas County in Texas. 

The study area includes mainlane segments for both directions of Texas Loop 12, IH-20, IH-30, 
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IH-35E, IH-45, IH-635, and US-75 (see Fig. 2.1.). The data includes crash data, roadway geometric 

characteristics, and traffic characteristics for the 5-year period of 2015–2019. A statistics summary 

of crash units with the manner of collision and crash severity is provided in Table 2.1. and Table 

2.2., respectively. 

 

Fig. 2.1. Study area map (produced using Google Maps®). 
 
2.3.1. Crash Data Features 

   The crash data from the Texas Department of Transportation (TxDOT) C.R.I.S. (Crash Record 

Information System) includes features from three groups: crash fields, unit fields, and person 

fields. The crash fields provide information about crashes. These include geospatial data such as 

latitude, longitude, reference marker, offset distance, highway system, roadway part,  highway 

name, and the roadway geometry at the crash location. The crash fields also include crash 

characteristics like manner of collision and crash severity. This study only uses the information in 
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the crash fields. Also, traffic count data for the study area is obtained from TxDOT for the 5-year 

period of 2015-2019. 

Table 2.1. Crash units and manner of collision summary (2015 – 2019) 

  Single-Vehicle (SV)   Multi-Vehicle (MV)   

Highway 
Object 
Related 
(OBJ) 

Overturned 
(OVT) 

Other 
(OTH)   Angled 

(ANGL) 
Rear-End 
(RRND) 

Sideswipe 
(SDSW) 

Stopped 
(STPD) Total 

IH-20 EB 464 60 41  2 839 838 244 2488 

IH-20 WB 475 31 43  5 854 754 215 2377 

IH-30 EB 585 22 19  3 804 936 406 2775 

IH-30 WB 552 27 23  2 979 842 451 2876 

IH-35E NB 1011 71 52  10 2109 1853 1121 6227 

IH-35E SB 825 50 34  9 1673 1750 945 5286 

IH-45 NB 166 10 6  2 150 156 47 537 

IH-45 SB 231 10 7  4 174 174 27 627 

IH-635 NB 846 45 7  8 1819 1604 473 4802 

IH-635 SB 802 62 4  5 1924 1442 562 4801 

LP-12 NB 218 16 6  2 357 340 131 1070 

LP-12 SB 235 16 3  4 236 313 62 869 

US-75 NB 352 19 1  2 1138 779 373 2664 

US-75 SB 370 13 3   1 1321 791 492 2991 
Dallas 
County 7132 452 249  59 14377 12572 5549 40390 

 

2.3.2. Data Preparation 

   The crash data provides a separate entry for every individual involved in a traffic crash sharing 

the same crash ID as other individuals but with a different case number. The analysis aggregates 

the traffic crash entries for each day by crash ID and the total number of vehicles involved in the 

crashes to form a new crash data set. The new crash IDs include the crash date and time to avoid 

loss during when fusing five years of data together. To standardize crash location, the analysis 

calculates the milepost values from the crash location reference marker and offset values provided 

in the crash data. The analysis only uses crash data for the main segment of each roadway and 

excludes the crashes involving active work zones, construction areas, pedestrians, or wrong-way 
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driving. The researchers geovalidated the crash data points by importing crash data points as KMZ 

files to Google Earth® to ensure the feature values for roadway segments, and vehicle travel 

directions are consistent with the location of crash data points. 

Table 2.2. Crash severity summary 
 

 Crash Severity (2015 - 2019) 
 
Highway & 
Travel 
Direction 

Suspected 
Serious 
Injuries  

(A) 

Suspected 
Minor 

Injuries  
(B) 

 
Possible 
Injuries  

(C) 

 
 

Fatal 
(K) 

 
Not 

Injured 
(N) Total 

IH-20 EB 54 313 479 17 1625 2488 

IH-20 WB 65 288 455 12 1557 2377 

IH-30 EB 37 191 463 18 2066 2775 

IH-30 WB 45 264 513 7 2047 2876 

IH-35E NB 80 509 1116 25 4497 6227 

IH-35E SB 88 409 899 23 3867 5286 

IH-45 NB 23 54 121 4 335 537 

IH-45 SB 14 79 144 8 382 627 

IH-635 NB 135 651 1203 21 2792 4802 

IH-635 SB 124 659 1108 23 2887 4801 

LP-12 NB 21 117 332 3 597 1070 

LP-12 SB 21 112 234 5 497 869 

US-75 NB 63 322 769 10 1500 2664 

US-75 SB 58 337 837 9 1750 2991 

Dallas County 828 4305 8673 185 26399 40390 

 

   The Instruction to Police for Reporting Crashes (Thomas, 1996) categorizes crash severity levels 

as A - Suspected Serious Injury, B – Suspected Minor Injury, C – Possible Injury, K – Fatal Injury, 

N – Not Injured, and 99 – Unknown (see Table 2.3. for the definitions). The study area traffic 

crash data shows that crash severity at levels A, B, C, K, and N are 2.05%, 10.55%, 21.15%, 0.48%, 

and 64.57% of total crashes for 2015-2019 in Dallas County, respectively. Since fatal crash 

percentages remain very small, a separate fatal crash characteristic may not be necessary. 

Therefore, the analysis groups fatal and suspected serious injury crashes together since they are 

close in terms of severity level and represent a low portion of total crashes. Similarly, the analysis 
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groups suspected minor and possible injury crashes together because they do not necessarily 

represent distinct crash severities and likely experience a significant overlap, which would make 

distinctive clustering more difficult.  Non-injury remains a separate crash characteristic and the 

authors exclude crashes with unknown severity from the study. 

Table 2.3. Traffic crash categories. 

Number of Vehicle 
Involved in Crashes 

Description 

Single-Vehicle (SV) Crashes that only involves one motor vehicle. 
Multi-Vehicle (MV) Crashes that involve two or more motor vehicles. 

Manner of Collision   

Fixed Object (OBJ) Crashes that involve hiding fixed objects as the first harmful event. 
Over-turned (OVT) Crashes that the first harmful event is identified as vehicle overturn. 
Angled (ANG) Crashes that two motor vehicles are collided at an angle caused by at-least one 

vehicle deviating, turning left/right, or backing. 
Rear-End (RRND) Crashes that a motor vehicle is rear-ended by another motor vehicle. 
Sideswipe (SDSW) Crashes that a motor vehicle is sideswiped by another motor vehicle. 
Stopped (STPD) Crashes that a motor vehicle that is stopped on travel way is collided by a motor 

vehicle in motion. 
Other (OTH) Crashes that the manner of collision is none of the items above. 

Crash Severity   

A - Suspected Serious 
      Injury 

Severe injury that prevents continuation of normal activities leading to 
temporarily or permanent incapacitation. 

B - Suspected Minor 
      Injury 

Evident injury such as bruises, abrasions, or minor lacerations which do not 
incapacitate. 

C - Possible Injury Injury claimed, reported, or indicated by behavior but without visible wounds, 
includes limping or complaint of pain 

K - Fatal If death resulted due to injuries sustained from the crash, at the scene or within 
30 days of crash. 

N - Not Injured The person involved in the crash did not sustain as A, B, C, or K injury. 
99 - Unknown Unable to determine whether injuries exist. Some examples may include hit and 

run, fled scene, fail to stop or render aid. 
 

2.4. Methodology 

2.4.1. Introduction 

   K-means clustering is an unsupervised learning method to group unlabeled objects by similarities 

(Pedregosa, et al., 2011). Previous traffic crash studies use this technique to cluster traffic data 
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based on similarities. Using clustering approach, recent research captures congestion-sensitive 

spots (Bhatia, et al., 2020), groups traffic flow data (Azizi & Hadi, 2021; Xu, et al., 2012; Xu, et 

al., 2013), classifies the crash risk for urban expressways (Cheng, et al., 2022) or other objectives. 

In this study, K-means clustering segmentizes urban freeway highways with features defined as 

crash rates calculated based on jointly considering the number of vehicles involved in the crash, 

manner of collision, and crash severity (crash combination).  

2.4.2. Feature Selection 

   The K-means clustering results heavily depend on the features selected for grouping the objects 

into the clusters. The main goal is to compare and group highway segments by crash combination 

crash rates, which creates 21 features. Before applying the K-means clustering, the methodology 

implements feature reduction approaches to avoid redundancies and improve clustering results. 

This study deals with a multivariate problem in which feature values form a sparse matrix for each 

highway and freeway direction of travel. The methodology requires an appropriate unsupervised 

feature selection method to address the multivariate nature of the problem, potential redundancy, 

and existing sparsity in the features. The recent review by Solorio-Fernández et. al. (Solorio-

Fernández, et al., 2020) categorizes feature selection candidates for this study under multivariate 

spectral/sparse learning methods. This study adopts the “Laplacian Score Combined with 

Distance-Based Entropy Measure” (LSDBEM) (Liu, et al., 2009) because it finds the best subset 

of features capturing underlying clustering structures before performing clustering methods. 

Unlike the supervised and semi-supervised feature selection approaches, the unsupervised feature 

selection methods have no privilege of relying on labeled data to alleviate irrelevant and redundant 

features. As an unsupervised feature selection, the LSDBEM employs evaluation metrics to 

eliminate redundant features (He, Cheng, Hu, Zhu, & Wen, 2017). Several studies utilized the 
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LSDBEM as unsupervised feature selection to capture the relevancy, eliminate the redundancy, 

and identify the most important features for unsupervised clustering, such as K-means clustering 

(Barile, et al., 2022; Karim, et al., 2020; Wang, et al., 2022). Karim et al. (2020) extensively 

implemented the LSDBEM for feature selection. They compared it with two other unsupervised 

feature selections, Principal Component Analysis (PCA) and Multi-Cluster-based Feature 

Selection (MCFS). The feature selection results show that 75% of the features selected by 

LSDBEM are in common with features selected by PCA and MCFS (Karim, et al., 2020). Also, 

Karim et al. (2020) utilized various clustering methodologies, including Balanced Iterative 

Reducing and Clustering Using Hierarchies (BIRCH), Hierarchical Distance-Based Spatial 

Clustering of Applications with Noise (DBSCAN), Ordering Points To Identify Cluster Structure 

(OPTICS), K-modes, Spectral, and K-means. They evaluated the clustering results using the 

Davies-Bouldin index, Calinski-Harabasz, and silhouette coefficient score. The K-means 

clustering results showed a significant purity with a very negligible difference (0.1%) compared 

to the outperforming clustering method OPTICS. As the method name implies, LSDBEM is a 

combination of the Laplacian score and an entropy measure that are separately explained in 

separate subsections. Prior to LSDBEM, all-zero and single non-zero features are discussed in the 

following subsection. 

2.4.3. Dropping All-zero Features and Features with single non-zero value 

   A feature (crash group) that has a zero value (zero crash count) for all the objects (sub-segments) 

has no impact on the clustering result. Therefore, a zero-value feature can be excluded from the 

set of selected features for clustering. The single non-zero feature (a crash group with non-zero 

crash count for only one sub-segment) may be excluded because it will either not affect clustering 

or form a trivial single object cluster with a single object. 
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2.4.4. Feature Selection Using Laplacian Score (fsulaplacian): 

   He et al.  (He, et al., 2005) introduce an unsupervised method to rank features based on a 

Laplacian score calculated using the nearest neighbor similarity graph as a feature selection 

method called “Laplacian Score”. This method has a proven record of capturing significant 

features. A detailed Laplacian Score algorithm may be found in a study by Pande et al. (Pande & 

Abdel-Aty, 2006). The algorithm favors features with large variance because “the algorithm 

assumes that two data points of an important feature are close if and only if the similarity graph 

has an edge between the two data points” (Pande & Abdel-Aty, 2006). A feature with a large score 

𝑠' represents an important feature. This can be used with the distance-based entropy measure to 

determine important features. 

2.4.5. Distance-based Entropy Measure: 

   Liu et al. (Liu, et al., 2009) showed that the best subset for clustering can be identified by 

combining the Laplacian score method with the distance-based entropy measure. The process starts 

sorting features by their corresponding Laplacian score in ascending order i.e. from the most 

important feature to the least important feature (note that the lowest the Laplacian score, the highest 

the importance of the feature (Liu, et al., 2009)). Then, the top two important features are selected 

as the current subset of features and the distance-based entropy measure is calculated. In the next 

step, the next subset is formed by adding the next important feature to the current subset and the 

corresponding distance-based entropy measure is calculated. This process is iterated until all 

features are in the current subset. Among all the subsets that are investigated in the process, the 

subset with the highest distance-based entropy measure is the best subset of the features for 

clustering purposes (Liu, et al., 2009)). 
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Feature Selection Steps: 

The feature selection procedure for this study is as follows: 

1. The features are generated for all the possible combinations of traffic crash groups. Fig. 2.2. 

shows traffic crash groups, their abbreviations, and the generated features. The crash rates 

calculated for each of the generated features are called featured crash rates (FCRs). The naming 

convention of features is in the format of ‘A-B-C’ in which A, B, and C are the traffic crash 

abbreviations for the number of vehicles involved in crashes, manner of collision, and crash 

severity. For instance, ‘SV-OBJ-N’ is the feature for single-vehicle object-related crashes with 

no injuries. Also, ‘MV-RRND-B+C’ is the feature for multi-vehicle rear-end crashes with 

suspected minor or possible injuries. 

2. All the unknown severity, all-zero, and single non-zero features are dropped. 

3. The function “fsulaplacian” is applied to the current set to find all the feature scores. 

4. The distance-based entropy measure is applied to the features with their corresponding 

Laplacian scores. The subset with the highest distance-based entropy measure is selected as 

the best subset of features for clustering. 

 

Fig. 2.2. Three dimensions of traffic crashes and the generated features. 
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2.4.6. K-means Clustering Algorithm 

   As aforementioned, K-means is an unsupervised learning technique that clusters unlabeled 

objects by similar features. The K-means algorithm starts with k centroids to group the objects in 

k clusters (a centroid for each cluster). After assigning all objects to their nearest cluster, the 

algorithm calculates a new set of centroids by finding the mean values of the objects in each cluster. 

This process iterates until the associated cost function, the Sum of Squared Error (SSE) within 

each cluster (also known as cluster inertia), reaches its minimum value and determines the final 

clusters and their corresponding centroids (Bhatia, et al., 2020). Raschka and Mirjalili (Raschka & 

Mirjalili, 2017) provide the formal definition of a K-means clustering algorithm as follows: 

“Step 1: Randomly pick k centroids from the sample points as initial cluster centers. 

  Step 2: Assign each sample to the nearest centroid 𝜇( , 𝑗 ∈ {1, … , 𝑘}. 

  Step 3: Move each centroid to the center of the samples that were assigned to it. 

  Step 4: Repeat steps 2 and 3 until the cluster assignments do not change or a user-defined 

tolerance or maximum number of iterations is reached.” 

In “Step 2”, the term “nearest” implies the distance comparison requiring a measure. The distance 

refers to the differences between values of features for each sample (object) and values of features 

for the centroids. The shorter the distance to a centroid, the closer the sample (object) to a centroid. 

For “Step 4”, the K-means function (KMeans) from Python libraries “sklearn.cluster”  has input 

variables for a user-define tolerance and maximum number of iteration as stop conditions to 

terminate the iterative process and report the clustering results. The parameter of the K-means 

function (KMeans) are discussed in the result section under algorithm implementation.  
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2.4.7. Elbow Curve and Silhouette Coefficient 

   As described in the previous section, the K-means clustering algorithm starts with randomly 

selected k centroids to group the objects in k clusters but selecting a preferred k value represents a 

challenge (Bhatia, et al., 2020). Running K-means clustering for a range of k-values and 

monitoring the cost function value associated with each k-value can overcome this obstacle 

(Bhatia, et al., 2020). The Elbow method can assist in finding a preferred k based on the marginal 

improvement associated with adding another cluster (Bhatia, et al., 2020). An Elbow Curve, which 

is a plot of the cost function against the number of clusters, visualizes this process. In an Elbow 

Curve, a point where the marginal gain drops such that it generates an angular point called an 

Elbow Point should occur. The number of clusters corresponding to the Elbow Point is the optimal 

number of clusters, k* (Bhatia, et al., 2020). Mathematically, the maximum absolute value of the 

second derivative of the Elbow Curve is the Elbow Point (Bhatia, et al., 2020). Fig. 2.3. shows an 

Elbow Curve and its Elbow Point. Silhouette Analysis evaluates the tightness of objects within the 

clusters and assesses the clustering quality using the Silhouette Coefficient (Anon., 2011). In fact, 

the silhouette coefficient measures cluster cohesion and separation simultaneously. Cluster 

cohesion refers to how objects within a cluster are similar to each other. Cluster separation 

represents how cluster objects are different from the objects in other clusters. The greater the 

silhouette coefficient, the stronger the cohesion and the greater the separation. The silhouette 

coefficient ranges from -1 to 1, and it equals zero when the cluster cohesion and separation are the 

same; a value that approaches one indicates that separation greatly exceeds the within-cluster 

distance (Anon., 2011). 
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Fig. 2.3. Elbow curve and elbow point. 

2.4.8. Search Algorithm 

   This section describes the algorithm to search for the RFS. This algorithm utilizes the K-means 

clustering algorithm to cluster the highway segments as the objects with the FCR based on the 

dimensions described in the data preparation section. The study calculates the featured crash 

segment length from 0.10 mile to 0.25 mile in the study. The search process starts with the initial 

value of 0.1 mile to perform K-means clustering to cluster highway segments and continues 

through the remaining segment lengths using increments of 0.01 mile. The algorithm normalizes 

the FCRs by dividing each feature value by its corresponding maximum FCR. As described in the 

feature selection section, the method investigates all the features to select the final features for K-

means clustering. The K-means clustering algorithm uses the final features to cluster highway 

segments. Applying the K-means clustering provides a path to group highway segments by 

comparing feature similarities of the segments at an aggregate level. After completing the 

clustering for all segment lengths, the recommended clustering corresponds to the result with the 

greatest silhouette coefficient since it provides clusters with higher cohesion and better separation. 
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Also, this will provide a sufficient range of segment length scenarios to investigate the effect of 

segment length on data aggregation and find the significant crash combinations.  

2.5. RESULTS 

   This section discusses the search algorithm results. The search algorithm is applied to crash data 

for mainlane segments in both directions of Texas Loop 12, IH-20, IH-30, IH-35E, IH-45, IH-635, 

and US-75 within Dallas County limits. By applying the search algorithm, the results provide the 

best set of features for clustering, preferred number of cluster k*, and silhouette coefficient for 

each segment length ranging from 0.10 to 0.25 mile. This section also compares the FCR k-means 

clustering results with the findings from TCR k-means clustering results to evaluate the benefits 

of using FCR over TCR. 

2.5.1. Algorithm Implementation 

   This study methodology develops a library of functions in Python 3 to perform the entire process, 

from data cleaning and preparation to feature selection and K-means clustering. The K-means 

clustering and elbow point detection use the “KMeans” and “Kneelocator” functions from Python 

libraries “sklearn.cluster” and “kneed”, respectively. The KMeans function requires values for 

the attributes n_init=50 and max_iter=1000. n_init is the number of times that the k-means 

algorithm will be applied with different centroid seeds. The final k-means clustering result is the 

best output of n_init successive runs in terms of inertia. max_iter sets the maximum number of 

iterations that the k-means algorithm will be applied in a single run (Raschka & Mirjalili, 2017; 

Solorio-Fernández, et al., 2020). The KMeans function is applied with large enough values for the 

attributes n_init=50 and max_iter=1000 to minimize the impact of random centroids on the final 

result. For each run, the average computing time is 155 s and 58 s for FCR and TCR (6-Core Intel 

Core i7, 2.6 GHz CPU, 16 GB memory), respectively. 
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2.5.2. Clustering Results 

   The study forms traffic crash clusters by applying K-means to FCRs and TCRs data for each 

highway mainlane travel direction. As a sample, the clustering results for IH-20 EB (all 16 values) 

are shown in Table 2.4. Compared with TCR, the FCR-based clustering results consistently 

provide clusters with greater cohesion within the cluster and better separation between clusters 

based on their silhouette scores. For each highway travel direction, the recommended FCR-based 

cluster reaches silhouette scores between 0.7415 and 0.9699, which is significantly greater than 

the recommended TCR-based clustering results with silhouette scores between 0.6056 and 0.7255. 

To evaluate the significance of FCR over TCR, paired T-test is performed on 𝑑 = 	𝑆𝐶%)$ −	𝑆𝐶*)$, 

in which 𝑆𝐶%)$ and 𝑆𝐶*)$ are the silhouette scores of FCR and TCR-based clustering across all 

highways. By calculating 𝑑 for all highways, it is obtained that 𝜇, = 0.2177 and 𝑆, = 0.0054. 

The hypothesis test is defined as 𝐻-:		𝜇 ≤ 0 and 𝐻.:		𝜇 > 0. Considering the level of significance 

𝛼 = 0.01 and  𝑛 = 14, the value of t for the right-tailed test is 𝑡(13, 0.01) = 2.6503. the value of 

critical t, 𝑡/ is  (𝜇, − 𝜇) F𝑆, √𝑛⁄ I⁄ .  Then 𝑡/ = 151.16. Thus, 𝑡/ = 151.16 ≫ 2.6503. It yields to 

reject 𝐻-  and accept 𝐻., i.e. 𝑆𝐶%)$ −	𝑆𝐶*)$, > 0. Therefore, 𝑆𝐶%)$ >	𝑆𝐶*)$,with significance 

level of 𝛼 = 0.01  and 𝐶. 𝐼. = (0.2139, 0.2251). This shows that FCR-based clusters 

outperformed TCR-based clusters. For each highway travel direction, the recommended FCR-

based cluster reaches silhouette scores between 0.7415 and 0.9699, which is significantly (p-value 

< 0.0000) greater than the recommended TCR-based clustering results with silhouette scores 

between 0.6056 and 0.7255. 
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Table 2.4. Clustering results comparison (IH-20 EB). 

 Featured Crash Rate (FCR) Total Crash Rate (TCR) 
Len.  
Of  

Seg. 
Recom'd 
K-value 

Silhouette 
Coefficient Set of Features 

Recom'd 
K-value 

Silhouette 
Coefficient 

0.10 3 0.9699 [‘SV-OBJ-A+K’, 'SV-OVT-A+K'] 4 0.6276 

0.11 3 0.9647 [‘SV-OBJ-A+K’, 'SV-OVT-A+K'] 4 0.6294 

0.12 5 0.3910 [‘SV-OBJ-A+K’, 'SV-OBJ-B+C', 'SV-OTH-
N', 'SV-OVT-A+K', 'SV-OVT-N', 'MV-RRND-

B+C', 'MV-RRND-N', 'MV-SDSW-B+C',  
'MV-STPD-B+C', 'MV-STPD-N'] 

4 0.5958 

0.13 3 0.9573 [‘SV-OBJ-A+K’, 'SV-OVT-A+K'] 4 0.6115 

0.14 3 0.9540 [‘SV-OBJ-A+K’, 'SV-OVT-A+K'] 4 0.6228 

0.15 3 0.9041 [‘SV-OBJ-A+K’, 'MV-RRND-A+K'] 4 0.6115 

0.16 3 0.9451 [‘SV-OBJ-A+K’, 'SV-OVT-A+K'] 3 0.6448 

0.17 4 0.6872 ['SV-OVT-A+K', 'MV-SDSW-B+C'] 3 0.6385 

0.18 4 0.8219 [‘SV-OBJ-A+K’, 'SV-OTH-N', 'MV-STPD-
A+K'] 

5 0.5840 

0.19 3 0.9346 [‘SV-OBJ-A+K’, 'SV-OVT-A+K'] 4 0.5881 

0.20 4 0.6661 ['SV-OBJ-B+C', 'SV-OVT-A+K'] 3 0.6103 

0.21 3 0.8605 [‘SV-OBJ-A+K’, 'MV-RRND-A+K'] 3 0.6396 

0.22 2 0.9123 ['SV-OVT-A+K', 'MV-STPD-A+K'] 5 0.5614 

0.23 3 0.9190 [‘SV-OBJ-A+K’, 'SV-OVT-A+K'] 3 0.6530 

0.24 5 0.4367 ['SV-OTH-N', 'SV-OVT-N',  
'MV-SDSW-B+C', 'MV-STPD-B+C'] 

4 0.6632 

0.25 3 0.6906 ['SV-OTH-N', 'SV-OVT-N', 'MV-STPD-A+K'] 4 0.6564 

 

2.5.3. Feature Selection 

   The FCR-based clustering results provide the sets of significant features associated with the 

clustering. Also, Fig. 2.4. and Fig. 2.5. show heatmap representations of feature significance for 

the urban highway travel directions for the sixteen segment length values ranging from 0.10 to 

0.25 mile. Due to the sixteen values, the frequency of features appearing significant varies between 

0 and 16. The results demonstrate that the significant features differ depending on the urban 

highway and travel direction; however, some features appear frequently in most trials generated 
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by different segment lengths. For IH-20 EB, the methodology selects ‘SV-OBJ-A+K’ and 'SV-

OVT-A+K' as the significant features for more trials (segment length), including the RFS, than 

other features. For IH-20 EB, severe single-vehicle crashes with a clear crash class create the best 

crash data clusters (see Fig. 2.2. for abbreviations). The feature significance appears relatively 

insensitive to the segment length selected to aggregate the crash data. In most cases, the most 

frequently significant features (during the sixteen trials) for each highway appear in the cluster 

with the highest silhouette score. However, a few less frequently selected features also appear in 

the clusters with the highest silhouette scores, such as features ‘SV-OBJ-A+K’ and ‘SV-OVT-B+C’ 

for IH-30 EB and feature 'SV-OVT-N' for IH-35E NB. Other less frequently significant features 

include 'SV-OBJ-N’, 'SV-OVT-N’, and 'SV-OTH-N’, which makes sense because these crashes 

may be uniformly distributed along a highway since no injuries occur and they only involve a 

single vehicle. For most freeways, one to three features frequently appear for clustering with the 

first and second-ranked highest silhouette scores; however, US-75 SB has ten frequently appearing 

features. Fig. 2.4.(o) shows the Dallas County heatmap that summarizes the total frequency of the 

significant features for the studied highways. The potential range of values in this figure is [0, 

224]. Based on Fig. 2.4.(o), the most frequently significant features are ‘SV-OVT-B+C’, 'MV-

SDSW-N’, 'MV-STPD-N’, ‘SV-OBJ-A+K’, 'MV-SDSW-B+C’, and 'MV-RRND-A+K’, in 

descending order. 
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        (a)         (b)         (c)         (d) 

    

    

        (e)         (f)         (g)         (h) 

    

      (i)         (j)         (k)         (l) 

Fig. 2.4. Heatmap of significant features for the highways IH-20, IH-30,                                

IH-35, IH-45, IH-635, and LP-12. 
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        (a)         (b)         (c) 

Fig. 2.5. Heatmap of significant features for the highway US-75 and Dallas County. 

2.5.4. Segment Length 

   The results show that the segment length impacts the clustering results and their corresponding 

silhouette scores. Table 2.5 provides a comparison between the top two RFS values for FCR and 

TCR. The FCR clustering tends to recommend much shorter fragment sizes than the TCR because 

they also capture trends in specific crash combinations more effectively than the TCR. For almost 

all the highways, the FCR clustering methodology selects two features, which generate clusters 

with silhouette scores at least 0.1 larger than the best corresponding TCR result. The additional 

information provided by the FCR strengthens the clustering and segregates the freeway into 

segments with different crash risks for the selected features. 

2.5.5. Z-score Analysis of FCR-based Clusters  

   The features’ Z-scores for the clusters with highest silhouette score is provided in Table 2.6. For 

each highway travel direction, the features 𝐹0 , 𝐹1, and 𝐹2 correspond to the set of features in Table 

2.5. for clustering with the highest silhouette scores. In most two-cluster and two- feature cases, 

the clustering results for 𝑘∗ = 2 (two clusters) show that one feature appears with a large positive 

Z-score in one cluster while the other feature shows a small value (somewhat close to zero) and 

the feature values reverse in the other cluster. For instance, the clustering result for IH-20 WB 
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shows that  single-vehicle overturned crashes with minor or possible injuries has a Z-score of 4.32 

for cluster #2, meaning, cluster #2 represents single vehicle overturned crashes with minor or 

possible injuries but not multi-vehicle sideswipe fatal and serious crashes; cluster #1 represents 

risky locations for multi-vehicle sideswipe fatal and serious crashes but not single-vehicle object 

crashes with minor or possible injuries. The large Z-score also indicates the intensity of the risk 

for cluster #2 is much higher than cluster #1. The same pattern for cluster #1 and #2 applies to 

other highway travel directions with 𝑘∗ = 2  (two clusters) IH-35 NB, IH-35 SB, IH-45 NB, IH-

635 SB, and LP-12 SB for their corresponding features.  For IH-35 NB, cluster #2 identifies high-

risk multi-vehicle sideswipe fatal and serious crash locations. For IH-35 SB, cluster #2 identifies 

high-risk multi-vehicle rear-end fatal and serious injury crash locations. For IH-45 NB and IH 635 

SB, cluster #2 identifies high-risk multi-vehicle stopped fatal and serious injury crash locations. 

For LP-12 SB, cluster #2 identifies high-risk single-vehicle overturned minor and possible injury 

crash locations. Another two-cluster case, IH-30 WB, follows a different pattern where cluster #1 

represents a low crash risk for both features and cluster #2 represents a high crash risk for fatal 

and serious multi-vehicle rear-end and stopped crashes. For 𝑘∗ = 3 (three clusters), one cluster 

indicates a high-risk location for one crash type and another cluster indicates a high-risk location 

for the other selected crash type; the third cluster indicates low-risk crash locations for both 

selected crash features. IH-20 EB identifies high-risk locations for single-vehicle object and 

overturn crashes with fatal and serious injury, IH-30 EB identifies high-risk locations for single-

vehicle object fatal and serious injury crashes and single-vehicle overturn crashes with minor and 

possible injury, and US-75 NB identifies high-risk locations for single-vehicle overturned minor 

and possible injury crashes and multi-vehicle rear-end minor and possible injury crashes. Another 

three-cluster case, IH-635 NB, adds a third feature to the clustering results; this case creates a low-
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risk crash cluster for single-vehicle overturn crashes. The other clusters separate high-risk single-

vehicle overturned fatal and serious crash locations from high-risk single-vehicle overturned minor 

and possible injury crash locations.  Only two freeway corridors (IH-45 SB and LP-12 NB) showed 

𝑘∗ = 4 (four clusters). For the IH-45 SB case, one cluster identifies low-risk locations for multi-

vehicle sideswipe crashes with minor and possible injuries and multi-vehicle stopped crashes with 

property damage only.  Another cluster identifies locations with high-risk for multi-vehicle 

sideswipe minor and possible injury crashes and low-risk for multi-vehicle  stopped crashes with 

property damage only. The final two clusters contain moderate risk for multi-vehicle sideswipe 

minor and possible injury crash locations and high and moderate risk for multi-vehicle stopped 

crashes  with property damage only.  The LP-12 NB case identifies clusters with low risk for both 

features (single-vehicle object fatal and serious injuries and multi-vehicle stopped property 

damage), high risk for both features, and high risk for one feature/low risk for the other feature.  

Finally, US-75 SB demonstrated 𝑘∗ = 5 (five clusters), as with all clusters with 𝑘∗ > 2, one cluster 

represents low crash risk locations for the selected features.  Similar to other cluster amounts, one 

cluster characterizes locations with high risk for single-vehicle overturned minor and probable 

injury crashes and low risk for multi-vehicle sideswipe property damage only crashes. Two other 

clusters identify locations with high and moderate risk for multi-vehicle sideswipe property 

damage only crashes and low risk for single-vehicle overturned minor and probable injury crashes. 

The final cluster includes locations with moderate risk for single-vehicle overturned minor and 

possible injury crashes and slightly above average risk for multi-vehicle sideswipe property 

damage only crashes. Overall, the clustering represents an effective strategy for identifying data 

patterns for the selected crash features, which can directly identify high and low risk locations for 

these crash combinations. 
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2.5.6. Silhouette Scores and Fragment Sizes 

A stairs-type stacked plot of silhouette scores for FCR and TCR clusters versus various fragment 

sizes for all highway travel directions is shown in Fig. 2.6. The silhouette scores for the FCR and 

TCR clustering results for the selected features are illustrated in blue and orange color, 

respectively. Overall, the silhouette scores of the TCR-based clustering results show greater 

stability across the various fragment sizes than the silhouette scores of the FCR-based clustering 

results. While the TCR-based clustering is more resistant to changes in the fragment sizes used for 

data aggregation, its silhouette scores remain under 0.80 while FCR-based clustering shows 

silhouette scores greater than 0.80 for some fragment sizes. However, the TCR-based clustering 

result supersedes the FCR-based clustering for US-75 SB for all fragment sizes but 0.23 mile where 

FCR-based clustering result reaches the highest silhouette score. For IH-635 SB, the FCR-based 

clustering show highest silhouette scores for all fragment sizes comparing to TCR-based. These 

trends can be related to the traffic crash data distribution along US-75 SB and IH-635 SB. 

2.6. CONCLUSIONS AND RECOMMENDATIONS 

   This paper develops a recommended fragment size (segment length) using three dimensions of 

traffic crashes (i.e., number of vehicles involved in the crash, manner of collision, and crash 

severity) and clustering methods as an innovative data-driven method to aggregate crash data. This 

strategy provides a standard approach for future studies to aggregate crashes and resolves the 

previously identified concern associated with the arbitrary selection of segment length in previous 

research. The proposed method harnesses the advantages of LSDBEM and K-means clustering 

algorithm as unsupervised learning applied to highway segments as the objects.  

   The study defines featured crash rates (FCRs) using three dimensions of traffic crash 

characteristics: number of vehicles involved in the crash, manner of collision, and crash severity. 

The FCR-based clustering results show that RFS varies for each highway travel direction.  
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Table 2.5. RFS values (FCR vs TCR). 

 Featured Crash Rate (FCR) Total Crash Rate (TCR) 
Highway 
& Travel 
Direction 

RFS 
Rank 

Len. 
Of 

Seg. 
K-

value 
Silh. 
score Set of Features 

RFS 
Rank 

Len. 
Of 

Seg.  
K-

value 
Silh. 
score 

IH-20 EB 1st 0.10 3 0.9699 [‘SV-OBJ-A+K’, 'SV-OVT-A+K'] 1st 0.24 4 0.6632 

IH-20 EB 2nd 0.11 3 0.9647 [‘SV-OBJ-A+K’, 'SV-OVT-A+K'] 2nd 0.25 4 0.6564 

IH-20 WB 1st 0.10 2 0.9223 [‘SV-OVT-B+C’, 'MV-SDSW-A+K’] 1st 0.20 3 0.6575 

IH-20 WB 2nd 0.11 2 0.9153 [‘SV-OVT-B+C’, 'MV-SDSW-A+K’] 2nd 0.13 3 0.6413 

IH-30 EB 1st 0.14 3 0.8880 [‘SV-OBJ-A+K’, ‘SV-OVT-B+C’] 1st 0.24 3 0.6704 

IH-30 EB 2nd 0.15 3 0.8716 [‘SV-OBJ-A+K’, ‘SV-OVT-B+C’] 2nd 0.25 4 0.6470 

IH-30 WB 1st 0.10 2 0.9128 ['MV-RRND-A+K', 'MV-STPD-A+K'] 1st 0.25 3 0.6852 

IH-30 WB 2nd 0.12 2 0.8994 ['MV-RRND-A+K', 'MV-STPD-A+K'] 2nd 0.16 4 0.6680 

IH-35E NB 1st 0.10 2 0.8726 ['SV-OVT-N', 'MV-SDSW-A+K’] 1st 0.24 3 0.6478 

IH-35E NB 2nd 0.11 2 0.8601 ['MV-RRND-A+K', 'MV-SDSW-A+K’] 2nd 0.12 3 0.6435 

IH-35E SB 1st 0.11 2 0.9366 ['SV-OVT-A+K', 'MV-RRND-A+K'] 1st 0.13 2 0.7255 

IH-35E SB 2nd 0.12 2 0.9363 ['SV-OVT-A+K', 'SV-OVT-N'] 2nd 0.14 3 0.6754 

IH-45 NB 1st 0.13 2 0.9240 [‘SV-OBJ-A+K’, 'MV-STPD-A+K'] 1st 0.16 3 0.6532 

IH-45 NB 2nd 0.12 2 0.9216 [‘SV-OBJ-A+K’, 'MV-STPD-A+K'] 2nd 0.14 3 0.6473 

IH-45 SB 1st 0.16 4 0.8114 ['MV-SDSW-B+C', 'MV-STPD-N'] 1st 0.10 2 0.6817 

IH-45 SB 2nd 0.21 3 0.7530 ['MV-SDSW-B+C', 'MV-STPD-N'] 2nd 0.18 2 0.6800 

IH-635 NB 1st 0.12 3 0.9042 ['SV-OVT-A+K', ‘SV-OVT-B+C’,  
'SV-OVT-N'] 

1st 0.17 2 0.6886 

IH-635 NB 2nd 0.18 2 0.8915 ['SV-OVT-A+K', 'SV-OVT-N'] 2nd 0.12 4 0.6579 

IH-635 SB 1st 0.11 2 0.9358 ['SV-OVT-A+K', 'MV-STPD-A+K'] 1st 0.11 3 0.6406 

IH-635 SB 2nd 0.12 2 0.9341 ['SV-OVT-A+K', 'MV-STPD-A+K'] 2nd 0.17 3 0.6215 

LP-12 NB 1st 0.11 4 0.8260 [‘SV-OBJ-A+K’, 'MV-STPD-N'] 1st 0.19 3 0.6514 

LP-12 NB 2nd 0.15 4 0.7981 [‘SV-OBJ-A+K’, 'MV-STPD-N'] 2nd 0.14 3 0.6374 

LP-12 SB 1st 0.11 2 0.9167 ['SV-OVT-A+K', ‘SV-OVT-B+C’] 1st 0.20 4 0.6056 

LP-12 SB 2nd 0.18 2 0.8664 ['SV-OVT-A+K', ‘SV-OVT-B+C’] 2nd 0.17 4 0.6035 

US-75 NB 1st 0.22 3 0.7627 [‘SV-OVT-B+C’, 'MV-RRND-B+C'] 1st 0.23 4 0.6147 

US-75 NB 2nd 0.25 3 0.7512 [‘SV-OVT-B+C’, 'MV-RRND-B+C'] 2nd 0.21 4 0.5945 

US-75 SB 1st 0.22 5 0.7415 [‘SV-OVT-B+C’, 'MV-SDSW-N'] 1st 0.11 4 0.6905 

US-75 SB 2nd 0.10 3 0.6037 [‘SV-OBJ-A+K’, 'SV-OBJ-B+C',  
'SV-OBJ-N', ‘SV-OVT-B+C’,  

'MV-RRND-A+K', 'MV-RRND-B+C',  
'MV-RRND-N', 'MV-SDSW-A+K’,  
'MV-SDSW-B+C', 'MV-SDSW-N',  
'MV-STPD-B+C', 'MV-STPD-N'] 

2nd 0.10 4 0.6107 
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Table 2.6. Z-score values of selected features used in LSDBEM/K-means clustering for FCR. 

 

 

F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

1 0.00 0.00 - 0.07 0.02 - 0.04 0.02 - -0.35 -0.17 -
2 0.63 0.00 - 0.07 0.02 - 0.04 0.02 - 2.69 -0.17 -
3 0.00 0.78 - 0.07 0.02 - 0.04 0.02 - -0.35 5.74 -
1 0.00 0.03 - 0.03 0.03 - 0.02 0.02 - -0.23 0.01 -
2 0.68 0.00 - 0.03 0.03 - 0.02 0.02 - 4.32 -0.21 -
1 0.00 0.00 - 0.11 0.07 - 0.06 0.04 - -0.45 -0.32 -
2 0.60 0.00 - 0.11 0.07 - 0.06 0.04 - 2.05 -0.32 -
3 0.10 0.66 - 0.11 0.07 - 0.06 0.04 - -0.01 2.89 -
1 0.00 0.04 - 0.04 0.04 - 0.03 0.03 - -0.22 -0.02 -
2 0.84 0.09 - 0.04 0.04 - 0.03 0.03 - 4.31 0.31 -
1 0.04 0.00 - 0.04 0.04 - 0.02 0.03 - 0.00 -0.27 -
2 0.03 0.60 - 0.04 0.04 - 0.02 0.03 - -0.04 3.35 -
1 0.02 0.00 - 0.02 0.05 - 0.02 0.04 - 0.01 -0.26 -
2 0.00 0.77 - 0.02 0.05 - 0.02 0.04 - -0.16 3.71 -
1 0.04 0.00 - 0.04 0.05 - 0.03 0.04 - 0.01 -0.24 -
2 0.00 0.91 - 0.04 0.05 - 0.03 0.04 - -0.23 4.14 -
1 0.01 0.00 - 0.14 0.12 - 0.05 0.08 - -0.61 -0.42 -
2 0.21 0.87 - 0.14 0.12 - 0.05 0.08 - 0.32 2.71 -
3 0.47 0.00 - 0.14 0.12 - 0.05 0.08 - 1.51 -0.42 -
4 0.20 0.44 - 0.14 0.12 - 0.05 0.08 - 0.29 1.16 -
1 0.00 0.00 0.03 0.03 0.08 0.03 0.03 0.06 0.03 -0.20 -0.32 -0.04
2 0.00 0.81 0.08 0.03 0.08 0.03 0.03 0.06 0.03 -0.20 3.08 0.26
3 0.83 0.16 0.07 0.03 0.08 0.03 0.03 0.06 0.03 4.89 0.35 0.22
1 0.02 0.00 - 0.02 0.04 - 0.02 0.02 - 0.01 -0.26 -
2 0.00 0.60 - 0.02 0.04 - 0.02 0.02 - -0.15 3.69 -
1 0.00 0.03 - 0.07 0.15 - 0.04 0.08 - -0.32 -0.42 -
2 0.72 0.65 - 0.07 0.15 - 0.04 0.08 - 3.22 1.80 -
3 0.00 0.73 - 0.07 0.15 - 0.04 0.08 - -0.32 2.11 -
4 0.63 0.10 - 0.07 0.15 - 0.04 0.08 - 2.79 -0.18 -
1 0.04 0.00 - 0.04 0.07 - 0.04 0.05 - 0.02 -0.28 -
2 0.00 0.87 - 0.04 0.07 - 0.04 0.05 - -0.21 3.45 -
1 0.00 0.94 - 0.14 0.19 - 0.07 0.03 - -0.52 4.05 -
2 0.00 0.15 - 0.14 0.19 - 0.07 0.03 - -0.52 -0.23 -
3 0.62 0.22 - 0.14 0.19 - 0.07 0.03 - 1.79 0.13 -
1 0.00 0.07 - 0.08 0.10 - 0.05 0.02 - -0.37 -0.25 -
2 0.94 0.08 - 0.08 0.10 - 0.05 0.02 - 3.97 -0.18 -
3 0.46 0.13 - 0.08 0.10 - 0.05 0.02 - 1.75 0.14 -
4 0.00 1.00 - 0.08 0.10 - 0.05 0.02 - -0.37 6.05 -
5 0.00 0.35 - 0.08 0.10 - 0.05 0.02 - -0.37 1.63 -

IH-20 WB

Cluster
ID

Highway 
Travel 

Direction

Feature Mean Per Cluster Feature Total Mean Feature Variance Feature Z-Score

IH-20 EB

US-75 SB

IH-30 EB

IH-30 WB

IH-35E NB

IH-35E SB

IH-45 NB

IH-45 SB

IH-635 NB

IH-635 SB

LP-12 NB

LP-12 SB

US-75 NB
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Fig. 2.6. Silhouette scores for FCR and TCR clusters vs fragment size. 

   The typical segment length of 0.10 mile that has been used in several studies matches the RFS 

only for IH-20 EB, IH-20 WB, IH-30 WB, IH-35E NB, and US-75 SB that, which is less than forty 

percent of highway travel directions. The RFS based on FCR clustering varies between 0.1 and 

0.22, while the RFS based on TCR clustering cover the entire range from 0.1 to 0.25.  

   The variation in RFS across the different highways and travel directions indicates that a single 

“best” segment length does not exist, and the segment length should be selected based on observed 
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crash data. However, the RFS based on FCR clustering and TCR clustering is the same for US 75 

SB (0.10 mile) and IH 635 SB (0.11 mile) (see Table 2.5). The FCR-based clustering results not 

only provide a RFS using three dimensions of traffic crashes characteristics but also identify the 

significant features for each highway travel direction which is impractical using TCR-based 

clustering. This paper proposed a data-driven methodology that overcomes the arbitrary selection 

of segment length using three dimensions of traffic crash characteristics. 

   The significant improvement in silhouette score between the FCR and TCR clustering methods 

indicates more cohesive and distinct clusters. This improvement will make the aggregated crash 

data more valuable and guarantee that the within-cluster segments experience similar crash risk 

for the selected features. The highest FCR-based silhouette scores range between 0.7415 and 

0.9699. The methodology typically chooses two features for the best silhouette scores. However, 

the methodology evaluated several sets of features before selecting the set of features to represent 

the data clusters best. While the selected features vary significantly between freeways and travel 

directions, the features used to select the clusters associated with the RFS typically reflect the most 

commonly selected features for a particular freeway and travel direction. This study provides a 

foundation for highway segmentation that benefits future traffic and crash studies and RTCPMs 

using aggregated data. 

   Because this study establishes a standardized method for selecting a segment length to aggregate 

crash data for future safety analyses and RTCPMs, many opportunities for future research exist. 

The total assessment of this method's impact requires investigating the improvement in crash 

modeling that results. In addition, this method may eliminate the need for disaggregating 

locationally specific static crash modification factors for RTCPMs if the clustering can effectively 

capture aggregate static crash contributing factors. Future research should also examine the RFS's 
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temporal stability and cluster structure's temporal stability. An extension of this study is to consider 

the temporal instability and unobserved heterogeneity associated with the environmental 

characteristics and driver behaviors by introducing featured crash rates (FCRs) for each year, 

including the environmental characteristics, and applying the LSDBEM/K-means. The study only 

investigates the clustering and recommended fragment length using all three traffic crash 

characteristics combined. The LSDBEM/K-means clustering can be applied to crash groups for 

scenarios including crash units only, and crash units and manner of collision combined to compare 

with FCR and TCR clustering results. The future study should investigate the value or importance 

of including additional crash characteristics in predicting crash risk and identifying contributing 

factors. Future studies need to extend this study by investigating each traffic crash characteristic 

separately and comparing the results with all three traffic crash characteristics considered. This 

study considered each highway and travel direction separately and created distinctive clusters for 

each. The future research can also consider the network wide clustering for a comparison. Future 

studies should apply this method on other freeway networks and explore applying it (or a variation) 

for two-lane highways and arterials. While this study includes three crash dimensions in its 

features, future studies may consider fewer (e.g., number of vehicles and manner of collision) and 

more crash dimensions (e.g., roadway geometry or AADT). The clustering may also involve other 

non-crash features and incorporate spatial correlation. A future study may expand the proposed 

RFS method to segmentize highways with a variable segment length rather than a constant length 

of the segment. The fragment size (segment length) selected for data aggregation may impact the 

statistical significance of explanatory variables in crash prediction models; a future study 

investigates these impacts and investigates the potential advantages of the recommended fragment 

size (RFS) for crash prediction models . 
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CHAPTER 3.  Traffic Crash Hotspot Identification and Static Contributing Factors by Crash 

Unit, Manner of Collision, and Crash Severity 

3.1. INTRODUCTION 

   According to the World Health Organization (WHO), traffic crashes are a primary cause of death 

and injury worldwide, with an estimated 1.35 million deaths annually (World Health Organization 

(WHO), 2018). As the highway/freeway systems expand rapidly, the risk of crashes increases, 

making freeway safety management a top priority. In recent years, identifying traffic crash hotspots 

has become essential for pinpointing hazardous locations, prioritizing effective countermeasures, 

and improving road safety. Traffic crash hotspots represent locations where the frequency of crash 

occurrences is higher or the likelihood of crashes is more significant than the neighboring locations 

along the targeted corridor or across a network. Hotspot identification (HSID) allows for targeted 

interventions to reduce the likelihood of crashes and improve safety in hazardous areas by 

understanding the contributing factors in traffic crashes. Most HSID studies focus on the total 

number of crashes. However, a few recent studies investigated the crash hotspots by considering 

one or two traffic crash characteristics, such as the number of vehicles involved in crashes (crash 

units), manner of collision, and crash severity. HSID studies show that crash hotspots based on 

any of the three traffic crash characteristics differ from crash hotspots based on the total crashes. 

Leaving out any of the three crash characteristics may disrupt understanding traffic crashes, 

contributing factors, and identifying the hotspots. This study develops a methodology to include 

all three crash dimensions simultaneously in HSID and analyzes the effect of adding additional 

crash dimensions on HSID and contributing factors (Wang & Feng, 2019).  

   This study investigates the crash dimensions' role in properly characterizing hotspots and 

contributing factors. The number of vehicles involved in crashes (crash units), which categorizes 

traffic crashes into single-vehicle (SV) and multi-vehicle (MV), may be used to identify different 



 43 

crash hotspots for each category.  Previous research indicates a crucial need to characterize SV and 

MV crash hotspots separately because they have different spatial distributions and contributing 

factors (Wang & Feng, 2019). Other research supports that the factors that lead to crashes may be 

different or have different impacts on SV and MV crashes (Ivan, et al., 1999; Abdel-Aty, et al., 

2006). Because the crash unit plays a significant role in both aggregate and disaggregate traffic 

safety analysis approaches (Yu & Abdel-Aty, 2013), this study considers crash units in crash HSID. 

The manner of collision, or the first event in a crash, represents another essential traffic crash 

characteristic since the contributing factors vary for the various manners of collision; some studies 

refer to the manner of collision as a crash type. An earlier study indicates that including the manner 

of collision reveals important information that total crashes may fail to recognize (Golob, et al., 

2008). By incorporating the manner of collision (crash type) rather than solely focusing on total 

crashes, many traffic safety studies have uncovered unknown details about traffic crashes (Golob, 

et al., 2004a; Cheng, et al., 2017). Cheng et al. (2017) also support the importance of including the 

manner of collision in safety analyses. Thus, this study includes the manner of collision as another 

traffic crash feature dimension. In traffic crash studies, crash severity represents another crucial 

characteristic considered alongside crash units and crash type. Previous research has also shown 

that contributing factors to traffic crashes may have varying impacts on different levels of crash 

severity (Abdel-Aty, 2003; Jung, et al., 2010). While crash severity has been incorporated into 

studies that identify crash hotspots at intersections, it is often overlooked in HSID studies for 

uninterrupted facilities.  All three dimensions exhibit different relationships with contributing 

factors and spatial distributions. 

   Many approaches to hotspot identification exist, and they can be categorized into Geographic 

Information Systems (GIS) based spatial analysis, statistical models, and machine learning. GIS 
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has become a valuable tool for studying traffic crashes spatially and identifying areas with a high 

frequency of crashes by mapping and analyzing crash data (Al-Aamri et al., 2021). The 

conventional approach to identifying high-crash areas involves creating crash concentration maps, 

which rely on Kernel Density Estimation (KDE) and absolute counts of crashes to determine the 

density of crashes in a given area (Truong & Somenahalli, 2011). However, some research 

identifies two potential issues with this method. Firstly, the accuracy of concentration maps may 

vary depending on the search bandwidth used. Secondly, the absolute crash counts may not 

accurately indicate safety issues, as they ignore important factors such as crash types and exposure 

measures like vehicular volumes (Truong & Somenahalli, 2011). Another approach uses regression 

models developed in previous studies or using historical data to predict the number of crashes, 

examine factors associated with crashes, and identify traffic crash hotspots. These previous studies 

use several types of count data regression models: Poisson, Negative Binomial, Poisson 

Lognormal, Zero-Inflated Poisson/Negative Binomial, Gamma, Generalized Estimating Equation, 

Negative Multinomial, and Hurdle (Hilbe, 2014). The regression models aim to predict crash 

frequencies based on roadway geometry features, traffic characteristics, and weather conditions. 

[Explain the step to identify crash hotspots] (Highway Safety, 2005). Some recent studies apply 

machine learning methods to conduct traffic safety studies and identify traffic crash hotspots. 

Machine learning methods used to investigate traffic crash include random forest, decision tree, 

support vector machine (SVM), Naive Bayes, and neural network (Santos et al., 2022).  The 

statistical models still appeal significantly because they provide engineers insight into features that 

may contribute to higher crash frequencies. 

   This study investigates the implications of HSID (crash hotspot identification) based on 

simultaneously considering three traffic crash characteristics: crash units, manner of collision, and 



 45 

crash severity. This approach can identify distinct contributing factors for each group of crashes. 

To carefully examine the benefits of the proposed strategy and compare it with previous findings, 

the study conducts HSID for three other scenarios: (A) total crashes (with no incorporation of crash 

characteristics), (B) single-vehicle (SV) and multi-vehicle (MV) crashes (with only crash units 

considered), and (C) all crash groups categorized by crash units and crash types. The authors 

examine the spatial differences and changes in contributing factors for the traffic crash hotspots 

generated using all three crash characteristics and scenarios (A), (B), and (C) to determine the 

potential advantages of using HSID based on these three traffic crash dimensions. 

3.2. LITERATURE REVIEW  

3.2.1. Traffic crash hotspots: 

   Traffic safety represents a significant concern due to the socioeconomic burden associated with 

road crashes each year across the globe. Many countries worldwide have launched measures to 

promote traffic and road safety to reduce fatalities as their population grows; however, these 

countries have failed to meet the WHO’s worldwide objective of reducing road traffic deaths by 

half by 2020 (World Health Organization (WHO), 2018). Traffic safety research investigates the 

likelihood of traffic crash occurrence, identifies crash hotspot locations (locations with high crash 

frequency), and characterizes traffic crash contributing factors to improve traffic safety and 

mitigate the socioeconomic impacts of traffic crashes. In theory, a crash hotspot refers to a place 

where a greater number of crashes have taken place in comparison to other comparable locations 

along the targeted corridor or across a network (Sørensen & Elvik, 2007). The process of 

identifying hotspots and potential safety issues aims to highlight the roadway sections with a high 

risk of crashes. The HSID process aims to suggest possible countermeasures to reduce the risk of 

crashes by analyzing various crash patterns and identifying contributing factors (Montella, 2010). 
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Therefore, HSID is a focal point of traffic safety analyses by identifying contributing factors and 

mitigation strategies for the hazardous areas. 

3.2.2. Hotspot identification approaches and crash prediction models: 

   Various methods are available for identifying hotspots, including crash frequency (CF), crash 

rate (CR), quality control (QC), equivalent property damage only (EPDO), empirical Bayes (EB), 

full Bayes (FB), and potential for safety improvement (PSI). While CF (Oppe, 1991) and CR (Lord 

& Park, 2008) are easy to implement, CF overlooks the influence of traffic volume, and CR may 

incorrectly estimate the effect of the exposure variable. Neither method considers random 

fluctuations in the crash count (Hauer, 1997). The QC method proposed by Norden et al. (1956) 

considers the discreteness of crash data and assumes that crashes follow the Poisson distribution. 

Still, setting a comparison threshold reduces the probability of mistakenly identifying low-traffic 

areas as safe. However, considering the discreteness of crash data using a  threshold may not be 

applicable for a corridor with high traffic volume and traffic crash occurrences across the entire 

corridor. The EPDO method, proposed by Tamburri and Smith (1970), considers crash severity in 

determining hotspots, but it tends to exaggerate the risk in a hotspot location where serious crashes 

only occasionally occur. However, none of these methods considers the problem of regression to 

the mean (RTM) in the crash count, which results in incorrect hotspot identification due to random 

fluctuations in crash characteristics (Hauer, 1980). 

   The EB method has gained widespread use in hotspot identification, as it accounts for the random 

fluctuations in crash counts and resolves issues with CF and CR (Hauer, et al., 1988; Persaud, et 

al., 1999; Sørensen & Elvik, 2007). However, creating the safety analysis model requires many 

samples, and the model must have a simple form for ease of implementation. Schluter et al. (1997) 

introduce the FB method as an improved version of EB to estimate the posterior distribution of 
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crashes and use the estimate as an index to identify hotspots. Miranda-Moreno and Fu (2007) 

compare FB and EB and indicate that both methods produce similar results with an adequate 

sample size. However, FB appears superior for small sample sizes. Huang et al. (2009) utilize a 

Bayesian framework and a hierarchical model considering spatial and temporal correlation and 

demonstrate that FB can accommodate complex model forms and outperform EB in hotspot 

identification. 

   In 1999, Persaud et al. introduced the PSI approach, which calculates the disparity between the 

anticipated crash frequency at a particular location and the average forecasted crash frequency for 

that location using crash prediction models. In studies, researchers have commonly employed a 

combination of EB or FB with PSI (Wang & Feng, 2019) or FB and PSI (Dong, et al., 2016) to 

account for the stochastic nature of crashes. 

   Crash prediction models have been investigated for several decades. Initially, researchers relied 

on linear regression models to estimate crashes and establish correlations between crash frequency 

and explanatory factors (Joshua & Garber, 1990; Okamoto & Koshi, 1989). However, linear 

regression models had limitations in handling crash data's discrete and non-negative nature (Lord 

& Mannering, 2010; Miaou & Lum, 1993). As a result, many researchers adopted count data 

models for crash prediction. The Poisson regression model was the preferred option for researchers 

because it assumed that the variance of the data was equivalent to its mean. However, crash data 

was often characterized by over-dispersion, which occurred when the variance of crash data 

exceeded its mean. To address the over-dispersion issue, researchers employed negative binomial 

(NB) regression models (Abdel-Aty & Radwan, 2000; Miaou, 1994). As statistical methods 

advanced and computing power improved, more sophisticated techniques have been developed to 

model crash data. Lord and Mannering (2010) and Mannering and Bhat (2014) comprehensively 
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documented the current trends in crash prediction and future directions. Despite the complexity, 

the conventional NB model remained popular due to its simple implementation. 

   The negative binomial (Al-Aamri, et al., 2021) model has various parameterizations in the 

literature. However, the NB-1 and NB-2 (Cameron & Trivedi, 1986) are commonly utilized for 

count data modeling (Wang et al., 2019; Giuffre et al., 2014; Ismail & Zamani, 2013; Hilbe, 2011; 

Winkelmann, 2008; Chang & Xiang, 2003; Miaou & Lord, 2003). These two models differ based 

on the relationship between the variance and mean of the data. The NB-1 assumes a linear 

relationship between the variance and mean, while the NB-2 assumes a quadratic relationship. 

Comprehensive estimation procedures for both forms are outlined in Hardin and Hilbe (2018), 

Lord and Park (2015), and Hilbe (2011). In traffic safety, the NB-2 is frequently utilized to estimate 

safety performance functions (SPFs), while the NB-1 is employed in a limited number of studies. 

For instance, Chang and Xiang (2003) employed both NB-1 and NB-2 models to investigate the 

association between crashes and traffic congestion levels on freeways. The authors discovered that 

both models exhibited consistent results for the relationship between crashes and traffic volume, 

number of through lanes, and median. Giuffre et al. (2014) used NB-1 and NB-2 models to develop 

SPFs for urban unsignalized intersections and found that NB-1 fitted the data better than NB-2. 

Wang et al. (2019) used the NB-1 model in combination with the standard Poisson, NB-2, and NB-

P models to estimate SPFs and select a superior-performing model for rural two-lane intersections. 

   However, some drawbacks to using the NB-1 and NB-2 models exist. These models restrict the 

variance structure when estimating SPFs, with the NB-1 and NB-2 models imposing a linear and 

quadratic link between the mean and variance of crash data, respectively (Park, 2010). This limited 

variance structure can result in biased model parameter estimates and inaccurate crash predictions 

(Wang et al., 2019). Additionally, the NB-1 and NB-2 models are non-nested, meaning a statistical 
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test cannot directly compare them to determine the better model (Wang et al., 2019; Greene, 2008). 

To address this issue, Greene (2008) introduced a new NB regression functional form called the 

NB-P, which nests both the NB-1 and NB-2 models. The NB-P model extends traditional NB 

models to address the restricted variance structure problem and reduces to the NB-1 when P = 1 

and NB-2 when P = 2. The parametric nature of the NB-P model allows analysts to test the NB-1 

and NB-2 functional forms against the more general NB-P model. It offers a better model fit and 

estimation accuracy due to its flexible variance structure. The researchers focused on constructing 

models only based on traffic factors. The previous research showed that the NB-P model 

outperformed the Poisson, NB-1, and NB-2 models. They concluded that the NB-P model's 

malleable variance structure notably enhanced estimation accuracy. In a recent study, Wang and 

colleagues (2020) utilized the NB-P model to investigate different intersection safety performance 

functions in urban and suburban settings. 

   According to the literature review, the NB-P model has yet to be widely adopted in traffic safety 

studies and crash prediction, despite its potential to improve estimation accuracy compared to 

traditional NB models. To the best of the authors' knowledge, the NB-P model has been applied to 

estimate SPFs for urban roads only by Wang et al. (2020) and the NB-P model has not been used 

for estimating multivariate SPFs. Given the benefits of the NB-P model in terms of offering a 

flexible variance structure and the ability to statistically test the NB-1 and NB-2 models against an 

available alternative, the authors see an opportunity to apply it in this study. 

   The traditional Poisson and negative binomial models used in crash count analysis are not well-

equipped to handle excessive zeros (Dong et al., 2014). To address this issue, zero-inflated models 

have been widely employed (Carson & Mannering, 2001; Qin et al., 2005). These models assume 

that the extra zeros in the dataset come from two states: a true-zero state where the roadway 
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segment is inherently safe and a nonzero state where no crashes occur during the observation 

period (Shankar et al., 1997). As zero-inflated models, zero-inflated Poisson and zero-inflated 

negative binomial models have been commonly used in the literature to address the issue of 

excessive zeros in crash frequency analysis (Lee & Mannering, 2002; Chin & Quddus, 2003). 

These models have been shown to provide a statistically better fit to the data in various studies 

(Malyshkina & Mannering, 2010). However, it is highly unlikely that roadway segments are 

intrinsically safe. For instance, crashes can occur due to the unsafe behavior of drivers, even on 

well-designed roadway segments. Therefore, the fundamental assumption of the zero-inflated 

model is flawed (Lord et al., 2005, 2007). As an alternative approach, the hurdle model, also known 

as the two-part model, has been employed to handle excessive zeros in the dataset (Ma et al., 2016). 

The hurdle model, a two-part model, first determines whether the count value is zero or positive 

and then, if positive, uses a truncated count distribution for analysis (Cragg, 1971). The hurdle 

model assumes that roadway segments with zero crashes observed during the study period are only 

safe during that period, not inherently. 

   This study selects statistical crash models with Potential for Safety Improvement (PSI) for HSID. 

Among three main HSID methods (Geographic Information Systems (GIS) based spatial analysis, 

statistical models, and machine learning), statistical crash models with Potential for Safety 

Improvement (PSI) represent the prevailing method to detect crash hotspots since PSI accounts for 

random fluctuations in the crash characteristics. By leveraging the statistical models, studies can 

identify traffic crash hotspots (Thakali et al., 2015). Traditionally, crash prediction models have 

been used at the micro-levels for intersections, segments, or corridors. Nevertheless, some 

researchers have applied crash prediction models at the macro-level by integrating safety into 

transportation planning zones (Lee, 2014; Park et al., 2015); however, the micro-level models 
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outperform macro-level models (Huang et al., 2016). Thus, this study develops its tri-dimensional 

statistical crash models with PSI methodology to identify hotspots at a micro-level. 

   The study aims to identify the best model for estimating segment potential for safety 

improvement (PSI) for an urban highway. To achieve this, various count regression models are 

applied including Poisson (P), negative binomial (NB), negative binomial type p (NBP), zero-

inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated negative binomial 

type p (ZINBP), Consul’s Generalized Poisson (GP-1), Famoye’s Generalized Poison (GP-2), and 

hurdle regression. Since the crash groups considered in this study may have negligible or 

significant dispersion, the statistical model development needs to include models capable of 

addressing a variety of different data structures.  listed to handle crash groups with either. Also, as 

the study conders more traffic crash dimensions to form crash groups, crash groups with an 

excessive number of zeros appear likely to occur, which requires including zero-inflated count 

regression models as possible solutions. The study selects a comprehensive set of statistical models 

to cope with the differences in data structures across the crash groups. 

   When estimating crash prediction models, previous research includes many features representing 

traffic operational characteristics, roadway geometry characteristics, and ambient conditions as the 

explanatory variables in the predictive models. In previous studies, the most popular traffic 

operational characteristics are the average daily traffic (ADT) (Daniels, et al., 2010; Yu, et al., 

2014; Wang, et al., 2017), average daily lane occupancy, average daily speed (Wang, et al., 2017), 

annual average daily traffic (AADT) (Montella, 2010; Yu, et al., 2014; Eustace, et al., 2015; Yang, 

et al., 2021), annual average daily traffic for passenger car/trucks (AADT45/AADT6) (Yu, et al., 

2014), truck or heavy vehicle percentage (Abdel-Aty & Pande, 2007) (Montella, 2010), speed limit 

(Abdel-Aty & Pande, 2007; Chiou & Fu, 2013), 85th percentile of speed reduction (ΔV789:) 
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(Montella, 2010), v/c ratio (Abdel-Aty & Pande, 2007), and vehicle miles traveled (Yang, et al., 

2021). Some of the road geometry characteristics in the previous studies include lane configuration 

(Daniels, et al., 2010), curvature (Abdel-Aty & Pande, 2007; Montella, 2010; Chiou & Fu, 2013), 

deflection angle, tangent length preceding a curve, vertical alignment (Montella, 2010), maximum 

upward/downward grade (Chiou & Fu, 2013), ramp presence (Abdel-Aty & Pande, 2007; Yu, et 

al., 2014), segment on bridge (Montella, 2010; Eustace, et al., 2015), median type (Montella, 2010; 

Yu, et al., 2014), median width, shoulder width (Yu, et al., 2014), number of lanes (Abdel-Aty & 

Pande, 2007; Chiou & Fu, 2013; Yu, et al., 2014; Wang, et al., 2017; Yang, et al., 2021), 

inside/outside shoulders width  (Wang, et al., 2017), the difference between the assumed and 

demanded side friction factors (Δf;/) (Montella, 2010), road surface condition (Yang, et al., 2021), 

and road surface type (Eustace, et al., 2015; Yang, et al., 2021). For model estimation, this study 

evaluates a wide range traffic operational characteristics and roadway geometry characteristics, 

but only validates and retains a limited number of features based on their data quality. 

3.2.3. Traffic Crash Dimensions: 

   Previous research typically considers three vital characteristics to describe traffic crashes; these 

are the number of vehicle involved in a traffic crash (crash units), manner of collision (crash type), 

and crash severity.  

   The number of vehicles involved in a traffic crash is a critical characteristic, also known as "crash 

units." This characteristic involves classifying crashes as either single-vehicle (SV) or multi-

vehicle (MV). For traffic crash hotspots based on site locations, crash units can be a distinguishing 

factor in identifying high-risk areas (Wang & Feng, 2019) or contributing factors (Ivan, et al., 

1999; Abdel-Aty, et al., 2006), (Yu, et al., 2013) and their related impacts  (Yu & Abdel-Aty, 2013; 

Dong, et al., 2018). The study reveals that separate HSID analyses for single-vehicle (SV) and 
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multi-vehicle (MV) crashes are necessary due to the dissimilarities in their spatial distribution and 

associated contributing factors (Wang & Feng, 2019). This holds true for both aggregate and 

disaggregate approaches in the study of traffic crashes. (Yu & Abdel-Aty, 2013). Wang and Feng 

(2019) conducted a study on HSID, focusing on single-vehicle (SV) and multi-vehicle (MV) 

crashes. They used separate crash prediction models that were proposed in earlier studies. (Ivan, 

et al., 1999; Lord, et al., 2005; Geedipally & Lord, 2010; Ma, et al., 2016). According to Wang and 

Feng (2019), notable differences in both the significant crash contributing factors and the identified 

hotspots occur when comparing the results from total crashes to the results from single-vehicle 

(SV), and multi-vehicle (MV) crashes.  

   Studying the manner of collision is another essential aspect of traffic crash analysis. This is also 

known as "crash type" in some studies and refers to the initial event that occurs during a traffic 

crash or incident when a collision or unexpected event occurs. Including crash type in traffic crash 

analysis is crucial, particularly for real-time crash risk assessment (Pande & Abdel-Aty, 2006). 

Numerous empirical studies have demonstrated that traffic crashes are specific to their type, 

regardless of the level of aggregation (Golob, Recker, & Pavlis, 2008). Cheng et al. (2017) 

demonstrate the presence of spatial correlations between the crash types of neighboring 

intersections. Despite the importance of considering crash types, few studies have focused on 

conducting HSID based on crash types. This study includes crash type as a crucial traffic crash 

characteristic to identify crash hotspots. 

   One important aspect of traffic crashes is crash severity, which is determined by the extent of 

damage caused by the crash, ranging from minor property damage to extremely costly severe 

injuries or fatality. This can be determined by the level of injuries sustained by those involved or 

the amount of damage caused (Xu, et al., 2013). Developing crash prediction models that account 



 54 

for different crash severity levels has provided valuable insights into decreasing the probability of 

severe crashes (Xu, et al., 2013). Crash severity is essential for studying single-vehicle (SV) 

crashes and their contributing factors (Jung, et al., 2010) because crash hotspots vary by severity 

(Dezman, et al., 2016). Several studies have explored crash hotspots with crash severity by 

applying negative binomial and Bayesian spatial statistical methods (Mitra, 2009), multivariate 

crash count models, equivalent property damage only (EPDO), and two-stage models (Afghari, et 

al., 2020). Afghari et al. (Afghari, et al., 2020) declare that the traditional approaches do not 

consider the unobserved heterogeneity associated with the correlations between crash counts for 

each severity level. To account for this, the current study considers the severity of crashes in 

addition to the number of vehicles involved (crash units) and the type of collision (crash types). 

3.3. DATA DESCRIPTION 

   This study aims to analyze mainlane segments in both directions of IH-20 within Dallas County. 

The Texas Department of Transportation's C.R.I.S. (Crash Record Information System) is the 

source of the traffic crash data for 2015-2019, including information on crashes, roadway 

geometry, and traffic characteristics. 

3.3.1. Crash Data Features 

   Features from three groups - crash fields, unit fields, and person fields - are included in the crash 

data obtained from the Texas Department of Transportation (TxDOT) C.R.I.S. (Crash Record 

Information System). The crash fields provide the information required for this study, including 

latitude, longitude, reference marker, offset distance, highway system, roadway part, highway 

name, manner of collision, crash severity, and other geometric design features such as curve type, 

curve degree (curvature), curve length, curve delta degree, left shoulder type, left shoulder use, left 

shoulder width, right shoulder type, right shoulder use, right shoulder width, median type, median, 

number of lanes, roadbed width, surface condition, surface type, and surface width. 
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3.3.2. Traffic Characteristics features 

   The crash data is organized into three categories: crash fields, unit fields, and person fields. For 

this study, only the crash fields are relevant and include details such as latitude, longitude, highway 

name, crash severity, and geometric design features. Traffic characteristics such as adjusted 

average daily traffic amounts, single-unit truck percentages, combo truck percentages, adjusted 

percentage of average daily traffic for trucks, and speed limits are also included. 

3.3.3. Data Preparation 

   To prepare the data, individual entries for each person involved in a crash are combined into a 

single entry using the newly assigned crash ID, a combination of crash date, crash time, and 

existing crash ID. To maintain the crash locations, the crash location reference markers and offset 

values provided in the crash data sets are utilized to calculate milepost values. This new dataset is 

then grouped by roadway travel direction for analysis. Only crashes on main roadway segments 

are considered, and those involving work zones, pedestrians, or wrong-way driving are excluded. 

This study utilizes feature engineering techniques to filter out crash data pertaining only to the 

main segment of each roadway while excluding data involving pedestrians, active work zones, 

construction areas, and wrong-way driving. The crash data points are geovalidated using KMZ 

files imported to Google Earth® to ensure the consistency of feature values for roadway segments 

and vehicle travel directions. Geometric design features are also validated using these files, 

revealing that feature values for left and right shoulder width, median width, number of lanes, 

surface type, and surface width are inconsistent with true measurements and are thus excluded 

from this study. 

   The Texas Department of Transportation (TxDOT) - Traffic Safety Division (2020) provides 

categories for crash severity levels, with A representing suspected serious injury, B for suspected 
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minor injury, C for possible injury, K for fatal injury, N for not injured, and 99 for unknown. Table 

3.1. contains the definitions for these categories. Table 3.2. presents the summary statistics of crash 

data, including the percentage range of traffic crash severity for corridors. The data shows that 

fatal crashes occur at a considerably low percentage, indicating that they may not be a key feature 

in differentiating roadway segments and forming clusters. To address this, fatal and suspected 

serious injury crashes are grouped together, while suspected minor and possible injury crashes are 

also combined. Non-injury crashes remain a separate characteristic, and crashes with unknown 

severity are excluded from the study. 

   Traffic crash groups and their abbreviations are shown in Fig. 3.1. In this study, four scenarios 

are considered to form crash groups as shown (orange boxes) in Fig 3.1. The crash count calculated 

for each of the generated crash group. Depending on the scenario, the naming convention of crash 

group is in a format of ‘A’, ‘A-B’, or ‘A-B-C’ in which A, B, and C are the traffic crash 

abbreviations for the number of vehicles involved in crashes, manner of collision, and crash 

severity, respectively. For instance, ‘SV-OBJ-N’ is the crash group for single-vehicle object-related 

crashes with no injuries. Also, ‘MV-RRND-B+C’ is the feature for multi-vehicle rear-end crashes 

with suspected minor or possible injuries. In scenario 1, ‘TNC’ is the crash group including all 

crashes occurring in each segment. The statistics summary of crash counts for each crash group of 

each scenario are provided in Tables 3.3. – 3.12. According to the statistics summaries, insufficient 

observations for MV-ANG related crash groups in scenarios 3 and 4 for both IH-20 EB and IH-20 

WB exist to perform statistical modeling. Additionally, the crash groups ‘SV-OTH-A+K’ and ‘SV-

OVT-A+K’ for IIH-20 EB and ‘SV-OTH-A+K’ and ‘SV-OTH-B+C’ for IIH-20 WB show 

insufficient observations for modeling. 
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Table 3.1. Traffic Crash Categories and Definitions. 

Traffic Crash Data Categories 

Number of Vehicle 

Involved in Crashes 

  

Single-Vehicle (SV) Crashes that only involves one motor vehicle. 

Multi-Vehicle (MV) Crashes that involve two or more motor vehicles. 

Manner of Collision   

Fixed Object (OBJ) Crashes that involve hiding fixed objects as the first harmful event. 

Over-turned (OVT) Crashes that the first harmful event is identified as vehicle overturn. 

In-Transport (TRNSP) 
 

Angled (ANG) Crashes that two motor vehicles are collided at an angle. 

Rear-End (RE) Crashes that a motor vehicle is rear-ended by another motor vehicle. 

Sideswipe (SDSP) Crashes that a motor vehicle is sideswiped by another motor vehicle. 

Other (OTH) Crashes that the manner of collision is none of the items above. 

Crash Severity   

A - Suspected Serious 

      Injury 

Severe injury that prevents continuation of normal activities leading to temporarily or permanent 

incapacitation. 

B - Suspected Minor 

      Injury 

Evident injury such as bruises, abrasions, or minor lacerations which do not incapacitate. 

C - Possible Injury Injury claimed, reported, or indicated by behavior but without visible wounds, includes limping 

or complaint of pain 

K - Fatal If death resulted due to injuries sustained from the crash, at the scene or within 30 days of crash. 

N - Not Injured The person involved in the crash did not sustain as A, B, C, or K injury. 

99 - Unknown Unable to determine whether injuries exist. Some examples may include hit and run, fled scene, 

fail to stop and render aid. 
 

 

Table 3.2. IH 20 (EB/WB) Traffic Crash Statistics by Severity. 

 % Range Across 
Corridors % Total Crashes in 

Dallas County Crash Data (2015-2019) 

Crash Severity Min Mx 

99 - UNKNOWN 0.63% 3.06% 1.19% 
A - SUSPECTED SERIOUS INJURY 1.27% 4.14% 2.05% 
B - SUSPECTED MINOR INJURY 6.82% 13.52% 10.55% 
C - POSSIBLE INJURY 16.45% 30.57% 21.15% 
K - FATAL INJURY 0.24% 1.39% 0.48% 

N - NOT INJURED 54.97% 73.46% 64.57% 
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Table 3.3. Statistical Summary of TNC & SV Crashes in Scenario 2, 3, & 4 for IH-20 EB 

 
 
 

Table 3.4. Statistical Summary of SV Crashes in Scenario 4 for IH-20 EB 

 
 
 

Table 3.5. Statistical Summary of TNC & MV Crashes in Scenario 2 & 3 for IH-20 EB 

 
 
 
 
 
 
 

Scenario 1 Scenario 2 (SV)
TNC SV SV-OBJ SV-OTH SV-OVT SV-OBJ-A+K SV-OBJ-B+C

Total 2471 565 464 41 60 30 140
Min 0 0 0 0 0 0 0
Mod 0 0 0 0 0 0 0
Median 6 1 1 0 0 0 0
Max 99 17 14 3 3 2 4
Mean 10.21 2.33 1.92 0.17 0.25 0.12 0.58
Variance 149.32 8.66 6.53 0.22 0.26 0.13 0.85
# of Non-Zero 215 157 143 34 52 28 84
N 242 242 242 242 242 242 242

Scenario 3 (SV) Scenario 4 (SV)IH-20 EB

SV-OBJ-N SV-OTH-A+K SV-OTH-B+C SV-OTH-N SV-OVT-A+K SV-OVT-B+C SV-OVT-N
Total 294 0 6 35 7 35 18
Min 0 0 0 0 0 0 0
Mod 0 0 0 0 0 0 0
Median 1 0 0 0 0 0 0
Max 10 0 1 3 1 3 2
Mean 1.21 0.00 0.02 0.14 0.03 0.14 0.07
Variance 3.38 0.00 0.02 0.17 0.03 0.16 0.08
# of Non-Zero 122 0 6 30 7 32 17
N 242 242 242 242 242 242 242

Scenario 4 (SV)IH-20 EB

Scenario 1 Scenario 2 (MV)
TNC MV MV-ANG MV-RRND MV-SDSW MV-STPD

Total 2471 1906 2 837 823 244
Min 0 0 0 0 0 0
Mod 0 0 0 0 0 0
Median 6 5 0 2 2 0
Max 99 90 1 61 22 14
Mean 10.21 7.88 0.01 3.46 3.40 1.01
Variance 149.32 99.76 0.01 30.17 16.52 2.89
# of Non-Zero 215 207 2 180 174 114
N 242 242 242 242 242 242

Scenario 3 (MV)IH-20 EB
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Table 3.6. Statistical Summary of MV Crashes in Scenario 4 for IH-20 EB (cont’d) 

 
 

Table 3.7. Statistical Summary of MV Crashes in Scenario 4 for IH-20 EB 

    
 

Table 3.8. Statistical Summary of TNC & SV Crashes in Scenario 2, 3, & 4 for IH-20 WB 

 
 

 

 

MV-ANG-A+K MV-ANG-B+C MV-ANG-N MV-RRND-A+K MV-RRND-B+C MV-RRND-N
Total 1 1 0 19 283 535
Min 0 0 0 0 0 0
Mod 0 0 0 0 0 0
Median 0 0 0 0 1 1
Max 1 1 0 2 14 46
Mean 0.00 0.00 0.00 0.08 1.17 2.21
Variance 0.00 0.00 0.00 0.10 3.11 16.09
# of Non-Zero 1 1 0 16 123 156
N 242 242 242 242 242 242

IH-20 EB Scenario 4 (MV)

MV-SDSW-A+K MV-SDSW-B+C MV-SDSW-N MV-STPD-A+K MV-STPD-B+C MV-STPD-N
Total 9 214 600 5 109 130
Min 0 0 0 0 0 0
Mod 0 0 0 0 0 0
Median 0 0 1 0 0 0
Max 2 7 17 1 8 6
Mean 0.04 0.88 2.48 0.02 0.45 0.54
Variance 0.04 1.93 9.56 0.02 0.95 0.94
# of Non-Zero 8 105 155 5 64 81
N 242 242 242 242 242 242

IH-20 EB Scenario 4 (MV)

Scenario 1 Scenario 2 (SV)
TNC SV SV-OBJ SV-OTH SV-OVT SV-OBJ-A+K SV-OBJ-B+C

Total 2367 548 474 43 31 27 160
Min 0 0 0 0 0 0 0
Mod 0 0 0 0 0 0 0
Median 7 1 1 0 0 0 0
Max 62 14 12 3 2 2 7
Mean 9.78 2.26 1.96 0.18 0.13 0.11 0.66
Variance 107.74 6.83 5.26 0.22 0.14 0.13 1.02
# of Non-Zero 217 172 167 35 28 23 98
N 242 242 242 242 242 242 242

IH-20 WB Scenario 3 (SV) Scenario 4 (SV)
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Table 3.9. Statistical Summary of SV Crashes in Scenario 4 for IH-20 WB 

 
 

Table 3.10. Statistical Summary of TNC & MV Crashes in Scenario 2 & 3 for IH-20 WB 

 

 

Table 3.11. Statistical Summary of MV Crashes in Scenario 4 for IH-20 WB (cont’d) 

 

 

 
 

SV-OBJ-N SV-OTH-A+K SV-OTH-B+C SV-OTH-N SV-OVT-A+K SV-OVT-B+C SV-OVT-N
Total 287 2 3 38 4 12 15
Min 0 0 0 0 0 0 0
Mod 0 0 0 0 0 0 0
Median 1 0 0 0 0 0 0
Max 7 1 1 3 1 1 1
Mean 1.19 0.01 0.01 0.16 0.02 0.05 0.06
Variance 2.28 0.01 0.01 0.19 0.02 0.05 0.06
# of Non-Zero 131 2 3 32 4 12 15
N 242 242 242 242 242 242 242

IH-20 WB Scenario 4 (SV)

Scenario 1 Scenario 2 (MV)
TNC MV MV-ANG MV-RRND MV-SDSW MV-STPD

Total 2367 1819 5 852 749 213
Min 0 0 0 0 0 0
Mod 0 0 0 0 0 0
Median 7 5 0 2 2 0
Max 62 49 2 31 21 11
Mean 9.78 7.52 0.02 3.52 3.10 0.88
Variance 107.74 71.07 0.03 19.89 12.99 2.11
# of Non-Zero 217 210 4 182 182 107
N 242 242 242 242 242 242

IH-20 WB Scenario 3 (MV)

MV-ANG-A+K MV-ANG-B+C MV-ANG-N MV-RRND-A+K MV-RRND-B+C MV-RRND-N
Total 0 2 3 28 286 538
Min 0 0 0 0 0 0
Mod 0 0 0 0 0 0
Median 0 0 0 0 1 1
Max 0 1 1 2 11 20
Mean 0.00 0.01 0.01 0.12 1.18 2.22
Variance 0.00 0.01 0.01 0.11 2.60 9.68
# of Non-Zero 0 2 3 27 134 160
N 242 242 242 242 242 242

IH-20 WB Scenario 4 (MV)
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Table 3.12. Statistical Summary of MV Crashes in Scenario 4 for IH-20 WB 

 

3.4. METHODOLOGY 

3.4.1. Introduction 

   This study uses count regression models to predict the crash frequencies and investigates 

roadway geometric features and traffic characteristics as explanatory variables. Based on the 

expected crash frequencies from the regression models, the potential for safety improvement (PSI) 

is calculated by accounting for dispersions and used to identify traffic crash hotspots. Identifying 

traffic crash hotspots involves the examination of various traffic crash characteristics, such as the 

number of vehicles involved (crash units) (Wang & Feng, 2019), the manner of collision (crash 

type) (Golob, et al., 2004a; Cheng, et al., 2017), and the severity of the crash (crash severity) 

(Abdel-Aty, 2003; Jung, et al., 2010).  

3.4.2. Poisson and negative binomial regression model  

   In traffic crash analysis, a typical prediction model is Poisson regression model which ignores 

the over-dispersion in the crash data (Lord & Mannering, 2010). To address the over-dispersion 

problem, negative binomial regression model (Al-Aamri, Hornby et al.) has been applied in 

previous studies (Anastasopoulos & Mannering, 2009; Geedipally & Lord, 2010; Ma, et al., 2017; 

Ma, et al., 2017). According to (Chow & Steenhard, 2009), the standard negative binomial 

probability mass function and the negative binomial regression model are defined as: 

MV-SDSW-A+K MV-SDSW-B+C MV-SDSW-N MV-STPD-A+K MV-STPD-B+C MV-STPD-N
Total 12 195 542 4 83 126
Min 0 0 0 0 0 0
Mod 0 0 0 0 0 0
Median 0 0 1 0 0 0
Max 2 8 18 1 6 5
Mean 0.05 0.81 2.24 0.02 0.34 0.52
Variance 0.06 1.55 7.70 0.02 0.59 0.88
# of Non-Zero 11 101 168 4 56 78
N 242 242 242 242 242 242

IH-20 WB Scenario 4 (MV)
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 log(λ<) = 	β- + β	X< (2) 

where y< is the number of traffic crashes on segment i during a period of time, and λ< is the mean 

predicted crash frequency for segment i. The assumption is that λ< is a function of exploratory 

vector X<. β- and β  are regression coefficients and α is the over-dispersion parameter. Noteably, 

the NB model contracts to a Poisson regression model when there is no over-dispersion (i.e. α =

0). The traditional NB model is also known as the NB-2 model (Khattak, et al., 2021). Replacing 

α=0 in the NB-2 model (Eq. 1) with α=0λ< yields a re-parameterization of the variance structure 

the NB model, transforming it to a different functional form known as the NB-1 (Khattak, et al., 

2021). Another functional form of the negative binomial regression model called negative 

binomial model-type P exists. The NB-P model is introduced by Greene (2008), and the parameter 

“P” represents the relationship between mean and variance:  E(Y<) = λ<, Var(Y<) = λ< + α	λ<4. 
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3.4.3. Zero-inflated regression model  

   The zero-inflated models include zero-inflated Poisson (ZIP) and zero-inflated negative binomial 

(ZINB) models to estimate a dual-state process. ZIP and ZINB models assume that two distinct 

processes are responsible for zero-count and non-zero-count observations. Zero-inflated models 

have two components: one to model zero count observations and another for non-zero-count 

observations. The ZINB probability mass function is defined as: 

 f(Y< = y<) = 	 i
q< + (1 − q<)	g(y< = 0	)				if	y< = 0
(1 − q<)		g(y<)																						if	y< > 0	 (4) 
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where q< is the logistic link function to estimate the probability of zero-count and non-zero-count 

observations, respectively. In equation Eq. 1, g(y<) is the standard negative binomial probability 

density function shown in equation Eq. 4. In the absence of over-dispersion (α=0), the ZINB model 

reduces to a ZIP model. 

3.4.4. Generalized Poisson regression model 

   The Generalized Poisson (GP) regression frequently represents count data. In contrast to the 

Negative Binomial (NB) regression, the GP models can account for both over-dispersed and under-

dispersed data. Like the NB regression, the GP model requires an additional parameter, a scale or 

dispersion parameter. A unique aspect of the GP dispersion parameter is that it can assume positive 

or negative values for over-dispersed and under-dispersed data, respectively. The GP distribution's 

probability mass function (p.m.f.) is defined as:  

 
Pr(Y< = y<) = 	

θ(θ + αy<)?#=0	exp	(−θ − αy<)
y<!

,			y< = 0, 1, 2,⋯, (5) 

where θ > 0, and 0 ≤ α < 1. For the GP regression, the mean and the variance are E(Y<) = λ< =

(1 − α)=0θ, Var(Y<) = (1 − α)=2θ = (1 − α)=1λ< = ϕλ<. The dispersion factor is denoted as ϕ.  

3.4.5. Hurdle regression model 

   The hurdle regression model is another statistical technique to model data containing excess zero. 

The model is a two-part regression model that first models the probability of a zero count and then 

models the count distribution for non-zero values. The hurdle regression is defined as follows: 

f(Y< = y<|	π, θ) = 	 i
1 − π,															if	y< = 0
πf(y<|θ), if	y< > 0 	 (6) 

where 0 ≤ π ≤ 1 is the probability that the dependent variable is positive, f(y<|θ) is the probability 

density of the dependent variable given that it is positive, and θ is the parameters of the model 

(Mullahy, 1986). The first part estimates the probability of a zero-count using a binary logistic 
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regression model. The second part models the non-zero counts using a standard regression model, 

such as Poisson or negative binomial regression. Hurdle regression is useful in situations where 

the traditional regression models for count data, such as Poisson or negative binomial regression, 

are not appropriate due to the presence of excess zeros. Examples of such data include health care 

utilization, insurance claims, and environmental counts (Afghari, et al., 2021). 

3.4.6. Model comparison and model selection 

This study estimates nine different types of count data models and investigates what model type 

provides the best performance. According to Hilbe (2014), three primary statistical tests to 

compare zero-inflated models exist: boundary likelihood ratio test, Vuong test, and AIC/BIC tests. 

This study applies the Vuong test, and AIC/BIC tests to compare models. 

3.4.6.a.  Vuong test:  

   The second test is the Vuong test (Vuong, 1989), which compares a ZI model to a non-inflated 

model that is not nested within it, such as ZINB to NB. The test statistic follows a normal 

distribution N(0,1), where large positive values favor ZINB, and significant negative values select 

NB. The Vuong test statistical (V) is introduced as: 

 
𝑉 =

𝑚w ∗	√𝑁
𝑆!

 (7) 

in which 𝑚" = 𝑙𝑜𝑔 }A"(C&)
A$(C&)

~, 𝑁 is the number of observation; 𝑚w  and 𝑆! are the mean and the 

standard deviation of 𝑚", respectively; 𝑓0, 𝑓1 are two competing models.  

There are three potential outcomes for 𝑉:  

(1) If |𝑉| < 1.96 for a confidence level of 0.95 then neither model is favored by the test results; 

(2) If 𝑉 ≫ 0, then model 1 is favored; 

(3) If 𝑉 ≪ 0, then model 2 is favored. 
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If the p-value is insignificant, the Vuong test cannot differentiate between ZINB and NB. 

However, the Vuong test is biased toward ZI models, and correction factors are available to account 

for this.  

3.4.6.b. AIC/BIC tests: 

   Comparing different models and selecting the best model using a consistent methodology is 

crucial. The Akaike information criterion (AIC), proposed by Akaike (1974), is a widely used 

method for model selection (Akaike, 1974). AIC provides an estimate for the amount of relative 

information lost when a model represents the data-generating process. AIC is defined as: 

 𝐴𝐼𝐶 = 	−2𝐿𝑛(𝐿) + 	2𝐾 (8) 

where K represents the number of the independent variables and L is the maximum value of the 

likelihood function. The Bayesian Information Criterion (BIC) is another statistical criterion used 

to evaluate the relative fit of different statistical models to a given dataset (Schwarz, 1978). BIC is 

a measure of the goodness of fit of a model, adjusted for the number of parameters in the model, 

and can be applied to compare the different models. The BIC statistic is defined as: 

 𝐵𝐼𝐶 = −2𝐿𝑛(𝐿) + 𝐿𝑛(𝑛) ∗ 	𝐾 (9) 

where L represents the likelihood of the data given the model, K is the number of independent 

variables in the model, and n is the number of observations. The BIC penalizes models with more 

parameters, as represented by the second term of the equation, and aims to balance the trade-off 

between model complexity and goodness of fit. The BIC can be used to compare models and select 

the one that provides the best balance between fit and parsimony. The model with the lowest BIC 

is favored, and a difference in BIC of more than ten between the two models is considered strong 

evidence for selecting the model with the lower BIC. The BIC is a popular alternative to the Akaike 

Information Criterion (AIC) and is often used in the context of maximum likelihood estimation. 
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While the AIC tends to favor more complex models than the BIC, the BIC tends to be more 

effective at selecting the correct model when the sample size is small, or the number of parameters 

is large. Finally, AIC/BIC tests should be used to determine if a standard non-inflated model might 

fit the data better than a ZI model. A negative binomial or NB-P model may be more appropriate 

than a zero-inflated Poisson or negative binomial model. 

3.4.7. Hotspots identification (HSID) 

   This study identifies hotspots using the Potential for Safety Improvement (PSI) index, which 

determines locations on the roadway that can become safer by implementing safety measures. 

Since traffic crashes are random occurrences, the number of observed traffic crashes in a given 

segment may fluctuate naturally over time. Therefore, the observed frequency of traffic crashes 

over a brief period cannot be used as a reliable indicator of the expected frequency of traffic crashes 

under the same circumstances over an extended period (2010). Instead, the Bayesian expected 

number of traffic crashes is used to address the regression-to-the-mean issue for a more reliable 

estimate of the expected frequency of traffic crashes. The PSI can be obtained by subtracting the 

predicted crash count from the expected crash frequency estimated by a crash prediction model 

(Montella, 2010). Sites with higher PSI values are more likely to benefit from safety 

improvements, and several studies (Persaud, et al., 1999) (El-Basyouny & Sayed, 2006) use it to 

rank hotspots. The study calculates the PSI using the empirical bayes (EB) method. Using the crash 

prediction model, the EB and the PSI are as follows (2010): 

 𝐸𝐵" = 𝑤" 	× 	𝑁E'F,"/GF,,			"	 + (1 −		𝑤") ×	𝑁IJKF'LF,,			" 	 (10) 

 

 𝑃𝑆𝐼" = 𝐸𝐵" − 𝑁E'F,"/GF,,			" (11) 

where 
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𝐸𝐵" ∶ the expected average crashes frequency for the segment 𝑖; 

𝑤": the weighted adjustment to be applied on the regression prediction; 

𝑁E'F,"/GF,,			"	: the predicted average crashes frequency for the segment 𝑖, predicted using the 

regression model for the segment 𝑖 ; 

𝑁IJKF'LF,,			"	: the observed average crashes frequency for the segment 𝑖; 

𝑃𝑆𝐼" ∶ the potential for safety improvement for the segment 𝑖. 

   The weighted adjustment factor, 𝑤", can be calculated using the overdispersion parameter, k, 

associated with the regression model: 

 𝑤" =	
1

1 + 𝑘	 ×	𝑁E'F,"/GF,,			"
 (12) 

 

Fig. 3.1. Three Dimensions of Traffic Crashes and Four Scenarios. 

    Typically, traffic safety research must address unobserved heterogeneity. Inherently, the scope 

of the study allows some information to account for all potential causal factors contributing to 

traffic crashes (Chang, Yasmin, Huang, & Chan, 2021; Mannering, Shankar, & Bhat, 2016). A prevalent 

strategy to tackle unobserved heterogeneity involves categorizing traffic crash data into homogeneous 

groups using traffic crash attributes (Mannering & Bhat, 2014). This study attempts to address the 
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unobserved heterogeneity by considering higher dimensions of traffic crash characteristics, including crash 

units, manner of collision, and crash severity in scenarios 2, 3, and 4 as shown in Fig. 3.1. 

3.4.8. Modeling Process 

   The study estimates various count data regression models to characterize different crash groups 

using four scenarios. The crash groups for each scenario are shown in Fig. 3.1. A flowchart 

summarizing the methodology used in the study is presented in Fig. 3.2. The explanatory variables 

are shown in Table 3.3. The investigation checks the explanatory variables for multicollinearity 

using the variance inflation factor (VIF) and determines no serious multicollinearity between the 

explanatory variables since the  𝑉𝐼𝐹����� is 4.14 and 4.51 and 𝑉𝐼𝐹MNO is 8.98 and 9.44 for IH 20 EB 

and IH 20 WB, respectively. The author evaluates a total of nine regression models, including 

Poisson, NB, NBP, ZIP, ZINB, ZINBP, GP-1, GP-2, and Hurdle regression models, to identify the 

most suitable regression model for each group of traffic crashes. A brute force approach is 

employed to determine the recommended parameter P for the NBP and ZINBP models by 

analyzing model performance for parameter values ranging from 1 to 2, with an increment of 0.01. 

The NBP and ZINBP models with the best performance are compared with other models. The 

study considers the crash count for each crash group as the dependent variable. For each crash 

group, the dataset for regression consists of the crash count data and explanatory variables data. 

The analysis splits the dataset into train and test sets. The process estimates count data regression 

models using the training set and applies the estimated model to the test set to generate the model 

RMSE. 

   A model selection process is adopted to determine the outperforming model for each group of 

traffic crashes. Vuong's test compares the base models (Poisson, NB, and NBP) with their 

corresponding zero-inflated models (ZIP, ZINB, and ZINBP). The process compares the models 

selected by Vuong's test with the remaining models (GP-1, GP-2, and Hurdle) based on AIC and 
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BIC values to identify the final model for each group of traffic crashes. The EB and PSI methods 

identify traffic crash hotspots for each group of traffic crashes, using the selected model for each 

group of crashes. 

 

Fig. 3.2. Modeling Process Flow Chart. 

3.4.9. Modeling Implementation: 

   This study methodology develops a library of functions in Python 3 to perform the entire process, 

from data cleaning and preparation to feature selection, developing regression models, and model 

selection. To avoid overfitting, the traffic crash data for each travel direction is split to train and 

test sets with ratio of 70% and 30%, respectively. For each run, the average computing time is 

1151.21s and 801.52s for EB and WB (6-Core Intel Core i7, 2.6 GHz CPU, 16 GB memory), 

respectively. 

3.5. RESULTS 

   This section provides the modeling results of the crash prediction models for four scenarios. 

Also, hotspots identification results for each groups of traffic crashes are shown. 

3.5.1. Modeling results 

   The regression models are performed on crash groups for all four scenarios. The independent 

variables are the variables that are shown in Table 3.13. Table 3.14 illustrates the model selection 
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for crash group ‘MV-RRND-N’. As described in Section 4.6, the analysis applies Vuong’s test to 

each pair of non-nested models (the basic model and its corresponding zero-inflated model) to 

select the outperforming models for each pair of non-nested models. As shown in Table 3.14, the 

Vuong’s test statistical V values are -2.1653, 0.0002, and 1.5808 for the non-nested models 

[Poisson, ZIP], [NB, ZINB], and [NBP, ZINBP], respectively. Since V < 0 for [Poisson, ZIP], the 

ZIP model is selected as the outperforming model. Because V > 0 for non-nested models [NB, 

ZINB] and [NBP, ZINBP], the NB and NBP models outperform their zero-inflated versions. The 

model selection process compares the models emerging from these pairwise comparisons with the 

GP1, GP2, and Hurdle models using AIC values. For this example, the NB model has the minimum 

AIC value of 632.82 and represents the best model for crash group ‘MV-RRND-N’. For each crash 

group, the dependent variables are the traffic crash count for the crash group. Tables 3.15. -3.22. 

and 3.23. -3.31. show the outperforming model parameter estimation results for IH 20 EB and IH 

20 WB, respectively. 

   As shown in the modeling results, the type of outperforming model may vary for each group of 

crashes. Also, the dispersion values differ for each group of crashes. Subsections 5.1.1. and 5.1.2 

investigate the modeling results of each scenario for IH 20 EB and IH 20 WB.  

Table 3.13. Description of Explanatory Variables 

 

Explanatory 
Variables Description
AADTT Annual average daily traffic for  single-unit/combo trucks  (1000 vehicles per day, 1000 vpd)
AADTNT Annual average daily traffic for non-truck vehicle (1000 vehicles per day, 1000 vpd)
CDD Horizontal curve delta angle a.k.a central angle (degree)
R Horizontal curve radius (1000 ft)
TR-Seg Binary variable with value of 1 if traffic crash site is on a segment of roadway transitioning from 

straight (tangent) segment to a curved segment or a curved-to-right segment to a curved-to-left 
segment or vice versa. Otherwise, 0.

LT-Seg Binary variable with value of 1 if traffic crash site is on a curved-to-left segment. Otherwise, 0.
RT-Seg Binary variable with value of 1 if traffic crash site is on a curved-to-right segment. Otherwise, 0.
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Table 3.14. An example of model selection process 

 
 

3.5.2. IH 20 EB modeling results 

   In scenario 1 (Table 3.15.), for TNC, the explanatory variables AADT6 and AADTP6 are 

significant at the 99% confidence interval (C.I.) with GP-2 representing the outperforming model. 

Looking at the scenario 2 (Table 3.15.), AADT6 and 𝐴𝐴𝐷𝑇Q* remain significant at the 99% C.I. 

for both SV and MV crashes. Also, CDD and RT-Seg become significant at the 95% and 90% C.I. 

for only SV crashes. Navigating to scenario 3, the modeling results for traffic crashes categorized 

under SV show that for SV-OBJ crashes, CDD level of significance improves to 99% C.I. while 

the other explanatory variables for SV crashes maintain the same level of significance for SV-OBJ 

crashes. For SV-OTH crashes, the 𝐴𝐴𝐷𝑇* level of significance drops to 90% C.I. and the curve 

radius R becomes significant at the 95% C.I. Meanwhile, the results for SV-OVT show 𝐴𝐴𝐷𝑇* is 

the only variable remaining significant with a level of significance at the 99% C.I. In scenario 3, 

the modeling results for traffic crashes under MV category show that 𝐴𝐴𝐷𝑇* level of significance 

drops to the 95% C.I. for MV-RRND crashes but 𝐴𝐴𝐷𝑇Q*maintains its significance at the 99% C.I 

(Table 3.17.). For MV-SDSW, variables 𝐴𝐴𝐷𝑇*, 𝐴𝐴𝐷𝑇Q*, and CDD become significant at 95%, 

99%, and 99% C.I., respectively. However, only 𝐴𝐴𝐷𝑇Q* appears significant at the 99% C.I.   

Model Poisson ZIP NB ZINB NBP ZINBP GP-1 GP-2 Hurdle
Vuong's Test 

Statistical V - - -

p-value - - -
Vuong's Test - - -

Selected Model
by Vuong's Test - - -

AIC 637.94 9066.31 806.50

* The model with smallest AIC as selected model for the crash group.

MV-RRND-N

V = -2.1653 V = 0.0002 V = 1.5808

0.0152 0.4999 0.0570

799.07 632.82* 637.25

V < 0 V > 0 V >0

ZIP NB NBP
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   In scenario 4 (Table 3.18.), the modeling results show 𝐴𝐴𝐷𝑇* is significant at the 99% C.I. only 

for SV-OBJ-N crashes and is not fount significant for SV-OBJ-A+K and SV-OBJ-B+C. 𝐴𝐴𝐷𝑇Q* 

becomes significant at the 90%, 99%, and 99% C.I. for SV-OBJ-A+K, SV-OBJ-B+C, and SV-

OBJ-N crashes, respectively. This shows that the 𝐴𝐴𝐷𝑇Q* level of significance decreases for SV-

OBJ-A+K crashes compared to the 𝐴𝐴𝐷𝑇Q* level of significance for SV-OBJ crashes. CDD 

appears significant at the 95%, 90%, and 99% C.I. for SV-OBJ-A+K, SV-OBJ-B+C, and SV-OBJ-

N crashes, respectively. In contrast with SV-OBJ crashes, the CDD level of significance increases 

for SV-OBJ-N crashes while it decreases for SV-OBJ-A+K crashes. R becomes significant at the 

90% C.I for SV-OBJ-N crashes but it is not significant for SV-OBJ. In scenario 4 for MV crashes 

(Table 3.19.), R is significant at the 90% and 95% C.I. for SV-OTH-B+C and SV-OTH-N, 

respectively. For SV-OTH-B+C and SV-OTH-N crashes, only the 𝐴𝐴𝐷𝑇Q*becomes significant at 

the 95% and 90% C.I. 

Table 3.15. Modeling results for IH 20 EB (Scenario 1 and 2) 

 

Variables
Mean St. Mean St. Mean St.

Intercept -1.677ᵃ 0.508 -1.874ᵃ 0.525 -1.775ᵃ 0.524
AADTT 0.119ᵃ 0.033 0.102ᵃ 0.03 0.1ᵃ 0.034
AADTNT 0.044ᵃ 0.006 0.027ᵃ 0.006 0.044ᵃ 0.006
CDD 0.057 0.039 0.071ᵇ 0.032 0.043 0.033
R 0.006 0.033 0.033 0.029 -0.001 0.033
TR-Seg -0.625 0.477 -0.644 0.45 -0.584 0.467
LT-Seg -0.611 0.658 -0.595 0.583 -0.436 0.612
RT-Seg -0.93 0.82 -1.426ᶜ 0.813 -0.67 0.742
Dispersion 0.222ᵃ 0.021 0.687ᵃ 0.132 0.251ᵃ 0.026
Model GP-2 NB GP-2
RMSE 102.63 33.452 78.975
AIC 1057.66 676.983 975.289
BIC 1085.829 705.152 1003.458
Mean 10.331 2.438 7.893
Variance 152.264 9.268 100.171

TNC SV MV
Scenario 1 Scenario 2
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Table 3.16. Modeling results for IH 20 EB (Scenario 3 (SV)) 

 

 

Table 3.17. Modeling results for IH 20 EB (Scenario 3 (MV)) 

 

Variables
Mean St. Mean St. Mean St.

Intercept -1.663ᵃ 0.534 -3.436ᵃ 1.072 -4.831ᵃ 1.323
AADTT 0.082ᵃ 0.029 0.11ᶜ 0.067 0.198ᵃ 0.059
AADTNT 0.023ᵃ 0.007 0.008 0.014 0.022 0.015
CDD 0.057ᵃ 0.015 -0.008 0.068 -0.01 0.056
R 0.034 0.027 0.102ᵇ 0.043 0.018 0.06
TR-Seg -0.348 0.366 0.255 0.923 -0.873 1.103
LT-Seg -0.41 0.417 0.604 1.198 0.641 0.971
RT-Seg -1.169ᶜ 0.62 -9.554 135.37 0.219 1.486
Dispersion 0.724ᵃ 0.147 0.252 0.344
Model GP-1 GP-2 Poisson
RMSE 23.495 4 4.472
AIC 615.823 179.039 211.569
BIC 643.992 207.208 236.609
Mean 1.917 0.169 0.248
Variance 6.557 0.216 0.262

SV-OBJ SV-OTH SV-OVT 
Scenario 3 (SV)

Variables
Mean St. Mean St. Mean St.

Intercept -1.914ᵃ 0.566 -1.26ᵇ 0.503 -2.84ᵃ 0.791
AADTT 0.068ᵇ 0.034 0.066ᵇ 0.027 0.045 0.042
AADTNT 0.039ᵃ 0.007 0.027ᵃ 0.006 0.037ᵃ 0.009
CDD 0.027 0.032 0.045ᵃ 0.017 -0.032 0.056
R -0.012 0.035 0.015 0.029 -0.043 0.05
TR-Seg -0.389 0.49 -0.534 0.383 -0.317 0.718
LT-Seg -0.382 0.624 -0.281 0.398 0.511 0.887
RT-Seg -0.809 0.794 -0.373 0.515 0.33 1.21
Dispersion 1.042ᵃ 0.157 3.238ᵃ 0.6 0.426ᵃ 0.101
Model NB NBP GP-2
RMSE 37.108 34.641 15.492
AIC 760.024 745.51 441.529
BIC 788.194 773.679 469.698
Mean 3.459 3.401 1.008
Variance 30.299 16.59 2.904

Scenario 3 (MV)
MV-RRND MV-SDSW MV-STPD 
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Table 3.18. Modeling results for IH 20 EB - Scenario 4 (SV) 

 

 

Table 3.19. Modeling results for IH 20 EB - Scenario 4 (SV) 

 

Variables
Mean St. Mean St. Mean St.

Intercept -3.306ᵃ 1.052 -2.478ᵃ 0.744 -2.332ᵃ 0.668
AADTT -0.032 0.07 0.041 0.038 0.098ᵃ 0.034
AADTNT 0.027ᶜ 0.014 0.029ᵃ 0.009 0.023ᵃ 0.008
CDD 0.101ᵇ 0.043 0.034ᶜ 0.02 0.06ᵃ 0.017
R -0.22 0.401 0.011 0.033 0.047ᶜ 0.028
TR-Seg -0.756 1.182 0.005 0.431 -0.54 0.437
LT-Seg -2.095 1.689 0.143 0.491 -0.383 0.467
RT-Seg -1.034 1.565 -0.409 0.736 -1.325ᶜ 0.742
Dispersion 0.537ᵃ 0.132
Model Poisson ZIP GP-1
RMSE 2.646 7.874 17.635
AIC 149.532 363.079 491.308
BIC 174.571 391.248 519.477
Mean 0.124 0.579 1.215
Variance 0.126 0.851 3.389

SV-OBJ-A+K SV-OBJ-B+C SV-OBJ-N 
Scenario 4 (SV)

Variables
Mean St. Mean St. Mean St. Mean St.

Intercept -4.608ᵇ 1.972 -3.523ᵃ 1.177 -5.745ᵃ 1.851 -6.22ᵇ 2.481
AADTT 0.136 0.146 0.1 0.071 0.196ᵇ 0.077 0.221ᶜ 0.116
AADTNT -0.005 0.029 0.011 0.015 0.029 0.021 0.016 0.028
CDD -0.02 0.13 -0.004 0.071 0.02 0.066 -0.052 0.084
R 0.147ᵇ 0.069 0.084ᶜ 0.044 0.045 0.059 -3.204 3.732
TR-Seg -47.471 3.98E+10 0.436 0.92 -19.952 1.53E+04 4.613 4.839
LT-Seg 1.102 2.264 0.466 1.268 -0.092 1.262 5.671 5.168
RT-Seg -47.131 4.76E+10 -92.935 1.88E+20 -21.96 6.29E+04 6.957 5.44
Dispersion
Model ZIP ZIP Poisson Poisson
RMSE 0 4 3 2.45
AIC 64.876 158.209 153.575 98.774
BIC 93.045 186.379 178.614 123.813
Mean 0.025 0.145 0.145 0.074
Variance 0.024 0.174 0.157 0.077

Scenario 4 (SV)
SV-OTH-B+C SV-OTH-N SV-OVT-B+C SV-OVT-N 
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   The modeling results for scenario 4 MV is shown in Table 3.20.-3.22.. No explanatory variables 

appear statistically significant for the MV-RRND-A+K, MV-SDSW-A+K, and MV-STPD-A+K 

crashes. 𝐴𝐴𝐷𝑇* and  𝐴𝐴𝐷𝑇Q* are significant at the 95% and 99% C.I. for MV-RRND-B+C crashes 

as they were for MV-RRND crashes in scenario 3 (Table 3.17.). for MV-RRND-N crashes, 

𝐴𝐴𝐷𝑇Q* remains significant at the same level of 99% C.I. as MV-RRND crashes but the 𝐴𝐴𝐷𝑇* 

is not statistically significant.   

   For MV-SDSW-B+C crashes, the explanatory variables 𝐴𝐴𝐷𝑇*, 𝐴𝐴𝐷𝑇Q*, CDD, and R become 

significant at the 90%, 99%, 90%, and 90% C.I., respectively. Table 3.21. shows that 𝐴𝐴𝐷𝑇*, 

𝐴𝐴𝐷𝑇Q*, and CDD appear significant at the 90%, 99%, and 99% C.I. for MV-SDSW-N, 

respectively. 𝐴𝐴𝐷𝑇Q* 	is the only explanatory variable found significant for MV-STPD-B+C and 

MV-STPD-N with the level of significance at the 99% C.I. (Table 3.22.). 

Table 3.20. Modeling results for IH 20 EB - Scenario 4 (MV) 

 

 

 

Variables
Mean St. Mean St. Mean St.

Intercept -3.13ᵇ 1.532 -2.51ᵃ 0.728 -2.255ᵃ 0.643
AADTT 0.015 0.101 0.092ᵇ 0.041 0.039 0.037
AADTNT 0.022 0.02 0.028ᵃ 0.009 0.042ᵃ 0.008
CDD -0.228 0.394 0.013 0.036 0.039 0.038
R -0.62 4.872 0.014 0.04 -0.028 0.04
TR-Seg 2.562 5.775 0.044 0.597 -0.777 0.566
LT-Seg -89.992 1.72E+20 -0.008 0.726 -0.649 0.725
RT-Seg 3.947 6.166 -0.003 0.887 -2.066ᶜ 1.09
Dispersion 0.965 0.67 1.123ᵃ 0.192
Model ZIP ZINB NB
RMSE 3 13.602 27.477
AIC 104.659 494.913 632.817
BIC 132.829 526.212 660.986
Mean 0.079 1.169 2.211
Variance 0.098 3.121 16.159

Scenario 4 (MV)
MV-RRND-A+K MV-RRND-B+C MV-RRND-N 
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Table 3.21. Modeling results for IH 20 EB - Scenario 4 (MV) 

 

 

Table 3.22. Modeling results for IH 20 EB - Scenario 4 (MV) 

 

Variables
Mean St. Mean St. Mean St.

Intercept -3.423 2.667 -2.854ᵃ 0.826 -1.506ᵃ 0.55
AADTT 0.041 0.142 0.076ᶜ 0.04 0.055ᶜ 0.031
AADTNT 0.027 0.033 0.029ᵃ 0.01 0.028ᵃ 0.008
CDD 0.054 0.042ᶜ 0.025 0.048ᵃ 0.018
R -0.254 1 0.055ᶜ 0.029 0.005 0.033
TR-Seg -2.942 6.494 -0.792 0.691 -0.505 0.502
LT-Seg -0.195 -0.414 0.586 -0.238 0.485
RT-Seg -2.709 6.446 -0.018 0.663 -0.606 0.596
Dispersion 0.476ᵃ 0.134 2.371ᵇ 0.956
Model ZIP GP-1 ZINBP
RMSE 1.414 11.705 27.24
AIC 72.743 416.737 664.89
BIC 100.912 444.906 696.189
Mean 0.037 0.884 2.479
Variance 0.044 1.937 9.595

Scenario 4 (MV)
MV-SDSW-A+K MV-SDSW-B+C MV-SDSW-N 

Variables
Mean St. Mean St. Mean St.

Intercept -5.13ᶜ 2.727 -3.296ᵃ 1.007 -3.587ᵃ 1.043
AADTT -0.342 0.316 0.055 0.057 0.039 0.05
AADTNT 0.064 0.041 0.031ᵃ 0.012 0.038ᵃ 0.012
CDD -0.983 1.28 -0.103 0.11 0.006 0.053
R -0.515 5.62 -1.577 4.598 -0.003 0.049
TR-Seg -11.277 1.86E+04 2.2 5.395 -0.895 0.885
LT-Seg 11.106 13.83 2.98 5.579 0.058 0.908
RT-Seg -150.253 1.40E+35 2.752 6.049 -0.025 1.263
Dispersion 0.712ᵃ 0.236 0.367ᵇ 0.164
Model Poisson GP-2 GP-2
RMSE 1 8.888 10.44
AIC 46.645 296.954 312.847
BIC 71.684 325.123 341.016
Mean 0.021 0.45 0.537
Variance 0.02 0.954 0.947

Scenario 4 (MV)
MV-STPD-A+K MV-STPD-B+C MV-STPD-N 
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3.5.3. IH 20 WB modeling results 

   The modeling results for IH 20 WB are shown in Table 3.23. -3.31. In scenario 1 (Table 3.23.), 

both  AADT6, and  AADTP6 become significant at the 99% C.I. for TNC. Also, AADT6, and  

AADTP6 appear significant at the 99% C.I. for MV crashes in scenario 2. For SV crashes, AADT6,  

AADTP6, and LT-Seg are significant at the 99%, 90% and 90% C.I. showing a decrease in the 

AADTP6 level of significance in comparison to TNC in scenario 1.  In scenario 3 for SV crashes 

(Table 3.24.), AADT6,  AADTP6, and LT-Seg are significant at the 99%, 95%, and 90% C.I. for 

SV-OBJ crashes. In comparison to scenario 2 SV crashes, the AADTP6 level of significance 

increases by including the crash severity. For SV-OTH, AADT6 appears significant at the 99% C.I. 

and no explanatory variables are statistically significant for SV-OVT crashes.  

   The modeling results for scenario 3 MV crashes (Table 3.25.), AADT6, and  AADTP6 become 

significant at the 99% C.I. for MV-RRND crashes. For MV-SDSW crashes, AADT6,  AADTP6, and 

RT-Seg are significant at the 99%, 99% and 95%  C.I., which shows an improvement in RT-Seg 

level of significance in comparison with MV crashes. For MV-STPD crashes, AADT6, and  

AADTP6 become significant at the 95% and 99% C.I. Studying scenario 4 for SV crashes, Table 

3.26. shows that AADTP6 is significant at the 95% C.I. for SV-OBJ-A+K crashes. AADT6, 

AADTP6, CDD, and LT-Seg are statistically significant at the 99%, 90%, 90%, and 95% C.I. for 

SV-OBJ-B+C crashes.  The modeling result for SV-OTH-N crashes shows that AADT6 becomes 

significant at the 99% C.I. (Table 3.27.). For MV-RRND-B+C crashes, AADT6, and  AADTP6 are 

significant at the 95% and 99% C.I. (Table 3.29.). Both AADT6, and  AADTP6 are significant at 

the 99% C.I for MV-RRND-N crashes. AADT6 appears significant at the 95%, 95%, and 99% for 

MV-SDSW-A+K, MV-SDSW-B+C, and MV-SDSW-N crashes (Table 3.30.).  AADTP6 and RT-

Seg are significant at the 99% and 90% C.I. for MV-SDSW-B+C crashes and at the 99% and 95% 
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for MV-SDSW-N crashes, respectively. No explanatory variables become significant for SV-OBJ-

N (Table 3.26.), SV-OTH-A+K, SV-OTH-B+C (Table 3.27.), SV-OVT-A+K, SV-OVT-B+C, SV-

OVT-N (Table 3.28.), MV-RRND-A+K (Table 3.29.), and MV-STPD-A+K (Table 3.31.). 

Table 3.23. Modeling results for IH 20 WB - Scenario 1 & 2. 

 

Table 3.24. Modeling results for IH 20 WB - Scenario 3 (SV). 

 

Variables
Mean Std. Mean Std. Mean Std.

Intercept -1.586ᵃ 0.486 -0.917ᵇ 0.397 -1.66ᵃ 0.442
AADTT 0.21ᵃ 0.041 0.131ᵃ 0.029 0.153ᵃ 0.032
AADTNT 0.032ᵃ 0.005 0.01ᶜ 0.005 0.036ᵃ 0.005
CDD -0.01 0.031 -0.012 0.018 -0.0 0.021
R 0.03 0.035 0.015 0.027 0.033 0.027
TR-Seg 0.183 0.371 0.339 0.304 0.139 0.321
LT-Seg 0.656 0.53 0.902ᶜ 0.461 0.364 0.416
RT-Seg -0.655 0.772 -0.171 0.568 -1.08ᶜ 0.599
Dispersion 0.194ᵃ 0.02 1.477ᵃ 0.385 0.669ᵃ 0.091
Model GP2 ZINBP NB
RMSE 92.244 21.726 63.119
AIC 1054.879 674.864 967.783
BIC 1083.048 706.163 995.952
Mean 9.975 2.339 7.636
Variance 112.273 7.254 72.73

TNC SV MV 
Scenario 1 Scenario 2

Variables
Mean Std. Mean Std. Mean Std.

Intercept -1.448ᵃ 0.449 -2.89ᵃ 0.898 -3.937ᵃ 1.425
AADTT 0.141ᵃ 0.035 0.236ᵃ 0.076 0.079 0.087
AADTNT 0.013ᵇ 0.005 -0.013 0.013 0.026 0.016
CDD -0.015 0.024 0.076 0.07 -0.058 0.095
R 0.012 0.034 0.053 0.061 -0.452 2.608
TR-Seg 0.243 0.377 -0.211 0.791 1.618 3.379
LT-Seg 0.81ᶜ 0.476 -3.651 3.006 1.737 3.56
RT-Seg 0.012 0.683 -95.165 1.40E+20 -91.748 2.18E+20
Dispersion 0.675ᵃ 0.142
Model NB ZIP ZIP
RMSE 18.358 4.899 2.828
AIC 631.143 171.279 148.565
BIC 659.312 199.448 176.734
Mean 1.959 0.178 0.128
Variance 5.285 0.221 0.137

SV-OBJ SV-OTH SV-OVT 
Scenario 3 (SV)
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Table 3.25. Modeling results for IH 20 WB - Scenario 3 (MV). 

 

 
Table 3.26. Modeling results for IH 20 WB - Scenario 4 (SV). 

 

 

 

Variables
Mean Std. Mean Std. Mean Std.

Intercept -2.851ᵃ 0.601 -1.184ᵃ 0.433 -3.917ᵃ 0.922
AADTT 0.145ᵃ 0.037 0.104ᵃ 0.028 0.117ᵇ 0.05
AADTNT 0.044ᵃ 0.006 0.022ᵃ 0.005 0.043ᵃ 0.01
CDD -0.013 0.022 0.02 0.016 0.021 0.028
R 0.043 0.029 0.024 0.023 0.034 0.036
TR-Seg 0.266 0.353 -0.128 0.315 0.033 0.464
LT-Seg 0.547 0.465 -0.095 0.373 0.246 0.587
RT-Seg -0.752 0.674 -1.548ᵇ 0.659 -16.097 1169.715
Dispersion 0.698ᵃ 0.182 0.86ᵃ 0.147 0.72ᵃ 0.217
Model ZINB GP1 NB
RMSE 30.919 29.933 10.677
AIC 753.647 715.175 418.995
BIC 784.946 743.344 447.164
Mean 3.521 3.095 0.88
Variance 19.977 13.041 2.114

Scenario 3 (MV)
MV-RRND MV-SDSW MV-STPD 

Variables
Mean Std. Mean Std. Mean Std.

Intercept -4.165ᵃ 1.583 -1.762ᵃ 0.565 1.234ᶜ 0.68
AADTT -0.065 0.108 0.118ᵃ 0.04 -0.038 0.043
AADTNT 0.042ᵇ 0.019 0.012ᶜ 0.007 -0.002 0.006
CDD -0.032 0.12 -0.055ᶜ 0.032 0.007 0.017
R -0.521 3.847 -0.045 0.058 -0.006 0.026
TR-Seg 1.352 4.878 0.555 0.405 -0.12 0.366
LT-Seg 1.182 5.124 1.302ᵇ 0.554 0.44 0.361
RT-Seg -15.121 4591.077 0.507 0.827 -0.086 0.616
Dispersion 0.116 0.107
Model GP1 ZIP Hurdle
RMSE 3 7.616 13.191
AIC 134.564 392.757 494.651
BIC 162.733 420.926 544.73
Mean 0.112 0.661 1.186
Variance 0.133 1.022 2.293

SV-OBJ-B+C SV-OBJ-N 
Scenario 4 (SV)

SV-OBJ-A+K 
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Table 3.27. Modeling results for IH 20 WB - Scenario 4 (SV). 

 

 

Table 3.28. Modeling results for IH 20 WB - Scenario 4 (SV). 

 

 

 

Variables
Mean Std. Mean Std. Mean Std.

Intercept -7.452 6.405 -8.612 8.795 -3.295ᵃ 0.926
AADTT 1.201 1.61 -0.216 0.471 0.259ᵃ 0.081
AADTNT -0.187 0.261 0.094 0.103 -0.018 0.014
CDD -0.602 2.85E+05 -2.476 1.70E+07 0.072 0.063
R -3.295 5.25E+06 -2.799 6.48E+08 0.071 0.06
TR-Seg -17.834 5.86E+06 -16.908 8.41E+08 -0.061 0.784
LT-Seg -16.232 5.21E+06 -3.733 8.91E+08 -3.149 2.628
RT-Seg -6.89 5.18E+06 -3.96 9.02E+08 -45.756 2.86E+09
Dispersion
Model Poisson Poisson Poisson
RMSE 0 1 4.899
AIC 33.307 34.233 152.841
BIC 58.346 59.272 177.88
Mean 0.008 0.012 0.157
Variance 0.008 0.012 0.191

Scenario 4 (SV)
SV-OTH-A+K SV-OTH-B+C SV-OTH-N 

Variables
Mean Std. Mean Std. Mean Std.

Intercept -4.999 4.401 -5.254ᵇ 2.357 -5.31ᵇ 2.114
AADTT 0.157 0.258 0.028 0.147 0.101 0.12
AADTNT 0.021 0.051 0.031 0.027 0.027 0.024
CDD 0.083 0.34 -0.002 0.1 -0.237 0.204
R -0.8 5.218 -0.259 1.323 -0.219 0.834
TR-Seg 2.058 6.795 1.027 2.124 1.921 1.765
LT-Seg -3.855 15.243 0.617 2.59 3.817 2.541
RT-Seg -1.924 14.321 -113.635 1.13E+25 -30.387 3.58E+07
Dispersion
Model ZIP Poisson Poisson
RMSE 1 2 1.732
AIC 45.162 77.053 96.265
BIC 73.331 102.092 121.304
Mean 0.017 0.05 0.062
Variance 0.016 0.047 0.058

SV-OVT-N 
Scenario 4 (SV)

SV-OVT-A+K SV-OVT-B+C 
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Table 3.29. Modeling results for IH 20 WB - Scenario 4 (MV). 

 

 

Table 3.30. Modeling results for IH 20 WB - Scenario 4 (MV). 

 

 
 

Variables
Mean Std. Mean Std. Mean Std.

Intercept -3.603ᵃ 1.186 -3.14ᵃ 0.718 -3.727ᵃ 0.739
AADTT -0.005 0.091 0.11ᵇ 0.043 0.157ᵃ 0.042
AADTNT 0.023 0.015 0.036ᵃ 0.008 0.049ᵃ 0.008
CDD -0.105 0.181 -0.008 0.026 -0.012 0.023
R -2.263 7.315 0.046 0.031 0.044 0.031
TR-Seg 4.259 8.949 0.352 0.411 0.147 0.389
LT-Seg 3.415 9.361 0.623 0.517 0.432 0.495
RT-Seg -12.285 5491.828 -0.985 0.94 -0.707 0.728
Dispersion 0.614ᵃ 0.177 0.742ᵃ 0.257
Model Poisson NB ZINB
RMSE 3.464 11.874 20.494
AIC 123.708 481.481 639.202
BIC 148.747 509.65 670.501
Mean 0.116 1.182 2.223
Variance 0.111 2.614 9.718

MV-RRND-A+K MV-RRND-B+C MV-RRND-N 
Scenario 4 (MV)

Variables
Mean Std. Mean Std. Mean Std.

Intercept -7.396ᵇ 2.985 -2.315ᵃ 0.663 -1.397ᵃ 0.463
AADTT 0.328ᵇ 0.155 0.093ᵇ 0.047 0.089ᵃ 0.03
AADTNT 0.02 0.035 0.023ᵃ 0.008 0.022ᵃ 0.006
CDD -0.111 1.76E+07 0.032 0.023 0.018 0.017
R -2.034 2.14E+07 -0.045 0.055 0.034 0.023
TR-Seg -33.936 1.75E+08 0.112 0.415 -0.349 0.379
LT-Seg -33.428 2.95E+08 -0.702 0.615 0.019 0.399
RT-Seg -32.226 2.93E+08 -2.035ᶜ 1.117 -1.341ᵇ 0.676
Dispersion 0.622 0.394 1.623ᵃ 0.348
Model ZIP ZINBP NBP
RMSE 2.45 10.392 22.158
AIC 72.301 420.76 630.482
BIC 100.47 452.059 658.652
Mean 0.05 0.806 2.24
Variance 0.056 1.56 7.735

Scenario 4 (MV)
MV-SDSW-A+K MV-SDSW-B+C MV-SDSW-N 
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Table 3.31. Modeling results for IH 20 WB - Scenario 4 (MV). 

 

3.5.4. Model performance comparison 

   As discussed in section 4.8, the modeling process includes steps to identify the best performing 

model for each crash group. Vuong’s test is used to compare non-nested models and investigates 

base models versus zero-inflated models. Afterwards, the study compares the models selected by 

Vuong’s test with the GP-1, GP-2, and Hurdle regression models using AIC to identify the 

outperforming model for each crash group.  Fig. 3.3. shows the AIC values for the outperforming 

model for each crash group. As shown in Fig. 3.3., the AIC values for tri-dimensional crash groups 

(using all three traffic crash characteristics) are smaller than the AIC values for their parent crash 

group using two traffic crash characteristics (crash units and crash type), which are smaller than 

the AIC values for their corresponding grandparent crash group using only one traffic characteristic 

(crash unit) that are smaller than AIC value for TNC crash group. This implies that the tri-

dimensional analysis improves the model performance. 

Variables
Mean Std. Mean Std. Mean Std.

Intercept -6.116ᶜ 3.413 -6.53ᵃ 1.809 -3.073ᵃ 0.878
AADTT 0.09 0.212 0.192ᵇ 0.086 0.069 0.05
AADTNT 0.025 0.038 0.056ᵃ 0.019 0.036ᵃ 0.01
CDD 0.323 0.6 0.017 0.04 0.015 0.02
R -3.127 7.466 0.054 0.051 0.041 0.044
TR-Seg 2.865 8.971 0.094 0.678 -0.218 0.488
LT-Seg -31.023 2.40E+04 0.15 0.896 0.196 0.508
RT-Seg -26.124 8.53E+05 -21.21 2.80E+04 -34.632 1.57E+07
Dispersion 0.583ᵇ 0.249 N/A
Model Poisson GP2 ZIP
RMSE 410.992 5.745 7.483
AIC 49.993 249.596 331.697
BIC 75.033 277.765 359.866
Mean 0.017 0.343 0.521
Variance 0.016 0.591 0.881

Scenario 4 (MV)
MV-STPD-A+K MV-STPD-B+C MV-STPD-N 
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Fig. 3.3. Model performance by AIC for all crash groups. 

 
3.5.5. Hotspot identification results  

   PSI identifies hotspots using the selected crash prediction models (Table 3.15. -3.22. for IH 20 

EB and Table 3.23.-3.31. for IH 20 WB) for each crash group within each scenario. The study 

compares the hotspot identification results by looking at the top ten most hazardous hotspots (top 

ten largest PSI values). The segment ID for the top ten hotspots for each group of crashes are 

shown in Tables 3.32.-3.34. and Tables 3.35.-3.37. for IH 20 EB and IH 20 WB, respectively. 

Subsections 5.2.1. and 4.5.2.2 present the hotspot identification results of each scenario for IH 20 

EB and IH 20 WB.   

3.5.6. IH 20 EB hotspot results  

   The segment ID for the top 10 hotspots along IH 20 EB are shown in Tables 3.32.-3.34. No 

hotspot can be identified for SV-OTH, SV-OVT, SV-OBJ-A+K, SV-OBJ-B+C, SV-OTH-B+C, SV-
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OTH-N, SV-OVT-B+C, and SV-OVT-N crashes because their corresponding prediction models 

are not significant. As shown in Tables 3.32., there are some hotspot segments that are common 

between scenario 1 and scenario 2. Comparing the top ten hotspots for TNC with SV and MV 

crashes, there are 70% and 80% of the hotspot segments for SV and MV crashes in common with 

TNC hotspot segments, respectively. Also, 50% of the hotspot segments for SV and MV crashes 

are in common. Comparing MV crashes with TNC, the top six hotspot segment are the same with 

a slight difference for segments #164 and #120, switching places in the rankings for MV crashes. 

Studying scenario 3 for SV crashes (Tables 3.33.), There are only two segments, #111 and #176, 

that are hotspot segments for SV-OBJ crashes and not for SV crashes in scenario 2 but segment # 

111 is a hotspot for scenario 1, TNC. In scenario 3 (SV), Table 3.33. shows that the first ten 

segments of IH 20 EB as hotspots for SV-OTH and SV-OVT crashes. As shown in Table 3.33., 

segment #175 and #22 for MV-RRND crashes are not appeared as hotspot segments in MV crashes 

in scenario 2. For MV-SDSW and MV-STPD crashes show 50% and 40% hotspot segments in 

common with hotspot segments for MV crashes in segment 2. Segments #0 and #130 are hotspots 

segments for SV-OBJ-N crashes that are not identified as hotspots for TNC, SV, and SV-OBJ 

crashes. In scenario 4 (SV), segments #44 and #69 for MV-RRND-B+C crashes and segment #22 

and #117 for MV-RRND-N crashes are hotspots that do not appear in the top ten hotspots for 

scenario 1, 2, and 3. As shown in Table 3.34., 60% and 50% of the hotspot segments for MV-

SDSW-B+C and MV-SDSW-N crashes are identified in the top ten only for scenario 4. Similarly, 

for MV-STPD-B+C and MV-STPD-N crashes, 60% and 40% hotspot segments have their first 

appearance as the top ten hotspot segments for scenario 4. 
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Table 3.32. Top 10 IH 20 EB hotspots - Scenario 1 & 2. 

 

 

Table 3.33. Top 10 IH 20 EB hotspots - Scenario 3 (SV) & (MV). 

 

 

 
 
 

Scenario 1
Hotspots Rank TNC SV MV
1 110 175 110
2 164 164 120
3 120 179 164
4 88 84 88
5 7 120 7
6 111 7 111
7 175 88 109
8 179 110 99
9 109 30 112

10 99 69 119

PSI1st 65 10 59
PSI10th 17 4 12

Scenario 2

Scenario 3 (SV)
Hotspots Rank SV-OBJ MV-RRND MV-SDSW MV-STPD
1 175 110 164 110
2 84 120 88 164
3 88 111 99 120
4 120 7 110 3
5 164 88 7 7
6 179 109 44 17
7 7 112 84 19
8 30 164 79 31
9 111 175 176 69

10 176 22 179 72

PSI1st 7 47 17 4
PSI10th 4 5 8 1

Scenario 3 (MV)
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Table 3.34. Top 10 IH 20 EB hotspots - Scenario 4 (SV) & (MV). 

 

3.5.7. IH 20 WB hotspot results 

  Tables 3.35.-3.37. show the hotspot results for IH 20 WB for the crash groups in each scenario. 

Since the prediction model is found significant for SV-OTH, SV-OVT, SV-OBJ-A+K, SV-OBJ-

B+C, SV-OTH-A+K, SV-OTH-B+C, SV-OTH-N, SV-OVT-B+C, SV-OVT-N, MV-RRND-A+K, 

MV-SDSW-A+K, MV-STPD-A+K, and MV-STPD-N crashes, no hotspot can be identified using 

the empirical bayes methods. As shown in Table 3.35., 40% and 80% of the hotspot segments for 

SV and MV crashes are in common with the TNC hotspot segments. Except for segments #110, 

#130, and #164, the rank of hotspot segments for TNC and MV crashes are the same. In scenario 

3 (SV) (Table 3.36.), segments #176 and #84 are identified as top ten hotspots for SV-OBJ crashes 

that do not appear as the top ten hotspots for TNC and SV crashes. In Table 3.36. for scenario 3 

(MV) crash groups, 70%, 60%, and 40% of the top ten hotspot segments are previously appeared 

in scenario 1 or 2.  Similarly, in scenario 4 (MV), there are 50%, 40%, 50%, and 30% of the top 

ten hotspot segments for MV-RRND-B+C, MV-RRND-N, MV-SDSW-B+C, and MV-SDSW-N 

that are not identified as the top ten hotspots for scenarios 1, 2, and 3. For MV-STPD-B+C crashes, 

only segments #130, #88, and # 129 are in common with MV or MV-STPD hotspot segments 

(Table 3.37.). 

Scenario 4 (SV)
Hotspots Rank SV-OBJ-N MV-RRND-B+C MV-RRND-N MV-SDSW-B+C MV-SDSW-N MV-STPD-B+C MV-STPD-N
1 175 110 110 88 164 110 17
2 84 120 120 96 88 120 19
3 120 175 164 99 44 88 69
4 164 7 7 110 84 106 99
5 179 44 88 156 99 111 110
6 0 69 109 165 179 115 119
7 7 88 111 7 7 164 120
8 88 109 112 42 79 0 0
9 130 111 22 45 120 1 1

10 176 112 117 57 4 2 2

PSI1st 4 6 34 2 12 3 1
PSI10th 2 2 5 1 5 0 0

Scenario 4 (MV)
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Table 3.35. Top 10 IH 20 WB hotspots - Scenario 1 & 2. 

 
 

 
Table 3.36. Top 10 IH 20 WB hotspots - Scenario 3 (SV) & (MV). 

 

 

 

 

 

Scenario 1
Hotspot Rank TNC SV MV
1 88 110 88
2 110 88 130
3 130 146 164
4 164 234 110
5 31 84 31
6 7 164 7
7 0 3 0
8 44 7 44
9 45 30 156

10 2 99 211

PSI1st 36 10 34
PSI10th 11 4 13

Scenario 2

Scenario 3 (SV)
Hotspot Rank SV-OBJ MV-RRND MV-SDSW MV-STPD
1 88 130 88 130
2 110 88 164 30
3 146 110 211 129
4 176 31 7 0
5 84 164 110 2
6 164 19 120 88
7 234 44 155 4
8 3 131 156 19
9 7 7 31 20

10 31 21 33 22

PSI1st 6 20 13 4
PSI10th 3 6 6 1

Scenario 3 (MV)
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Table 3.37. Top 10 IH 20 WB hotspots - Scenario 4 (MV). 

 

3.6. DISCUSSION 

   The findings of this study show consistency with previous research, which indicated significant 

variations in the contributing factors of crash groups of each scenario. The modeling results 

indicate that traffic operation characteristics, 𝐴𝐴𝐷𝑇* and 𝐴𝐴𝐷𝑇Q*, significantly impact TNC 

(scenario 1), SV, and MV crash occurrences (scenario 2) for both IH 20 EB & WB. This implies 

that higher traffic volume negatively impacts both SV and MV crashes. This finding is consistent 

with the results from previous research on SV crashes (Persaud & Mucsi, 1995; Geedipally & 

Lord, 2010) and MV crashes (Persaud & Mucsi, 1995; Geedipally & Lord, 2010; Yu & Abdel-Aty, 

2013). However, some previous studies conclude that traffic volume has no significant impact on 

SV crash occurrences, which this study confirms for some cases  (Yu & Abdel-Aty, 2013; Wang & 

Feng, 2019). For example, in scenario 3, 𝐴𝐴𝐷𝑇Q* shows no significant impact on SV-OTH and 

SV-OVT crashes for IH 20 EB/IH 20 WB and 𝐴𝐴𝐷𝑇* reveals no significant impact on MV-STPD 

and SV-OVT crashes for IH 20 EB and IH 20 WB, respectively. As shown in scenario 4, 𝐴𝐴𝐷𝑇* 

and 𝐴𝐴𝐷𝑇Q* ae not significant contributing factors for some crash groups with certain crash 

Hotspot Rank MV-RRND-B+C MV-RRND-N MV-SDSW-B+C MV-SDSW-N MV-STPD-B+C
1 130 130 211 88 130
2 63 110 92 164 88
3 88 88 120 31 129
4 128 31 159 7 135
5 3 129 0 110 238
6 19 145 2 155 0
7 21 0 7 156 1
8 98 131 14 33 2
9 164 22 33 45 3

10 223 44 88 176 4

PSI1st 5 12 3 12 2
PSI10th 2 4 1 5 0

Scenario 4 (MV)
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severity, despite their significant impact on the corresponding crash supergroup in scenario 3, or 

vice versa. 𝐴𝐴𝐷𝑇* has a greater magnitude effect on SV-OVT-N and SV-OVT-B+C crashes for IH 

20 EB, in a descending order. Meanwhile for IH 20 WB, MV-SDSW-A+K, SV-OTH-N, and MV-

STPD-B+C crashes are impacted the most by traffic volume of trucks, 𝐴𝐴𝐷𝑇*. 

   The modeling results proclaim that some of the geometric characteristics, the horizontal curve 

delta angle, 𝐶𝐷𝐷, appear as a significant contributing factor for SV, SV-OBJ, SV-OBJ-A+K, SV-

OBJ-B+C, SV-OBJ-N, MV-SDSW, MV-SDSW-B+C and MV-SDSW-N for IH 20 EB. It implies 

that the greater the horizontal curve delta angle, the greater the likelihood of crashes for the listed 

crash groups.  While for IH 20 WB, the horizontal curve delta angle, 𝐶𝐷𝐷, become a significant 

contributing factor for SV-OBJ-B+C crashes but with an opposite effect; the greater the horizontal 

curve delta angle, the lower the likelihood of crashes. This noticeable difference between IH 20 

EB and WB might be justified if another potential explanatory variables such as sunlight glare, and 

pavement marking visibility appear as significant contributing factors for the crash groups of 

interest. 

    Curve radius, R, is another geometric characteristic that is a significant contributing factor for 

SV-OTH, SV-OBJ-N, SV-OTH-B+C, SV-OTH-N, and MV-SDSW-B+C crashes for IH 20 EB. 

However, the curve radius is not significantly contributing to any crash groups for IH 20 WB. 

These results suggest that a larger curve radius contributed to a higher number of the named crash 

groups for IH 20 EB. This finding is inconsistent with using a larger radius to provide smoother 

transitions between tangent segments. 

    As a part of geometric characteristics, the geometric type of the segment is included by 

introducing binary variables TR-Seg, LT-Seg, and RT-Seg as defined in Table 3.13. The results 

show that the likelihood of crash occurrence on curved-to-right segments is smaller for SV, SV-



 90 

OBJ, and SV-OBJ-N crashes across IH 20 EB, and MV, MV-SDSW-B+C, and MV-SDSW-N 

crashes along IH 20 WB. The curved-to-left segment, LT-Seg, negatively impacts on SV, SV-OBJ, 

and SV-OBJ-B+C crashes for IH 20 WB increasing the crash likelihood for these crash groups. 

   Considering the HSID results, the hotspots for each crash group in each scenario show different 

locations, nearly half of the top ten hotspots. Therefore, hotspot segments among the top ten 

hotspots are mutually shared for traffic crash groups within and across scenarios. The study result 

indicates that TNC and MV crashes demonstrate higher consistency in hotspot segments than SV 

crashes. This finding is consistent with previous research and confirm their finding (Wang & Feng, 

2019). The HSID results show that the top ten hotspot segments are substantially different when 

all three crash characteristics are included. This study excluded spatial correlation between the 

segments that may impact the hotspot segments mutually shared between various crash groups. 

Investigating the spatial correlation combined with the regression models used in this study is for 

future research. 

3.7. CONCLUSIONS 

   This study aims to investigate the traffic crash contributing factors, including traffic operation 

characteristics with geometric characteristics and their impact on different crash groups. Four 

scenarios are defined to form crash groups: Scenario 1 includes all crashes combined; For scenario 

2, crash unit dimension is considered to form crash groups, SV and MV crashes; In scenario 3, 

crash unit and crash type dimensions are used to group the crashes; Finally, all three crash 

characteristics, crash unit, crash type, and crash severity, are considered to classify crashes. The 

traffic crash data, traffic operation, and geometric characteristics data are collected for both 

directions of a 24.26 mile of IH 20 within the Dallas County limit. An extensive group of count 

data regression models, including Poisson, NB, NBP, ZIP, ZINB, ZINBP, GP-1, GP-2, and Hurdle 

regression models, are utilized to perform prediction models for all the crash groups defined. As 
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expected, the modeling results show that the outperforming models differ for each group of crashes 

same as the dispersion magnitudes. According to the results, the contributing factors, such as truck 

AADT, non-truck AADT, horizontal curve delta degree, horizontal curve radius, curved-to-right 

segment, and curved-to-left segment, became significant contributing factors for some crash 

groups. At the same time, they are not statistically significant for other crash groups, especially 

compared to total crashes, SV, and MV crashes. As shown in previous research, it is also shown 

that the top ten hotspot segments for each crash group vary for nearly half segments. However, it 

is confirmed that MV crashes hotspot segments are more representative and aligned with total 

crash hotspot segments. This study concludes that scenario 4, which includes all three traffic crash 

characteristics, crash unit, crash type, and crash severity, provides a better understanding and a 

clearer vision of contributing factors and hotspot segments. It will assist in proposing appropriate 

measures to mitigate specific crash groups at a specific location on a roadway. However, some 

disadvantages associated with scenario 4 exist. As shown, by including all three dimensions, some 

crash groups disappear from the modeling due to an insufficient number of occurrences, making 

regression model estimation infeasible. Therefore, the crash groups with very limited observations 

must be excluded from the analysis. The crash groups with very limited observations may represent 

outliers in their parent crash groups from scenarios 1, 2, and 3, but low crash counts do not reduce 

the importance of a crash group in all cases. Also, traffic safety analysis using all three dimensions 

may suffer from the availability of quality data and the workload associated with adding more 

dimensions. 

 This study came with limitations due to the availability of quality data on traffic operation and 

geometric characteristics. Future research needs to be conducted using more accurate data, 

including potential explanatory variables such as operating speed, pavement marking visibility, 
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sunlight glare, cross-slope, shoulder width, and lane width. As noted, the spatial correlation was 

excluded from this study, and it is suggested that future studies investigate the spatial correlation 

combined with, but not limited to, the selected regression models in this study. 
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CHAPTER 4.  INVESTIGATING THE IMPACT OF RECOMMENDED FRAGMENT SIZE 

TO IMPROVE CRASH COUNT PREDICTION MODELS 

 
4.1. INTRODUCTION 

   In recent years, identifying traffic crash hotspots has become crucial for specifying hazardous 

locations, prioritizing effective countermeasures, and enhancing road safety. Traffic crash hotspots 

refer to areas where the frequency or likelihood of crashes is significantly higher than neighboring 

locations along a targeted corridor or across a network. Hotspot identification (HSID) supports 

providing focused interventions to mitigate traffic crash likelihood and ameliorate safety in 

hazardous areas by understanding the contributing factors to traffic crashes. Often, traffic hotpot 

studies use crash frequency analysis (CFA), which divides a highway into small fragments 

(segments) with constant length for data aggregation. Previous studies highlight that the selection 

of the fragment size (segment length) may affect the crash frequency model estimation, the 

accuracy of CFA-based HSID, and eventually the effectiveness of interventions to mitigate traffic 

crash likelihood. Therefore, finding the appropriate fragment size for data aggregation appears 

vital due to its ripple effect throughout traffic safety studies. 

   Hotspot identification encompasses many approaches that can be classified into three main 

categories: Geographic Information Systems (GIS)-based spatial analysis, statistical models, and 

machine learning. Traditionally, GIS-based HSID involves the creation of crash concentration 

maps, which rely on Kernel Density Estimation (KDE) and absolute crash counts to determine the 

density of crashes in specific regions (Truong & Somenahalli, 2011). However, the accuracy of 

concentration maps can be challenged due to the selected search bandwidth for KDE and reliance 

on absolute crash counts (Truong & Somenahalli, 2011). Other studies apply regression models to 

predict crash frequencies, investigate factors associated with crashes, and identify traffic crash 
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hotspots‘ these count data regression models include Poisson, Negative Binomial, Poisson 

Lognormal, Zero-Inflated Poisson/Negative Binomial, Gamma, Generalized Estimating Equation, 

Negative Multinomial, and Hurdle models (Hilbe, 2014). These regression models aim to forecast 

crash frequencies based on features such as roadway geometry, traffic characteristics, and weather 

conditions (Highway Safety, 2005) and identify hotspots based on the estimated crash frequencies. 

Recent studies h employ machine learning methods, such as random forest, decision tree, support 

vector machine (SVM), Naive Bayes, and neural network algorithms, to investigate traffic safety 

and identify traffic crash hotspots (Santos et al., 2022). This study develops a crash frequency 

analysis by estimating crash count regression models including Poisson, negative binomial (NB), 

zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), generalized Poisson type 1 

(GP-1), generalized Poisson type 2 (GP-2), Hurdle regression. 

   In crash prediction models, the data aggregation, including traffic crash data, traffic 

characteristics data, and geometric characteristics data, plays a vital role (Wang & Feng, 2019). 

Traditionally, a constant length referred to as the "segment length" divides highways or freeways 

into smaller sections. However, to prevent confusion with the geometric features of the road, this 

study chooses to utilize the term "fragment size" instead. Previous research often employs arbitrary 

values for segment length  and typically range from 0.1 mile to 1.0 mile or sometimes 100 meters 

to 1.6 kilometers, based on their specific research objectives (Texas Department of Transportation 

(TxDOT) - Traffic Safety Division, 2020). Nevertheless, using different segment lengths for data 

aggregation can result in certain variables being either statistically significant or insignificant 

(Ahmed & Abdel-Aty, 2012). Earlier studies highlight the inherent problems in crash frequency 

analysis when utilizing fixed-size fragments (segments) to aggregate crash data (Pedregosa, et al., 

2011). However, until recently, no researchers identify a specific methodology to determine the 
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suitable fragment size. Given the potential impact on the statistical significance of variables, the 

selection of an appropriate fragment size (segment length) for data aggregation appears essential. 

   The fragment size selection is vital to understanding the significance of changes in the crash 

prediction model results, the resulting hotspots, and the effectiveness of the remedies to improve 

traffic safety. Due to the ripple effect of the fragment size in traffic safety studies, this study 

investigates the impact of fragment size on crash prediction models and inspects the potential 

advantages of the RFS to produce valid models and improve crash prediction model performance 

and accuracy. 

4.2. LITERATURE REVIEW  

   An important part of traffic safety studies focuses on traffic crash hotspot identification (HSID) 

using crash count prediction models performed by dividing a highway into small fragments 

(segments) for data aggregation. The arbitrary selection of fragment size (segment length) may 

adversely impact the crash prediction models results, but no previous research clearly illustrates 

the magnitude of these impacts or a strategy for choosing a fragment size. Effective hotspot 

identification and selection of remedies to reduce traffic safety hazards rely on crash prediction 

model validity. Therefore, researchers face a crucial challenge when identifying the appropriate 

fragment size for data aggregation due to its chain impact throughout a traffic safety study. Recent 

research (Maniei & Mattingly, 2023a) provide an innovative approach to find a recommended 

fragment size (RFS) for data aggregation, but the modeling performance using the RFS requires 

evaluation.  

4.2.1. Crash prediction models 

   Many studies adopted count data models for crash prediction. The Poisson regression model 

became popular among count data models assuming the mean and the variance of the data are 
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equal. However, crash data often exhibited over-dispersion, where the variance exceeded the mean. 

To address this issue, researchers turned to negative binomial (NB) regression models (Abdel-Aty 

& Radwan, 2000; Miaou, 1994). The commonly employed models for count data modeling are 

NB-1 and NB-2 with different assumptions for variance structure. Since these restricted variance 

structures could lead to biased model parameter estimates and inaccurate crash predictions, Greene 

(2008) introduced a new NB regression model called the NB-P encompassing to the NB-1 and 

NB-2 when P = 1 and P = 2 , respectively. This model provided better fit and estimation accuracy 

due to its flexible variance structure. The researchers concluded that the NB-P model's flexible 

variance structure significantly improved estimation accuracy (Wang, et al., 2020). Due to 

excessive zeros for no-crash areas, crash count analysis needs to handle the excessive zeros that 

traditional Poisson and NB models cannot handle. To address this issue, many investigators 

employ zero-inflated models (Carson & Mannering, 2001; Qin, et al., 2005). Previous crash 

frequency analysis studies frequently utilized the zero-inflated Poisson (ZIP) and zero-inflated 

negative binomial (ZINB) models to deal with the problem of excessive zeros (Lee & Mannering, 

2002; Chin & Quddus, 2003) and show a statistically better fit to the data (Malyshkina & 

Mannering, 2010). However, the assumption that roadway segments were intrinsically safe seems 

doubtful even for well-designed roadway segments due to unsafe driver behavior. Therefore, the 

fundamental assumption of the zero-inflated model appeared flawed (Lord, et al., 2005). An 

alternative approach was the Hurdle model, also known as the two-part model, to handle excessive 

zeros in the dataset (Ma, et al., 2016). Unlike the zero-inflated models, the Hurdle model did not 

assume that roadway segments with zero crashes observed during the study period were inherently 

safe, but rather that they were safe only during that specific period. 
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   This study aims to identify the impact of the fragment size on crash prediction models by 

investigating many count regression models including Poisson, NB, NBP, ZIP, ZINB, ZINBP, 

Consul’s Generalized Poisson (GP-1), Famoye’s Generalized Poison (GP-2), and Hurdle 

regression. Since the study considers various crash groups, these models must represent crash 

groups with either negligible dispersion or significant dispersion. Due to the study’s structure, more 

crash groups with an excessive number of zeros appear as the study adds more traffic crash 

dimensions when forming the crash groups, which makes the need to include zero-inflated count 

regression models inevitable.  

4.2.2. Crash prediction models and traffic crash dimensions 

   Three essential characteristics of traffic crashes exist: number of vehicle involved in a traffic 

crash (crash units), manner of collision (crash type), and crash severity. The number of vehicles 

involved in a traffic crash, also known as "crash units", is considered a critical characteristic, 

typically classified as either single-vehicle (SV) or multi-vehicle (MV). Previous research shows 

that crash units play a determining role in predicting traffic crashes, identifying significant 

contributing factors (Ivan, et al., 1999; Abdel-Aty, et al., 2006), (Yu, et al., 2013) and their 

associated impacts  (Yu & Abdel-Aty, 2013; Dong, et al., 2018). The previous work demonstrates 

the need to separate the analyses of single-vehicle (SV) and multi-vehicle (MV) crashes due to 

their distinct spatial distribution and contributing factors (Wang & Feng, 2019). This distinction 

holds when adopting aggregate and disaggregate approaches to studying traffic crashes (Yu & 

Abdel-Aty, 2013). Earlier studies propose utilizing separate crash prediction models (Ivan, et al., 

1999; Lord, et al., 2005; Geedipally & Lord, 2010; Ma, et al., 2016). Wang and Feng (2019) 

observed significant differences in both the traffic crash contributing factors when comparing the 

results of total crashes with those of single-vehicle (SV) and multi-vehicle (MV) crashes. 
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   The manner of collision or crash type represents another crucial traffic crash characteristic for 

traffic crash analysis. Crash type pertains to the initial event or collision during a traffic crash, and 

the differences in the types holds significant importance in traffic crash analysis (Pande & Abdel-

Aty, 2006). Several empirical studies show that traffic crashes exhibit distinct characteristics based 

on their crash type, regardless of the level of aggregation (Golob, et al., 2008). Despite the 

importance of considering crash types in traffic crash studies, limited research comprehensively 

investigates traffic crash contributing factors based on crash types. This study addresses this gap 

by incorporating crash type as a critical characteristic for predicting traffic crashes.  

   The crash severity, which specifies the magnitude of damage and injuries caused, represents 

another vital traffic crash characteristic (Xu, et al., 2013). Crash severity ranges from minor 

property damage to severe injuries or fatalities. The development of crash prediction models that 

consider different levels of crash severity yields valuable insights into reducing the likelihood of 

severe crashes (Xu, et al., 2013). Examining crash severity is vital when studying single-vehicle 

(SV) crashes and their contributing factors (Jung, et al., 2010). Several studies investigate crash 

severity crash hotspots using negative binomial and Bayesian spatial statistical methods (Mitra, 

2009), multivariate crash count models, equivalent property damage only (EPDO), and two-stage 

models (Afghari, et al., 2020). Afghari et al. (2020) argue that traditional approaches fail to 

consider the unobserved heterogeneity associated with the correlations between crash counts for 

each severity level. In fact, a critical part of traffic safety studies is unobserved heterogeneity. 

Studies can only include some information to capture data for all potentially contributing causes 

of traffic crashes (Chang, Yasmin, Huang, & Chan, 2021; Mannering, Shankar, & Bhat, 2016). To 

address unobserved heterogeneity, investigators often categorize the traffic crash data into 

homogeneous crash groups using different attributes (Mannering & Bhat, 2014). To overcome this 
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issue, the present study considers crash severity, the number of vehicles involved (crash units), and 

the type of collision (crash types) by creating four different scenarios for crash dimensionality. 

4.2.3. Crash prediction models and data aggregation 

   Crash prediction models typically divide corridors into small segments using a fixed segment 

length and aggregating the crash data and other geometric and operational data.   

   According to Green (2018), many different approaches to segmenting a roadway using a subset 

of data sources, such as traffic data, roadway characteristics, and traffic crash data, exist. One 

standard method involves segmenting a roadway based on its geometric characteristics to account 

for unobserved heterogeneity; however, this approach may result in long segments with little 

variation in roadway attributes over a considerable distance. For instance, Green (2018) points out 

that a highway segment can become very long if it features a straight section with constant shoulder 

width, number of lanes, cross slope, and median width. Furthermore, the limited availability of 

quality roadway characteristics data may necessitate expensive data collection efforts. In situations 

with insignificant variations in roadway attributes, Borsos et al. (2014) suggest using traffic data 

to create homogeneous segments. While this approach can help divide long segments into smaller 

ones, Green (2018) notes that it may not be effective for roadways with limited access over a long 

distance, where minor changes in traffic volume occur. 

   Other alternatives to roadway segmentation by roadway attributes include  continuous risk 

profile (Kwon, et al., 2013), sliding moving window (Qin & Wellner, 2012; Kwon, et al., 2013), 

peak searching (Kwon, et al., 2013), fixed length and variable length segmentation (Koorey, 2009), 

and clustering methods (Valent, et al., 2002; Depaire, et al., 2008; Lu, et al., 2013). The use of 

clustering techniques has proven beneficial for segmenting roadways based on traffic crash data, 

particularly in cases where high-quality data on traffic and roadway attributes is unavailable. These 
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techniques have the potential to reveal previously unknown relationships within the crash data 

(Golob, et al., 2004a; Depaire, et al., 2008; De Luca, et al., 2012; Lu, et al., 2013). Valent et al. 

(2002) employ a clustering method focused on a specific crash type to analyze traffic crashes but 

caution that this approach could obscure the underlying contributing factors associated with that 

particular crash type. Depaire et al. (2008) utilize latent class clustering to segment roadways 

leveraging the heterogeneity of traffic crash data. Similarly, Lu et al. (2013) employ Fisher's 

clustering technique to create a segmentation based on sections exhibiting similar crash 

distributions. This application of Fisher's clustering result in an improvement in the performance 

of predictive models. Maniei and Mattingly (2023a) apply the Laplacian score with distance-based 

entropy measure (LSDBEM) and K-meaning clustering to recommend a segment length for 

roadway segmentation, called recommended fragment size (RFS). 

   Given the lack of high-quality data on roadway attributes, the current study examines if the crash 

prediction model results improve using RFS for data aggregation as proposed by Maniei and 

Mattingly (2023a). For the appropriate aggregation of data on urban/suburban highways and 

freeways, previous studies recommend not using a segment length smaller than 0.1 mile (American 

Association of State Highway and Transportation Officials, 2010) or a spacing interval larger than 

0.25 mile for traffic operational characteristics (Alabama Department of Transportation, 2015). 

The study estimates and evaluates crash prediction models using data aggregation fragment sizes 

ranging from 0.10 mile to 0.25 mile with an increment of 0.01 mile as recommended in the earlier 

studies. To address unobserved heterogeneity, the investigation develops crash prediction models 

for crash groups formed by four scenarios using crash units, crash types, and crash severity. 
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4.3. DATA DESCRIPTION 

   This study evaluates the impact of fragment size using both directions of mainlane IH-20 

segments located in Dallas. The Texas Department of Transportation (TxDOT) Crash Record 

Information System (C.R.I.S.) data used for this analysis covers the period from 2015 to 2019. 

This dataset encompasses a wide range of information and includes details on crashes, roadway 

geometry, and traffic characteristics. 

4.3.1. Crash Data Features 

   The TxDOT C.R.I.S. data consists of features categorized into three groups: crash fields, unit 

fields, and person fields. The crash fields provide data such as latitude, longitude, reference marker, 

offset distance, highway system, roadway part, highway name, manner of collision, crash severity, 

and geometric design features like curve type, curve degree (curvature), curve length, curve delta 

degree, left shoulder type, left shoulder use, left shoulder width, right shoulder type, right shoulder 

use, right shoulder width, median type, median, number of lanes, roadbed width, surface condition, 

surface type, and surface width. Additionally, the data also includes traffic characteristics such as 

adjusted average daily traffic levels, percentages of single-unit trucks and combo trucks, adjusted 

percentage of average daily traffic attributed to trucks, and speed limits. 

4.3.2. Data Preparation 

   For this study, only crashes occurring on main roadway segments are considered. Crashes 

involving work zones, pedestrians, or wrong-way driving are excluded. Feature engineering 

techniques are applied to filter the crash data specifically associated with the main segments of 

each roadway while disregarding data related to pedestrians, active work zones, construction areas, 

and wrong-way driving. To ensure the reliability and consistency of the data, the crash data points 

are subjected to geovalidation using KMZ files imported to Google Earth®, verifying the accuracy 

of feature values for roadway segments, vehicle travel directions, and the geometric design 



 102 

features. All feature exhibiting inconsistencies with actual measurements are excluded from the 

study such as left and right shoulder width, median width, number of lanes, surface type, and 

surface width.   

   The Traffic Safety Division of the Texas Department of Transportation (TxDOT) has established 

categories for different levels of crash severity. These categories are denoted by letters, with A 

representing suspected serious injury, B for suspected minor injury, C for possible injury, K for 

fatal injury, N for not injured, and 99 for unknown (2020). The definitions for these severity 

categories can be found in Table 4.1. The crash data summary is provided in Table 4.2, including 

the percentage range of traffic crash severity for various corridors. The data reveals that fatal 

crashes occur at a relatively low percentage, suggesting that they may not serve as a significant 

factor in differentiating roadway segments or forming clusters. To address this, the study combines 

fatal and suspected serious injury crashes into one group, while suspected minor and possible 

injury crashes are also merged. Non-injury crashes are treated as a separate characteristic, and 

crashes with unknown severity are excluded from the analysis. 

   Traffic crash groups and their abbreviations are shown in Fig. 4.1. In this study, four scenarios 

are considered to form crash groups as shown (orange boxes) in Fig. 4.1. The crash count 

calculated for each of the generated crash group. Depending on the scenario, the naming 

convention of crash group is in a format of ‘A’, ‘A-B’, or ‘A-B-C’ in which A, B, and C are the 

traffic crash abbreviations for the number of vehicles involved in crashes, manner of collision, and 

crash severity, respectively. For instance, ‘SV-OBJ-N’ is the crash group for single-vehicle object-

related crashes with no injuries. Also, ‘MV-RRND-B+C’ is the feature for multi-vehicle rear-end 

crashes with suspected minor or possible injuries. In scenario 1, ‘TNC’ is the crash group including 

all crashes occurred in each segment. 
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Table 4.1. Traffic Crash Categories. 

Traffic Crash Data Categories 

Number of Vehicle 
Involved in Crashes 

  

Single-Vehicle (SV) Crashes that only involves one motor vehicle. 

Multi-Vehicle (MV) Crashes that involve two or more motor vehicles. 

Manner of Collision   

Fixed Object (OBJ) Crashes that involve hiding fixed objects as the first harmful event. 

Over-turned (OVT) Crashes that the first harmful event is identified as vehicle overturn. 

In-Transport (TRNSP) 
 

Angled (ANG) Crashes that two motor vehicles are collided at an angle. 

Rear-End (RE) Crashes that a motor vehicle is rear-ended by another motor vehicle. 

Sideswipe (SDSP) Crashes that a motor vehicle is sideswiped by another motor vehicle. 

Other (OTH) Crashes that the manner of collision is none of the items above. 

Crash Severity   

A - Suspected Serious 
      Injury 

Severe injury that prevents continuation of normal activities leading to temporarily or permanent 
incapacitation. 

B - Suspected Minor 
      Injury 

Evident injury such as bruises, abrasions, or minor lacerations which do not incapacitate. 

C - Possible Injury Injury claimed, reported, or indicated by behavior but without visible wounds, includes limping 
or complaint of pain 

K - Fatal If death resulted due to injuries sustained from the crash, at the scene or within 30 days of crash. 

N - Not Injured The person involved in the crash did not sustain as A, B, C, or K injury. 

99 - Unknown Unable to determine whether injuries exist. Some examples may include hit and run, fled scene, 
fail to stop and render aid. 

 

Table 4.2. IH 20 (EB/WB) Traffic Crash Statistics by Severity. 

 % Range Across 
Corridors % Total Crashes in 

Dallas County Crash Data (2015-2019) 

Crash Severity Min Mx 

99 - UNKNOWN 0.63% 3.06% 1.19% 
A - SUSPECTED SERIOUS INJURY 1.27% 4.14% 2.05% 
B - SUSPECTED MINOR INJURY 6.82% 13.52% 10.55% 
C - POSSIBLE INJURY 16.45% 30.57% 21.15% 
K - FATAL INJURY 0.24% 1.39% 0.48% 

N - NOT INJURED 54.97% 73.46% 64.57% 
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Fig. 4.1. Three Dimensions of Traffic Crashes and Four Scenarios. 

4.4. METHODOLOGY 

4.4.1. Introduction 

   This study methodology consists of three stages, as shown in Fig. 4.2.: (1) identifying a 

recommended fragment size (RFS) to aggregate the crash data; (2) performing count regression 

models for four crash group scenarios with fragment sizes ranging between 0.10 and 0.25 in 0.01-

mile increments; (3) comparing the model performance including Akaike Information Criterion 

(AIC) and root mean square error (RMSE) for all iterations and investigating the potential benefits 

of the RFS for crash prediction model performance. Stage 1 requires calculating the feature crash 

rates (FCRs) for the scenario 4 crash groups (Fig. 4.1). The approach selects the RFS using the 

Laplacian score accompanied with a distance-based entropy measure, LSDBEM, (Liu, et al., 2009) 

to determine the best subset of features for K-means clustering. The methodology identifies the 

RFS as the fragment size associated with the K-means clusters with the highest silhouette score 

(Maniei & Mattingly, 2023a). The previous study shows that clustering roadway segments using 

FCRs outperforms the clustering results based on total crash rates, TCRs (Maniei & Mattingly, 

2023a).  Stage 2 estimates crash count data regression models including Poisson, NB, NBP, ZIP, 
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ZINB, ZINBP, GP-1, GP-2, and Hurdle regression models using traffic operational and geometric 

characteristics (Table 4.3) as explanatory variables for the four crash group scenarios with 

fragment sizes, ranging from 0.10 to 0.25 miles in 0.01 mile increments. For each fragment size 

increment the methodology selects the best model for further analysis. Finally, stage 3 compares 

the selected models for each crash group and fragment size to investigate the magnitude of 

improvement in the model performance measures when the RFS is used for data aggregation rather 

than other fragment sizes for the same crash group. Before making any comparisons, stage 3 

eliminates all models from fragment sizes that exhibit excessive multicollinearity among 

independent variables.  

 
Fig. 4.2. Methodology Flow Chart. 
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Table 4.3. Description of Explanatory Variables (Maniei & Mattingly, 2023b).  

 
 
4.4.2. Identifying recommended fragment size (RFS) 

   To identify the most important featured crash rates (FCRs) for clustering, Maniei and Mattingly 

(2023a) evaluated the Laplacian score with distance-based entropy measure (LSDBEM) for the 

FCRs calculated for each crash group. The method performed the K-mean clustering using the 

selected FCRs to segmentize the roadway based on the crash data. The process considered each 

fragment size between 0.10 and 0.25 mile in 0.01-mile increments. Maniei and Mattingly (2023a) 

proposed that the fragment size corresponding to the outperforming clustering result based on its 

silhouette score can be used for the roadway segmentation as a recommended fragment size (RFS). 

See Maniei and Mattingly (2023a) for a complete discussion of the methodology. This study 

utilized the LSCBEM followed by the K-means clustering to find the RFS. 

4.4.3. Developing crash prediction models  

   Traffic safety studies use several count regression models to predict crash counts. And they most 

commonly use Poisson regression. However, Poisson regression overlooks the over-dispersion 

present in the crash data (Lord & Mannering, 2010). To handle the over-dispersion, other studies 

utilize the negative binomial regression model (Anastasopoulos & Mannering, 2009; Geedipally 

& Lord, 2010; Ma, et al., 2017; Ma, et al., 2017). The definition of standard negative binomial 

Explanatory 
Variables Description
AADTT Annual average daily traffic for  single-unit/combo trucks  (1000 vehicles per day, 1000 vpd)
AADTNT Annual average daily traffic for non-truck vehicle (1000 vehicles per day, 1000 vpd)
CDD Horizontal curve delta angle a.k.a central angle (degree)
R Horizontal curve radius (1000 ft)
TR-Seg Binary variable with value of 1 if traffic crash site is on a segment of roadway transitioning from 

straight (tangent) segment to a curved segment or a curved-to-right segment to a curved-to-left 
segment or vice versa. Otherwise, 0.

LT-Seg Binary variable with value of 1 if traffic crash site is on a curved-to-left segment. Otherwise, 0.
RT-Seg Binary variable with value of 1 if traffic crash site is on a curved-to-right segment. Otherwise, 0.
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probability mass function and the negative binomial regression model can be found in previous 

studies (Chow & Steenhard, 2009). Notably, the NB model contracts to a Poisson regression model 

when there is no over-dispersion. Furthermore, an alternative variation of the negative binomial 

regression model exists (Greene, 2008), referred to as the negative binomial model-type P (NBP) 

and the parameter P providing a general form to describe the relationship between mean and 

variance:  E(Y<) = λ<, Var(Y<) = λ< + α	λ<4 where y< is the number of traffic crashes happened on 

segment i during a period of time, and λ< is the mean predicted traffic crash frequency for segment 

i. The presumption is that λ< is a function of exploratory vector X<. However, the NBP model is 

still unable to deal with the potential under-dispersion in count data. Another model called 

Generalized Poisson (GP) regression is also used to analyze the count data handling both over-

dispersed and under-dispersed data. Depending on the mean and variance relationship, the GP 

model can be implemented in two forms: Consul’s Generalized Poisson (GP-1) and Famoye’s 

Generalized Poison (GP-2).  

   Besides the over-dispersion, according to Dong et al. (2014), there is a challenge to handle 

excessive zeros in crash count data that the commonly used Poisson and negative binomial are 

unsuitable for dealing with it. To tackle this issue, researchers widely employ zero-inflated models, 

as Carson and Mannering (2001) and Qin et al. (2005) noted. The zero-inflated models, including 

Poisson (ZIP) and zero-inflated negative binomial (ZINB) models, operate under the assumption 

that the additional zeros in the dataset arise from two distinct states: a true-zero state, indicating 

an inherently safe roadway segment, and a nonzero state, where no crashes occur during the 

observation period (Shankar, et al., 1997). Numerous studies demonstrate that these models offer 

a statistically superior fit to the data (Malyshkina & Mannering, 2010). Similar to the NB model, 

the ZINB model reduces to a ZIP model when over-dispersion is zero. Arguably, the assumption 
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that roadway segments are intrinsically safe, which forms the basis of the zero-inflated models, is 

highly improbable (Lord & Park, 2008); (Lord, et al., 2005). Even on well-designed roadway 

segments, crashes can occur due to unsafe driver behavior. Consequently, the fundamental 

assumption of the zero-inflated model is flawed. In response, researchers have turned to an 

alternative approach known as the Hurdle or two-part model, as Ma et al. (2016) employed, to 

handle excessive zeros in the dataset. The Hurdle model operates in two stages: firstly, it 

determines whether the count value is zero or positive, and secondly, if positive, it employs a 

truncated count distribution for analysis, following the methodology outlined by Cragg (1971). 

The Hurdle model assumes that roadway segments with zero observed crashes during the study 

period are only safe for that specific duration rather than being inherently safe. As aforementioned, 

the hurdle regression is a two-part model. The first part handles the probability of a zero count and 

the second part deals with the count distribution for non-zero values (Mullahy, 1986). In previous 

research, Maniei and Mattingly (2023b) implemented the count regression models including 

Poisson, NB, NBP, ZIP, ZINB, ZINBP, GP-1, GP-2, and Hurdle regression models to predict crash 

counts for various crash groups and identify the hotspots using the potential for safety 

improvement (PSI). In this study, all the models mentioned above will be developed to investigate 

the impact of various fragment sizes and recommended fragment size (RFS) on the model 

performance measures. This process is depicted as stage 2 in Fig. 4.2.   

4.4.4. Modeling Process and Model Selection 

   The study estimates many count data regression models to analyze different crash groups using 

the chosen independent variables (Table 4.3.). The modeling process assesses the multicollinearity 

among the explanatory variables using the variance inflation factor (VIF). The multicollinearity is 

discussed in the results section. The selection process considers nine different count regression 
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models for each crash group. The model selection process identifies the superior model for each 

crash group. Vuong's test compares the base models (Poisson, NB, and NBP) with their 

corresponding zero-inflated models (ZIP, ZINB, and ZINBP). The process evaluates the models 

selected by Vuong's test with the remaining models (GP1, GP2, and Hurdle) based on their AIC 

values to determine the final model for each crash group.   

4.4.5. Fragment Sizes and RFS Evaluation 

    This study determines the outperforming models based on their AIC values and evaluates these 

models across the fragment sizes in stage 3. For all scenario’s crash groups, the values of dispersion 

parameter detected by crash prediction models are illustrated and explored for various fragment 

sizes via bubble charts. This reveals the effect of the fragment size on the amount of dispersion in 

the aggregated data, which leads to improving the performance of some model types and may 

make them the outperforming model for a particular fragment size and scenario. After identifying 

the outperforming model for each fragment size, the evaluation eliminates fragment sizes that 

exhibit serious multicollinearity among the explanatory variables using variance inflation factor 

(VIF); The explanatory variables with VIF greater than 10 show a serious multicollinearity. Also, 

the modeling result carries out a serious multicollinearity if the average VIF values for all 

explanatory variables, 𝑉𝐼𝐹�����, exceeds 5. The study excludes fragment sizes resulting in serious 

multicollinearity are excluded from statistical modeling. To emphasize the predictive capabilities 

of the models, the evaluation compares the remaining models using the testing data set RMSE.  

The minimum RMSE,	RMSER<S, represents the smallest RMSE of the remaining fragment size 

models; the study evaluates the performance of the RFS model by comparing its RMSETUV value 

with RMSER<S using a percentage difference measure. This evaluation occurs across all four 
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scenarios and the inquiry identifies the scenarios and circumstances within a scenario where the 

RFS returns satisfactory performance.  

4.4.6. Modeling Implementation 

   In this study, a library of functions is scripted using Python programming language (Python 3) 

to implement the process, encompassing data cleaning, preparation, feature selection, regression 

model development, and model selection. To mitigate overfitting, the traffic crash data for each 

travel direction is divided into training and testing sets, with a ratio of 70% for training and 30% 

for testing. Each run's average computation time is 1151.21s and 801.52s for IH 20 EB and WB 

(utilizing a 6-Core Intel Core i7, 2.6 GHz CPU, and 16 GB memory), respectively. 

4.5. RESULTS 

   This section discusses the study result. Stage 1 determines the RFS. Stage 2 estimates and selects 

count data regression models using crash data, traffic operational characteristics, and geometric 

characteristics that are aggregated using fragment sizes ranging from 0.10 mile to 0.25 mile with 

an increment of 0.01 mile. Prior to performing statistical models, the dependent and independent 

variables are checked for multicollinearity using the variance inflation factor (VIF). Finally, the 

stage 3 analysis investigates the suitability of the RFS using testing data. 

4.5.1. Recommended fragment size (RFS) 

   The study methodology starts with finding the recommended fragment size (RFS) proposed by 

Maniei and Mattingly (2023a). Their study suggested applying the LSDBEM followed by K-

means clustering to the featured crash rates calculated for the tridimensional crash groups. The 

tridimensional crash groups are shown as scenario 4 crash groups in Fig. 4.1. This process is 

denoted as stage 1 of the study methodology, iterating over the fragment sizes ranging between 

0.10 mile to 0.25 mile with an increment of 0.01 mile. Table 4.4. presents the stage 1 results for 

IH 20 EB and WB. The previous study concluded that the fragment size for the clustering with the 
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highest silhouette score is the recommended fragment size (RFS). The two highest silhouette 

scores are shown with asterisks in Table 4.4. In descending order, the two highest silhouette scores 

for IH 20 EB are 0.9699 and 0.9647. For IH 20 WB, the two highest silhouette scores are 0.9223 

and 0.9153, in descending order. According to Maniei and Mattingly (2023a), the RFS for both IH 

20 EB and WB is 0.10 mile. The RFS is used in stage 3 to compare the statistical model 

performance for the RFS against other fragment size values used to aggregate the data to develop 

the statistical models. 

Table 4.4. Stage 1 results using LSDBEM and K-mean clustering for IH 20 EB/WB.  

 
 

4.5.2. Multicollinearity and modeling results 

   In stage 2, statistical models are developed to predict the crash count for each crash group in 

each scenario using explanatory variables in Table 4.3. Under a normal modeling process, the 

explanatory variables need to be investigated for multicollinearity since it may adversely impact 

the statistical model results and validity. This study utilizes the variance inflation factor (VIF) to 

investigate the multicollinearity among the explanatory variables. The VIF estimates the inflation 

in the variance of statistical model coefficients due to multicollinearity. The values of explanatory 

variables differ for each fragment size which causes changes in the corresponding VIF values; 

therefore, the analysis investigates the multicollinearity at the beginning of each iteration in stage 

2 (Fig. 4.2.). Serious multicollinearity among the explanatory variables exists if 𝑉𝐼𝐹!.W > 10 or 

𝑉𝐼𝐹!F.# > 5. The multicollinearity analysis results for IH 20 EB and WB are shown in Table 4.5. 

and Table 4.6., respectively. For IH 20 EB, a serious multicollinearity among explanatory variables 

occurs for the fragment sizes of 0.18, 0.19, 0.21, 0.22, 0.23, and 0.25 mile because 𝑉𝐼𝐹!F.# > 5. 

0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25
IH 20 EB 0.9699* 0.9647** 0.391 0.957 0.954 0.904 0.945 0.687 0.822 0.935 0.666 0.861 0.912 0.919 0.437 0.691
IH 20 WB 0.9223* 0.9153** 0.908 0.682 0.416 0.885 0.730 0.638 0.873 0.868 0.589 0.544 0.484 0.482 0.649 0.598

Silhouette Scores for Various Fragment Sizes
FS (mile)
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For IH 20 WB, a serious multicollinearity exists among the explanatory variables for the fragment 

sizes of 0.18, 0.19, 0.21, 0.22, 0.23, 0.24, and 0.25 mile because 𝑉𝐼𝐹!F.# > 5. The fragment size 

of 0.10 mile shows the best VIF results for both IH 20 EB and WB. 

Table 4.5. Multicollinearity analysis of explanatory variables for IH 20 EB. 

 

Table 4.6. Multicollinearity analysis of explanatory variables for IH 20 WB. 

 

4.5.3. Model performance measure 

   The outperforming model for each crash group scenario is the model with the lowest AIC value. 

The outperforming model’s AIC values are investigated by scatter diagrams color-coded by the 

fragment sizes without serious multicollinearity for SV-related and MV-related crash groups of IH 

20 EB and WB. As an example, a scatter diagram of MV-related crash groups for IH 20 WB is 

shown in Fig. 4.3. Generally, all the scatter plots show a declining trend in AIC values by 

increasing the fragment size with few minor exceptions. In addition, the lower bound and the upper 

Fragment 
Size (mile) 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

AADTT 8.883 9.096 9.144 9.046 9.129 9.124 9.131 9.195 9.254 9.298 9.131 9.190 9.305 9.323 9.507 9.460
AADTNT 8.983 9.231 9.238 9.168 9.100 9.193 9.103 9.166 9.448 9.404 9.074 9.370 9.706 9.508 9.629 9.288
CDD 3.926 5.334 4.893 4.432 4.500 4.951 4.296 4.550 7.129 7.920 4.198 7.051 6.959 7.007 6.068 7.010
R 1.085 1.106 1.112 1.106 1.142 1.103 1.141 1.135 1.143 1.137 1.128 1.321 1.142 1.149 1.142 1.146
TR-Seg 1.410 1.640 1.655 1.410 1.726 1.686 1.808 1.746 2.549 2.455 1.809 2.630 2.933 2.858 3.358 2.947
LT-Seg 2.702 2.966 2.504 3.017 2.436 2.722 2.219 2.362 2.151 2.797 2.224 1.879 1.956 2.168 1.602 2.028
RT-Seg 2.016 2.939 2.948 2.253 2.609 2.761 2.523 2.703 4.689 4.866 2.465 5.011 4.407 4.283 3.403 4.387
VIFMax 8.983 9.231 9.238 9.168 9.129 9.193 9.131 9.195 9.448 9.404 9.131 9.370 9.706 9.508 9.629 9.460
VIFMean 4.144 4.616 4.499 4.348 4.378 4.506 4.317 4.408 5.195 5.411 4.290 5.207 5.201 5.185 4.958 5.181

IH 20 EB - Variance Inflation Factor (VIF)

Fragment 
Size (mile) 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

AADTT 9.439 9.339 9.643 9.345 9.260 9.502 9.566 9.663 9.666 9.581 9.582 9.547 9.597 9.861 9.913 9.700
AADTNT 9.234 9.204 9.476 9.235 9.155 9.397 9.353 9.362 9.573 9.494 9.251 9.530 9.505 9.921 9.714 9.372
CDD 4.821 5.645 6.323 5.026 5.580 5.396 5.993 5.115 7.931 7.461 5.510 6.988 7.407 7.335 7.340 6.465
R 1.108 1.117 1.127 1.113 1.117 1.117 1.160 1.147 1.152 1.124 1.158 1.152 1.150 1.151 1.146 1.139
TR-Seg 1.418 1.639 1.804 1.286 1.704 1.818 2.082 1.930 2.765 2.260 2.124 3.060 3.120 3.038 3.193 3.236
LT-Seg 2.831 2.979 3.007 3.289 2.823 2.726 2.729 2.502 2.526 3.068 2.685 1.951 2.209 2.161 1.887 1.897
RT-Seg 2.688 3.140 3.577 2.566 3.216 2.998 3.340 2.793 4.708 4.180 2.849 4.142 4.230 4.253 4.332 3.514
VIFMax 9.439 9.339 9.643 9.345 9.260 9.502 9.566 9.663 9.666 9.581 9.582 9.547 9.597 9.921 9.913 9.700
VIFMean 4.506 4.723 4.994 4.551 4.694 4.708 4.889 4.645 5.474 5.310 4.737 5.196 5.317 5.389 5.361 5.046

IH 20 WB - Variance Inflation Factor (VIF)
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bound of AIC values decrease by moving from each scenario to the next scenario. Also, the range 

of AIC values becomes tighter by moving from each scenario to the next scenario. 

 

Fig. 4.3. IH 20 WB Outperforming Models for TNC and All MV Crash Group. 

   The root mean square error (RMSE) measures the model accuracy using the predicted and actual 

values for test set observations. The RMSE values associated with selected models of SV-related 

and MV-related crashes for IH 20 EB and WB are investigated by bar plots. Fig. 4.4. shows a bar 

plot for IH 20 WB depicting RMSE for SV-related crash groups. Mathematically, the statistical 

models with smaller RMSE are preferable. Unlike the AIC values, the RMSE values fluctuate for 

various fragment sizes for each crash group. Generally, the RMSE values show a declining trend 

by moving from each scenario to the next, similar to AIC values. 
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Fig. 4.4. IH 20 WB Model RMSE Values for TNC and All SV Crash Group. 

   Moreover, selection of fragment size impact data distribution after data aggregation. As a result, 

the amount of the dispersion in aggregated data may differ for various fragment sizes, if dispersion 

exist. Among the count regression model, there is a model effectively capturing the dispersion 

(variability in the aggregated data) as a good-fit model. On the other hand, the outperforming 

model is the model with the lowest AIC meaning the model effectively captures the pattern of 

aggregated data. . In this study, the count regression models account for the potential dispersion in 

the crash groups except Poisson and ZIP models. The amount of the dispersion in crash groups for 

various fragment sizes is investigated and no specific trend is detected. However, the amount of 

dispersion for each crash group is impacted by various fragment sizes.  

4.5.4. RFS impact on model performance 

   Stage 3 investigates the impact of fragment size on data aggregation and model performance. 

Specifically, this stage evaluates if the RFS produces the best modeling results or improves the 

prediction model results. As previously noted, the multicollinearity between the explanatory 

variables shown in Tables 4.5. and 4.6. led to the elimination of some fragment sizes from the RFS 
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evaluation because the fragment sizes produced flawed models. The fragment size of 0.10 mile 

provides the smallest multicollinearity between the explanatory variables.   

The study investigates the model performance and accuracy of the prediction models for all four 

scenarios using their AIC and RMSE values.  The minimum AIC, 𝐴𝐼𝐶!"#, for SV-related crashes 

in scenarios 1, 2, and 3 occur with a fragment size (FS) of 0.24 mile except for ‘SV-OTH’ crash 

group with 𝐴𝐼𝐶!"#, at FS = 0.17 mile for IH 20 EB (Table 4.7.). In scenario 4, the 𝐴𝐼𝐶!"# 

fluctuates over various fragment sizes (Table 4.7.-4.8.). For IH 20 WB, 𝐴𝐼𝐶!"# occurs at FS = 

0.20 mile except for some crash groups in scenario 4 (Table 4.7.-4.8.). The analysis for this 

freeway does not estimate models for ‘SV-OTH-A+K’ and ‘SV-OVT-A+K’ due insufficient 

observations. Considering MV-related crashes, 𝐴𝐼𝐶!"# values mostly appear at FS =0 0.24 mile 

for scenarios 1, 2, and 3 for IH 20 EB. In scenario 4, the 𝐴𝐼𝐶!"# for ‘MV-related’ crashes appear 

at FS = 0.17, 0.20, or 0.24 mile or IH 20 EB (Table 4.9.-4.10.). For IH 20 WB, MV-related crash 

groups show their 𝐴𝐼𝐶!"# at FS = 0.20 mile for all scenarios except for crash groups ‘MV-RRND-

A+K’, ‘MV-SDSW-A+K’, and ‘MV-STPD-A+K’ at fragment size of 0.17, 0.17, and 0.12 mile, 

respectively (Table 4.9.-4.10.). The minimum AIC, 𝐴𝐼𝐶!"#, does not occur at the RFS (0.10 mile) 

for either IH 20 EB or IH 20 WB. 

Table 4.7. Minimum AIC Values and Corresponding Fragment Size for 

TNC & SV-related Crashes. 

 

 

 

 

Scenario 1 Scenario 2 (SV)
TNC SV SV-OBJ SV-OTH SV-OVT SV-OBJ-A+K SV-OBJ-B+C 

599.89 410.01 379.32 121.91 150.29 101.96 233.56
FS 0.24 0.24 0.24 0.17 0.24 0.17 0.24

645.119 434.033 410.032 128.496 98.739 90.421 257.464
FS 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Scenario 3 (SV) Scenario 4 (SV)

IH 20 EB

IH 20 WB

AIC!"#

AIC!"#
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Table 4.8. Minimum AIC Values and Corresponding Fragment Size for  

TNC & SV-related Crashes. 

 

Table 4.9. Minimum AIC Values and Corresponding Fragment Size for  

TNC & MV-related Crashes. 

 

Table 4.10. Minimum AIC Values and Corresponding Fragment Size for  

TNC & MV-related Crashes. 

 

   For assessing the predictive quality of the crash models the evaluation prefers the lowest RMSE 

for the testing data. The RMSER<S with its corresponding fragment size and RMSETUV values for 

each scenario crash group for SV-related and MV-related crash groups are shown in Table 4.11.-

4.12. and 4.13.-4.14. for both IH 20 EB and WB, respectively. No prediction model was developed 

for ‘SV-OTH-A+K’ and ‘SV-OVT-A+K’ since the size of observations is insufficient. Comparing 

the RMSER<S and RMSETUV values for the SV-related crash groups for IH 20 EB, the percentage 

difference of RMSETUV values are within 20% of the RMSER<S for all scenario crash groups except 

for ‘SV-OTH-N’ and ‘SV-OVT-N’. Considering SV-related crash groups for IH 20 WB, the 

percentage differences are within 13% of the RMSER<S for scenarios 1, 2, and 3 except for the ‘SV-

SV-OBJ-N SV-OTH-A+K SV-OTH-B+C SV-OTH-N SV-OVT-A+K SV-OVT-B+C SV-OVT-N 
327.02 - 28.372 112.59 - 112.18 61.13

FS 0.24 - 0.12 0.15 - 0.17 0.24
344.681 18.00 24.175 137.682 22 49.937 58.917

FS 0.20 0.20 0.15 0.12 0.15 0.16 0.17
IH 20 WB

Scenario 4 (SV)

IH 20 EB
AIC!"#

AIC!"#

Scenario 1 Scenario 2 (MV)
TNC MV MV-RRND MV-SDSW MV-STPD MV-RRND-A+K MV-RRND-B+C 

599.89 564.65 448.29 452.83 299.49 81.16 61.79
FS 0.24 0.24 0.24 0.24 0.24 0.16 0.20

645.119 597.328 471.249 470.524 264.57 105.69 317.86
FS 0.20 0.20 0.20 0.20 0.20 0.17 0.20

Scenario 4 (MV)Scenario 3 (MV)

IH 20 EB

IH 20 WB

AIC!"#

AIC!"#

MV-RRND-N MV-SDSW-A+K MV-SDSW-B+C MV-SDSW-N MV-STPD-A+K MV-STPD-B+C MV-STPD-N 
433.45 49.11 292.24 414.95 20 204.98 229.05

FS 0.17 0.17 0.24 0.24 0.20 0.17 0.24
398.811 52.433 288.76 418.419 33.527 179.67 203.65

FS 0.20 0.17 0.20 0.20 0.12 0.20 0.20

IH 20 EB

IH 20 WB

Scenario 4 (MV)

AIC!"#

AIC!"#
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OTH’ crash group. The RMSE comparison of scenario 4 SV-related crash groups show the 

percentage difference of five crash groups is less than 7%. However, the crash groups ‘SV-OTH-

B+C’, ‘SV-OTH-N, ‘SV-OVT-A+K’, and ‘SV-OVT-B+C’ have large percentage differences 

ranging from 30% to 200% due to a very limited number of non-zero observation after data 

aggregation. The RMSE percentage difference values of MV-related crash groups for scenarios 1, 

2, and 3 remain within 17% and 18% for IH 20 EB and IH 20 WB, respectively. In scenario 4 for 

both IH 20 EB and IH 20 WB, MV-related crash groups show percentage differences within 20% 

except for some crash groups (Table 4.13.-4.14.).  

Table 4.11. Minimum RMSE Values and Corresponding Fragment Size for 

TNC & SV-related Crashes. 

 

Table 4.12. Minimum RMSE Values and Corresponding Fragment Size for 

TNC & SV-related Crashes. 

  

 

 

Scenario 1 Scenario 2 (SV) Scenario 4 (SV)
TNC SV SV-OBJ SV-OTH SV-OVT SV-OBJ-A+K SV-OBJ-B+C 

RMSEmin 102.63 27.586 22.271 3.606 3.742 2.646 7.746
FS 0.10 0.13 0.15 0.12 0.11 0.10 0.15
RMSERFS 102.6 33.5 23.5 4.0 4.5 2.6 7.9
%-Diff 0.00% 19.22% 5.35% 10.36% 17.77% 0.00% 1.64%
RMSEmin 81.284 21.726 18.358 3 2.828 2.828 7.141
FS 0.15 0.10 0.10 0.14 0.10 0.11 0.15
RMSERFS 92.24 21.73 18.36 4.90 2.83 3.00 7.62
%-Diff 12.63% 0.00% 0.00% 48.08% 0.00% 5.90% 6.44%

Scenario 3 (SV)

IH 20 EB

IH 20 WB

SV-OBJ-N SV-OTH-A+K SV-OTH-B+C SV-OTH-N SV-OVT-A+K SV-OVT-B+C SV-OVT-N 
RMSEmin 15.395 - 0 2.236 - 3 1.414
FS 0.15 - 0.10 0.16 - 0.10 0.20
RMSERFS 17.64 - 0.00 4.00 - 3.00 2.45
%-Diff 13.56% - 0.00% 56.57% - 0.00% 53.62%
RMSEmin 12.689 0 0 1 0 1.414 1.732
FS 0.11 0.10 0.12 0.20 0.13 0.11 0.10
RMSERFS 13.19 0.00 1.00 4.90 1.00 2.00 1.73
%-Diff 3.88% 0.00% 200.00% 132.19% 200.00% 34.33% 0.00%

IH 20 WB

Scenario 4 (SV)

IH 20 EB
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Table 4.13. Minimum RMSE Values and Corresponding Fragment Size for 

TNC & MV-related Crashes. 

  

Table 4.14. Minimum RMSE Values and Corresponding Fragment Size for 

TNC & MV-related Crashes. 

 

4.6. DISCUSSION 

   This study objective is to examine the impact of the fragment size on the data aggregation and 

the traffic crash prediction results under different conditions by defining four scenarios. In 

addition, it is explored if the recommended fragment size (RFS) makes some improvement in crash 

prediction results as suggested by Maniei and Mattingly (2023a).  

   The research investigates the impact of the fragment size on multicollinearity. Prior to 

developing statistical models, the modelling process must investigate the multicollinearity among 

the explanatory variables. The study result shows the fragment size affects the explanatory 

variables VIFs (Table 4.5. and 4.6.), and results in invalid models for some fragment sizes. The 

minimum VIFRXY and VIFRZXS occur at the RFS of 0.10 mile, because the RFS suggested by 

Scenario 1 Scenario 2 (MV)
TNC MV MV-RRND MV-SDSW MV-STPD MV-RRND-A+K MV-RRND-B+C 

RMSEmin 102.63 78.975 37.108 34.598 13.153 2.45 1.732
FS 0.10 0.10 0.10 0.24 0.16 0.15 0.12
RMSERFS 102.63 78.975 37.108 34.641 15.492 3 13.602
%-Diff 0.00% 0.00% 0.00% 0.12% 16.33% 20.18% 154.82%
RMSEmin 81.284 63.119 30.919 27.037 9 3.162 1.732
FS 0.15 0.10 0.10 0.15 0.15 0.13 0.16
RMSERFS 92.24 63.12 30.92 29.93 10.68 3.46 11.87
%-Diff 12.63% 0.00% 0.00% 10.17% 17.05% 9.12% 149.08%

Scenario 3 (MV) Scenario 4 (MV)

IH 20 EB

IH 20 WB

MV-RRND-N MV-SDSW-A+K MV-SDSW-B+C MV-SDSW-N MV-STPD-A+K MV-STPD-B+C MV-STPD-N 
RMSEmin 1.414 1.414 1 6.782 1 8.888 9.747
FS 0.24 0.16 0.11 0.15 0.10 0.10 0.17
RMSERFS 27.477 1.414 11.705 27.24 1 8.888 10.44
%-Diff 180.42% 0.00% 168.52% 120.26% 0.00% 0.00% 6.87%
RMSEmin 2.45 2 1.414 0 0 5.745 7.483
FS 0.20 0.13 0.15 0.20 0.14 0.10 0.10
RMSERFS 20.494 2.45 10.392 22.158 410.992 5.745 7.483
%-Diff 157.29% 20.22% 152.09% 200.00% 200.00% 0.00% 0.00%

IH 20 WB

Scenario 4 (MV)

IH 20 EB
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Maniei and Mattingly (2023a) is based on the LSDBEM that accounts for multicollinearity (Liu, 

Yang, Ding, & Ma, 2009). 

   The AIC values for the selected models are compared over the various fragment sizes for all 

scenarios for IH 20 EB and WB. The AICR<S values for all scenario crash groups and their 

corresponding fragment size (FS) are shown in Table 4.7.-4.8. and Table 4.9.-4.10. for SV-related 

and MV-related crash groups. The result shows that the AICR<S values for scenario 1, SV-related, 

and MV-related crash groups in scenarios 2 and 3 occur at FS of 0.24 and 0.20 mile for IH 20 EB 

and IH 20 WB, respectively, except for ‘SV-OVT’ with AICR<S at FS=0.17 mile for IH 20 EB. The 

AICR<S values for scenario 4 fluctuate over the various fragment sizes but there are crash groups 

with AICR<S values at FS of 0.24 and 20 mile for IH 20 EB and IH 20 WB, respectively. No crash 

group shows AICR<S at the fragment size of 0.10 mile, which is the RFS suggested by Maniei and 

Mattingly (2023a). Therefore, the RFS fails to produce the AICR<S values for the selected models 

for all scenarios crash groups. Besides the fragment size, the impact of traffic crash dimensions on 

the AIC values are investigated. The result shows that the AIC values are constantly improved by 

including higher dimensions of traffic crashes. The selected model AIC values decline for each 

crash group in scenarios 2, 3, and 4 from their parent crash groups in scenarios 1, 2, and 3 as shown 

in Fig. 4.3. However, the improvement in AIC values is negligible for crash groups including 

‘MV’, ‘MV-SDSW’, and ‘MV-SDSW-N’ for both IH 20 EB and WB. Because these crash groups 

show minor improvement in AIC values, it can be argued that the RFS of 0.10 mile might be as 

effective as the FS corresponding to AICR<S values for these crash groups.  

   Additionally, the various fragment sizes for IH 20 EB and IH 20 WB impacted the dispersion for 

each crash group. The changes in dispersion of the crash groups resulting from various fragment 

sizes led to different types of count regression models appearing suitable as the selected model for 
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a crash group because the selected model type better captured the dispersion, or variation in the 

data. The AIC value for each model type indirectly related to the dispersion derived by the model 

assumptions on mean and variance relationship. Among all the models performed for each crash 

group for each fragment size, the outperforming model effectively captured the magnitude of the 

dispersion (or variability in the aggregated data). Therefore, the outperforming model, the model 

with the lowest AIC, effectively captured the dispersion in the aggregated data. Fig. 4.5.A. – 4.5.C. 

showed the top two suitable models as GP2 and GP1 for the ‘TNC’ crash group, Poisson and GP1 

for the SV-related crash groups, and ZIP and GP2 for the MV-related crash groups. 

 
  

Fig. 4.5.A. Fig. 4.5.B. Fig. 4.5.C. 

Fig. 4.5.A. – 4.5.C. Word Cloud Diagram of Outperforming Model Type for ‘TNC’,  

‘SV’-related, and ‘MV’-related Crashes, respectively. 

   The RMSER<S values for all scenario crash groups for IH 20 EB and WB with their corresponding 

FS and RMSETUV are shown in Table 4.11.-4.12. and Table 4.13.-4.14. for SV-related and MV-

related crash groups. The results show that the RMSER<S values for the selected models fluctuate 

over the various fragment sizes. Unlike AIC, RMSER<S values differ for various FS in scenarios 1, 

2, and 3 as they do in scenario 4. However, the FS of 0.10 mile coincides with RMSER<S for some 

crash groups including ‘SV-OBJ-A+K’,  ‘SV-OTH-B+C’,  and ‘SV-OVT-B+C’ for IH 20 EB and 

‘SV’, ‘SV-OBJ’, ‘SV-OVT’, ‘SV-OTH-A+K’, ‘MV’, ‘MV-RRND’, ‘MV-STPD-B+C’, and ‘MV-

STPD-N’. Moreover, the percentage difference values of the RMSE values for the recommended 
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fragment size, RMSETUV, and RMSER<S values are within at most 20% for all crash groups in 

scenarios 1, 2, and 3 for both IH 20 EB and IH 20. WB, except the ‘SV-OTH’ crash group for IH 

20 WB. This implies that the crash prediction models for RFS of 0.10 mile provide sufficient 

goodness of fit for scenarios 1, 2, and 3 compared to the crash prediction models for the fragment 

sizes with  RMSER<S. However, a similar conclusion only applies for some of crash groups in 

scenario 4 for both IH 20 EB and IH 20 WB. This shows that crash groups in scenario 1, 2, and 3 

benefited from the RFS for data aggregation by reaching the RMSER<S or its proximity. The RFS 

only performed acceptably for some crash groups in scenario 4. In particular, the RFS provides 

unsatisfactory performance for crash groups with a very limited number of non-zero observations 

after data aggregation. This shows that the RFS represents a reasonable strategy to simplify 

fragment selection and modeling for all scenarios and crash groups with sufficient non-zero 

observations.  

4.7. CONCLUSIONS 

   This study explores the impact of various fragment sizes and traffic crash dimensions on 

multicollinearity and statistical model performance and accuracy.  Also, it examines the potential 

benefits of the RFS obtained by LSDBEM/K-means for the statistical models.  Stage 1 

recommends a RFS value of 0.10 mile for both IH 20 EB and WB.  

   This study considers the variance inflation factor (VIF), AIC, and RMSE for all predictive 

models with the dispersion values to study the impact of fragment sizes.  The VIF results illustrate 

that the multicollinearity between the explanatory variables differ for various fragment sizes such 

that serious multicollinearity appears for all FS of 0.18 mile and greater for both IH 20 EB and 

WB, except for the FS of 0.20 and 0.24 mile for IH 20 EB and the FS of 0.24 mile for IH 20 WB. 

This indicates that after data aggregation begins to exhibit multicollinearity additional increases in 

FS may result in specific data aggregations that do not show serious multicollinearity, but 
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predicting these patterns a priori appears difficult. The result shows that the minimal 

multicollinearity occurs for a FS of 0.10 mile for both IH 20 EB and WB, which is the RFS 

obtained in stage 1. The AIC values for outperforming models fluctuate over the various fragment 

sizes and scenario’s crash groups. The 𝐴𝐼𝐶!"# values for all crash groups (SV and MV related) in 

scenarios 1, 2, and 3 occur at FS of 0.24 mile except for ‘SV-OVT’ with 𝐴𝐼𝐶!"# at FS of 0.17 mile. 

Therefore, the RFS (0.10 mile) does not achieve the lowest AIC values for scenarios 1, 2, and 3. 

Since the difference between the AIC values for the various fragment sizes are negligible for some 

of crash groups, it the RFS (0.10 mile) appears to roughly correspond to 𝐴𝐼𝐶!"# for those crash 

croups. Similarly in scenario 4, crash groups with negligible differences between AIC values exist 

while a few crash groups reach 𝐴𝐼𝐶!"# at FS of 0.24 and 0.20 mile for both IH 20 EB and WB. 

Therefore, the minimum AIC, 𝐴𝐼𝐶!"#, does not occur at FS = 0.10 mile for all four scenarios.    

Another measure, RMSE, represents the accuracy of the crash prediction model when estimating 

the testing data set values. The RMSE values for each crash group differ across the fragment sizes. 

For some SV-related and MV-related crash groups, the 𝑅𝑀𝑆𝐸!"# corresponds with the RFS of 

0.10 mile. For other crash groups, the 𝑅𝑀𝑆𝐸$%& remains within proximity (20%) to the 𝑅𝑀𝑆𝐸!"#, 

meaning that the RFS performance is approximately as good as using the fragment size associated 

with 𝑅𝑀𝑆𝐸!"#. For scenario 4, the RMSE values do not perform as well as those in scenarios 1, 

2, and 3. This implies that the RMSE result fluctuates when crash severity is included for grouping 

crashes. Mostly, the RMSE values for the outperforming models for crash groups in scenarios 2, 

3, and 4 decrease from their corresponding parent crash groups in scenarios 1, 2, and 3, 

respectively. Various fragment sizes impact the dispersion detected for each crash group, which 

impacts the types of count regression models emerging as the outperforming models. The model 

selection process identifies the top two ‘TNC’ crash group models as GP2 and GP1, the top two 
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SV-related crash group models as Poisson and GP1, and the top two MV-related crash group 

models as ZIP and GP2. The General Poisson regression models (GP1 and GP2) appear to perform 

well regardless of the crash group. 

   An expanded analysis and improved data quality may address many of the limitations associated 

with this study. The study findings are limited to the available traffic operational and roadway 

geometry data for IH 20 in Dallas County. Expanding the crash investigation to more sites appears 

necessary to confirm the benefit of the recommended fragment size (RFS) for different highways 

and freeways and determine the contexts where applying the RFS procedure seems most 

appropriate.  The study currently excludes any spatial correlation effect for the traffic crash data. 

Future research should examine the potential contributing factors absent from this study such as 

operating speed, pavement marking visibility, sunlight glare, ambient lighting, cross-slope, 

roadway profile grade, shoulder width, and lane width. The scope of the study does not include the 

discussion of significant contributing factors for crash groups and various fragment sizes due to 

the numerous models developed in this study. An innovative method to illustrate the models’ 

coefficients and standard errors would provide insights about the contributing factors becoming 

statistically significant across the various fragment sizes for different crash groups. Although the 

RFS improves the multicollinearity among the explanatory variables, the outperforming models 

with minimum AIC typically occur at fragment sizes other than the RFS. Therefore, future research 

needs to evaluate the trade-off between selecting a fragment size to reach minimal multicollinearity 

versus choosing the fragment size with minimum AIC or RMSE as the outperforming model. Also, 

future studies must confirm the benefit of the RFS for data aggregation and denoting the 

restrictions on its application by examining other highways and freeways, and perhaps using other 

model types. 
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CHAPTER 5.  CONCLUSION 

   This dissertation develops an innovative data-driven methodology to aggregate crash data and 

recommends a fragment size for aggregating crash, roadway, and traffic data.  The RFS represents 

a solution for the arbitrary selection of a fragment size (segment lengths) that prior research deems 

a concern. The new method utilizes LSDBEM for crash feature selection and the K-means 

clustering algorithm as unsupervised learning tools to categorize highway segments based on 

traffic crash patterns. Throughout this analysis, the crash analyses use featured crash rates (FCRs) 

based on three traffic crash characteristics (i.e. crash units, type, and severity).   Also, the study 

investigates the effect of higher dimensions using four scenarios of traffic crash characteristics on 

crash prediction models, the statistical significance of explanatory variables, and traffic crash 

hotspots identified using crash prediction models. The dissertation examines the impact of 

fragment size on the multicollinearity among explanatory variables, and crash prediction model 

under the four scenarios. Finally, the dissertation evaluates the suitability and use cases of the RFS 

(obtained by LSDBEM/K-means) for data aggregation in crash prediction modeling. 

 The dissertation evaluates the performance of the new clustering method by comparing the 

results based on FCR and TCR for the mainlane segments of urban highways’ (Texas Loop 12, 

IH-20, IH-30, IH-35E, IH-45, IH-635, and US-75) within Dallas County for fragment sizes ranging 

from 0.10 mile to 0.25 mile in 0.01 mile increments.  The clustering using FCR outperforms the 

TCR-based clustering, which indicates that FCRs represents a better strategy for choosing an 

aggregation pattern for the crash data. This suggests using the FCR-based clustering result for each 

highway travel direction as the RFS for data aggregation.   

       The dissertation limits the crash modeling investigation to EB and WB IH-20 with a 0.1-mile 

fragment size for data aggregation; however, the RFS evaluation expands the analysis to consider 
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fragment sizes ranging from 0.10 mile to 0.25 mile in 0.01-mile increments. When the dissertation 

compares the modeling results for the four scenarios using the three crash feature dimensions, the 

modeling outcomes demonstrate the anticipated results where the outperforming models differ for 

each crash group. According to the findings, specific contributing factors, such as truck AADT, 

non-truck AADT, horizontal curve delta degree, horizontal curve radius, curved-to-right segment, 

and curved-to-left segment, emerge as significant contributors within specific crash groups. 

However, the statistical significance of these factors changes for overall crashes, SV, and MV 

crashes. Consistent with prior research, the top ten hotspot segments vary for nearly half of the 

segments when considering different crash groups. The dissertation also confirms that the 

segments identified as MV crash hotspots more closely align with the total crash hotspots than 

those identified as hotspots for SV crashes. The study results conclude that scenario 4, which 

encompasses all three dimensions of traffic crash characteristics (i.e. crash unit, crash type, and 

crash severity), furnishes a more comprehensive insight into contributing factors and hotspot 

segments; however, including all three dimensions of traffic crash characteristics may not always 

produce meaningful results when a scenario 4 crash groups has insufficient observations. 

       Also confirming previous studies, the dissertation shows that the fragment size for data 

aggregation directly impacts the modeling process and results. The data aggregation impacts the 

multicollinearity among the explanatory variables, the dispersion values in the dependent variables 

(crash count for each crash group), the type of count data regression model becoming the 

outperforming model, and the significant explanatory variables. The data aggregation pattern also 

affects the performance and accuracy of the outperforming models. The result illustrates that the 

multicollinearity among explanatory variables differ for various fragment sizes, and the minimum 

multicollinearity among the explanatory variables occurs at the RFS values obtained using the 
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LSDBEM/K-means method, meaning the data aggregation recommended using the RFS limits the 

multicollinearity among the explanatory variables. Considering the crash prediction models, the 

AIC values for outperforming models fluctuate over various fragment sizes.  The root mean square 

error (RMSE) values for the testing data estimated by the crash prediction models also fluctuate 

across the fragment sizes. The minimum RMSE, 𝑅𝑀𝑆𝐸!"#, occurs at the RFS for some crash 

groups, and  the RMSE at RFS, 𝑅𝑀𝑆𝐸$%&, for all crash groups with sufficient non-zero 

observations is similar (within 20%) to the 𝑅𝑀𝑆𝐸!"#. This indicates that the RFS represents an 

acceptable strategy for standardizing data aggregation. 

 This study encountered some limitations. The investigation suffered from insufficient traffic 

operational and roadway geometric characteristic data. There is a need for quality data to expand 

the consideration of contributing factors or introducing real-time contributing factors. Ideally, a 

future study should include more precise quality data, and introduce traffic operational and 

roadway explanatory variables like operating speed, visibility of pavement markings, sunlight 

glare, cross-slope, shoulder width, and lane width. The application of the methods described within 

this dissertation were limited to Dallas County urban freeways and the modeling only considered 

a single urban highway (IH 20 within Dallas County). Previous studies noted the potential for 

spatial correlation among crash data, but the limited traffic operational and roadway geometric 

made including the spatial correlation less important.  Future studies with better data should also 

add spatial correlation within the crash modeling methodology. Due to their infrequent occurrence 

and the complexity of their contributing factors, crash data patterns may change over time and 

introduce temporal instability in RFS and cluster structures. Future research must investigate the 

RFS and cluster structure temporal stability. Expanding on this research likely involves 

considering the temporal instability and unobserved variations related to environmental 
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characteristics and driver behaviors. The study solely focuses on clustering and recommended 

fragment length by incorporating all three traffic crash characteristics, but the LSDBEM/K-means 

clustering technique can be employed to analyze crash groups, considering scenarios such as crash 

units only or crash units combined with the manner of collision. This allows for a comparison with 

clustering results based on FCR and TCR. Subsequent research should explore the significance of 

incorporating additional crash characteristics in predicting crash risk and identifying contributing 

factors. Further investigations should delve into each traffic crash characteristic independently, 

comparing the outcomes with those obtained when considering all three characteristics 

simultaneously. This study created distinct clusters for each highway and travel direction 

separately, but future research could expand its scope by exploring network-wide clustering for 

comparative analysis. 

      This dissertation provides the foundation for many additional research studies. Future research 

should investigate using the clustering approach to develop aggregate modeling techniques that 

resemble principal components analysis by using the aggregate data from the clusters, and another 

study should evaluate the impacts of estimating crash models for each cluster.  While this study 

includes three crash dimensions in its features, future studies may investigate fewer (e.g., number 

of vehicles and manner of collision, similar to scenario 2 and 3) and more crash dimensions (e.g., 

roadway geometry or AADT). The clustering may also include other non-crash features and 

incorporate spatial correlation. This study may expand the new RFS method to segmentize 

highways with a variable segment length rather than a constant length of the segment. The new 

clustering method can also form clusters based on traffic operational characteristics data, and find 

the RFS based on the traffic characteristics, which may be critical for real-time crash prediction.    

A subsequent inquiry could also modify the RFS approach to segmentize highways with a variable 
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fragment size (segment length) rather than adhering to a constant fragment size (segment length). 

Also, additional research needs to investigate the modeling balance between a fragment size that 

minimizes multicollinearity, the AIC testing data RMSE to identify an ideal model. Finally, the 

study methodology needs to be applied to other urban (or rural) highways/freeways in different 

locations to confirm the benefit of the RFS for data aggregation, its appropriate use cases, and its 

impact on crash prediction models. 
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