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ABSTRACT 

Condition Assessment of Reinforced Concrete Sanitary Sewer Pipelines Using Probabilistic 

Methods and Advanced Inspection Tools 

Moein Ebrahimi, Ph.D. 

The University of Texas at Arlington, 2023 

Supervising Professor: Himan Hojat Jalali 

Large sanitary sewer pipelines (SSPs) are the backbone of modern infrastructure. They carry 

wastewater from smaller lines to treatment plans; therefore, they are critical for public health and 

safety. According to the ASCE report card published in 2021, the condition rate of sanitary sewage 

networks in the United States is D+ (i.e., poor) (ASCE 2021). Therefore, frequent inspections of 

SSPs are crucial for performing a proper life cycle management strategy. New inspection 

technologies such as LiDAR have recently been employed for rapid condition assessment of SSPs. 

Because of the precision of LiDAR inspection data, it can not only measure hydraulic properties 

but also, quantify the erosion of concrete walls in SSPs. Because of the limited available inspection 

data for this large aging inventory, probabilistic approaches need to be implemented into these 

limited inspection data to create an effective condition assessment for SSPs. Meanwhile, 

Reinforced concrete SSPs (RCSSPs) are commonly used for sewer mains.  

In this study, an automated framework for condition assessment of RCSSPs is proposed using 

LiDAR inspection data and probabilistic approaches. The framework includes the procedure for 

filtering and alignment of the raw 3D point cloud of data, which represents the pipe's inner 

geometry coordinates. Then hydraulic properties (such as hydraulic radius, wetted perimeter, 

volumetric flow rate, and velocity of flow), ovality, and concrete erosion rate from the 2D cross 



 IV 

sections along the pipe length. From these outputs, probabilistic approaches will be implemented 

such as finding the best-fit probability density function (PDF) corresponding to the deteriorated 

inner concrete wall geometry of RCSSPs, and probabilistically estimating their residual service 

life (RSL); in addition, the Bayesian network is used to predict the erosion rates using different 

priors from the literature and the likelihood function which is the calculated erosion rate from the 

inspected SSPs at the age of 28. The results will be compared in the form of the predicted 

remaining service life (RSL). Lastly, statistical approaches such as single/multi-variable 

regression, and polynomial regression are applied to the outputs to estimate the mean concrete loss 

and identify underlying patterns in the data.  

The overall objective of this study is to develop an innovative, automated, and rational framework 

for condition assessment of transportation infrastructure more specifically for RC sanitary 

pipelines. 
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DISSERTATION ORGANIZATION 

This dissertation is prepared in five chapters: chapter 1 presents an overview of the concrete 

erosion mechanism in sewer pipes, answer to the question: of why the inspection is important? in 

addition to the objectives and gaps to be covered in this topic. Chapter 2 presents a summary of 

the literature available on inspection tools for sanitary sewer pipes (SSPs) and their limitations, 

different probabilistic and stochastic techniques to accommodate the scarcity of inspection data, 

and the limitations of inspection. Chapter 3 introduces the theory behind concrete erosion 

modeling. Moreover, an automated algorithm for condition assessment of reinforced concrete 

SSPs (RCSSPs) is presented in Chapter 3. In addition, updating concrete erosion values using 

Bayesian inference on the concrete erosion data is presented in Chapter 3. Chapter 4 discusses the 

results of the automated methodology in Chapter 3 and compares their results to the literature. 

Moreover, the verification results are presented in Chapter 4, as well as an evaluation of the 

performance of the algorithm. In addition, the results of the implementation of statistical methods 

on the hydraulic properties and concrete erosion are provided. Finally, chapter 5 contains a 

summary and concludes the dissertation. 
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CHAPTER 1. INTRODUCTION 

1.1 Overview 

According to the ASCE report card published in 2021, the condition rate of sanitary sewage 

networks in the United States is D+ (i.e., poor) (ASCE, 2022). The most challenging task in 

developing a life-cycle management for sanitary sewer systems is the maintenance of this aging 

infrastructure. This aging inventory, in which pipes play a major role, is reaching the end of its 

service life and as a result, municipalities are looking for methods for condition assessment to 

estimate their residual service life (RSL). Overall, the proposed decision support tool could help 

mitigate the risk of pipeline failure, thereby preventing detrimental societal and environmental 

consequences, all while saving limited resources.  

Sanitary sewer mains are the most vital underground infrastructures, and it has a major role in a 

sustainable urban system; the sewer systems are designed to have a long service life. Thus, it is 

important to provide acceptable serviceability and to make a balance between the maintenance 

costs and the risk of failures. Failure of sanitary networks can be catastrophic and have severe 

consequences for people, as well as the natural and built environment. To address this issue, a $1 

trillion infrastructure bill was recently signed into law to rehabilitate and improve the nation’s 

aging infrastructure. The bill addresses 17 of the 17 categories (including sanitary sewer pipelines) 

outlined in the ASCE 2021 Infrastructure Report Card (Sevier, 2021). An appropriate 

rehabilitation and maintenance plan can be achieved only if frequent inspections of the sewer 

network inventory are conducted. Meanwhile, routine inspections, paired with data-driven 

probabilistic performance modeling, can help decision-makers and municipalities make informed 

choices regarding their maintenance and rehabilitation.  
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The biggest challenge for municipalities and decision-makers is the maintenance of infrastructures 

in their inventory and prioritizing limited repair funding for them. In this study, the residual service 

life (RSL) of large RC sanitary sewer pipelines with diameters of 60-, 54- and 30-inch RCSSPs is 

estimated using probabilistic and reliability-based methods on the automated data-driven 

framework. The inspection data includes about 8000 linear feet of sewer lines in the form of 25 

different RCSSPs. To this end, the critical input information is the current erosion of pipe cross-

sections, which is obtained through the inspection data in the form of LiDAR measurements. The 

proposed automated framework is developed to get the LiDAR raw output data and apply filtering, 

aligning, and obtaining the cross-section wall thickness loss. Furthermore, different probability 

distribution functions are fitted to the wall thickness loss data and a best fit is obtained. Moreover, 

based on the corrosion rate and a selected confidence level, the reliability-based residual life of the 

inspected pipelines is provided. In addition, the effect of different zones along pipe circumference 

on the concrete erosion of RCSSPs is investigated and the results of different case studies are 

compared with the results of the whole pipe. Furthermore, Bayesian Network (BN) is implemented 

on the erosion data to update the values based on the prior (which is determined from the literature). 

Finally, different regression analysis is utilized on the hydraulic properties (calculated from the 

proposed algorithm for different RCSSPs (M-M).) to estimate the mean concrete loss due to 

erosion and identify underlying patterns. Based on the decision makers’ resources, the results could 

be presented at different scales, whether for small 1-inch rings, 5-ft sections, or even for the whole 

inspected line (M-M).  

In the following sections, the application of sewer pipes is discussed as well as different types and 

shapes of SSPs. In addition, common defects of RCSSPs are investigated. The concrete erosion 

mechanism of RCSSPS is discussed; the main factor behind this deterioration is explained. 
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1.2 Sanitary Sewer Pipes 

Sewer pipelines are an important part of the infrastructure that carries the wastewater out of cities. 

The Romans, Persians, Athenians, Macedonians, and Greeks built the early versions of sewer 

systems from stone and cement. Sewer systems comprise about fifty percent of the underground 

infrastructure in the United States (Shook 1998), which includes more than 1,300,000 miles of 

public and private sewer lines.  

Different materials are being used for conveying the wastewater across the US. Materials such as 

Ductile iron, Vitrified clay, Fiberglass, Reinforced concrete, High-density polyethylene pipe 

(HDPE), and PVC are the different types of SSPs. Among these types, reinforced concrete (RC) 

is usually used in systems like sanitary sewers, storm drains, and culverts; RC pipes are 

manufactured in various shapes (Figure 1). Meanwhile, studies investigate the application of 

wastewater in industry; Soltanianfard et al., (2023) examine the use of wastewater in concrete as 

a sustainable resource for eco-friendly structures. 
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 (a) (b) (c) 

   

 (d) (e) (f) 

Figure 1. Different Shapes of RCSSPs (a) Arch shape, (b) Circle shape, (c) Elliptical shape, (d) Egged 
shape, (e) U-shaped, (f) Rectangular shape(Civil Crews, 2020). 

RCSSP is suitable for both gravity flow and pressure SSPs, primarily used for potable water. With 

a lifespan of up to 150 years, RCP's long lifespan hinges on effective design and maintenance. The 

serviceability of these sewer lines can be affected by structural failure, overflows, and blockages. 

The major benefits of RCP are its durability, strength, and long life, aided by its smooth surface 

that facilitates good flow. However, these pipes are vulnerable to hydrogen sulfide attacks and can 

erode in extremely acidic soils. Additionally, improper installation or transportation can lead to 

structural defects like cracks and deflection. Figure 2 shows common defects of RCSSPs.  
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Figure 2. Major Defects in RCSSPs (a) Debris; (b) Surface Damage; (c) Cracks; (d) Connection 
Defect; (e) Concrete Erosion; (f) Leakage ((Bakry et al., 2016)and (Dong et al., 2023)) 

Different forms of structural degradation adversely affect the integrity and function of sanitary 

sewer pipes (SSPs) over time. Concrete erosion is the main cause of degradation in SSPs, as sewers 

contain corrosive elements, with hydrogen sulfide gas being the dominant one, specifically in 

reinforced concrete sanitary sewer pipes (RCSSPs). Biological activities of anaerobic sulfate-

reducing bacteria with hydrogen sulfide gas (in the slime layer below the waterline) produce 

sulfuric acid that accumulates on the inner wall of the pipe above the waterline and causes concrete 

wall erosion over time (Bizier, 2007). This deterioration mechanism is often termed 

microbiologically induced corrosion (MIC), which can decrease the life of SSPs from 100 years 

to 30-50 years (De Belie et al., 2004). Since sewer pipes often fail abruptly without prior warning, 

it is necessary to properly plan for the inspection cycles to decrease the failure rates. In addition, 

due to the importance of these underground infrastructure, the SSPs are expected to have a longer 

service life than typical civil engineering structures.  



 

 

6 

The biggest challenge for municipalities and decision-makers is the maintenance of infrastructures 

in their inventory and prioritizing limited repair funding. Sanitary sewer mains are the most vital 

underground infrastructure, and they play a major role in having a sustainable urban system. Thus, 

it is crucial to provide an acceptable level of infrastructure serviceability and to make a balance 

between the maintenance costs and the risk of failures. 

1.3 Concrete Erosion Mechanism 

RC sanitary sewer pipes are susceptible to different types of deterioration that threaten their 

structural capacity and serviceability. Because sanitary sewer mains are buried underground, they 

could collapse without showing significant warning. Performing proper inspection cycles with 

highly technical methods can drastically limit collapses from happening (Papoulis & Pillai, 1991). 

Failure of these structures, or losing parts of their operational capabilities, may cause undesirable 

consequences that affect the surrounding environment, public health, and the economy. In some 

cases, the sewer pipe collapse could be lethal; a deputy was killed on West Side Road in San 

Antonio in 2016 (Bradshaw, 2017).  

 

Figure 3. Mechanism of Microbially Induced Concrete Erosion in RCSSPs (Romanova et al., 2014) 
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Some of the most important sewer pipe damages are cracks, corrosion, root intrusion, breakage, 

and misaligned connections. Among these, cracks, corrosion, and breakage can result in more than 

half of the collapses in sewer systems (He & Koizumi, 2013). The main damage observed in RCPs 

is the concrete erosion due to the existence of hydrogen sulfide (H2S)(Ribas Silva, 1995). This 

process is as follows: 

1. Newly cast concrete has high alkalinity (a pH of 12-13) which is the result of the formation of 

CaOH2. This hinders the formation of microorganisms. This stage is called Abiotic Neutralization. 

In the meantime, sulfate-reducing bacteria (SRB) exist in the biofilm along the perimeter of the 

submerged surface.  SRB converts the sulfate (SO4-2) into hydrogen sulfide and oxidizes to form 

carbon dioxide (CO2). 

Organic matter + SO4-2 H2S+CO2 

Some aspects such as low flow velocities, long sewage flows, and high sewage temperatures 

accelerate the formation of H2S. H2S gas and CO2 dissolve in a biofilm to form HS- and H+ and a 

weak bicarbonate acid (H2CO3); then, this reacts with the alkali species in concrete (calcium 

hydroxide) to decrease pH down to 9. The estimated period for this process is a few months and 

could extended to a few years (Parker, 1951). 

2. Creating of neutrophilic bacteria (sulfur-reducing bacteria NOSM): when the pH drops to 9 and 

due to sufficient presence of nutrients and oxygen, sulfur-reducing bacteria (Thiobacillus) initiate 

to colonize on the concrete surface. As NOSM grows, the oxidation of the sulfur ions (S-2) is 

facilitated in the sulfuric acid to form hydrogen sulfate acid (H2SO4). This acid will further react 

with the concrete surface to drop the pH more. This step is called Biotic corrosion (Wells et al., 

2009). 



 

 

8 

    NOSM 
H2S+2O2 H2SO4 

 

3. Colonization by Acidophilic bacteria (ASOM): ASOM starts to grow once the pH drops to 4, it 

has the same role as NOSM(Pomerot, 1974); it oxidizes the elemental sulfur and the thiosulfate 

(S2O3-2). This process will further drop the pH to (1-2).  

4. Initiation of loss of cover: The H2SO4 which results from the oxidation of the H2S (by the 

ASOM) reacts with carbonate and silicate products in the concrete mix to make calcium sulfate 

CaSO4 (gypsum). The effect of biological H2S corrosion in RCP is bigger when the concrete 

contains limestone aggregate. Gypsum accumulates on the perimeter of the unsubmerged surface.  

H2SO4+CaO.SiO2.2H2O                                         CaSO4+SI(OH)4+H2O 

H2SO4+CaCO3                                                     CaSO4+H2CO3 

H2SO4+Ca(OH)2                                             CaSO4+2H2O 

Gypsum will further react with the tricalcium aluminate to form ettringite 

(3CaO.Al2O3.3CaSO4.31H2O). 

 

This chemical process is outlined in Figure 4. In general, corrosion in concrete sewer pipes happens 

quickly (usually 3 to 6 months) with the constant presence of hydrogen sulfide in the sewer 

environment.  

 

CaSO4+3CaO.AL2O3.6H2O+25H2O                     3CaO.AL2O3.3CaSO4.31H2O 
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Figure 4. Chemical Process of Concrete Deterioration for Erosion due to Corrosion 

Figure 4 certified that sanitary sewers that are under constant chemical deterioration caused by 

sulfide attacks led to excessive erosion. Reliability theory estimate the service life of pipes with a 

service limit state that incorporates the loss of concrete cover over steel reinforcement. From this 

limit state, a probability of exceedance is calculated as a time-dependent parameter.  

Creating a condition assessment report from the PCD inspection data is a challenging task. The 

first step is to filter the noise of the inspection PCD; the raw PCD (i.e., the inspection output) 

contains noises such as fluid (water, sewer, etc.) and data noise, especially in partially filled pipes. 

Furthermore, the water level of inspected pipes is not constant throughout the length of the pipe. 

Therefore, developing an automated data filtering technique without user interference is not 

practical (Ebrahimi & Jalali, 2022a). Some studies address this issue; Al Asadi ( 2018) measured 

the sewer level of each section along the pipe length by finding the lowest PCD from the laser 

profiler. Abuhishmeh (2019) imported 3D inspection PCD into Cloud Compare software and 

manually deleted the water level noises. Hojat Jalali and Ebrahimi (Hojat Jalali & Ebrahimi, 2021) 

worked with 3D PCD from a LiDAR survey and eliminated the water level points by finding the 

ranges of the two spherical coordinate angles (∅, θ) which indicate the sewer. However, there 

seems to be a gap in having an automated method for filtering the inspected PCD without user 
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interference. This was also recognized by (Wells et al., 2009) to consider the effect of spatial 

variability in pipe circumference for determining wall erosion of RCSSPs as a gap in research. 

1.4 Objectives 

Regular inspection is vital for maintaining the integrity of underground sanitary sewer pipelines 

(SSPs). Since this infrastructure is typically buried, identifying defects, and performing 

maintenance for a large inventory of pipelines are complex and expensive tasks. In this study, 

LiDAR technology is used to collect the 3D point cloud of data (PCD) from the inside geometry 

of 3157.8 linear feet of RCSSPs and 2D point cloud of data (PCD) from the inside geometry 5000 

linear feet of RCSSPs. An automated algorithm is proposed to extract robust features from these 

raw LiDAR PCD. The main contributions include seven aspects. 

1- An automated algorithm is developed for pre-processing (which is filtering and aligning) the 

LiDAR inspection point cloud of data (PCD) with minimal user interventions. Previous 

researchers used software such as CloudCompare to filter the noises of the LiDAR PCD 

(Khaled Saleh Abuhishmeh, 2019; Moamaie, 2019). 

2- An automated algorithm is developed for calculating hydraulic properties and concrete erosion 

rate of SSPs, finding best-fit distribution, and probabilistic service life prediction of the SSPs. 

3- The proposed algorithm performs automatic goodness-of-fit tests for each 2D ring of LiDAR 

inspection data; it compares R2 values of multiple QQ plots to determine the probability 

distribution that best characterizes a pipe’s inner concrete wall geometry and condition. 

4- Investigating the concrete cover loss for different zones of the RCSSPs circumference to check 

if the flow noise filtering can be eliminated. 



 

 

11 

5- Statistical methods such as the Single variable Regression model, Multi-Variables Regression 

model, and Polynomial Regression model were performed on the output of the proposed 

framework to predict the concrete erosion of the inner wall of RCSSPs using hydraulic 

properties.  

6- Due to the scarcity of data the pipelines only have one inspection in their lifetimes. Using 

Bayesian inference, the mean concrete erosion for pipeline (M-M) can be “updated” based on 

the prior, which is determined from the literature and previous case studies; here two cases are 

discussed, Weibull and gamma likelihood functions.  

7- Determining the remaining service life of pipeline (M-M) using different approaches such as 

Probability of Exceedance, X-intercept method, and Monte Carlo simulation considering the 

best-fit probability distribution on the mean concrete loss of the inner wall of RCSSPs. The 

effect of assigning different distributions for concrete degradation in estimating the service life 

also explored. Furthermore, the predicted service life is verified with MCS and compared to 

previous research that used the same LiDAR inspection data. It should be noted that remaining 

service life is estimated based on concrete erosion as a serviceability limit state, and it does not 

reflect the time to failure of the pipe. In addition, factors such as ovality and the existence of 

cracks, as well as operational factors such as sewer type and hydraulic condition of the pipe 

will affect the service life of the SSPs; however, these are excluded from the current study and 

need further research. 

Overall, the methodology is performed with minimal user interference, using the proposed 

algorithm in MATLAB. Some Pipeline inspection companies have their own developed software 

that is proprietary and therefore, to the best of our knowledge details are not readily available to 

the scientific community. 
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1.5 Significance of Research 

The following bullet points are the significance of this study. 

1. The previous studies, which were working with real inspection data, imposed manual filtering using 

software such as CloudCompare (see Abuhishmeh, (2019); and Momani, (2019)). The LiDAR 

Point Cloud of Data (PCD) is filtered in the proposed automated algorithm using minimum user 

interference. I would like to mention that existing companies use their own software, which is a 

black box; there is no explanation or information about their methodology, and their data analysis 

team generates their final report. Therefore, underlying methodology is explained thoroughly (in 

Section 3. Methodology). 

2. Previous studies used Weibull or Normal distribution for the degradation process of concrete due 

to erosion (for instance, Mahmoodian & Li, (2011), Abuhishmeh, (2019); and Moamaei, (2019)). 

There is no study working on fitting the best distributions for concrete degradation on real 

inspection data. The automated algorithm using a qualitative measure (QQ-plots) finds the best-fit 

distribution to the concrete erosion data. In addition, the effect of assigning different distributions 

in estimating the remaining service life is explored. 

3. Statistical methods, including Single Variable Regression, Multi-Variable Regression, and 

Polynomial Regression models, are utilized on the output of a proposed algorithm to estimate 

concrete erosion in the inner walls of RCSSPs. The regression models can be used to understand 

the relationship between the "Mean Loss (mm)" (the dependent variable) and other variables in the 

dataset (independent variables). In addition, the Bayesian approach is utilized to update the 

estimated mean loss values of the proposed methodology using priors from previous studies. 
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1.6 Limitation of Current Research 

The limitations of this study are as follows: 

1. The filtering phase of the proposed methodology is done using some interference, specifically in 

removing the flow line noises. Since the water level of inspected pipes is not constant throughout 

the length of the pipe. Therefore, developing a fully automated data filtering technique without user 

interference is impractical.  

2. LiDAR cannot capture the geometry of the pipe below the water line. Some robots integrate Sonar 

technology with LiDAR to capture the geometry of the pipe below the water line. Therefore, this 

study assumes that the pipe is free of deposits. 

3. In this study, the remaining service life (RSL) is the criteria for condition assessment of RCSSPs. 

The RSL is estimated based on concrete erosion as a serviceability limit state, and it does not reflect 

the pipe's time to failure. In addition, factors such as ovality and the existence of cracks, as well as 

operational factors such as sewer type and hydraulic condition of the pipe, will affect the service 

life of the SSPs; however, these are excluded from the current study and need further research. 
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CHAPTER 2. LITERATURE REVIEW 

The first part of this paper outlines different inspection technologies for SSPs and their limitations. 

Several probabilistic and stochastic models for the deterioration of reinforced concrete sanitary 

sewer pipelines (RCSSPs) are addressed.  

2.1 Inspection tools for sanitary sewer pipes (SSPs)  

Inspecting the internal geometry of SSPs is the best way to assess their condition and to identify 

any defects, especially those associated with the concrete erosion of RCSSPs due to the presence 

of hydrogen sulfide. The accuracy of an inspection system has a direct impact on the accuracy of 

the estimated remaining service life of SSPs, which is often used as a criterion to simplify the 

condition assessment of SSPs (Jackson et al., 2020). It should be noted that other factors such as 

root intrusion, joint failure, pipe collapse, and excessive deposits are among other factors that can 

affect the service life of SSPs.  

A major challenge of condition assessment is translating large amounts of inspection data into 

meaningful results that can ultimately help municipalities make robust decisions regarding the life-

cycle management of SSPs. Conventionally, municipalities across the world use Closed-circuit 

television (CCTV) for inspection of pipelines. It is the most frequently used, most cost-efficient, 

and most effective method to inspect the internal condition of a sewer for sewer lines (EPA, 1999). 

Like other approaches, CCTV has its advantages and disadvantages. CCTV results highly depend 

on image quality and inspector skills. For instance, there is a twenty-five-percentage probability 

that an inspector may miss existing defects (Dirksen et al., 2013). To overcome these 

disadvantages, statistical data analysis methods are utilized based on the CCTV inspection outputs 

(i.e., images). For example, some researchers have used image processing approaches along with 
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machine learning and artificial intelligence (AI) algorithms to supplement visual inspections. 

Among machine learning algorithms, convolutional neural networks (CNNs) are widely used for 

CCTV output; Cheng and Wang (Cheng & Wang, 2018) employed Faster R-CNN, Kumar et al. 

(Kumar et al., 2018) implemented deep CNN, Li et al. (D. Li et al., 2019) adopted a deep CNN 

with hierarchical classification approach, and Hassan et al. (Dang et al., 2018) integrated CNN 

with text recognition methods. Yin et al. (Yin et al., 2021) developed a real-time CCTV video 

interpretation algorithm and sewer pipe video assessment (SPVA) system for SSPs; it processes 

real-time CCTV videos by pairing it with the defect detector algorithm (developed by Yin et al. 

(Yin et al., 2020)) identifying defects such as crack, fracture, holes, root incursions, and deposits, 

etc. Despite the improvements in CCTV inspections, characterization, and quantification of the 

interior geometry of pipes using just the images provided by CCTV is difficult and often 

inaccurate. To overcome this limitation, other inspection techniques have been implemented.  

For example, pipe penetrating radar (PPR), a pipe version of ground penetrating radar (GPR) (Ékes 

et al., 2011), is used to determine the remaining wall thickness and evaluate the bedding conditions 

of pipes (Najafi, 2010). Acoustic technology (Feng et al., 2012) has been used to locate blockages 

along the pipe and at lateral connections. Laser profiling (laser ring (2D) that is usually mounted 

on CCTV equipment) projects a beam of light onto the inner surface of the pipe and records it with 

CCTV. It has been applied for checking deformation such as ovality and defects such as cracks or 

deposits above the water line (Duran et al., 2003). Clemens et al. (2015) showed that laser profiling 

is capable of assessing the hydraulic roughness of pipes as well as evaluating remaining pipe 

thickness. Laser profiling is often integrated with other technologies such as sonar (Al Asadi, 

2018) to quantify deposits (e.g., debris) below the flow line. However, laser profiling technology 

is susceptible to errors especially when it is monitoring partially filled pipes; for example, the laser 



 

 

16 

emitter is sometimes covered by water droplets resulting in noisy and/or inaccurate profiling. 

These MSI equipment have entered the industry as a non-destructive evaluation (NDE) technique 

to evaluate the pipe condition. 

Light detection and ranging (LiDAR) technology has many real-world applications. It is used in 

today’s smart devices such as smartphones and in self-driving vehicles. LiDAR collects the data 

by emitting a pulse or modulated light signal and calculating the time difference in the returning 

wavefront (Schuon et al., 2008). Lambert et al. (2020) compared the performance and accuracy of 

10 commonly used LiDAR sensors in terms of scanning the environment. LiDAR allows 

manufacturers to obtain cost-effective and high-quality mass 3D point cloud of data (PCD) in a 

time-efficient way (Vogt et al., 2021). 3D LiDAR PCD can create full sections of pipe in 3D 

geometry of points; this makes the data size very small compared to conventional inspection 

techniques such as CCTV (in which the outputs are images and videos). The advantages of LiDAR 

technology are high precision, long perception distance, fast data collection, and robust output data 

sets compared to other techniques. In the pipeline industry, LiDAR is mostly used to map pipeline 

routes with an aircraft-mounted LiDAR system; for instance, LiDAR is used for constructing as-

built maps and monitoring natural gas pipelines ((Barnwell et al., 2009), (Tao & Hu, 2002), and 

(Lewis et al., 2012)). Moreover, few studies have used LiDAR technology for evaluating the inner 

concrete wall geometry of pipes; Ékes (2021) used LiDAR inspection data for condition 

assessment of the inner concrete wall of 42" RC pipes. Ebrahimi and Jalali ((Ebrahimi et al., 2023; 

Ebrahimi & Jalali, 2022a; Hojat Jalali & Ebrahimi, 2021)) used 3D LiDAR scans of 54" RCSSPs; 

they developed an automated algorithm to calculate the diameter and ovality of SSPs using 3D 

LiDAR inspection PCD. Meanwhile, a CCTV camera is attached to the same crawler that collects 

LiDAR data, and stores CCTV feeds for further analysis (Feeney et al., 2009). Utilizing LiDAR 
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would present the actual condition of the pipeline such as how much it is corroded or whether there 

is any deposit. It effectively detects corrosion, debris, and ovality. 

2.2 different probabilistic and stochastic techniques  

Inspection of underground SSPs is more complex than above-ground infrastructure such as bridges 

and pavements; therefore, they are typically inspected only a few times during their service life. 

Meanwhile, to create an accurate stochastic model, more than one inspection data is required. This 

hinders the stochastic models, from capturing the true deterioration process of SSPs during their 

life span. There have been many studies in estimating the concrete erosion rate of RCSSPs. Among 

those, two common methods are used. The first method is an empirical model which was 

developed based on actual field test data. Islander et al.  (1991) were among the first researchers 

to study micro-biologically influenced corrosion (MIC) of pipes (i.e., the main type of corrosion 

for partially filled RCSSPs); they showed that corrosion is a three-stage process, which is 

characterized by the PH levels of the concrete surface. Wells and Melchers (2014, 2015) supported 

the empirical results by monitoring concrete coupons that were mounted inside existing large SSPs 

throughout Australia. These studies aimed at quantifying the underlying mechanisms of corrosion 

processes to predict the loss of inner concrete cover due to long-term erosion. These studies led to 

the widely known Pomeroy model by Pomeroy and Boon (1990) which is commonly used to 

calculate the erosion rate of RCSSP and estimate their RSL (Liu et al., 2017).  According to (Bizier, 

2007), the average erosion rate is calculated as the Pomeroy model. (Li et al., 2009) suggested that 

the Pomeroy equation only considers some of the important factors in estimating the erosion rate. 

Furthermore, relevant literature indicates that three environmental factors including temperature, 

H2S concentration, and relative humidity have the highest correlation with corrosion propagation 
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(Wells & Melchers, 2015). In addition, recent studies such as Saleh Abuhishmeh and Hojat Jalali 

(2023) investigated other factors such as temperature, loading, and material uncertainties on the 

reliability of RCSSPs. Meanwhile, according to (Makana et al., 2022) there is no real-time data 

available for the SSPs.  

The second approach is to estimate concrete erosion rate within RCSSPs involves probabilistic or 

stochastic methodologies. This method integrates empirical equations with different numerical 

methods. The empirical models used in this approach are created for one specific environment; 

therefore, there is uncertainty in each dependent parameter of the erosion rate equation (Equation 

23). The numerical techniques should accommodate the inherent uncertainty of the empirical 

models. For instance, Ahammed and Melchers (1995) proposed a simple power law to estimate 

the erosion rate of SSPs and determine their reliability. 

The uncertainty is commonly considered by assigning a probability density function (PDF) to each 

of the variables (instead of deterministic values). According to the literature, the normal 

distribution is commonly used for modeling erosion (Foorginezhad et al., 2021a). For the 

dependent variables in the Pomeroy equation, Ahammed and Melchers (1995) used the normal 

distribution, Li et al. (2009) used the lognormal and normal distributions, Mahmoodian and Alani 

(2014) assigned the gamma distribution, and Teplý et al. (2018) assigned the beta, log-normal, and 

normal distributions. Furthermore, Ahammed and Melchers  (1995) used the normal distribution 

for variables C and NN in the Pomeroy equation. In addition, time-dependent techniques have been 

implemented for modeling concrete degradation due to sulfide corrosion. For power law, 

Mahmoodian and Li (2011) used a stochastic process to model H2S flux (Φ) and predict the 

remaining service life of RCSSPs. In Equation 20, Mahmoodian and Alani (2014) developed a 

stochastic gamma process model to estimate the erosion rate (C). Liu et al.(2017) developed a 
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hybrid Gaussian (normal) process regression model and tested their method with the experimental 

results of laboratory chambers. Abuhishmeh (2019) and Moamaie (2019) estimated the service life 

of RCSSPs using the probability of exceedance method with a serviceability limit state as the inner 

concrete cover. Foorginezhad et al. (2021) also reviewed different data-driven approaches 

implemented on nondestructive (ND) inspection data for RCSSPs. 

Table 1 shows the summary of studies and the estimated parameters for concrete erosion: 

Table 1. Summary of Studies on Estimating the Parameters of Concrete Erosion 

 

This paper explores the effect of assigning different distributions to the erosion rate and examines 

how various deterioration models affect the service life prediction of RCSSPs. To verify the results 

of the proposed framework, Monte Carlo simulation (MCS) is used. The consistency of the 

proposed method in predicting service life is compared with a previous study (Khaled Saleh 

Abuhishmeh, 2019; Moamaie, 2019) that employed the same inspection data. Meanwhile, risk 

Reference Distribution Parameters Description

Ahmad and Melcher (1991) Normal
(0.066 * t, 0.037)

(Mean(M), Standard Deviation(D)) Steel Pipe (t in year)

David and Oscar (2004) Normal (0.1 * t, 0.2*t)
(Mean (M), COV (C) )

Steel Pipe (t in year)

Li et al (2007) Normal  (0.15 * t, 0.2 * t)
(Mean (M), COV (C))

Steel Pipe (t in year)

Mahmoodian and Alani (2013) Gamma 
(0.17 * t, 0.425) 

(Shape (A), scale (G))

Power Law
Maximum Likelihood

 (t in year)

Mahmoodian and Alani (2013) Gamma (0.094 * t , 0.235)
(Shape (A) and scale (G))

Power Law
Method of Moment (t in year)

Mokhtari et al. (2016) Weibull  (1.1327 , 0.1314) 
(shape (B), scale (S)) 

Steel Pipe

Moamaei, P., (2019) Weibull 
 (4.4024, 55.8223, -38.3761) 

(shape (B), scale (S), Location L) Using Probability of Existance

Abuhishmeh, k (2019) Weibull 
 (Normal (1.8438, 0.3323), 

Normal (0.00806, 0.505446))
(Fitted shape (B), Fitted Scale (S)) 

Fitted Normal Distrubution to the 
parameters which are calculated 

by fitting the values to 22 
pipelines
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assessment frameworks are also developed by researchers, Abuhishmeh (2023) and Abuhishmeh 

and Hojat Jalali (Forthcoming) integrates fuzzy inference systems with an adaptive neural network, 

enhancing interpretability and decision-making.  

Bayesian Network (BN) is a probabilistic graphical model that is utilized when there is uncertainty 

in an existing model due to the complexity or scarcity of data. Hence, BN offers a powerful 

framework for predicting concrete erosion rates in SSPs. A lot of studies implement BN into the 

risk and reliability of pipes. Pickard (1983) was among the first researchers to use BN; Pickard 

predicted the failure rate of systems with Bayes’ theorem. Egger et all. (Egger et al., 2013) used 

BN for updating the defined parameters for different concrete degradation models. Mokhtar et al. 

( 2016) utilized the BN to update the corrosion model parameters and evaluate their dependencies 

between pipes in different environments. Elmasry et al. (2017) use the BN with CCTV images to 

develop a defect-based deterioration model. Anbari et al. (2017) used BN to develop a risk 

assessment model to prioritize the inspection of the sewer network. Meanwhile, researchers use 

BN to predict the failure of different pipe systems. Atique et al. (2018) used BN to predict the 

failure of water mains by considering different factors; they used BN to update the copula 

parameters. Li et al. (2015) and Lue and Bui (2016) utilized BN to predict water leakage/burst in 

the water mains. Wu et al. (2017) used BN to predict and evaluate natural gas pipeline network 

accidents. Dahire et al. (2018) utilized BN to predict the natural gas pipeline strength considering 

the mechanical properties of pipes. Bayesian Network (BN) offers a powerful framework for 

predicting concrete erosion rates in SSPs because it could be used when there is uncertainty in an 

existing model due to its complexity and large interrelated factors. Therefore, in this study, the BN 

is used to predict the erosion rates using different priors from the literature and the likelihood 
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function which is the calculated erosion rate from the inspected SSPs at the age of 28. Ultimately, 

the results will be in the form of the predicted RSL. 

There are a couple of distributions that are used for modeling degradation. The first is Weibull 

distribution. The PDF function is as follows: 

𝑊𝑊𝑊𝑊𝑊𝑊(𝑥𝑥; 𝜆𝜆,𝑘𝑘) = �
𝑘𝑘
𝜆𝜆
∗ �𝑥𝑥

𝜆𝜆
�
𝑘𝑘−1

∗ 𝑒𝑒−�
𝑥𝑥
𝜆𝜆�
𝑘𝑘

                  𝑥𝑥 ≥ 0
0                                                 𝑋𝑋 < 0

�                                                   Equation 1 

 Where k: is the shape parameter. λ: is the scalar parameter (λ>0). 

Figure 5 shows PDFs for 2-parameter Weibull distribution with different shape factors.  

 

Figure 5. Probability Density Function of Weibull Distribution with Different Shape Parameters 
((Papoulis & Pillai, 1991) 

In this study, Half-Normal distribution will be also used to fit the loss data. Half-normal is a special 

case of Normal distribution (with the mean of zero). The Half-Normal is used for dealing with 

relationships between measurement errors and it was introduced by (Altman & Bland, 1983). The 

PDF for the Normal and Half-Normal distributions are shown in Figure 6. The PDF for a Half-

Normal distribution is:  
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𝐻𝐻𝐻𝐻(𝑥𝑥,𝜎𝜎) = �
2

√2𝜋𝜋 𝜎𝜎
∗ 𝑒𝑒−( 𝑥𝑥

2

2𝜎𝜎2
)                 𝑥𝑥 ≥ 0

0                                                 𝑋𝑋 < 0
�                                                           Equation 2   

          where: σ = Standard deviation. 

 

Figure 6. PDFs for Normal Distribution (with zero mean and std of 1) and Half-Normal Distribution 
(std of 1)(Altman & Bland, 1983) 

Gamma Distribution is widely recognized for modeling concrete degradation. The mathematical 

representation of the gamma process can be found in Equation 3. It is important to remember that 

a stochastic variable x follows a Gamma Distribution with a positive shape parameter α and a 

positive scale parameter λ, provided its probability density function is defined accordingly. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝑥𝑥|𝛼𝛼, 𝜆𝜆) =  𝜆𝜆𝛼𝛼

Γ(𝛼𝛼)
 𝑥𝑥𝛼𝛼−1𝑒𝑒−𝜆𝜆𝑥𝑥                                 Equation 3 

 Where 𝛼𝛼(𝑡𝑡) = 𝛼𝛼 right continuous, real-value equation for t ≥ 0, and 𝛼𝛼(0) = 0.  

Figure 7 shows PDFs for Gamma distribution with different shape factors. 
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Figure 7. PDF of the Gamma Distribution for values of α and 𝝀𝝀 (Pishro-Nik, 2014) 

To model concrete corrosion due to a hydrogen sulfide attack using the gamma process, the 

expected deterioration (that increases over time) is the shape function for the gamma distribution. 

Different studies show that the expected corrosion depth at time t is often proportional to a power 

law (Mahmoodian & Alani, 2014): 

𝛼𝛼(𝑡𝑡) =  𝐶𝐶 ∗ 𝑡𝑡𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

Power law will be explained in subsection 3.4.10.1.1 

 

 

 

 

 

CHAPTER 3. METHODOLOGY 

This dissertation includes two main parts, the first part is the automated proposed framework 

shown in Figure 8; the framework implements on the raw LiDAR inspection data to filter, trim the 

3D raw PCD, calculate the hydraulic properties, and ultimately estimating the service life using 

different approaches. 
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Figure 8. Summary of Proposed Automated Framework 

the second part is performing regression analysis on the calculated/estimated values and 

performing Bayesian framework to update the estimated concrete loss of RCSSPs using two 

different priors. 

 

3.1 Material Selection 

In this study, the proposed algorithm probabilistically predicted the residual lives of large RC 

sanitary sewer pipelines (with diameters of 30, 54, and 60 inches) by incorporating inspection data 

for 8,000 ft of pipes. All the LiDAR raw data is borrowed from Center for Structural Engineering 

Research and Pipeline Inspection (CSER-PI). Table 2 shows the properties of selected materials. 

The age of each pipe is 28 years at the time of inspection.  
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For 54- and 60-inch pipes, the PCD is collected by the multi-sensor inspection (MSI) equipment 

from RedZone Robotics Renton (Redzone, 2021). The robot crawls into partially filled pipelines 

and records videos from the inside of the RCSSPs as it moves from one manhole to the adjacent 

manhole (M-M). To scan the 3D LiDAR data in the form of PCD, the robot stops at each 5-ft linear 

length and performs a 360◦ scan from the inside geometry of the RCSSPs. For a 30-inch pipe, the 

outputs are 2D rings of PCD scanned at different times as the crawler goes from one manhole to 

the other; therefore, the filtering phase is not applied to them. 

All the RCSSPs are in the same geographical area, so, it is reasonable to assume that the 

environmental factors and deterioration rates are the same for these pipes. Table 2 shows the 

properties of the selected RCSSPs. To illustrate the application of the proposed methodology, the 

first 5-ft section of Line 1 is investigated in detail. 

 

 

 

 

Table 2. Selected Materials 
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Our proposed algorithm is developed to get the output of LiDAR data and apply filtering, aligning, 

and obtaining current corrosion levels. Based on the decision makers’ decision, the results could 

be presented in different scales, especially for 54- and 60-inch, it could be presented as small as a 

1-inch ring, or as big as a 5-foot section, or even for one whole line (M-M).  
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                                     (a)                                                                          (b) 

       

                                     (c)                                                                          (d) 

      

                                     (e)                                                                          (f) 
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                                     (g)                                                                          (h) 

       

                                 (i)                                                                               (j) 

Figure 9. Screenshots of CCTVs from the 10 different RC sanitary pipelines; a-e are 60 inch and f-j 
are 54 inches pipes. 

The MSI equipment is RedZone Robotics (Redzone, 2021).  The robot crawled into a partially 

filled pipeline and recorded videos from the inside of the RC pipeline as it went from one manhole 

to the other manhole. Figure 10 shows the MSI robot used in this research. At each 5-ft section, 

the robot scans the inside wall of the RC pipeline using LiDAR measurements. The collected point 

cloud of data (raw data) is in spherical coordinates (𝑟𝑟,𝜃𝜃,𝜑𝜑). This output is for 54- and 60-inch 

SSPs; however, for the inspection of 30-inch SSPs, the inspection outputs are provided as 2D rings 

along the length of pipes.  
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All the procedures for processing LIDAR information, obtaining current corrosion levels, and 

performing the probabilistic service life prediction are performed using the code of the proposed 

algorithm written in MATLAB software. The algorithms will be explained thoroughly in the 

following sections. In addition, the BN algorithm and regression analysis are done using Python 

Libraries: NumPy and SciPy, and the plots using Matplotlib dictionary. 

 

Figure 10. MSI RedZone Robot 

 

3.2 Properties of Collected Data 

The inspection PCD (i.e., the outputs of MSI robot) are collected for each 5-ft section of every 

pipeline (M-M). For instance, since Line 1 is 369 ft in length and 369/5 ≈ 74, there are 74 sets of 

3D PCD collected for this pipeline. These PCDs are in the spherical coordinate systems (i.e., ρ, θ, 

φ). In other words, each point of the PCD has three parameters: radial distance ρ (in, mm), 

inclination angle (0̊< φ <180̊), and azimuth angle (0̊< θ <360̊). Figure 11 shows the relationship 

between the spherical (ρ, θ, φ) and Cartesian coordinate systems (x,y,z). 
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Figure 11. Spherical Coordinate Space and Cartesian Coordinate Space 

3.3 Assumptions 

• Inner wall concrete cover is assumed to be uniform for all pipelines. It is expressed as a 

single value of 1 inch by referring to (ASTM C76.8.3.1); or 1.5 in some special cases. 

• The corrosion rate is assumed to be constant throughout the life span of RCSSPs. 

3.4 Proposed Algorithms 

This study elaborates automated algorithm for pre-processing the 3D LiDAR PCD. There are 

minor user-intervention in finding the constraints for parameters (ρ, θ, φ), which can be a function 

of pipe diameter, flow capacity, flow rate, and slope of pipe among other factors; however, the 

constraints are predefined to the program and pre-processing is performed automatically. 

In this section, the proposed automated algorithm is explained. To illustrate the process, the first 

5 ft section of Line 1 is used. It should be noted that the data for 30-inch pipes are excluded from 

the following sections since the output of the inspection data is 2D rings. Furthermore, the 

proposed data-driven methodology is discussed in detail, including data processing, calculating 

hydraulic properties of RCSSPs, finding the best-fit probability density function (PDF) 
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corresponding to the deteriorated inner concrete wall geometry of RCSSPs, and probabilistically 

estimating their residual service life.  

3.4.1 Data Filtering  

First, the raw data from the inspection robot is in the spherical coordinate system (ρ,θ,φ); The first 

step of the proposed algorithm is to convert the PCD from spherical to Cartesian coordinate using 

Equation 4 (Sokolov, 2020). 

 data is converted to cartesian coordinate (x,y,z) using following Equation: 

𝑥𝑥 = 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) 𝑐𝑐𝑠𝑠𝑠𝑠(𝝋𝝋)  

Y = 𝜌𝜌 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃) 𝑐𝑐𝑠𝑠𝑠𝑠(𝝋𝝋)                                                                                                    Equation 4 

𝑧𝑧 = 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐(𝝋𝝋)      

                   where:  

ρ = the radial distance (mm);  

θ = the azimuth angle (Degree); 

φ= the inclination angle (Degree);                                                                                     

 

Figure 12. Unfiltered Data after Converting to Cartesian Space 
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Figure 12 shows the raw PCD after conversion to Cartesian coordinates; the blue PCD at the center 

of the spherical PCD is the cylindrical PCD representing the inner concrete wall geometry of a 5-

ft section. The red points are outliers and are the noise. Figure 12 illustrates that, in addition to the 

noise collected from the sewer flow, the LiDAR scanner also collects noise outside the pipeline 

geometry. Therefore, the proposed algorithm should impose filtering by constraining the spherical 

parameters in converting to Cartesian coordinates (Equation 4). To capture the PCD from the 

internal geometry of the pipes (i.e., the blue cylindrical PCD in Figure 12), two constraints are 

imposed: global filtering and water noise filtering, as described in the next two sections. 

3.4.1.1 Global Filtering 

The MSI robot stops at the beginning of each 5-ft section and the LiDAR scanner (which is located 

at the center of the spherical shape in Figure 12) collects the PCD; to remove the outliers (red PCD 

in Figure 12), ρ (radial distance) values must be limited in the conversion process (in Equation 4). 

The maximum diameter of the pipe is 60 inches (1524 mm), and the region of interest (RoI) is 5 ft 

(1524 mm). Therefore, points with radial distance 500 < ρ < 2000 mm are included in the 

transformation of Equation 4. The result is shown in Figure 13.  

 
Figure 13. Result of the Global Filtering (unit: mm): (a) Isometric View, (b)3D Cross Sectional View, 
and (c) Y-X Plane View 
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3.4.1.2 Water Level Filtering 

The inspected RCSSPs are partially filled pipes and the sewer flow noise exists in all the 5-ft 

sections’ PCD. Therefore, the flow noise is filtered by excluding the flow (sewer) PCDs from 

Equation . This is done by finding the range of azimuth angle (θ) which indicates the water PCDs 

at the bottom portion of the pipe. This range is defined as follows: 

� 𝜃𝜃𝑚𝑚𝑖𝑖𝑚𝑚 < 𝜃𝜃 <  𝜃𝜃𝑀𝑀𝑟𝑟𝑥𝑥                                  𝑠𝑠𝑖𝑖 𝝋𝝋 ≤ 0
𝜃𝜃𝑚𝑚𝑖𝑖𝑚𝑚 + 180 < 𝜃𝜃 < 𝜃𝜃𝑀𝑀𝑟𝑟𝑥𝑥 + 180           𝑠𝑠𝑖𝑖 𝝋𝝋 > 0                                                            Equation 5                                                        

By trial and error and visual inspection, these ranges are defined as 0̊ < θmin < 15̊ and                         

155̊ < θMax < 170̊. These ranges (which are found for the first 5-ft section) are applicable for all the 

following 5-ft sections within a line(M-M). The PCDs that meet the constraint in Equation are 

included in the conversion process (Equation 4). For our inspection data, the angles are predefined 

to the program and filtering is performed automatically. Figure 14 shows the final (filtered) PCD 

after imposing the two phases of filtering. 

 

 

(a)                         (b)                                              (c) 

Figure 14. Data after Filtering of Water Level Noise (unit: mm): (a) Isometric view, (b) Z-Y view, 
and (c)  Z-X view 
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It is worth mentioning that in each scan of the so-called 5-ft section, more than 5-ft length of the 

pipe is scanned (it is about 15-ft). So, after aligning the PCD, the data will be trimmed into a 5-ft 

length of pipe. 

3.4.2 Alignment of PCD 

Typically, the orientation of the filtered PCD (in the Cartesian space) is unknown. Therefore, to 

restore the filtered PCD to a correct alignment (which is the Z-axis herein), the principal axes of 

the cylindrical PCD are determined by estimating the center of the rotation and shifting it to the 

origin of the Cartesian coordinate system (0,0,0). Finally, the PCD is rotated so that the direction 

of flow is aligned with the Z-axis. This alignment allows for the calculation of the hydraulic 

properties and erosion rate. The following numbered list discusses the algorithm for finding the 

orientation of the cylindrical PCD and rotating them in a certain direction. Alignment is 

implemented in the following two steps: 

3.4.2.1 Finding the Reference Line 

For each 5 ft section, a reference line is found by selecting the points along the length of the pipe. 

By trial and error, the line PCD is selected when the following constraints are applied in conversion 

Equation 4: 

340 < 𝜃𝜃 < 341      &      𝝋𝝋 ≤ −30 

This constraint is the same for all the 5-ft sections of the 10-line pipelines (i.e., 54- and 60-inch 

pipes). For our inspection data, the angles are predefined to the program, and aligning is performed 

automatically.  
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Figure 15 shows the reference line for the first 5-ft section of line 1, where the direction of the 

reference line is indicated by the red arrow. 

 

                       (a)                                                   (b)                                              (c) 

Figure 15. Reference Line PCD for Line 1, Section 1 (unit: mm): (a) Isometric View, (b) Z-Y View, 
(c) Z-X View 

3.4.2.2 Eigenvalue Decomposition 

Eigenvalue decomposition (ED) is the best tool for calculating the direction of an arbitrary line in 

3D space. The ED is performed on covariance matrix of the reference line PCD. The outputs of 

ED are eigenvectors (representing the directions of the PCD), and eigenvalues (representing the 

amount of stretch of PCD in each of the three axes). The covariance matrix of the selected reference 

PCD is calculated as follows: 

1- In a matrix form, the reference PCD in Cartesian space is expressed as shown in the 

following:  

P= 

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1 𝑦𝑦1 𝑧𝑧1
𝑥𝑥2 𝑦𝑦2 𝑧𝑧2
𝑥𝑥3 𝑦𝑦3 𝑧𝑧3

⋮
𝑥𝑥𝑁𝑁 𝑦𝑦𝑁𝑁 𝑧𝑧𝑁𝑁⎦

⎥
⎥
⎥
⎤

𝑁𝑁𝑁𝑁3

 

where N is the number of points in the reference line PCD. 

2- Determine the mean of each axis (i.e., each column):      [𝑋𝑋� 𝑌𝑌 ��̅�𝑍] 
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3- Subtract each dimension (columns) from its means to create centered data: 

 

⎣
⎢
⎢
⎢
⎢
⎡ (𝑥𝑥1 − 𝑋𝑋�)(𝑦𝑦1 − 𝑌𝑌�) (𝑧𝑧1 − �̅�𝑍)

(𝑥𝑥2 − 𝑋𝑋�)(𝑦𝑦2 − 𝑌𝑌�) (𝑧𝑧2 − �̅�𝑍)
(𝑥𝑥3 − 𝑋𝑋�)(𝑦𝑦3 − 𝑌𝑌�) (𝑧𝑧3 − �̅�𝑍)

⋮
(𝑥𝑥𝑁𝑁 − 𝑋𝑋�)(𝑦𝑦𝑁𝑁 − 𝑌𝑌�) (𝑧𝑧𝑁𝑁 − �̅�𝑍)⎦

⎥
⎥
⎥
⎥
⎤

 

  where N is a total number of PCD, 𝑿𝑿,𝒀𝒀,𝒁𝒁 are mean values of all 𝒙𝒙,𝒚𝒚, 𝒛𝒛. 

 
4- Variance/Covariance matrix of centered data is formed as Equation 6. 

 

𝐴𝐴 = �
∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋)2𝑁𝑁
𝑖𝑖=1 ∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋)(𝑦𝑦𝑖𝑖 − 𝑌𝑌)𝑁𝑁

𝑖𝑖=1 ∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋)(𝑧𝑧𝑖𝑖 − 𝑍𝑍)𝑁𝑁
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑌𝑌)(𝑥𝑥𝑖𝑖 − 𝑋𝑋)𝑁𝑁
𝑖𝑖=1 ∑ (𝑦𝑦𝑖𝑖 − 𝑌𝑌)2𝑁𝑁

𝑖𝑖=1 ∑ (𝑦𝑦𝑖𝑖 − 𝑌𝑌)(𝑧𝑧𝑖𝑖 − 𝑍𝑍)𝑁𝑁
𝑖𝑖=1

∑ (𝑧𝑧𝑖𝑖 − 𝑍𝑍)(𝑥𝑥𝑖𝑖 − 𝑋𝑋)𝑁𝑁
𝑖𝑖=1 ∑ (𝑧𝑧𝑖𝑖 − 𝑍𝑍)(𝑦𝑦𝑖𝑖 − 𝑌𝑌)𝑁𝑁

𝑖𝑖=1 ∑ (𝑧𝑧𝑖𝑖 − 𝑍𝑍)2𝑁𝑁
𝑖𝑖=1

�          Equation 6 

Eigenvalue decomposition is done using built-in function in MATLAB (eig). The output of the 

eigenvalue decomposition is: [V,D] = eig(A). 

 Where D is a 3x3 diagonal matrix of eigenvalues and a V is a 3x3 full matrix whose 

columns are the corresponding eigenvectors so that A*V = V*D.  

 The column corresponding to the larger eigenvector (D) is the orientation that has the maximum 

variation which is the trajectory of the pipe in 3D space (the red arrow in Figure 14). 𝑣𝑣 is the 

column vector of V showing the larger eigenvector represents the direction of the 5-ft cylinder in 

3D space.  

𝑣𝑣 =  �
v3,1
v3,2
v3,3

�
3x1
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After estimating the eigenvector (𝑣𝑣), the cross product of the unit vector of 𝑣𝑣 (i.e., 𝑣𝑣 /norm(𝑣𝑣)) and 

the Z-axis (𝑘𝑘� = [0,0,1]’) is calculated as Equation 7. 

𝑼𝑼 = 𝑣𝑣𝟑𝟑×𝟏𝟏
𝑁𝑁𝑁𝑁𝑟𝑟𝑚𝑚(𝑣𝑣)

 ×  [𝟎𝟎,𝟎𝟎,𝟏𝟏]′                                                                   Equation 7 

The rotation of the PCD is done using rotation matrices. The rotation angles (∅𝑥𝑥,∅𝑦𝑦) are 

then calculated from the eigenvectors. In Equation 7, U is in the form of [∅x, ∅y, 0]. Using the 

alignment algorithm, counter rotation is applied by multiplying the PCD to the rotation matrices 

(Alzuhiri et al., 2021) as shown in Equation 8 through 10. It creates a roto-translation matrix that 

rotates vector 𝑣𝑣 to the constant direction which is i=[0,0,1]’ (i.e., the unit vector of Z-direction). 

𝑹𝑹𝒙𝒙 =  �
𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝒄𝒄𝒄𝒄𝒄𝒄(∅𝒙𝒙) −𝒄𝒄𝒔𝒔𝒔𝒔(∅𝒙𝒙)
𝟎𝟎 𝒄𝒄𝒔𝒔𝒔𝒔(∅𝒙𝒙) 𝒄𝒄𝒄𝒄𝒄𝒄(∅𝒙𝒙)

�                        Equation 8 

𝑹𝑹𝒚𝒚 =  �
𝒄𝒄𝒄𝒄𝒄𝒄 (∅𝒚𝒚) 𝟎𝟎 𝒄𝒄𝒔𝒔𝒔𝒔 (∅𝒚𝒚)

𝟎𝟎 𝟏𝟏 𝟎𝟎
−𝒄𝒄𝒔𝒔𝒔𝒔�∅𝒚𝒚� 𝟎𝟎 𝒄𝒄𝒄𝒄𝒄𝒄 (∅𝒚𝒚)

�                Equation 9 

𝑨𝑨𝑨𝑨 = 𝑹𝑹𝒙𝒙𝑹𝑹𝒚𝒚𝑨𝑨                                                      Equation 10 

where P is the coordinate of original PCD with X, Y, Z coordinates; Rx and Ry are the rotation 

matrices around x-axis and y-axis respectively. AP is coordinate of aligned PCD.  ∅𝑥𝑥 and ∅𝑦𝑦 are 

the rotation angles around x and y axes which are calculated in Equation 7. 

The result is shown in Figure 16, the red points are the original data, and the blue points are the 

aligned data. 
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 (a)                                                      (b)                                            (c) 

Figure 16. Rotating the PCD in a Constant Direction: (a) Z-Y view, (b) Y-X view, (c) Z-Y view 

The last step of the data processing is to trim the PCD into a 5-ft length region along the Z-axis 

(i.e., the RoI), since the LiDAR scanner provides PCD for more than the 5-ft length of the pipe (it 

is about 15-ft, but the data shows scattering beyond 5ft, and is cut-off herein). The 5-ft length is 

predefined to the program and trimming is performed automatically. The final PCD of the pipe for 

each 5-ft section is shown in Figure 17. 

 

            (a)                                             (b)                                            (c) 

Figure 17. Filtered, Aligned, and Trimmed PCD: (a) isometric view, (b) Z-X view, (c) 2D PCD (i.e., 
Ring) 

After processing the PCD (i.e., the filtering, aligning, and trimming), each 3D PCD is divided into 

several discrete 2D rings with 1 inch length, measured along the Z-axis; each 5 ft segment of pipe 
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consists of 60 1-inch wide 2D rings. 1-inch thickness (Z direction) is negligible comparing to a 

diameter of the pipe (54”-60”); therefore, it is safe to assumed that the 3D space (X-Y-Z) of rings 

is equivalent to 2D space (X-Y) (Figure 17). Determining the properties from these 2D rings is 

more accurate and less time-consuming than cylinder-fitting of the 3D PCDs. So, instead of using 

a time-consuming cylinder-fitting method in 3D space that is subject to user error, a circle fitting 

method in 2D space can be used instead. It should be noted that for 30 inches data, the inspection 

outputs are provided as 2D rings; however, the inspection outputs for 54- and 60-inches pipe are 

3D PCD for 5 ft sections of each pipeline (M-M). 

After rotating a cylindrical PCD into a correct alignment, its center of rotation is shifted. Since the 

center of these 2D rings are not located at the origin (0,0), a final re-centering is performed on the 

2D rings. The initial location of each ring and its radius are calculated using the circle fitting 

Landau algorithm provided by (Sumith, 2023). Figure 18 illustrates this step, where the blue points 

are centered to the red points. 

 

Figure 18. Recentered 2D Ring of PCD 
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3.4.3 Evaluating Diameter and Deflection 

In practice, the deflection test is conducted for monitoring the quality of installations and verifying 

the minimum size requirements of the pipe (of any material). The traditional method for assessing 

pipe deflection is mandrel testing. Although mandrel testing is a simple approach, it has some 

limitations. The mandrel must be designed for a specific pipe size. Additionally, mandrel gauge 

could damage the pipe inner surface, particularly for pipes with linings. Also, there is a possibility 

that mandrel gets stuck inside the pipe. Therefore, video inspection must be performed before and 

after the mandrel test, which makes it more costly. The 2D PCD can provide more accurate and 

effective profile data for the pipeline inspection. Here the diameter and Ovality of the pipe cross 

section is calculated. Two methods are used to calculate the diameter of each ring: 

3.4.3.1 Calculating the Diameter using K-Nearest Neighbor (KNN) Method. 

For each ring, the actual diameter is calculated using k-nearest neighbors’ algorithm (KNN) 

(Kramer, 2013). In this method, the Euclidean distance of each point with respect to other points 

(within the points of each ring) are calculated. The “diameter” of each point determines as the 

largest value among the pair-wise Euclidian distances within a vector set (see Figure 19). Here, 

some points that is located at the bottom of the haunches might bias the results; therefore, the two 

most selected points which is identified as the largest diameter are (automatically) omitted for the 

sake of consistency.  
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Figure 19. Determining the diameter of a ring using KNN Method 

3.4.3.2 Calculating the Diameter using Least Square (LS) Method 

Using least square (LS) method, a circle is fitted to the points of each ring. This study borrows the 

MATLAB function provided by (Sumith, 2023); the results is shown in Figure 20. 

 

Figure 20. Determining the diameter of a ring using Circle Fitting (LS) 

3.4.4 Calculating the Ovality (deflection) 

The ovality is calculated based on ASTM F-1216 (ASTM, 2016). Finally, the deflection of each 5 

ft section is calculated by averaging the ovality values of these 60 rings (using Equation 11). The 
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KNN output (i.e., the vector including the diameter values for each ring) is set as the input values 

of Equation 11. This procedure is performed for all 60 rings, and the mean value is reported for 

the inspected 5-ft section of the RCSSP. 

𝑂𝑂𝑣𝑣𝐺𝐺𝑂𝑂𝑠𝑠𝑡𝑡𝑦𝑦 (%) =  𝑀𝑀𝑟𝑟𝑟𝑟𝑚𝑚 𝐼𝐼𝑚𝑚𝐼𝐼𝑖𝑖𝐼𝐼𝑟𝑟 𝐷𝐷𝑖𝑖𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑀𝑀𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑀𝑀𝑚𝑚 𝐼𝐼𝑚𝑚𝐼𝐼𝑖𝑖𝐼𝐼𝑟𝑟 𝐷𝐷𝑖𝑖𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
𝑀𝑀𝑟𝑟𝑟𝑟𝑚𝑚 𝐼𝐼𝑚𝑚𝐼𝐼𝑖𝑖𝐼𝐼𝑟𝑟 𝐷𝐷𝑖𝑖𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

× 100     Equation 11-a 

                                                                                                             

𝑂𝑂𝑣𝑣𝐺𝐺𝑂𝑂𝑠𝑠𝑡𝑡𝑦𝑦 (%) =  𝑀𝑀𝑟𝑟𝑥𝑥𝑖𝑖𝑚𝑚𝑀𝑀𝑚𝑚 𝐼𝐼𝑚𝑚𝐼𝐼𝑖𝑖𝐼𝐼𝑟𝑟 𝐷𝐷𝑖𝑖𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑀𝑀𝑟𝑟𝑟𝑟𝑚𝑚 𝐼𝐼𝑚𝑚𝐼𝐼𝑖𝑖𝐼𝐼𝑟𝑟 𝐷𝐷𝑖𝑖𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
𝑀𝑀𝑟𝑟𝑟𝑟𝑚𝑚 𝐼𝐼𝑚𝑚𝐼𝐼𝑖𝑖𝐼𝐼𝑟𝑟 𝐷𝐷𝑖𝑖𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

× 100    Equation 11-b 
 

It should be emphasized that this whole procedure is performed automatically without any user 

interference after providing the input LiDAR inspection data.  

3.4.5 Calculating the Hydraulic Properties of Pipes 

The hydraulic properties, such as cross-sectional area of flow, wetted perimeter, hydraulic radius, 

and volumetric flow are determined using Manning’s Equation. According to Figure 21, the depth 

of the flow is less than the radius of the pipe; for this case, the procedure to calculate the properties 

is outlined below(Water Management Manual, 2001): 

 

Figure 21. Calculating Hydraulic Properties (unit: mm) 
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From Figure 21: 

Θ = 2 ∗ arccos �𝑟𝑟−ℎ
𝑟𝑟
�                 Equation 12 

 𝑊𝑊𝑊𝑊 = 𝑟𝑟 Θ                                                 Equation 13 

 𝐴𝐴𝐴𝐴 =  𝑟𝑟
2(𝜃𝜃−𝐼𝐼𝑖𝑖𝑚𝑚𝜃𝜃)

2
             Equation 14 

Rh= 𝐴𝐴𝐴𝐴
𝑊𝑊𝑊𝑊

                                                 Equation 15 

where Θ is in degrees, AF is cross-sectional area of flow (mm2), h is flow height (mm), 

WP is wetted perimeter (mm), Rh is Hydraulic Radius (mm). 

Finally, the volumetric flow rate (Q) and velocity of the flow (VF) are calculated using Manning’s 

Equation (Bizier, 2007): 

𝑄𝑄 = �1
𝑚𝑚
� ∗ 𝐴𝐴𝐴𝐴 ∗ 𝑅𝑅ℎ

2
3 ∗  𝑆𝑆1.2                Equation 16 

VF= Q/AF               Equation 17 

where n is the Manning’s roughness coefficient, which is typically 0.013 for RCSSP (Water 

Management Manual, 2001), Q is the volumetric flow rate passing through the pipe (m3s), and S 

is the slope of the pipe (ft/ft). It should be noted that in case of erosion below the flow line, the 

manning coefficient will be impacted, which is neglected in this study due to the lack of sonar 

data. Since the LiDAR data could not capture the geometry of pipe below the flow line, it is 

assumed that the pipe is free of deposits. This is a limitation of the proposed method; Equation 16 
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does not apply for RCSSPs with deposits. meanwhile, to accommodate this uncertainty, a PDF is 

assigned to some parameters of Equation 16 (see Table 5). 

3.4.6 Evaluating Corrosion Rate 

The blue points presented in Figure 18 are used for calculating the inner wall thickness loss of 

each section. As mentioned earlier, each 5-ft length of the cylinder is divided into 60 rings with a 

thickness of 1-in (25.4 mm). One inch thickness (Z direction) is negligible compared to the 

diameter of the pipe (54 and -60 inches); therefore, instead of working in 3D space (X-Y-Z), each 

ring can be analyzed in 2D space (X-Y) (Figure 18). The corrosion rate is calculated for each 1-in 

ring as follows: 

3.4.6.1 Fitting a circle to each ring. 

To ensure that our data is centered at (x=0, y=0) and completely alighted, each ring will recentered.  

Figure 20 shows the PCD and the fitted circle for the first 1-in ring of line 1, section 1. A circle is 

then fitted to the ring using Landau method provided by (Sumith, 2023). Figure 22 shows the fitted 

circle along with the filtered data.it is also shown in cylindrical coordinates to have a better 

presentation for diameter of the pipe. 
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Figure 22. 1-in Ring of Point Cloud PCD in Cylindrical Coordinate (Degree, mm) 

 

3.4.6.2 Calculating Mean Inner Concrete Loss 

The mean inner concrete wall loss of each 2D ring is calculated by measuring the Euclidean 

distance of each point (i.e., the centered blue points of  Figure 20) and subtracting them from the 

radius which could be the estimated radius by the fitted circle (using MATLAB Code by (Sumith, 

2023), or from KNN method or the map value from Table 2. 

𝑳𝑳 =  �(𝒙𝒙𝒔𝒔 − 𝟎𝟎) + (𝒚𝒚𝒔𝒔 − 𝟎𝟎) − 𝑅𝑅                         Equation 18 

where L is the loss/deposit value, x and y are the coordinate of the point in Cartesian 

coordinate and R is the radius. Points with positive (+) L are indicated as the loss PCD, and 

negatives (-) are deposits. Figure 23 illustrates the loss/deposits concept. 
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Figure 23. Definition of Loss and Deposit 

The properties for each RoI (i.e., 5-ft section) are the mean value of all the properties of these 60 

2D rings. After collecting the PCDs of the inner concrete wall loss (positive L), the erosion rate is 

calculated as Equation 19: 

Er �mm
year

� = Erosion for each point from ring PCD (at the time of inspection)
Age of the RCSSP at the time of inspection (i.e.,28 years)

            Equation 19                                                                                           

The erosion rate (Er) is calculated for each point identified as loss, to form a vector for all the 

erosion rates (for each 2D ring).  

3.4.7 Considering the Spatial Variability of Pipeline Circumference. 

The literature shows that quantifying the wall cover erosion is one of the well-known methods to 

develop a proactive condition assessment of RCSSPs at the serviceability level. In addition, as 

mentioned in the Chapter 1 (Introduction Section), filtering of the inspection PCD is a challenging 

task. Therefore, this study also investigates the concrete cover loss for different zones of the 
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RCSSPs circumference to check if the flow noise filtering can be eliminated. The PCD of the 

cross-section of the pipe (0°-360°) is divided into five different sectors: top-half (0°-180°), (15°-

165°), (30°-150°), (45°-135°), and (60°-120°). For each sector, the concrete wall erosion is 

calculated and compared with the results from the whole circumference of pipe (Ebrahimi & Jalali, 

2022b).  

In order to consider the effect of spatial variation of pipeline circumference, points of each 2D 

rings are divided into five different cases (which are different sectors of the pipes): top-half (0°-

180°), (15°-165°), (30°-150°), (45°-135°), and (60°-120°) as shown in Figure 24. For each case, 

the concrete erosion is calculated using the method discussed in (3.3.4.6.2 Calculating Mean Inner 

Concrete Loss) 

 
Figure 24. Spatial Variation of Pipeline Circumference; (a) Whole Ring (0o-360o), (b) 0o-180o, (c) 15o-
135o, (d) 30o-150o, (e) 30o-150o, (f) 45o-135o, (g) 60o-120o  

It should be noted that the mean concrete loss for each 5-ft section is the mean loss of the 60 rings. 
Next section provides the results of mean inner concrete loss for selected zones of the pipe 
circumference (i.e., different cases) and compares them with the results of the whole pipe; three 
different methods are used for comparison, i.e., boxplots, probability plots, and chi-square 
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goodness-of-fit test. Method 1 and 2 are graphical techniques and method 3 is a more accurate 
statistical approach.  

3.4.8 Finding the Best-Fit-Distribution 

The erosion rate (Er) is calculated for each point identified as loss, to form a vector for all of the 

erosion rates (for each 2D ring). The proposed algorithm fits 6 different distributions to the erosion 

rate data; the selected PDFS are: 

1. Normal distribution.  

2. Lognormal distribution. 

3. Half Normal distribution.  

4. Exponential distribution. 

5. Gamma distribution.  

6. Weibull distribution. 

These distributions are selected considering relevant literature (Ahammed & Melchers, 1995; 

Foorginezhad et al., 2021b; S.-X. Li et al., 2009; Mahmoodian & Alani, 2014; Teplý et al., 2018). 

Goodness-of-fit is measured by comparing R2 values for fitted line to QQ-plots of each 1-inch 

rings. The algorithm uses a qualitative measure for interpreting and evaluating these distributions 

using quartile/quartile, or QQ-plot. For each distribution, the goodness-of-fit is measured by R2 

values from the fitted first-order regression line on these QQ-plots (Pleil, 2016).  
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3.4.9 Updating the Mean Concrete Loss Values using Bayesian Network (BN) 

Duo to the scarcity of data the pipelines does not have multiple inspections in their lifetimes. Using 

Bayesian inference the mean concrete erosion for pipeline (M-M) can be “updated” based on the 

prior which is determined from the literature and previous case studies. Bayesian Network (BN) 

is a statistical method that updates the probability for a hypothesis (i.e., the Prior) as more 

information becomes available as the observed data (i.e., the calculated Mean Loss for each 

Pipeline #). Bayesian methods with appropriate prior distributions provide an alternative approach 

for estimating parameters of a complicated degradation model. It's based on Bayes' theorem, which 

relates the conditional and marginal probabilities of stochastic events. Here two cases are 

discussed, Weibull and gamma likelihood functions. 

The basic formula for Bayes' theorem is as Equation 20. 

P(H|E) = P�E�H�.  P(H)
P(E)

              Equation 20 

Where: 

P(H∣E) is the probability of hypothesis H given the evidence E (posterior probability). 

P(E∣H) is the probability of evidence E given that hypothesis H is true (likelihood). 

P(H) is the probability of hypothesis H being true (prior probability). 

P(E) is the probability of the evidence E (marginal probability). 

To perform BN, you start with a prior belief about the probability of the hypothesis (prior 

probability), and the observed data (i.e., the calculated Mean Loss for each Pipeline #). The 

updated belief is the posterior probability.  
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The BN updating has the following steps: 

1-Define the model which would be related to the "Mean Loss (mm)" for all the pipelines.  

2-Establish a prior distribution for the parameters of our model. This could be based on previous 

knowledge or assumptions about the "Mean Loss (mm)"; two priors are defined in this study. Table 

3 shows two distributions to be assigned for BN according to Table 1. The first one follows the 

Gamma distribution obtained by (Mahmoodian & Alani, 2014); this study estimated the Gamma 

parameters using maximum likelihood methods (MLE). The second priors follow Weibull 

distribution; Abuhishmeh, (2019) estimated Weibull parameters for all sections of 22 different 

RCSSPs; the Weibull parameters were determined by averaging all the parameters of the 22 

different RCSSPs.  

Table 3. Different Priors from Literature for Bayesian Network 

 

3-Determine the likelihood function, which describes how probable the observed data is given 

certain values of our model parameters; Here the likelihood would be Gamma and Weibull PDF. 

4-Calculate the posterior distribution, which updates our belief about the model parameters after 

considering the observed data; in this case since it is not conjugate prior for the Gamma and 

Weibull likelihood, and hence, the posterior distribution cannot be obtained analytically. This 

process typically requires a numerical approach, such as Markov Chain Monte Carlo Metropolis-

Hastings (MCMC-MH) or other sampling methods, to approximate the posterior distributions.  

Reference Distribution Parameters Description

Mahmoodian and Alani (2013) Gamma 
(0.17*t,0.425) 

(Shape(A) and scale(G))

Power Law
Maximum Likelihood (MLE)

 (t in year)

Abuhishmeh, k. (2019) Weibull 

 (Normal(1.8438,0.3323), 
Normal(0.00806,0.505446))

(Fitted shape(B), Fitted 
Scale(S)) 

Fitted Normal Distrubution to the 
parameters which are calculated by 

fitting the values to 22 pipelines
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In order to compare the updated values by BN with the prior and observed data, RSL values is 

calculated for all the update values (posterior), prior and observed data; Monte Carlo simulation 

(MCS) is utilized for this purpose (discussed in subsection 3.4.8.3) 

3.4.10 Calculating Residual Service Life (RSL) 

Many factors are involved in degradation process of RCSSPs such as temperature, H2S 

concentration, and relative humidity (Wells & Melchers, 2015); however, these data are generally 

not readily available which makes the degradation models limited (Makana et al., 2022). On the 

other hand, Wu et al. (2018) reported that deterioration due to MIC of concrete are responsible for 

50 percent reduction in the service life of concrete sewers. Therefore, concrete erosion is the main 

factor considered in this study. In this study the serviceability limit state (SLS) (i.e., remaining 

inner concrete cover) is utilized for predicting the RSL (life expectancy) of RCSSPs. The 

serviceability limit state does not reflect the failure/collapse of RCSSPs. In addition, it is assumed 

that the concrete erosion changes linearly w.r.t time; this assumption is used in other studies 

(Andrade, 2020; Khaled Saleh Abuhishmeh, 2019; Teplý et al., 2018; Wells & Melchers, 2014). 

Two different methods are discussed for calculating life expectancy (service life) of RCSSPs as 

follows: 

3.4.10.1 Probability of Exceedance 

This method utilizes the concrete erosion rates (result of Equation 19). In the proposed algorithm, 

it is assumed that erosion rate Er increases in a constant rate (Andrade, 2020; Khaled Saleh 

Abuhishmeh, 2019). This concept is integrated by the concept of SLS (G) described in the 

Equation 21 (Ahammed & Melchers, 1995) : 

G(t) = Re(t)-E(t)                                                   Equation 21                                                                            
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Where Re is resistance defined as inner concrete cover of 1 inch (25.4 mm) (Bizier, 2007); 

the concrete cover protects the reinforcements from corrosion by isolating them from the 

surrounding environment and sewage. E is action considered as corrosion rate; t is time as 

year. Failure is occurred when the action E overcomes the resistance Re. E at each point of 

the ring is different, so the erosion at t is presented as a random variable follows the best 

fit distribution function (e.g., Half Normal, Weibull or Gamma).  

Action E can be assumed to follow any function that represents concrete erosion rate. In this study 

two different functions are used. Power law and Pomeroy model is discussed in following sections: 

3.4.10.1.1 Power law 

Equation 22 shows the power law formulation. 

𝑑𝑑𝑖𝑖 = 𝐶𝐶 ∗ 𝑡𝑡𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟               Equation 22 

Where: 

d: erosion depth at time i (in mm), 

C: erosion rate (mm/year). 

rate: the constant reflecting the nonlinear trend of degradation law. rate is typically assumed to be 

1, which shows that the erosion rate is assumed to be linear with respect to time (van Noortwijk et 

al., 2007) 

3.4.10.1.2 Pomeroy Model 

Equation 23 -24 shows the well-known Pomeroy model for concrete degradation modeling.  

Φ = 0.7 ∗ (S*VF)3/8 ∗ j ∗ [DS] ∗ (b/WP)                           Equation 23 
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C = 11.5 ∗ K ∗ Φ ∗ (1/AC)                                 Equation 24 

Where: 

t: age of pipe at time i (year), 

Φ: the average flux of H2S to the wall, 

S: slope of the pipeline (m/m), 

VF: velocity of the stream(flow) (m/sec), 

j: the pH-dependent factor for the proportion of H2S, 

DS: dissolved sulfide concentration (mg/l), 

b: stream width (mm), 

WP: perimeter of the exposed wall to atmosphere (mm), 

C: the average erosion rate (mm/year), 

K: the Acid reaction factor ranging from 0.3 to 1, 

AC: the acid-consuming capability of the wall material; AC is defined based on material 

types; for granite aggregate: 0.17<AC<0.24, calcareous aggregates: 0.9<AC<1.1, mortar-

lined pipe: AC=4, and asbestos cement pipe: AC=0.5. 

The so-called failure occurs when the action E, exceeds the resistance Re; in other words, G (SLS) 

becomes negative. There is an uncertainty in evaluating the concrete erosion rate, since there is 

not any real data available for these properties to predict the erosion rate; therefore, probabilistic 

methods are employed to overcome this challenge (Khaled Saleh Abuhishmeh, 2019; 

Mahmoodian & Li, 2011; Teplý et al., 2018) by assigning random variables to these properties. 



 

 

54 

Here, the best distribution (which is the result of the proposed distribution- fitting algorithm) is 

assigned to the erosion rate. The concrete erosion at time t (i.e., the action E) is calculated by 

multiplying the time (in years) by the erosion rate (mm/year). This is the manifestation of the 

constant erosion rate assumption. This is a reasonable assumption since there is no second 

inspection data available for these pipes up to date. It is worth mentioning that the BN method is 

used in this study to accommodate the uncertainties to some extent. 

The probability of failure is the area bounded by the probability density function (the action, E) 

and the concrete cover (i.e., the vertical line); this area is highlighted in Figure 24 by green hatched 

area. 

The probability of failure of each ring at t is the area bounded by the probability density function 

(action) and the concrete cover in which the action is greater than the resistance. According to the 

basic definition of probability, probability of failure is the area under the probability density 

function. Probability of failure is the area under the curve beyond 1 toward infinity as in the 

Equation 25. 

𝑊𝑊𝑓𝑓 = ∫ 𝑖𝑖(𝑥𝑥)𝑑𝑑𝑥𝑥     ∞
25.4                                               Equation 25         

Finally, the RSL is estimated as the time at which the structure requires maintenance, however this 

does not reflect failure of that structure. The degradation of concrete is not included in this study; 

This is the limitation of this method. In this study the erosion rate (Equation 19) is used along with 

probability of failure concept (Equation 25) to estimate the RSL of RCSSPs. Using the age of the 

pipe at time of inspection, the residual service life of the pipe is calculated as Equation 26.  

 Pf (G(t)>1)                       Equation 26      
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Equation 26 is the area between the vertical line (Resistance Re) and the PDF curve (Action E) 

illustrated in Figure 25.     

  

Figure 25. Probability of Exceedance for Erosion (Half Normal Distribution) at t 

For each 2D ring, this process is repeated for the next following years (up to year 300) in Equation 

25. For instance, the PDF in Figure 25 is the erosion PDF for the 30th year after inspection (for 

ring 1, section 1, line 1). The results of Equation 25 for each t forms a vector, and the service life 

is defined as a year in which pf is 0.10 or 0.05 and larger. In other word, this is the remaining life 

(year of maintenance) of ring with 90-95 percent confidence interval respectively; this is assumed 

as the maximum acceptable risk in terms of probability of failure. In other word, this indicates the 

year of which the RCSSP becomes unsafe and needs maintenance. It should be noted that the 

accurate acceptable risk should be determined from a risk-cost optimization of pipe system during 

its service life (Mahmoodian & Li, 2011). This remaining service life shows the time when the 

RCSSP requires maintenance. It does not reflect actual structural failure of the pipe; however, it 

helps the pipe network manager implement a proactive asset management strategy by prioritizing 

repair and rehabilitation of pipes. 
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3.4.10.2 X-intercept Method 

This method is a simplistic approach for estimating RSL. This method uses the average of concrete 

wall losses for each Section at the time of inspection. this method considers the average inner 

concrete wall loss of RCSSPs at the time of inspection. It is also assumed that rate of concrete 

erosion is constant throughout the lifespan of the pipe (Teplý et al., 2018; Wells & Melchers, 

2014).  Assuming that corrosion rate is constant. 

From Figure 26, initial cover (C0) is assumed to be 1 inch (25.4 mm) (according to ASTM 

C76.8.3.1); the service life (tSL) is calculated by finding the x-intercept of a line which passes 

through initial cover (point (0 , 25.4)) and mean remaining cover (µc) at time of inspection (i.e., 

point (tinsp , µc)). 

 
Figure 26. Calculation Remaining Life Using X-Intercept Method 

 



 

 

57 

3.4.10.3 Applying Monte Carlo Simulation (MCS) on the Basic Reliability Problem 

In order to calculate RSL basic reliably problem is defined. This problem considers only concrete 

erosion D and the threshold as initial cover C0. Each is described by a known Probability density 

function, fD() and f C0 (). Both units are in mm. The pipe will be considered to failed if the initial 

cover which is the inner wall concrete cover that is assumed to be 1 inch (25.4 mm), is less than 

concrete erosion D. The probability of exceedance of each pipe can be calculated Equation 27. 

𝑝𝑝𝑟𝑟 = 𝑊𝑊[𝐸𝐸(𝐷𝐷, C0) ≤ 0]                                                                                                   Equation 27 

where E() is termed the “serviceability limit state problem” and D and C0 are erosion and 

initial cover respectively. 

The failure probability may be written as Equation 28 Since the D and C0 are independent, the 

joint (bivariate) density function 𝑖𝑖𝐷𝐷,𝐶𝐶0 (D, C0) is formed the area calculated by Equation 28. 

𝑝𝑝𝑟𝑟 = 𝑊𝑊(𝐶𝐶0 − D ≤ 0) =  ∫ ∫ 𝑖𝑖𝐶𝐶0 (𝑐𝑐0)𝑖𝑖𝐷𝐷 (𝑑𝑑)𝐷𝐷≥𝐶𝐶0
−∞

∞
−∞ 𝑑𝑑𝐼𝐼  𝑑𝑑𝐶𝐶0 = ∫ 𝐴𝐴𝐶𝐶0(𝑥𝑥)𝑖𝑖𝐷𝐷

∞
−∞ (𝑥𝑥) 𝑑𝑑𝑥𝑥     Equation 28 

This is the ‘convolution integral.’ 𝐴𝐴𝐶𝐶0(𝑥𝑥) is the probability that C0 ≤ x or the probability that the 

actual resistance C0 is less than some value x. This represents failure if the remaining cover D is 

larger or equal to x. This is also shown in Figure 27, where the (marginal) density functions fC0 

and fD have been illustrated along the same axis. 
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Figure 27. Basic  C0− D problem: fC0( ) fD( ) representation. 

In another words, Equation 28 can be simply calculated by the ‘sum’ of the failure probabilities 

over all cases of resistance, where concrete erosion D exceeds resistance 𝐶𝐶0 (Melchers & Beck, 

2018). 

𝑝𝑝𝑟𝑟 =  𝑚𝑚𝑚𝑚(𝐸𝐸(𝑥𝑥𝑖𝑖)≤0)
𝑁𝑁𝑁𝑁

                 Equation 29 

where nn(E(x̂i) ≤ 0) is the number of trials when (E(̂xi) ≤ 0). NT is the total number of trials required 

to the desired accuracy for pe. Here, NN=10,000 is set for BN, and 1000 for other problems. NN 

of trials required is related to the desired accuracy for pe. 

In the next section, the values of RSL for the different approaches will be shown. In addition, other 

statistical methods such as the Single variable Regression model, Multi-Variables Regression 

model, and Polynomial Regression model are implemented on the output of the proposed 

algorithm in order to estimate the concrete erosion of the inner wall of RCSSPs using the calculated 

parameters. The parameters are: 
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1-Area of Flow (mm2) ,  

2-Water Level (%), 

3-Hydraulic Radius (mm), 

4-Actual Radius (mm), 

5-Ovality, and the target, Mean Loss (mm) 

These parameters are provided in 3 different tables for all pipeline # of different Pipeline diameters 

30-,54-, 60-inches. The statistical methods are done using Python Libraries: NumPy and SciPy and 

the plots using Matplotlib dictionary. 
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CHAPTER 4. RESULTS AND DISCUSSION 

4.1 Verifying the LiDAR PCD with CCTV  

As discussed in Chapter 3, the outcome of the proposed algorithm is a 3D PCD. It provides an 

accurate presentation of the inner wall geometry of a RCSSP at each RoI (i.e., 5-ft). Figure 27-b 

shows an overlay of the PCD and actual CCTV image corresponding to the seventh 5-ft section of 

Line 4; the yellow points are the PCD after applying the global filtering. Figure 28 certifies that 

the PCD is able to locate the water line, deposits at the haunches, and uneven joints accurately. 

 

Figure 28. Overlaying the PCD on the Respective CCTV image. (a) The PCD, (b) Image of the Left 
Haunch, (c) Image of the Whole Section, (d) Image of the Right Haunch 

 



 

 

61 

4.2 Diameter Calculation 

Using the proposed method, the diameter of all 5-ft sections for 54 inches pipes are computed, and 

the values are compared with diameter value (i.e., 54 inches).  Figure 28 illustrates the consistency 

of results using both methods; each “dot” represents the mean diameter of a 5-ft section. Figure 28 

also certifies that the actual diameter of pipes could vary from values of as-built maps (i.e., the 

values in Table 2); for instance, as shown in Figure 29, the diameter of Line 1 varied at the location 

75 ft from the manhole. This is also visible in Figure 29 (for Line 1), where there is a drop in the 

measured diameter at that location. Figure 30 shows the accuracy of inspected PCD in representing 

the inside geometry of pipelines. 

 
                                      (a)                                      (b) 

 
   (c)                    (d) 
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(e) 

Figure 29. Comparing the calculated diameters with map values for each 5-ft section.  

         
                                            (a)                                                                    (b) 
Figure 30. Comparing CCTV image with PCD of line number 1, section: 18 (Location: 75 ft) (a) 
CCTV image (b) Z-X view of PCD 

4.3 Ovality Calculations 

The ovality (deflection) of all 5-ft sections for the 5 selected pipelines are shown in Figure 31; it 
suggests that Equation 11.a provides more consistent and reasonable deflection values with the 
implemented proposed method.  
 

 
                                          (a)                                                                    (b) 
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         (c)                                                                   (d) 

 
  (e) 
Figure 31. Comparing the Ovality (deflection) Values using Equation (11) for each 5-ft Section 

Meanwhile, Figure 31 shows the comparison between different methods on calculating the ovality 

of each ring. Here, one of the rings of 30-inch pipeline is used for this comparison. As mentioned 

in the Chapter 3 (i.e., Methodology section) for 30 inches data, the inspection outputs are the 2D 

rings; however, the inspection outputs for 54- and 60-inches pipe are 3D PCD for each 5-ft sections 

of each pipeline (M-M). The Ellipse fitting algorithm is borrowed from (Gal, 2023). 
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               (a)                  (b) 
 
Figure 32. Comparing Different methods for calculating the Ovality of pipes; (a) KNN method, (b) 
Other Methods 
 

From Figure 32 it shows that the proposed KNN method calculate the diameter and ovality of 2D 

rings more accurately than other methods such as Circle fitting and Ellipse fitting algorithms based 

on LS method. 

4.4 Calculating Mean Inner Concrete Wall Loss at the Time of Inspection 

The proposed framework is also capable of showing the results for each 1-inch rings along the 

length of each pipeline (Figure 33.b -Figure 42.b). Here inspection PCD from LiDAR surveys for 

1,500 linear ft of RCSSPs with 60-inch diameter and 1,500 linear ft of RCSSPs with 54-inch is 

used. It is assumed that the inner cover thickness is 1 inch in this comparison. To calculate the 

mean wall loss, radius sets as the fitted radius in Equation 18. 
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 (a) (b) 

Figure 33. Comparing Half Normal Standard Deviation of Losses for Line 1; (a) 5 ft, (b) 1 inch ring 

 

 (a) (b) 

Figure 34. Comparing Half Normal Standard Deviation of Losses for Line 2; (a) 5 ft, (b) 1 inch ring 

 

 (a) (b) 

Figure 35. Comparing Half Normal Standard Deviation of Losses for Line 3; (a) 5 ft, (b) 1 inch ring 
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 (a) (b) 

Figure 36. Comparing Half Normal Standard Deviation of Losses for Line 4; (a) 5 ft, (b) 1 inch ring 

 

 (a) (b) 

Figure 37. Comparing Half Normal Standard Deviation of Losses for Line 5; (a) 5 ft, (b) 1 inch ring 

 

 

 (a) (b) 

Figure 38. Comparing Half Normal Standard Deviation of Losses for Line 6; (a) 5 ft, (b) 1 inch ring 
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 (a) (b) 

Figure 39. Comparing Half Normal Standard Deviation of Losses for Line 7; (a) 5 ft, (b) 1 inch ring 

 

 (a) (b) 

Figure 40. Comparing Half Normal Standard Deviation of Losses for Line 8; (a) 5 ft, (b) 1 inch ring 

 

 (a) (b) 

Figure 41. Comparing Half Normal Standard Deviation of Losses for Line 9; (a) 5 ft, (b) 1 inch ring 
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 (a) (b) 

Figure 42. Comparing Half Normal Standard Deviation of Losses for Line 10; (a) 5 ft, (b) 1 inch ring 

Figure 43 shows the average loss of cover for all 54- and 60- inch RCSSPs as box plots. 

 

Figure 43. Box Plots of Average Loss of Cover for All Lines 

4.4.1 Concrete Erosion for different Spatial Variability in Pipe Circumference 

The purpose of this section is to investigate whether it is possible to eliminate some of the data in 

the filtering process of the inspection PCD in evaluating wall erosion of RCSSPs. Therefore, the 

mean concrete erosion of different cases (i.e., the different zones of pipe circumference) are 

compared with the result of the whole pipe circumference. To this end, the LiDAR inspection PCD 

of five different RCSSPs (M-M) are selected. Each data sets are consecutive 5-ft sections of each 
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line (M-M). The proposed algorithm automatically filters and aligns the cylindrical PCD and 

divides them into 60 different 2-D rings. Then, each ring (0°-360°) is divided into five different 

sectors: (0°-180°), (15°-165°), (30°-150°), (45°-135°), and (60°-120°). Lastly, the automated 

algorithm calculates the mean concrete loss for each case study; the results of different cases are 

compared using three different data assessment techniques, i.e., boxplots, probability plots, chi-

square goodness-of-fit test. 

In order to compare this effect of spatial variability, inspection PCD from LiDAR surveys for 

1,500 linear ft of RCSSPs with 60-inch diameter is used; it is assumed that the inner cover 

thickness is 1.5 inch in this comparison. In order to calculate the mean wall loss, radius sets as the 

map value (i.e., 60 inches) for Equation 18. 

The first graphical method for comparing the concrete erosion of different case studies is boxplot. 

Figure 44 shows the parallel boxplots (side-by-side boxplots) for six different spatial variation of 

pipe circumference. Each boxplot is drawn from the mean concrete erosion values of each 5-ft 

sections. The boxplots shows that the mean concrete erosion of the whole circumference of pipe 

is the same as the other case studies, except for the sector of 60o-120o.  
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Figure 44. Box Plots of Concrete Wall Loss For Different Zones of the Pipe Circumference; (a) Line 
1, (b) Line 2, (c) Line 3, (d) Line 4, (e) Line 5 

 
To investigate if the mean concrete erosion for different cases is following the same distribution 

as that of the whole pipe circumference, the Weibull probability plots for each case study and the 

whole pipe are compared next; Weibull distribution is often used to model degradation 

phenomena. Figure 45 depicts the probability plots for different cases for line 1 for illustration 

purposes. The fitted lines to each case (one for the whole pipe shown in green and one for each 

case shown in red), are a good measure for comparison. Figure 45.e illustrates that for the 60o-

120o case, the fitted line diverges from the whole pipe; however, all the other cases are following 

the same distribution and the difference is negligible. The same conclusion is also reported by 

(Bizier, 2007), where the concrete erosion of the crown is shown to be different from other parts 

of pipe circumference due to the sulfide accumulation at that location. 
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Figure 45. Weibull Probability Plots of Mean Concrete Loss of 5-ft Sections for Line 1 

Besides these two visual techniques, the chi-square goodness-of-fit test are performed on different 

cases. The chi-square is a statistical test for evaluating if the two sets of data are following the 

same distribution. The null hypothesis is that the erosion data of each case study comes from the 

Weibull distribution (which is fitted to the concrete erosion of whole pipe circumference (0o-

360o)). Table 4 shows the result of the test; Pass indicates that the chi-square method does not 

reject the null hypothesis at 1 percent significance level. Meanwhile, Reject indicates that Chi-

square method reject the null hypothesis at 1 percent significance level. 

 
Table 4. Results of Chi-Square Goodness-of-Fit-Test for Different Cases 

 

The results of chi-square goodness-of-fit test in Table 4 illustrates that there are statistically 

significant relationships between the mean concrete erosion of different cases and the whole pipe 
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circumference. Meanwhile, the concrete erosion data for the case: 0 o -180 o (of all five lines) has 

the closest results to the mean erosion of the whole circumference of the pipe. In addition, the two 

cases: 15 o -165 o and 30 o -150 o are the next best options. Meanwhile, the results of chi-square 

goodness-of-fit test matches those of the visual tests, e.g., the underlying distribution of the case: 

60 o -120 o is different from other cases in line 1. 

4.5 Assigning the Best-Fit Distribution to Erosion Rates 

A best distribution is fitted to wall thickness loss data. The goodness of fit is calculated by 

comparing R2 values from least squares (LS) for QQ-plots of 6 different distribution. Figure 46 

shows that the results of the proposed distribution-fitting algorithm for the first ring (of section 1, 

line 1); according to Figure 46.c, the erosion rate data follows the Half-normal distribution with a 

coefficient of determination R2 equal to 0.99. The results shows that the data could be following 

Exponential distribution or Weibull distribution too; however, it is easier to use Half Normal 

distribution because it is dependent on one parameter (i.e., standard deviation and the mean is 

zero). Figure 46 shows the results for the distribution fitting algorithm. Here, first Line is shown 

in Figure 46; all QQ-plots for all 10 lines are provided in Appendix A. 
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Figure 46. Results for Fitting Different Distribution to the Losses 

From the QQ-plots of the distribution-fitting algorithm in Figure 46, it is shown that the right-tail 

of the erosion data is non-linear; it is light-tailed. According to (Pleil, 2016), these effects reflect 

a certain amount of error in the distribution, and ultimately must be interpreted as such. 

As it is explained in Chapter 3 Methodology, the distribution fitting algorithm is performed on the 

erosion rate vector of each ring. The result of the proposed algorithm (in Figure 46) is verified by 

the graphical technique (histogram fitting); Figure 47 is generated by the Distribution-Fitting 

application (histfit function in MATLAB) comparing the top 4 best-fit distributions in Figure 46. 

Both results from Figure 46 and Figure 47 (probability plots) confirm that the underlying 

distribution follows Half-normal distribution 
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Figure 47. Comparing the Histogram Fitting of Erosion Rate Data Using 4 Different Distributions 

 

 
Figure 48. Probability Plots of 3 Top Best Fit Distribution on Erosion Data 

The pie charts in Figure 49 shows the results of the proposed distribution-fitting algorithm for all 

the rings of each 10 lines (54- and 60- inch pipe). This confirms that for most of the rings, the 

erosion rate data follow the Half-normal distribution (with zero mean). 
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Figure 49. Pie Charts of the Results from Distribution-Fitting Algorithm for Erosion Rate Data 

4.6 RSL Calculations 

Once the pipe wall thickness loss is estimated using the filtered LiDAR data, corrosion rate is 

calculated by dividing the wall thickness loss amount to the age of the pipeline. RSL is calculated 

considering serviceability limit state that defines failure as the complete loss of 1-in concrete cover. 

Considering this limit state and a prescribed probability of exceedance threshold, a reliability-

based prediction of the remaining service life is determined for 1000 linear foot of large diameter 

RCSSPs (54- and 60-inches).   

4.6.1 Comparing RSL of two methods: Probability of Exceedance and X-intercept Method 

Using the proposed framework, the residual service life (RSL) of the RCSSPs is presented for each 

5-ft section. Figure 50-Figure 59 show the results for the first ten selected RC sanitary sewer 

pipelines using two different methods discussed in the previous section 3 (Section 3.4.5). It should 
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be noted that “Method 1” denotes the method of probability of exceedance (Section 3.4.5.1), and 

“Method 2” is the method of X-intercept (Section 3.4.5.2).  

 
Figure 50. Comparison of RSL using X-intercept and Probability of Exceedance for Line 1 

 

 
Figure 51. Comparison of RSL using X-intercept and Probability of Exceedance for Line 2 
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Figure 52. Comparison of RSL using X-intercept and Probability of Exceedance for Line 3 

 

 
Figure 53. Comparison of RSL using X-intercept and Probability of Exceedance for Line 4 
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Figure 54. Comparison of RSL using X-intercept and Probability of Exceedance for Line 5 

 

 
Figure 55. Comparison of RSL using X-intercept and Probability of Exceedance for Line 6 
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Figure 56. Comparison of RSL using X-intercept and Probability of Exceedance for Line 7 

 
Figure 57. Comparison of RSL using X-intercept and Probability of Exceedance for Line 8 
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Figure 58. Comparison of RSL using X-intercept and Probability of Exceedance for Line 9 

 

 
Figure 59. Comparison of RSL using X-intercept and Probability of Exceedance for Line 10 
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Figures 50-59 show a consistency between the Half-Normal distribution and Weibull distribution 

and is therefore, the best choice for modeling the erosion rate with uncertainty, since it requires 

knowing only the standard deviation.  

Meanwhile, for the matter of simplicity, instead of working with the time consuming and long 

process of finding the life expectancy, the only parameter of Half Normal distribution (i.e., 

standard deviation) for the wall losses (not the erosion rate) can be plotted with respect to each 

location of each 5-ft section (Figure 33.a -Figure 42.a). 

4.6.2 Investigating the Effect of Assigning Different Distributions on the Service Life of 

RCSSPs (using Probability-of-Exceedance Method) 

The method of Probability-of-Exceedance is explained in (Section 3.4.10.1); it is a well-known 

method for estimating the service life of the RCSSPs. The key feature of this method is to assign 

the best distribution to the erosion rate so that it accurately represents the concrete degradation 

process of RCSSPs. Here, the top 4 best distributions are selected from Figure 46. The predicted 

RSL (life expectancy) for all the rings of each 10 lines are shown in the boxplots of Figure 60. The 

results show that assigning Exponential distribution decreases the service life about 12-13%; 

however, Normal distribution increases service life to 6%. More importantly, the Weibull and 

Half-normal distributions lead to the same values. It should be specified that these 10 RCSSPs are 

consecutive lines, so, their service life should be similar. Figure 60 suggests that the proposed 

method calculates the erosion of inner wall of RCSSPs consistently. This is confirmed with the 

CCTV data, as there was no root intrusion, joint failure, or pipe collapse. 
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Figure 60. Comparing the Service Life of RCSSPs by Assigning 4 Different Distributions 

The so-called year of maintenance could be calculated by adding the predicted RSL in Figure 60 

to the inspection year. 

4.6.3 Consistency of the Proposed Algorithm with Similar Study Using Manual Filtering    

The uncertainty of the predicted service life is determined by constructing the confidence interval 

of the mean predicted RSL of all rings (with 95% confidence). To calculate the confidence interval, 

Equation 30 is utilized. 
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√𝑁𝑁𝑁𝑁
��        Equation 30 

where µ is the weighted average of service life, α is the significance (i.e., 5 % herein), tz is 

the z-score from the z-table, SD is the sample standard deviation of mean service life of all 

rings, and NS is the number of rings at each RoI. 

The confidence interval of the predicted service life values (from the proposed method) is 

compared with the results of a previous study (Moamaie, 2019) that used the same LiDAR 

inspection data. (Moamaie, 2019) filtered and processed the 3D PCDs manually for each RoI; the 

raw LiDAR PCD of each RoI is imported into an open-source program called Cloud Compare; a 

cylinder was centered to the filtered PCD (knowing the radius from Table 2). In this smilar study 

using the same data (Moamaie, 2019) the mean inner concrete loss of each RoI was the mean 

Euclidean distance of each filtered PCD and the centered cylinder. Figure 61 shows the comparison 

between the results of the predicted service life using the proposed algorithm and the previous 

study with the user interference from (Moamaie, 2019). Both approaches use a Probability-of- 

Exceedance method (discussed in subsection 3.4.8.1) for predicting the service life of the selected 

RCSSPs. In contrast (Moamaie, 2019) fitted the Weibull distribution to erosion rate data and the 

method proposed herein used the best-fit distribution (i.e., Half-normal distribution). 
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(a) 

 

(b) 

Figure 61. Comparing the Results of Predicted RSL using (a) The Proposed Method, and (b) Previous 
Study (Moamaie, 2019) 

Figure 61 shows that the difference between each lower and upper bound is much smaller than the 

previous study, indicating that the results from the methodology proposed herein are more 

consistent. 
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4.6.4 Comparing the Results of Different Reliability Methods on the Predicted Service Life 

of RCSSPs 

As it is discussed in subsection 3.4.8, two methods are used for predicting the service life of 

RCSSPs. Here, the results from the approach proposed herein are compared with different time-

dependent reliability methods discussed by (Mahmoodian & Li, 2011) and (He & Koizumi, 2013); 

they performed Monte Carlo simulation (MCS) on Equation 22 and Equation 23. Here, MCS runs 

on the Equation 22 and Equation 23 with the variable inputs shown in Table 5. 

Table 5. Properties of Random Variables for Monte Carlo Simulation (MCS) 

 

It should be noted that the slope (S) is derived from the as-built drawing (from Table 2), b/WP and 

VF are calculated with the proposed algorithm (i.e., explained in subsubsection 3.4.5), ErMC is the 

mean erosion rate of each 5-ft sections (from subsubsection 3.4.6), and Ψ is the coefficient 

representing the uncertainty of the model. Different distributions are assigned to the other variables 

as shown in Table 5. Figure 62-a shows different probability-of-failure plots for various reliability 

methods. Figure 62-b illustrates the bar plots of predicted RSL (service life) using different 

reliability methods. The results of Figure 61 are for the first 5-ft section of line 1. Meanwhile, 

based on the convergence tests, it is accurate enough for the MCS to run with 1000 populations.  



 

 

86 

 

(a) 

 

(b) 

Figure 62. Comparing the Results of Different Reliability Methods: a) Probability-of-Failures Plots, 
b) Predicted Service Life using Different Reliability Methods 

Figure 62-a shows that the probability of failure plot of MC simulation (using Pomeroy Equation 

23) is similar the method proposed herein. Lastly, in order to have a thorough comparison between 

all the lines, the predicted life expectancy using 4 different reliability methods are shown in 

boxplots in Figure 63. As previously mentioned, the service life is calculated for an acceptable risk 

of Pa = 0.1. 
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Figure 63. Results of Predicted Service Life using 4 Different Reliability Methods 

The service life of all rings within each line are shown as boxplots of Figure 63; the results illustrate 

that the X-intercept method led to larger service life predictions than other methods; this could be 

the result of its underlying method which does not consider any uncertainty. Service life 

predictions from MCS of Power law (Equation 22) are larger than those obtained by using the 

Half-normal distribution; however, estimated remaining service life from MCS of Pomeroy model 

(Equation 23) aligns well with those obtained by using the Half-normal distribution.  
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4.7 Results of Statistical Methods on the Calculated Properties 

statistical methods such as the Single variable Regression model, Multi-Variables Regression 

model, and Polynomial Regression model are implemented on the output of the proposed 

algorithm in order to estimate the concrete erosion of the inner wall of RCSSPs using the calculated 

parameters. The Regression models can be used to understand the relationship between the "Mean 

Loss (mm)" (the dependent variable) and other variables in the dataset (independent variables). 

Figure 64 to Figure 66 show the summary of data being used for different statistical methods. The 

data is calculated using the proposed algorithms.  

 

Figure 64. Overview of 30-inches Data to Perform Different Statistical Methods (Pipeline #1-15) 

 

Figure 65. Overview of 54-inches Data to Perform Different Statistical Methods (Pipeline #1-5) 



 

 

89 

 

Figure 66. Overview of 60-inches Data to Perform Different Statistical Methods (Pipeline #1-5) 

Properties shown in Figure 64 to Figure 66 are described as follows: 

Area of Flow: Represents the cross-sectional area of the flow (calculated using Equation 14). 

Water Level: Indicates the percentage of water in the sewer pipe (calculated using Equation 15). 

Hydraulic Radius: A measure of the pipe's efficiency in conveying fluid (calculated using 

Equation 15). 

Actual Radius: The measured radius of the RCSSPs (calculated by circle fitting algorithm). 

Ovality: Represents the deviation from a perfect circle, based on the ASTM equation (calculated 

using Equation 11.a). 

Mean Loss (Fitted Circle): The average loss based on a fitted circle representation (calculated 

using Equation 9). 

Section #: Indicates the number of 5-ft section for each pipeline # (For 54- and 60-inches pipes). 

Pipeline #: Indicates the pipeline number (M-M). 

4.7.1 Single Variable Regression Model 

Results from Single-variable regressions on the data for 30-, 54- and 60-inches are presented in 

the following steps: 



 

 

90 

First, dataset in slitted into training and testing sets (80-20) method. Then the regression models 

are build using different independent variables. Finally, the performance of each model on the is 

evaluated on testing set. 

Table 6-Table 8 show the results from the Single variable regression for 30-, 54-, and 60-inch data 

respectively. In addition, fitted regression line and the corresponding mean square error (MSE) 

and root mean square error (RMSE) are provided.  

Figure 67-Figure 69 show the scatter plots from the Single variable regression analysis for 30-, 54-

, and 60-inch data respectively. The blue points are training data and red points are test data. The 

scatter plots visualize the data points and the regression line fitted by the model. 

Table 6. Results of Single Variable Regression Model on 30-inches Data 

 

Table 6 shows that Water Level data can better predict the Mean loss for 30-inches data. 

 
(a) 

Variable Regression Line MSE RMSE
   Area of Flow y = 0.00010 x + 45.83 41.38 6.43

Water Level (%) y = 186.34 x + 18.47 14.36 3.79
Hydraulic Radius (mm) y = 0.46 x + 50.33 91.93 9.59

Actual Radius (mm) y = 0.09 x + 13.19 114.64 10.71
Ovality y = 574.82 x + 7.73 28.63 5.35

30 Inches Pipe

(𝐺𝐺𝐺𝐺2)
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(b) 

 
(c) 

 
(d) 
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(e) 

 

Figure 67. The Scatter Plots from the Outputs of Single Variable Regression for 30-inches Data 

 

Table 7. Results of Single Variable Regression Model on 54-inches Data 

 

Table 7 shows that Actual Radius is the best property to predict the Mean loss for 54-inch data. 

Meanwhile, difference between other regression models is small for other properties. It is the same 

for 60-inch results (Table 8). 

 

Variable Regression Line MSE RMSE
   Area of Flow y = 0.01          x + 5.92 2.51 1.58

Water level (%) y = 4.81 x + 4.30 2.48 1.58
Hydraulic Radius (mm) y = 0.01 x + 5.31 2.51 1.58

Actual Radius (mm) y =  − 0.04 x + 30.86 2.35 1.53
Ovality y = 15.00 x + 6.26 2.4 1.55

54 Inches Pipe

(𝐺𝐺𝐺𝐺2) ∗ 10−6
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 68. The Scatter Plots from the Outputs of Single Variable Regression for 54-inches Data 

 

Table 8. Results of Single Variable Regression Model on 60-inches Data 

 

Variable Regression Line MSE RMSE
   Area of Flow y = 0.01           x +6.22 1.87 1.37

Water level (%) y = 3.88 x + 4.88 1.85 1.36
Hydraulic Radius (mm) y = 0.00 x + 5.48 1.86 1.36

Actual Radius (mm) y = − 0.06 x + 50.76 1.62 1.27
Ovality y = 13.39 x + 6.45 1.8 1.34

60 Inches Pipe

∗ 10−5(𝐺𝐺𝐺𝐺2)
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Figure 69. The Scatter Plots from the Outputs of Single Variable Regression for 60-inches Data 

From the results of single variable regression, the following bullet points are concluded: 

• Results of Single variable regression model (Table 6-Table 8) shows that Ovality is the best 

variable to predict the Mean concrete loss with RMSE of 5.35,1.55,1.34 for 30-54-, and 60-

inches data. For instance, for 30-inch data the predictions using Ovality have an average error 

of 1.55 mm from the actual values.  

• Results of Single variable regression on the properties of 30-inch pipes are more diverse than 

54- and 60-inch pipe; this could be due to filtering phase of 54-60-inch data. The 30-inch 

inspection data are different 2D rings along the length of the pipe, however, the output of 54-
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60-inch inspection data are 3D PCDs for each 5-ft along the length of the pipe; the 2D rings 

are extracted from the 3D PCD using the proposed methods.  

 

Figure 70 shows the heatmaps representing the correlation matrices for the three different pipe 

diameters: 30-inches, 54-inches, and 60-inches. The values on the heatmap are the correlation 

coefficients between each pair of variables. These heatmaps provide a visual representation of how 

each variable is associated with the others. Strong correlations (closer to 1 or -1) suggest a more 

significant linear relationship between two variables, while values closer to 0 indicate a weaker or 

non-linear relationship. This information is valuable for understanding the relationships within the 

data and for feature selection in predictive modeling.  

In each heatmaps, positive correlations are displayed in warmer colors (towards red), and negative 

correlations are in cooler colors (towards blue). 
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(a) 
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(b) 
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(c) 

Figure 70. Heatmaps Showing the Correlation Matrices for (a) 30-inch data, (b) 54-inch data, (c) 60-
inch data 

From the heatmaps (correlation Matrices) of Figure 70, it is certified that the Mean loss does not 

have underlying correlation with the hydraulic parameters. 
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4.7.2 Multi Variable Regression Model 

In order to simplify the equation for the fitted regression lines, a unique letter is assigned to 

different parameters as follows. Area of Flow (mm^2): (A), Actual Radius (mm): (B), Hydraulic 

Radius (mm): (C), Ovality: (D), Water Level (%): (E). 

Here, for each diameter, different permutations of three-feature combinations are created; then, 

Multi variable regression is performed on these combinations. Finally, the best three combinations 

with the lowest MSE/RMSE for each diameter are provided Table 9-Table 11. 

Table 9-Table 11 show the results from the Multi variable regression for 30-, 54-, and 60-inch 

data, respectively. In addition, calculated Mean Squared Error (MSE) and Root Mean Squared 

Error (RMSE) for each feature are provided. These summaries provide comprehensive insights 

into which sets of variables most effectively predict "Mean Loss (mm)" for different pipe 

diameters, as indicated by the lowest MSE/RMSE values. 

In addition, a unique combination is selected based on the least correlated parameters obtained 

from the heatmaps (Figure 70). In order to have a clear comparison between different data sets, 

the result from the selected combination is shown as highlighted rows in Table 9-Table 11. The 

results show the combination “Water Level (%): (E), Actual Radius (mm): (B), Hydraulic Radius 

(mm): (C)” can predict the Mean Loss with 3.84, 1.5, and 1.23 RMSE for 30-, 54-, and 60-inch 

data respectively.  
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Table 9. Results of Multi Variable Regression Model on 30-inches Data 

 

Table 9 shows the best three-combination to predict the Mean Loss of 30-inch pipe is “Water Level 

(%): (E), Actual Radius (mm): (B), and Ovality (D)” with MSE and RMSE of 12.61 and 3.55 

respectively. 

Table 10. Results of Multi Variable Regression Model on 54-inches Data 

 

Rank Variables Regression Equation MSE RMSE

1
Water Level (%)(E), 

Actual Radius (mm) (B),        
Ovality (D)

y = 141.56 E - 0.2067 B + 174.571 D   
+ 60.97

12.6 3.55

2
Area of Flow         (A), 

Hydraulic Radius (mm) (C), 
Actual Radius (mm) (B)

y = 0.00218 A - 0.9894 C - 0.2264 B   
+ 122.046

13 3.6

3
Area of Flow          (A), 

Hydraulic Radius (mm)(C), 
Ovality (D)

y = 1.9122           A - 0.09667 C           
+ 113.521 D + 44.89 13.1 3.62

4
Water level (%) (E),

 Hydraulic Radius (mm) (C), 
Actual Radius (mm) (B)

y = 181.22 E + 0.07 C - 0.18 B           
+ 38.37

14.8 3.84

30  Inches Pipe

(𝐺𝐺𝐺𝐺2)

(𝐺𝐺𝐺𝐺2)
∗ 10−3

Rank Variables Regression Equation MSE RMSE

1
Water Level (%) (E),

 Hydraulic Radius (mm) (C),
 Ovality (D)

y = 59.79 E - 0.1014 C + 11.525 D     
+ 2.65

2.2 1.48

2
Area of Flow            (A),
 Hydraulic Radius (C) ,   
Actual Radius (mm) (B)

y = - 2.4519           A + 44.53 C           
 - 13.449 B + 2.236

2.24 1.49

3
Water Level (%) (E), 

Hydraulic Radius (mm) (C),
 Actual Radius (mm) (B)

y = 60.40 E - 9.92         C  
- 5.698           B + 5.98 2.26 1.5

54  Inches Pipe

(𝐺𝐺𝐺𝐺2)
∗ 10−5

∗ 10−2

∗ 10−3
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Table 10 shows the best three-combination to predict the Mean Loss of 54-inch pipe is “Water 

Level (%): (E), Hydraulic Radius (mm): (C), and Ovality (D)” with MSE and RMSE of 2.2 and 

1.48 respectively. 

Table 11. Results of Multi Variable Regression Model on 60-inches Data 

 

Table 11 shows the best three-combination to predict the Mean Loss of 60-inch pipe is “Water 

Level (%): (E), Actual Radius (mm): (B), Hydraulic Radius (mm): (C)” with MSE and RMSE of 

1.51 and 1.23 respectively. 

4.7.3 Polynomial Regression Model 

The polynomial regression analysis (of degree 2) for three datasets are performed as follows:  

1-polynomial (degree of 2) features for the selected independent variables, 

2- Split the data into training and testing sets; 12,946 samples in the training set and 3,237 samples 

in the testing set. 

3-Train a polynomial regression model using the training set. 

4-Predict the target variable "Mean Loss (mm)" using the testing set. 
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5-Evaluate the model's performance by calculating the MSE, RMSE, and R2 values. The following 

tables summarize the evaluation metrics. 

Here, for each diameter different permutations of three-feature combinations are created; then, 

Polynomial regression (degree of 2) is performed on these combinations. Finally, the best three 

combinations with the lowest MSE/RMSE for each diameter are provided in Table 12. It shows 

the results from the Polynomial regression for 30-, 54-, and 60-inch data respectively. In addition, 

calculated Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) and R2 for the best 

combination.  

Table 12. Results of Polynomial Regression Model Showing the Best Combination for all Data Sets 

 

Table 12 show the best three-combination to predict the Mean Loss of all pipe diameters. For 

instance, for 30 inches data, the model has an R2 value of 0.8566, indicating that approximately 

85.66% of the variance in the "Mean Loss (mm)" can be explained by the model. In addition, the 

unique combination which is selected based on the least correlated parameters obtained from the 

heatmaps (Figure 69). In order to have a clear comparison between different data sets, the result 

from the selected combination is shown in Table 13.  
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Table 13. Results of Polynomial Regression Model for the Same Combination for all Data Sets 

 

Table 13 shows the combination “Water Level (%), Actual Radius (mm), Hydraulic Radius (mm)” 

can predict the Mean Loss with R2 of 0.81, 0.21, and 0.39 for 30-, 54-, and 60-inch data 

respectively. From the results of Polynomial regression model, it is concluded that Polynomial 

regression model does not improve the accuracy of the predictions comparing to Multi variable 

regression model. Table 13 shows the combination “Water Level (%), Actual Radius (mm), 

Hydraulic Radius (mm)” can predict the Mean Loss with RMSE of 4.6, 1.4, and 1.04 for 30-, 54-, 

and 60-inch data respectively. Meanwhile for 60-inches data the predictions are improved by 15%.  

4.8 Results of BN Framework  

The datasets for each Pipeline # and the corresponding Mean Loss (mm) is selected for 

implementation of BN. based on the literature two different case studies are investigated for the 

BN. In the following two cases are discussed: 
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4.8.1 Weibull Distribution 

In this case study, the likelihood is calculated from the data collected from 22 RCSSPs from 

(Abuhishmeh, 2019). Table 14 shows the parameters of Weibull distribution. In this case, Normal 

distribution is fitted to all the parameters of Weibull for all 22 sections of RCSSPs. In addition, 

the criteria for fitted values are provided in Table 14 as P-Values. Here, Kolmogorov–Smirnov 

goodness of fit test is used. 

Table 14. Calculating the Prior for Weibull Distribution 

 

According to Table 14 the prior is set as Weibull distribution with each parameter as following 

Shape = Normal (1.8438,0.332)  

Scale = Normal (0.00806,0.505) 

Posterior distribution is calculated using MCMC-MH algorithm with the following properties: 

Pipeline # Mean_Scale COV_Scale P_Value_Scale Mean_Shape COV_Shape P_Value_Shape
1 0.00535606 0.526860308 2.39E-21 1.677810967 0.332734052 1.03E-19
2 0.00385281 0.371089559 0.001656391 1.56109651 0.223099482 0.000733798
3 0.00550442 0.495079539 5.04E-08 1.844537336 0.388490471 5.23E-13
4 0.00497496 0.299922568 0.031650551 1.743399339 0.255393018 2.67E-06
5 0.005636777 0.382010287 0.000434422 1.986836374 0.341139132 7.55E-10
6 0.007270541 0.255243771 0.140404373 3.355205732 0.331941452 0.000283648
7 0.006556424 0.220441872 0.437844366 2.49647212 0.248423552 2.22E-05
8 0.009318599 0.397925944 9.01E-10 1.466240445 0.259603364 2.00E-05
9 0.006695864 0.939791626 1.48E-27 1.243825721 0.22184698 3.22E-08
10 0.008387825 0.414548835 0.00092892 1.254278234 0.232112111 0.000332063
11 0.010983015 0.510195 3.19E-10 1.721002941 0.391294612 2.72E-16
12 0.00991498 0.552258789 5.74E-14 1.714950565 0.375396052 1.38E-15
13 0.016890779 1.80341928 2.59E-12 1.833538053 1.143871797 2.72E-12
14 0.011985396 0.196996297 1.46E-09 1.435461203 0.242125149 4.69E-17
15 0.009837751 0.216464961 0.584162772 2.179418294 0.227888588 0.307359576
16 0.007892338 0.222791003 0.137336403 2.12066497 0.278418057 0.038861297
17 0.008421407 0.67560432 3.99E-26 1.869347247 0.344276018 5.12E-17
18 0.005835214 0.282222914 0.002058279 2.020560525 0.31323829 3.41E-10
19 0.006652145 0.402920904 1.27E-13 2.061325766 0.296294529 1.54E-08
20 0.009142053 0.394999759 0.177176103 1.890516452 0.311638546 2.15E-08
21 0.006852151 0.486719766 0.063893653 1.480833713 0.260062812 0.001053782
22 0.009427412 1.072323596 1.40E-35 1.606990923 0.292707623 9.89E-16

Mean Values 0.008063133 0.505446859 1.843832429 0.33236344
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Iteration: 4000 with burn-in 25%.  

Figure 71 shows the trace plots for the first pipeline # of 30-, 54-, and 60-inch pipes using 3 chains. 

It shows that 3 chains converge and mix well, indicating a good sampling of the posterior 

distribution. The trace plots indicate the progression of the MCMC-MH samples over iterations 

for both the shape and scale parameters. All the trace plots for the rest of pipeline # are provided 

in Appendix B with 1 chain.  

 
(a) 

 
(b) 
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(c) 

Figure 71. Trace Plots for Updated Posterior for the Weibull parameters Using BN for (a)30-inches, 
(b) 54-inches, (c) 60-inches. 

Figure 72 shows the histograms for the posterior distributions of the of the shape and scale 

parameters. All the histograms for the rest of pipeline # are provided in Appendix B. 

 

 

(a) 
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(b) 

 

(c) 

Figure 72. Histograms of Posterior Weibull Parameters Using BN for (a)30-inches, (b) 54-inches, (c) 
60-inches. 

Table 15-Table 17 show the results of the BN for posterior Weibull parameters for 30-, 54-, and 

60-inch data respectively. 

Table 15. Summary of Posterior Weibull Values for 30-inches RCSSPs 
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Table 16.Summary of Posterior Weibull Values for 54-inches RCSSPs 

 

Table 17. Summary of Posterior Weibull Values for 60-inches RCSSPs 

 

These visualizations aid in understanding the behavior of the MCMC sampling and the resulting 

posterior distributions for the parameters of Weibull. 

4.8.1.1 RSL Comparisons for Update Weibull Distribution 

RSL values of (from BN) are determined using MCS method (discussed in subsection 3.4.10.3). 

Figure 73 shows the probability of failure plots using probability of exceedance method and MCS 

(using Pomeroy Equation 23) similar to the comparison shown in Figure 62-a. Figure 73 shows 

the comparison of the probability of exceedance curves using the MCS for 30-, 54-, and 60-inches 

data. Appendix C provides probability of exceedance plots for the remaining pipelines of for 30-, 

54-, and 60-inches data. 
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(a) 

 

(b) 
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(c) 

Figure 73. RSL of Updated Values using MCS for (a)30-inches, (b) 54-inches, (c) 60-inches RCSSPs 

 Table 18-Table 20 show the comparison between the estimated RSL for 30-, 54-, and 60-inches 

data respectively. 

Table 18. Comparison of RSL Estimation Before and After BN for 30-inches data 

 

Pipeline # Observed Data , Pf=0.1 Updated Data, Pf=0.1
1 14 42
2 16 44
3 14 42
4 18 46
5 19 47
6 34 62
7 34 62
8 14 42
9 26 54

10 19 47
11 35 63
12 36 64
13 39 67
14 20 48
15 13 41

Prior

30 inches

300
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Table 19. Comparison of RSL Estimation Before and After BN for 54-inches data 

 

Table 20. Comparison of RSL Estimation Before and After BN for 60-inches data 

 

It is concluded from the estimated RSL of the BN output that results are reasonable and realistic 

compared to data before BN (i.e., observed data from inspection). This can highlight the fact that 

BN accommodates the uncertainties of the data. 

4.8.2 Gamma Distribution 

According Table 3, the prior is set as Gamma distribution estimated from the previous study 

(Mahmoodian & Alani, 2014) using MLE methods with parameters as follows: 

Shape = Normal (4.78,0.1)  

Scale = Normal (0.425,0.1) 

The scale is calculated as 0.17*t=0.17*28=4.78. The shape and scale values were deterministic, so 

the constant vitiation of 0.1 is used. 

Pipeline # Observed Data , Pf=0.1 Updated Data, Pf=0.1
1 70 99
2 64 94
3 59 88
4 69 98
5 59 87

Prior

54 inches

300

Pipeline # Observed Data , Pf=0.1 Updated Data, Pf=0.1
1 67 95
2 65 96
3 63 90
4 60 89
5 63 92

Prior

60 inches

300
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Posterior distribution is calculated using MCMC-MH algorithm with the following properties: 

Iteration: 4000 with burn-in 25%.  

Figure 74 shows the trace plots for the first pipeline # of 30-, 54-, and 60-inches pipes using 3 

chains for 30 inches and 1 chain for 54- and 60-inch pipes. It shows that 3 chains converge and 

mix well, indicating a good sampling of the posterior distribution. All the trace plots for the rest 

of pipeline # are provided in Appendix B with 1 chain.  

 

(a) 
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(b) 

 

 

(c) 

Figure 74. Trace Plots for Updated Posterior for the Gamma parameters Using BN for (a)30-inches, 
(b) 54-inches, (c) 60-inches. 

Figure 75 shows the histograms for the posterior distributions of the of the shape and scale 

parameters of Gamma. All the histograms for the rest of pipeline # are provided in Appendix B. 
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(a) 

 

 
(b) 
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(C) 

Figure 75. Histograms of Posterior Gamma Parameters Using BN for (a)30-inches, (b) 54-inches, (c) 
60-inches. 

Table 21-Table 23 show the results of the BN for posterior Gamma parameters for 30-, 54-, and 

60-inch data respectively. 
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Table 21. Summary of Posterior Gamma Values for 30-inches RCSSPs 

 

Table 22. Summary of Posterior Gamma Values for 54-inches RCSSPs 

 

Table 23. Summary of Posterior Gamma Values for 60-inches RCSSPs 

 

Pipeline # Posterior Shape Mean Posterior Scale Mean
1 6.777538976 1.082588499
2 6.382523104 0.950214885
3 6.011790401 0.822110744
4 6.912801077 1.098740546
5 6.815187807 0.93042131

Pipeline # Posterior Shape Mean Posterior Scale Mean
1 6.902919028 1.06693709
2 6.149695007 0.930582012
3 6.386756412 0.917415599
4 6.239010447 0.868314513
5 7.4865035 1.080928817
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4.8.2.1 RSL Comparisons for Update Gamma Distribution 

RSL values are determined using MCS method (discussed in subsection 3.4.8.3). Figure 76 shows 

the comparison of the probability of exceedance results using the MCS for 30-, 54-, and 60-inch 

data. 

 

(a) 

 

(b) 
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(c) 

Figure 76. RSL of Updated Values using MCS for (a)30-inches, (b) 54-inches, (c) 60-inches RCSSPs 

Table 24-Table 26 show the comparison between the estimated RSL using the probability of 

exceedance results (MCS) for 30-, 54-, and 60-inch data. 

Table 24. Comparison of RSL Estimation Before and After BN for 30-inches data 

 

Pipeline # Observed Data , Pf=0.1 Updated Data, Pf=0.1
1 42 123
2 44 84
3 42 115
4 46 102
5 47 92
6 62 51
7 62 61
8 42 107
9 54 91

10 47 96
11 63 69
12 64 50
13 67 49
14 48 82
15 41 105

Prior

30 inches

212



 

 

121 

Table 25. Comparison of RSL Estimation Before and After BN for 54-inches data 

 

Table 26. Comparison of RSL Estimation Before and After BN for 60-inches data 

 

In addition, the consistency of the estimated RSL is compared by constructing the confidence 

interval of the mean predicted RSL in three cases: observed data, Updated Weibull, Updated 

Gamma (with 95% confidence using Equation 30). Table 27-Table 29 compares the confidence 

intervals of RSL using MCS for 30-, 54-, and 60-inch data. 

Table 27. Comparison of Confidence Intervals of RSL Values for 30-inch Data 

 
Table 28. Comparison of Confidence Intervals of RSL Values for 54-inch Data 

 

Pipeline # Observed Data , Pf=0.1 Updated Data, Pf=0.1
1 70 59
2 64 72
3 59 87
4 69 57
5 59 67

Prior

54 inches

212

Pipeline # Observed Data , Pf=0.1 Updated Data, Pf=0.1
1 67 60
2 65 76
3 63 73
4 60 81
5 63 53

Prior

60 inches

212
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Table 29. Comparison of Confidence Intervals of RSL Values for 60-inch Data 

 
Figure 77 shows the boxplots of the estimated RSL for each pipeline diameter. the difference of 

lower bound and upper bound for updated Weibull values are less than observed data which led 

to more consistent results. However, updated Gamma values led to higher RSL. 

 
 (a) (b) 

 
(c) 

Figure 77. Box plots for Comparing the Confidence Intervals of RSL Values for (a) 30-inch data, (b) 
54-inch data, (c) 60-inch data 
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CHAPTER 5. CONCLUSION AND FUTURE DEVELOPMENTS 

5.1 Conclusion and Summary 

The methodology is performed with minimal user-interference, using the proposed algorithm in 

MATLAB. Some Pipeline inspection companies have their own developed software that is 

proprietary and therefore, to the best of our knowledge details are not readily available to the 

scientific community. The present study proposes an automated data-driven algorithm for 

processing LiDAR inspection data and calculating the hydraulic properties, quantifying concrete 

erosion rate, and predicting the service life (RSL) of reinforced concrete sanitary sewer pipes 

(RCSSPs). The methodology is conducted on 8000 linear ft of RCSSPs. For the inspection outputs 

with 3D PCD, the processed PCD shows an accurate presentation of the inner concrete wall 

geometry of pipes; this is confirmed by overlaying the processed PCD on the CCTV image (in 

Figure 27). The results of the proposed distribution-fitting algorithm show that Half-normal 

distribution is the best-fit distribution for concrete erosion rate of RCSSPs calculated from 2D 

rings (in Figure 48); however, the predicted service life of RCSSPs using Half-normal distribution 

is close to the Weibull distribution values (in Figure 59). In addition, the predicted service life 

obtained using the algorithm proposed herein is more consistent than the results of a previous study 

using the same inspection data (in Figure 60). Furthermore, using Bayesian network (BN), the 

mean concrete loss for each pipeline # (M-M) is updated; the priors are selected from previous 

studies, and Weibull and Gamma likelihood functions are used separately as different case studies. 

The proposed methodology is verified by comparing the probability-of-failure plots and the 

predicted remaining service life (RSL) with those obtained by using MCS on Power law (Equation 

22) and Pomeroy Equation 23 (in Figure 61 and Figure 62). In addition, as it is shown in Figure 
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77, the difference of lower bound and upper bound for updated Weibull values are less than 

observed data which led to more consistent results. However, updated Gamma values led to higher 

RSL. Finally, statistical methods including Single Variable Regression, Multi-Variable 

Regression, and Polynomial Regression models are utilized on the output of a proposed algorithm 

to estimate concrete erosion in the inner walls of RCSSPs. The regression models can be used to 

understand the relationship between the "Mean Loss (mm)" (the dependent variable) and other 

variables in the dataset (independent variables).  

The proposed method provides a simple, but powerful tool for condition assessment of RCSSPs 

by coordinating the non-destructive (ND) inspection PCD; all is done with minimum user 

interference. These results could be presented in different scales based on the decision maker’s 

judgment; it could be as small as a 1-inch ring, or as large as a 5-ft section or a whole line (M-M). 

Herein, the criteria for condition assessment of RCSSP is remaining service life (RSL); based on 

engineering judgement, the predicted service life could be calculated for different levels of 

acceptable risk Pa.  

The results from different case studies in this paper can be used during the conceptual design stage 

to evaluate various design choices and to determine the impact that their implementation could 

have on their service life. The followings bullet points are the detailed conclusion of the results. 

1- From the results for diameter and the cross-section deflection of the pipes (Section 4.2;Figure 

29). The results certify the following highlights: 

• Using the proposed framework, the inner diameter and cross-sectional deformation of the pipes 

are calculated consistently and accurately. The location of the anomalies such as uneven joints, 

and location of the blockage can be pinpointed with little user interference.   
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• The results of the proposed algorithm showed that the first ovality equation (Equation 11.a) 

provided by ASTM F-1216 (ASTM 2016) leads to a more reasonable and consistent 

calculation (Figure 31). 

• The proposed framework allows for automated wall loss determination, without user 

interference that can be subsequently used for asset management purposes. 

• From Figure 32 it showed that the proposed KNN method calculates the diameter and ovality 

of 2D rings more accurately than other methods such as Circle fitting and Ellipse fitting 

algorithms based on LS. 

2-From the results of the algorithm, the mean concrete loss of different cases (i.e., the different 

zones of pipe circumference) was calculated. The results of different cases are compared using 

three different data assessment techniques, i.e., boxplots, probability plots, chi-square goodness-

of-fit test. Based on the results, the following conclusions can be drawn: 

• The results of the chi-square goodness-of-fit test (Table 4) illustrated statistically significant 

relationships between the mean concrete erosion of different case studies and the whole pipe 

circumference, especially sector 0o-180o; this is also certified by two visual inspection 

methods. 

• The comparative (Figure 44) plots showed that the underlying behavior of concrete erosion for 

the 60o-120o pipe sector differed from other zones along the pipe circumference, which can be 

attributed to sulfide accumulation at the crown of the pipe.  

• The results certified that eliminating some of the data in the filtering process of the PCD does 

not have an adverse effect on assessing the concrete wall erosion of RCSSPs. Since the filtering 

process is the only part that requires user interference, eliminating them reduced the processing 

time as well as the monetary resources. 
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• The results of the chi-square goodness-of-fit test in (Table 4) illustrated that there are 

statistically significant relationships between the mean concrete erosion of different cases and 

the whole pipe circumference. Meanwhile, the concrete erosion data for the case 0o -180o sector 

(of all five lines) had the closest values to the mean erosion of the whole pipe circumference. 

In addition, the two cases, 15 o -165 o and 30 o -150 o, are the next best options. Meanwhile, the 

chi-square goodness-of-fit test results matched the visual tests, e.g., the underlying distribution 

of the case: 60 o -120 o is different from other cases in line 1. 

 

3-Comparing the results of RSL calculations for the method of the probability of exceedance, and 

X-intercept method (Section 3.4.5), it is concluded that:  

•Among the six considered PDFs for distribution of wall erosion, “Method 1” (method of the 

probability of exceedance; Section 3.4.10.1) showed more consistency and depicted more rational 

life expectancy RSL compared to “Method 2” (method of X-intercept Section 3.4.10.2). 

 

4-From the results of calculated hydraulic properties of pipe, overlays of a PCD on a corresponding 

CCVT image, results of the best distribution for concrete wall thickness loss data, and reliability-

based prediction of the remaining service life (RSL) (for 1000 linear foot of large diameter RC 

sewer lines (54- and 60- inch)) using MCS and probability of exceedance method, and the results 

of a similar study, the following conclusions can be drawn: 

• The overlay of the PCD and actual CCTV image corresponding to the seventh 5-ft section of 

Line 4 (Figure 27) certified that the LiDAR PCD can locate the water line, deposits at the 

haunches, and uneven joints accurately. 
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• The pie charts in Figure 49 (showing the results of the proposed distribution-fitting algorithm 

for all the rings of each ten lines (54- and 60-inch pipe)), confirmed that for most of the rings, 

the erosion rate data followed the Half-normal distribution (with zero mean). Figures 50-59 

showed consistency between the Half-Normal and Weibull distributions. 

• The results of box plots of RSL from the top 4 best distributions showed that assigning 

Exponential distribution led to lower RSL (about 12-13%); however, Normal distribution led 

to higher values of RSL (to 6%). More importantly, the Weibull and Half-normal distributions 

led to the same values. 

• By comparing the confidence interval of the RSL calculated from the proposed method and a 

similar study (Figure 61) showed that the difference between each lower and upper bound is 

much smaller than the previous study (Moamaie, 2019), indicating that the results from the 

methodology proposed led to more consistent RSL. 

• From the predicted RSL using 4 different reliability methods (shown in boxplots in Figure 63), 

it is illustrated that the X-intercept method led to larger RSL estimation than other methods; 

Estimated RSL from MCS on Power law (Equation 22) led to higher values than the Half-

normal distribution results; however, RSL from MCS on Pomeroy model (Equation 23) aligned 

with the Half-normal distribution results. 

5-From the results of statistical methods such as the Single variable Regression model, Multi-

Variables Regression model, and Polynomial Regression model on the output of the proposed 

algorithm, it is concluded that: 

• Results of Single variable regression model (Table 6-Table 8) showed that Ovality is the best 

variable to predict the Mean concrete loss with with lower RMSE. 
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• Results of Single variable regression on the properties of 30-inch pipes differed from 54- and 

60-inch pipes. This is due to the imposed filtering phase on 54-60-inch data. The 30-inch 

inspection data are different 2D rings along the length of the pipe, however, the output of 54-

60-inch inspection data are 3D PCDs for each 5-ft along the length of the pipe; the 2D rings 

are extracted from the 3D PCD using the proposed methods.  

• From the heatmaps (correlation Matrices) (Figure 70) it is certified that the Mean loss does not 

have underlying correlation with the hydraulic parameters. 

• From the results of Multi variable regression model: 

o Table 9 showed the best three-combination to predict the Mean Loss of 30-inch pipe is 

“Water Level (%): (E), Actual Radius (mm): (B), and Ovality: (D).” 

o Table 10 showed the best three-combination to predict the Mean Loss of 54-inch 

pipe is “Water Level (%): (E), Hydraulic Radius: (mm) (C), and Ovality: (D).” 

o Table 11 show the best three-combination to predict the Mean Loss of 60-inch pipe 

is “Water Level (%): (E), Actual Radius (mm): (B), Hydraulic Radius (mm) (C).”  

o The results show the combination “Water Level (%): (E), Actual Radius (mm): (B), 

Hydraulic Radius (mm): (C)” can predict the Mean Loss with reasonable RMSE. 

• From the results of Polynomial regression model, it is concluded that Polynomial regression 

model did not improve the accuracy of the predictions comparing to Multi variable regression 

model. Table 13 showed that the combination “Water Level (%), Actual Radius (mm), 

Hydraulic Radius (mm)” can predict the Mean Loss. Meanwhile for 60-inch data, the 

predictions are more accurate that by Multi variable regression (15%). 
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6-From the results of BN on Weibull and Gamma likelihoods: 

• Mean Loss values Updated by applying BN on Weibull prior led to lowest difference 

(difference of lower bound and upper bound) among other values: observed data and 

updated Gamma. So, BN on Weibull prior led to more consistent results. However, updated 

Gamma values led to higher values of RSL(Figure 77).  

The result of the proposed approach is consistent, and reasonable with minimum user interference. 

Overall, the anticipated results can assist decision makers in prioritizing limited repair funding by 

providing a comprehensive, network-level, quantitative performance assessment of selected RC 

sanitary pipelines. The overall objective of this study is to develop an innovative, automated, and 

rational framework for condition assessment of transportation infrastructure in more specifically 

for RC sanitary pipelines. 

5.2 Future Developments 

Future developments of the proposed methodology will focus on the following:    

1. In order to accurately calculate the Manning’s equation (Equation 23), the Manning’s roughness 

coefficient (MC) should be quantified more precisely; since LiDAR technology provides a high 

accuracy PCD, it is possible to calculate the Manning’s roughness instead of using a constant value 

from the literature. 

2.LiDAR data provides the accurate 3D presentation of the geometry of pipe; thus, it can determine 

some 3D properties of pipes such as bends, slope, and deflection (ovality) of pipes. However, the 

LiDAR is not able to capture the geometry of the pipes below the waterline. In addition, the 3D 

PCD shows scattering beyond 5 ft. length, which should be cut-off for post-processing purposes. 

These include some of the limitations of the LiDAR scanner used in the current study. 
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3. To calculate the remaining service life (RSL) of RCSSPs more accurately, many parameters 

need to be considered such as 1. environmental factors of pipelines such as humidity, temperature, 

etc., 2. mechanical properties of pipelines such as pipe diameter, initial ovality etc., 3. sewer 

material such as content of corrosive materials (sulfide and chloride content), and 4. information 

about the previous rehabilitation of the SSPs and type of rehabilitation (See Figure 78); e.g., in the 

inspected pipelines some of the RCSSPs has rehabilitated by a type of liners, but no information 

was available in the municipalities, therefore the pipes excluded from this study. 

Therefore, future studies on other factors (such as effect of CIPP liner) that is associated with the 

corrosion of RC pipelines is suggested. Unfortunately, there is not enough data and information 

available for evaluating the effect of rehabilitation on the pipelines and on increasing the life 

expectancy of the pipes. 

        

Figure 78. CIPP Liner Inside the RCSSPs 

4. The loss of wall thickness is only a serviceability performance index and there are ultimate limit 

state indicators that affect the reliability of RCPs as well. In addition, from an asset management 

point of view, a risk assessment methodology for RCPs subjected to both environmental and 

external load effects, including both the probability and the consequences of exceedance of a 

performance criterion is more efficient and accurate.   
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5. It should be mentioned that LiDAR data captures the geometry of pipes above the flow line. 

Therefore, the proposed methodology is limited to detecting the anomalies above the flow line. 

Meanwhile, the effect of deposits below the flow on hydraulic properties of the pipe are 

accommodated by using probabilistic techniques. 
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APPENDIX A FITTING DIFFERENT DISTRIBUTIONS TO THE MEAN 

WALL THICKNESS LOSSES OF THE INSPECTED SEWER LINES 

The methodology in this research measures a goodness of fit by comparing R2 values for fitted line 

to QQ-plots of each all 10 pipelines (54- and 60-inch). Figure 79 shows the results for the 

distribution fitting algorithm, while Table 30 summarizes the R2 values. 
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Line Number :2 (b) 

 

 

Line number: 3 (C) 
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Line number: 4 (d) 

 

 

Line number: 5 (e) 
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Line number: 6 (f) 

 

 

Line number: 7 (g) 
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Line number: 8 (h) 

 

Line number: 9 (i) 
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Line number: 10 (j) 

Figure 79. Results for fitting different distribution to the mean wall losses of 1-in rings and their R2 
values for the first 10 pipelines, 54- and 60-inches. 

 

Table 30. R2 values for different wall-thickness loss for four of the distribution for the mean wall losses of all 1-in 
rings of the first 10 selected pipeline 
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APPENDIX B OUTPUTS OF BN  

Figure 80-Figure 85  show the results from BN for updating the parameters of Weibull distribution, 
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Figure 80. Trace Plots and Histograms of Updated Parameters from BN on Weibull Distribution for 
all pipeline # of 30-inches data 
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Figure 81. Trace Plots and Histograms of Updated Parameters from BN on Weibull Distribution for 
all pipeline # of 54-inches data 
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Figure 82. Trace Plots and Histograms of Updated Parameters from BN on Weibull Distribution for 
all pipeline # of 60-inches data 

 

Figure 79-Figure 81 show the results from BN for updating the parameters of Gamma distribution, 
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Figure 83. Trace Plots and Histograms of Updated Parameters from BN on Gamma Distribution for 
all pipeline # of 30-inches data 
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Figure 84. Trace Plots and Histograms of Updated Parameters from BN on Gamma Distribution for 
all pipeline # of 54-inches data 

 

 

Figure 85. Trace Plots and Histograms of Updated Parameters from BN on Gamma Distribution for 
all pipeline # of 60-inches data 
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APPENDIX C – PROBABILITY CURVES FOR DIFFERENT METHODS 

ON THE UPDATED DATA USING BAYESIAN NETWORK 

Figure 86 shows probability curves of different pipelines for 30-inche data of updated values from 

BN using Gamma distributions functions. Here, different methods are used: probability of 

exceedance method (discussed in subsection 3.4.10.1) using Half Normal Distribution, Normal 

Distribution, Exponential distribution, Weibull Distribution, and MCS method on Power law 

(Equation 22) for the updated values of BN. 
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Figure 86. Probability Curves of 30-Inches Data on BN With Weibull Likelihood Functions 

Figure 87 shows probability curves of different pipelines for 54-inche data. 
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Figure 87. Probability Curves of 54-Inches Data on BN With Weibull Likelihood Functions 

Figure 88 shows probability curves of different pipelines for 60-inche data. 
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Figure 88. Probability Curves of 60-Inches Data on BN With Weibull Likelihood Functions 
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Figure 89 shows probability curves of different pipelines for 30-inche data on the updated Values 

of BN using Gamma distributions functions. 
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Figure 89.Probability Curves of 30-Inches Data on BN With Gamma Likelihood Functions 

 

Figure 90 shows probability curves of different pipelines for 54-inche data. 
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Figure 90. Probability Curves of 54-Inches Data on BN With Gamma Likelihood Functions 

 

Figure 91 shows probability curves of different pipelines for 60-inche data. 
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Figure 91. Probability Curves of 60-Inches Data on BN With Gamma Likelihood Functions 
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