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ABSTRACT 
 

Risk Assessment of Reinforced Concrete Sewer Pipes Under External Loading and Adverse 

Environmental Conditions Using Neuro-Fuzzy System 

Khaled Saleh Khaled Abuhishmeh, (Doctor of Philosophy in Civil Engineering) 

 

Supervising Professor: Himan Hojat Jalali 

 

Failure of sewer mains poses a significant threat to the society, necessitating a robust risk 

assessment tool that integrates failure likelihood and associated consequences for effective 

prioritization of mitigation efforts. This dissertation addresses this need through three key 

objectives: 

1. Failure Likelihood Assessment: The study utilizes Monte-Carlo simulation to evaluate 

the probability of sewer main failures in common agressive environments, considering factors like 

sulfide and chloride exposures. It highlights that chloride-induced cracks and bond strength loss 

are more critical than sulfide-induced wall thickness loss. The degradation of concrete and 

reinforcement properties under chloride attack significantly reduces ductility, emphasizing the 

importance of factors like rust expansion coefficient, reinforcement size, and cover thickness in 

controlling service life. 

2. Quantifying Consequences: This study establishes a quantitative framework to predict 

the monetary consequences of sewer main failures. It accurately predicts direct costs associated 

with two repair methods—Cured in Place Pipe (CIPP) as lining and open-cut replacement—using 
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stepwise regression models. Additionally, it addresses indirect costs, including noise cost, 

pavement reduction value, traffic delay, and vehicle operating cost, by employing Monte-Carlo 

simulation to account for uncertainties. This approach offers a precise alternative comparison 

method, superior to qualitative or scaled quantitative techniques. 

3. Adaptive Neuro-Fuzzy Integration: To enhance the versatility of fuzzy inference systems 

(FIS) in risk assessment, this research integrates FIS with an adaptive neural network, resulting in 

an adaptive neuro-fuzzy system capable of learning FIS parameters and adapting to evolving 

decision-maker preferences. The model undergoes training using diverse optimization algorithms 

and learning rates, with the Adam optimizer demonstrating efficiency in reducing training trials. 

In conclusion, this dissertation culminates in a comparative analysis of the proposed neuro-

fuzzy model with conventional risk assessment approaches, such as the risk matrix and parameter 

multiplication. Findings reveal that the parameter multiplication method, though sensitive to input 

uncertainties, does not rely on decision rules, making it suitable when decision rules are absent or 

precise predictions are available. Conversely, the risk matrix and neuro-fuzzy approaches prioritize 

actions based on decision rules rather than exact likelihood and consequence values, rendering 

them more appropriate for informed decision-making. Notably, the adaptive neuro-fuzzy approach 

enhances interpretability and facilitates smoother transitions between risk classes, promoting 

superior decision-making and action prioritization, particularly for pipes within the same risk 

category. 
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Chapter 1. Introduction 

1.1. Overview 

  

Sewer mains are responsible for transferring sewage from homes and other resources to the 

points of sewer collection from homes and other resources. In the United States, there are 

approximately more than 800,000 miles of public sewer mains in addition to 500,000 miles of 

lateral private sewer connected to the mains (Infrastructure Technical Report. 2017). These pipes 

are commonly either ductile iron pipe, reinforced concrete pipe, plastic pipe (i.e., PVC, HDPE, 

PE, ABS), or vitrified clay pipes. Each of these materials behave differently and have different 

properties and lifespans (USEPA 2000). Reinforced concrete pipes (RCPs) are well known for their 

strength and durability and are considered the strongest pipe available compared to flexible pipes, 

which gain their strength from installation conditions (ACPA 2023). 

Due to excessive loading and adverse environmental conditions, these pipes become 

vulnerable over their lifespans and prone to failure leading to catastrophic health and financial 

concerns. In Bluffton, South Carolina, a sewer main failure caused more than 45,000 of wastewater 

dissipation to the surrounding neighborhood resulting in road closure, service interruptions, and 

potential contamination of groundwater, in addition to extensive cost of pipe replacement and 

surface reinstatement (Cuglietta 2023). Another failure incident occurred in Los Angeles, 

California, where a 60-year-old sewer failed and caused the dissipation of millions of gallons of 

wastewater into the city and to the nearby beach halting social life and raising health concerns 

(Canon 2022). Nine months later, a 30-inch sewer main failed in Mesquite, Texas causing the 

dissipation of more than 200,000 gallons of wastewater and reaching south Mesquite Creek, which 

flows to the Trinity River (City of Mesquite 2022). Generally, the mean age of water and 
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wastewater pipelines in the United States is 45 years with an expected lifespan of up to 100 years 

(Tabuchi 2017). According to the Infrastructure Technical Report (2019), the American Society of 

Civil Engineers (ASCE) gives D+ as an overall grade for the entire wastewater/water 

infrastructure. More than $3 billion has been spent on the replacement of 4,692 miles of wastewater 

sewer mains and $48 billion has been allocated for water infrastructure, yet this only met 37% of 

the national needs. 

The reliability of these pipes is monitored through routine inspections conducted in 

intervals; pitfalls and defects are reported and based on conditions rating, counteracting actions 

are taken. The extent of these actions depends on the level of deterioration compared to the pipes’ 

inventory condition. These proactive actions include routine cleaning, point repairs over a small 

section of pipes, pipe rehabilitation, and complete replacement. Different resources related to 

inspection practices are available.  ASTM C1840/C1840M (2022) provides a standard practice for 

the inspection of sewer main and requirements for both person entry and remote inspection mainly 

for gravity, non-pressure drainage systems. AASHTO CSDIM (2020) provides inspection and 

rating guidelines for storm drains and culverts that do not follow the NBI bridge classification. 

The scope of this study focuses only on reinforced concrete pipes (RCPs); therefore, the 

upcoming sections discuss the environmental conditions that affect these pipes, in addition to the 

design standards and practices. 

1.2. Adverse Environmental Conditions 

 

As RCPs are in service, they are subjected to different adverse environmental conditions 

that impact their serviceability and structural integrity (Amin Soltanianfard et al. 2023). The most 

common aggressive environmental conditions are sulfide attack, which is responsible for wall 
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erosion, especially at the unsubmerged region such as the crown of the pipe, and chloride 

corrosion, which aggressively deteriorates the reinforcement and degrades the structural capacity. 

These conditions depend on parent factors to reflect their intensity as shown in Fig. 1. 

 

Fig.  1. Factors associated with wall erosion and reinforcement corrosion observed in RCPs 

1.2.1. Sulfide-Induced Erosion 

The wall erosion process is the degradation or loss of thickness of concrete along the 

perimeter that is exposed to an aerobic environment and sulfide. Based on Pomeroy & Richard 

(1974), there are multiple sources for sulfide accumulation; however, the most common source is 

the inorganic sulfate. The process of sulfide-induced erosion can be summarized into four different 

stages as presented in Fig. 2 (Abuhishmeh & Hojat Jalali 2023). The first stage takes place beneath 

the water level and demands an anaerobic environment to sustain. Inorganic sulfate (𝑆𝑂4
−2

)  exist 

along a slim layer on the perimeter of the pipe. Depending on the level of oxygen and with aid 

from an aerobic microorganism (i.e., sulfate-reducing bacteria), the inorganic sulfate reduces to 

sulfide in the form of Hydrogen sulfide (𝐻2𝑆), which is accompanied by a reduction in the 
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alkalinity of concrete (i.e., pH drops to 9). If a high level of oxygen exists (i.e., greater than 

0.1 𝑚𝑔/𝐿), it will oxidize all generated sulfide from the first reduction; otherwise, the oxygen will 

be consumed by the microorganism.  Also, the rate of sulfide development depends on the stream 

velocity as high turbulence flow will increase the aeration in the flowing stream and reduce the 

thickness of the slim layer, which hinders the production of sulfide. Further details are provided 

by Parker (1951), Promery & Richard (1974), and Abuhishmeh (2019). 

 

Fig.  2. Four-stage processes for sulfide-induced erosion development (Abuhishmeh & Hojat 

Jalali 2023). 

In the second stage, the hydrogen sulfide escapes to the atmosphere and gets oxidized. 

Lowering the pH value allows for colonization of other microorganisms such as thiobacillus along 

the perimeter of the pipe above the waterline, which is responsible for oxidation. As the pH keeps 

dropping, new microorganisms replace the old ones and take responsibility for oxidation. The 

erosion process starts at the end of the third stage at which the pH level drops significantly to 
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around four and the hydrogen sulfate reacts with concrete’s carbonate and silicate products to form 

gypsum. The gypsum is visible during inspections, and it weakly adheres to the surface. In the last 

stage, the gypsum reacts with tricalcium aluminate to form ettringite, which has an expansive 

nature and induces cracking to the surface. 

1.2.2. Chloride-Induced Corrosion 

Reinforcement corrosion is an electrochemical reaction, in which both the anode and 

cathode region must exist along with an electrolyte medium to transfer electrons from the anode 

to the cathode. Several studies such as Ahmad (2003), Marques et al. (2012), and Song et al. (2019) 

have investigated the mechanism of corrosion. The corrosion process does not start immediately 

after exposure to harmful chemicals, moisture, and oxygen; however, it starts when the 

reinforcements lose their depassivation layer due to oxidation (Ahmed 2003), or when aggressive 

chemical reaches a threshold value (Sulikowski & Kozubal 2016). The entire reactions that occur 

in the anodic and cathodic regions are depicted in Fig. 3. 

 

Fig.  3. Electrochemical reactions in the anode and cathode region in reinforced concrete 

structures (Song et al. 2019). 
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According to Fig. 3, the thickness of the cover can be defined into five different regions. 

The first two regions: steel (S) and corrosion layer (CL) are the anodic region where oxidation of 

iron (𝐹𝑒) occurs and cause electrons to transfer to the cathodic region (corrosion-filled paste (CL) 

and mill scale (MS)) through the electrolyte medium (water filling concrete pores or cracks). In 

the cathodic regions, reduction of oxygen occurs produces hydroxide ( 𝑂𝐻−), which moves back 

along with active anions such as chloride (𝐶𝑙−) to the anodic region through the mill scale and the 

corrosion layer. Once these anions reach the steel-concrete interface, they react with iron cations 

(𝐹𝑒+2) to produce ferrous chloride and ferrous hydroxide. The remaining iron cations will move 

to the cathodic region and produce consistent reactions, but in lower concentrations, since chloride 

and hydroxide ions have more potential to move toward the anodic region.  

The composition of generated rust depends on the availability of oxygen (Song et al. 2019). 

At the steel-concrete interface, the rust is composed of 𝐹𝑒3𝑂4, Fe, 𝐹𝑒𝐶𝑙2, α‑𝐹𝑒𝑂𝑂𝐻 and 

𝛾‑𝐹𝑒𝑂𝑂𝐻, while at the external layer, it is composed of γ‑𝐹𝑒2𝑂3 due to the high presence of 

oxygen. Zhao et al. (2011a) investigated rust composition in different environmental conditions, 

and they found that the outcomes of the corrosion process are extremely dependent on 

environmental factors such as temperature, humidity, oxygen levels, and water-to-cement ratio. 

Under excessively high temperatures, α‑𝐹𝑒𝑂𝑂𝐻 and 𝛾‑𝐹𝑒𝑂𝑂𝐻 are destroyed, while 𝐹𝑒3𝑂4 is 

gradually transferred to γ‑𝐹𝑒2𝑂3. Humidity provides a perfect electrolyte for transferring electrons 

and facilitates the growth of α‑𝐹𝑒𝑂𝑂𝐻 and 𝛾‑𝐹𝑒𝑂𝑂𝐻. A high water-to-cement ratio means high 

permeability, which facilitates the migration of chloride and oxygen to the steel. Moreover, each 

of these outcomes has different expansion factors, which reflect different impact levels. 
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1.3. Research Goals and Objectives 

 

Because sewer mains are continuously subjected to adverse environmental conditions that 

impact their service life and can potentially induce failure, there is a need to develop a time-

dependent prediction model that can be used to monitor the reduction in pipes’ capacity over time. 

Also, with most pipes across the country approaching the end of their lifespan, there is a need for 

risk assessment to proctor decisions related to counteracting actions on these structures. Therefore, 

the aim of this study is to: 

 Develop a framework for failure and serviceability loss predictions of reinforced concrete 

pipes considering all possible failure modes and their interactions. 

 Develop models to predict the anticipated costs or consequences of failure and 

counteracting actions. 

 Finally, develop and enhance the state of risk assessment practice toward more effective 

decision-making. 

In Chapter 2, prior studies related to failure and serviceability predictions, estimation of 

consequences resulting from failure, and various approaches to risk assessment are examined to 

identify gaps and potential areas for improvement. Chapter 3 will present the adopted 

methodologies and frameworks for stochastic reliability analysis, with consequences being 

interpreted as direct and indirect costs. Additionally, the implementation of previous risk 

assessment approaches will be discussed, and a novel risk assessment model will be developed. 

To illustrate the integration of reliability analysis and the prediction of consequences in risk 

assessment, a case study will be presented in Chapter 4. Furthermore, this chapter will demonstrate 

the adaptability of the proposed risk assessment model to different scenarios potentially imposed 
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by decision-makers and will showcase the advantages of employing various optimization 

algorithms in the training process of the proposed model. In Chapter 5, a detailed discussion of the 

outcomes of reliability analysis and the consequences of failure, along with a comparison between 

traditional risk assessment approaches and the proposed model, will be provided. The last chapter 

will summarize the research outcomes and provide recommendations. 

The significance of this work lies first in considering different serviceability aspects of 

failure and serviceability loss that are anticipated to occur in RCSPs under the effect of the adverse 

environmental conditions. As shown in the upcoming section the effect of the chloride-induced 

corrosion and sulfide-induced erosion will be reflected on the geometrical and the mechanical 

properties of both reinforcement steel and concrete leading failure modes that are unaccounted for 

previously such as bond strength loss, cracking, and reinforcement ductility loss. Another 

significance of this research is addressing the uncertainties in the consequences of failure from 

both regression model and Monte-Carlo stochastic analysis and present it monetary rather than 

qualitative or scaled representation, which is more appealing and less subjective when it comes to 

decision-making. Finally, the novelty of the proposed risk assessment model encounters the 

drawbacks of other qualitative and quantitative models and shows an ability in adopting different 

decision-makers’ opinions.  

  



9 

 

Chapter 2. Literature Review 

2.1. Overview 

 

In this chapter, the focus will be on the detailed revision of previous studies and research 

on topics that are relevant to the aims of this research. This chapter will be divided into three 

sections. The first section is about relevant studies related to failure and serviceability loss 

predictions using analytical and statistical models; the second section is about adopted methods 

for evaluating the consequences and risk of failure and serviceability loss in previous studies. In 

the last section, the author defines the gap found in previous studies and potential improvements. 

2.2. Failure and Serviceability Loss Predictions 

 

Condition evaluation and failure predictions can be performed using different approaches 

(Abuhishmeh & Hojat Jalali 2023). The base of these approaches can be either probabilistic or 

deterministic. In the first case, the analysis models the response to action as a probability density 

function and accounts for uncertainties in the actions, material properties, and surrounding 

environment parameters. In the latter approach, all variables are treated as deterministic 

disregarding uncertainties. 

Davis & Marlow (2008) used a probabilistic-based physical analytical model to predict the 

failure of cast iron water pipes under the effect of external corrosion from the surrounding soil. 

They used inspection data related to corrosion penetration and remaining wall thickness in addition 

to the original wall thickness to model the variation in the corrosion rate. They assumed that it 

follows Weibull distribution. The authors adopted a physical model to evaluate the reliability and 

estimate the lifetime of this type of pipe. This model is developed based on the Schlick failure 

criterion considering applied external loads, internal pressure, and pipe geometrical properties in 
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addition to corrosion rate and its impact on wall thickness. All variables were deterministic except 

the corrosion rate. The estimated probability density function was obtained using Monte-Carlo 

simulation and it follows a Weibull distribution, as well. Schoefs et al. (2009) used a probabilistic-

based statistical model to evaluate the reliability of reinforced concrete pipes (RCSPs) under the 

effect of chloride-induced corrosion. The authors defined corrosion initiation time as the time when 

chloride concentration reaches a threshold value and used an empirical model developed by Peter-

Lazar et al. (2000); they also assumed that the corrosion rate is deterministic 55 𝜇𝑚 𝑦𝑒𝑎𝑟⁄  based 

on previous feedback. The reliability of the RCSPs was evaluated based on only one limit state 

function, which is considered structural failure when the steel is completely gone. 

Mohamoodian & Alani (2014) used a probabilistic-based statistical model to evaluate the 

reliability of RCSPs under the effect of sulfide-induced erosion. They assumed that the remaining 

wall thickness under erosion follows a time-dependent gamma distribution and failure occurs when 

the cover completely vanishes. Distribution parameters were obtained using both maximum 

likelihood and moment methods. This model was efficiently used to obtain the optimal intervention 

time. Alani & Farazani (2015) used probabilistic-based finite element modeling to study the impact 

of self-induced erosion on the reliability of RCP under traffic loading. The authors choose to rely 

on 2-dimensional finite element modeling to obtain the residual flexural strength of RCSP rather 

than using analytical approaches, which included simplified assumptions. Additionally, the authors 

used a predefined statistical model developed by Pomeroy (1976) to evaluate sulfide-induced 

erosion penetration and to find the residual thickness. Finally, the authors conducted a sensitivity 

analysis to investigate the effect of different design parameters on residual reliability.  

Anbari et al. (2017) developed a Bayesian network for evaluating the likelihood of failure 

at both structural and hydraulic levels. At the structural level, they considered different erosion and 
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corrosion, in addition to cracking and deformation, while at the hydraulic level, they considered 

blockage and leakage. The process of building the Bayesian network starts by defining the root 

nodes of each failure node, which includes inventorial properties, age, and traffic loading. The next 

step is to add the child nodes which include the failure nodes and add higher-level nodes that reflect 

the combined structural and hydraulic failures. The next step is to build probability tables for each 

node to use for the inference expectation maximization algorithm. Parent nodes have marginal 

probability tables as they are independent, while child nodes require conditional probability tables. 

Like Mohamoodian & Alani (2014), Phan et al. (2018) fitted a probability density function 

for predicting the failure of flexible non-pressure metal pipes over time; however, the authors select 

Weibull distribution instead of gamma distribution. The Weibull distribution has scale and location 

parameters. The latter one is available to update based on expert opinion or datasets. After defining 

dependent random variables related to flexural failure and resistance of pipe, Monte-Carlo 

simulation was applied to samples from the distributions of these variables. Moreover, they 

analytically evaluated the reliability of these pipes over time to build the cumulative density 

function of failure over time. The author used least square regression to fit the results of the Monte-

Carlo simulation to the Weibull distribution and obtain the scale and location parameters. This 

model can be updated interactively after inspection, at which experts can provide a certain 

probability of failure. This probability along with the time of inspection relative to the age of the 

pipe component can be used to adjust the location parameter. Finally, the authors used fault tree 

analysis to estimate the probability of failure at the system level. 

Robles-Velasco et al (2021) developed a machine-learning logistic regression model for 

predicting the probability of failure of the water main or sewer main network. Two main failure 

types were considered: blockage and breakage. The authors relied on a five-year case study 
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inspection dataset containing inventorial data in addition to the number of reported failures and 

sulfide attacks for concrete pipes. The model was trained using the genetic algorithm to maximize 

the likelihood function. 

Another application of the gamma process for failure predictions was conducted by Tang 

et al. (2022). The authors used culvert inspection data and measured sulfide-induced corrosion 

levels to calibrate the shape and scale parameters of the model using maximum likelihood 

optimization. Also, they assumed that the corrosion rate follows the exponential relationship 

explained by Pomeroy (1976) and is reflected in the scale parameter. The impact of exposing 

reinforcement was considered, as well; the authors assumed that reinforcement corrosion starts 

once it is exposed (i.e., complete loss of cover) and reinforcement vanishes when the erosion depth 

exceeds the cover depth and its diameter. The authors used this assumption to analytically evaluate 

the flexural reliability of culverts. 

The utilization of long- and short-term inspection data for building a time-dependent 

probabilistic model was carried out by Tran et al. (2022). They developed a Markov chain model 

to predict the transitional probability from one condition rating to another over time for RCPs and 

concrete box culverts. The model was trained on two types of data. The first dataset is long-term 

training data and reflects old structures that have missing inspection records and only have one 

recent in addition to inventory inspection at the time of installation. The second data type is the 

opposite of the first one; these are collected to reflect newer structures with more frequent 

inspections. Further sub-datasets were also collected for each data type (i.e., long, and short term); 

these sub-datasets include other influential factors such as the size, length, demographics location, 

and Annual Daily Traffic (ADT). The purpose of generating all these sub-datasets was to 

investigate the sensitivity of each factor on the transitional probability from one condition to 
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another at a specific time. The major assumption in this model was that the conditions are not 

reversible. In other words, preventive action impact was disregarded. Based on training results, 

short-term data type proved to be more reliable, and pipe diameter and demographic location 

variables had a major influence on the transition. 

A series of automated data-driven algorithms have been developed for the condition 

assessment of RCSPs. Ebrahimi & Hojat Jalali (2021) aimed at residual life and reliability 

assessment under uncertainty. This work explored finding the best-fit distribution of concrete 

erosion data through LiDAR inspection. Ebrahimi & Hojat Jalali (2022a) introduced algorithms 

that calculated the actual diameter and ovality of these sewer pipes employing LiDAR data. 

Ebrahimi & Hojat Jalali (2022b) addressed the spatial variability effects of wall erosion across the 

pipe circumference. Finally, Ebrahimi et al (2023) utilized LiDAR inspection data erosion data to 

develop a probabilistic framework for service life predictions. 

2.3. Consequences and Risk Evaluation Approaches  

 

Failure of sewer mains can have slight, moderate, or catastrophic consequences depending 

on failure modes, the importance of the structure in serving the society in addition to the impact 

on the surrounding environment and any adjacent structures.  Predicting failure, whether 

probabilistically or deterministically by itself may not be a sufficient benchmark to validate 

preventive actions, since structures with equivalent conditions can have different failure 

consequences; therefore, decisions should not be only made based on failure prediction outcomes. 

Decision-makers prefer to validate their decisions using the risk variable, which is the potential 

loss induced by failure potential and expected consequences (PHMSA 2020). 
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There are different approaches to evaluate failure consequences and risk; these approaches 

can give either qualitative, or quantitative measures, ordinal indices, or probabilistic measures 

(AWWA J100 2010; PHMSA 2020). In general, there is no specific scheme for risk assessment; 

hence, the choice of risk assessment method is lifted to be subjective and heuristic (Halfawy et al. 

2008). Halfawy et al. (2008) developed an innovative model for selecting suitable year-by-year 

renewal plans on sewer mains based on risk index. Risk indices for groups of sewer mains share 

the same conditions and consequences. Risk results were used to prioritize groups of sewers for 

renewal actions in the yearly renewal plan. A set of renewal plans was suggested at the beginning, 

and then multi-objective genetic algorithm optimization was conducted to select the most 

appropriate renewal plan considering budget constraints and risk levels. Zeng & Ma (2009) used 

a risk matrix for prioritizing preventive actions on pipeline systems. They first constructed 

different ordinal scales for multiple consequences categories including cost, effect on the entire 

pipeline system, service interruption, and safety level. The overall effect of all categories was 

evaluated using the max-average approach to avoid the domination effect of a single high-level 

category on the prioritization process. Li and Zou (2011) developed a fuzzy-based risk assessment 

model for mitigating the risk associated with planning, procurement, financing, design, 

construction, and operations related to private-public partnership projects. The power of fuzzy 

principles lies in their ability to mitigate the vagueness and uncertainty in human judgments. When 

such a project is under investigation, there are different threats to consider, and one way to 

prioritize each threat is to use an analytical hierarchical process (AHP). Li and Zou (2011) 

constructed two-level AHP models, in which twenty-three different threats or risk factors were 

identified and grouped into different tasks in the project. The AHP model evaluated the weights 

for each threat to allow same-level comparison and the weights on higher levels for group 
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comparison and obtaining the marginal contribution of each group to the marginal risk (i.e., risk 

factor considering all groups). The process of developing the AHP model is to develop weighting 

factors based on experts’ judgments as further discussed by Ishizaka & Labib (2009).  Li and Zou 

(2011) included the fuzzy principles in these weights and added other variables to mimic the 

subjectivity in experts’ judgments. Another integration of fuzzy principles in the AHP system for 

risk assessment was done by Tran et al. (2012). This was a three-level AHP model with a fuzzy 

system that was used to interpret uncertainties related to risk factors. On the bottom level different 

risk factors related to likelihood and consequences of manhole failure were assigned, while on the 

upper level, different aspects of failure modes and consequences were added to head risk factors. 

At this level, each aspect was expected to have a different impact on the likelihood or 

consequences, and hence on the risk level.  Compared to Li and Zou (2011), Tran et al. (2012) 

considered the fuzziness in the risk factor values rather than in the weights. The outcome of this 

model was a risk index described as a real number in the universe of associated fuzzy sets, which 

was later converted to a single value using the center average defuzzification method. 

Elsawah et al. (2014) presented a framework for estimating the integrated risk index for 

three types of integrated infrastructures in a corridor segment within a network, which included 

sewers, water pipes, and roads. First, on the individual level, the criticality of each structure in 

addition to related consequences was estimated. The integrated criticality of a corridor segment 

was estimated additively from the criticality on the individual level, while the consequences were 

estimated for the entire corridor using the adopted AHP method. The risk index was determined 

using a predefined risk matrix, which is a set of rules that designate different risk indices based on 

different combinations of criticality and consequences index. Another risk index evaluation 

approach for integrated sewer, road, and water pipes was done by Shahata & Zayed (2016). The 
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authors used the Delphi-AHP model for estimating the consequences of failure for each 

infrastructure considering economic, social, operational, and environmental factors. Integrating 

the Delphi approach in the development of the AHP model allowed interactions among experts 

and contributions to each other’s understanding, which lead to a dynamic revision of weights and 

criteria of factors based on experts’ feedback. The integrated likelihood and consequences were 

estimated using the K-mean clustering algorithm; each of the likelihood and consequences on the 

infrastructure level was divided into five different groups graded from one to five using the 

clustering algorithm. The combination of groups of consequences and likelihood on the integrated 

level would give the risk index, which was obtained using a predefined risk matrix. Inanloo et al. 

(2016) evaluated the risk on transportation networks due to pipeline network failure. They started 

by assigning a vulnerability level to each road in the transportation network based on the type of 

road (i.e., highway, collector, or other) and setting possible scenarios of the interaction impacts 

caused by an observed failure in either pipeline or transportation network. In the next step, they 

evaluated the likelihood of failure of each pipe within a network based on failure occurrence given 

specific material type, age, and diameter. In the third step, a rank map for each network and the 

overall network was developed using ARGIS and it was used to assess the overall vulnerability of 

the integrated road and pipeline networks. Using the obtained vulnerability, the affected population 

and area in addition to traffic flow (i.e., traffic delay) were estimated and mapped on GIS.  

Altarabsheh et al. (2017) developed a multi-objective approach for selecting rehabilitation 

alternatives that impact the behavior throughout the entire life cycle. These objectives include 

maximizing the condition index and network serviceability and minimizing the risk of failure and 

life cycle cost. The authors first defined models related to the evaluation of each objective. For the 

condition index, the author assumed a semi-Markov model that gives the transition probability 
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matrix from one state or index to another; this probability was based on the time that the sewer 

will maintain a specific state and follows the Weibull distribution. For the risk model, the author 

used the simple multiplication of the likelihood and consequences, which was estimated using the 

weighted average or AHP method. For life cycle cost, they considered both the cost of replacement 

and rehabilitation. Finally, they defined serviceability as the number of blockages estimated from 

the Markov chain stochastic process. Because of the large number of possible alternatives and 

discontinuity of the objective functions, optimization of the objective functions was done using 

genetic algorithms. After each evaluation period, one solution was selected out of a set of solutions 

based on a function to ensure a tradeoff between objective functions. Tabesh et al. (2018) 

developed a risk assessment framework related to non-revenue water loss caused by apparent 

losses, real losses, and non-revenue authorized losses. The first step was to build a Bayesian 

network model to assess the likelihood of non-revenue water loss caused by each of the three main 

components. The next step is to evaluate both economic and social consequences associated with 

each NRW component. Finally, the author defined fuzzy sets for likelihood, financial, and social 

consequences and used them to infer risk using the FIS system. Similar to the previous application, 

the center area method is used for defuzzification. Zhou et al. (2020) developed a Bayesian-based 

risk assessment model for sewer mains located in utility tunnels, in which sewer mains are placed 

adjacent to other structures such as water mains, gas pipes, and electric and heating systems. 

Similar to other Bayesian network models, the authors started with the structural learning phase to 

define the parent nodes and child node configuration. Next, the conditional probability table for 

each node is inherited from previous related incidents and experts’ opinions. The expected outcome 

of this model is a probability of occurrence of economic loss, casualty, and pollution (i.e., 

consequences) being slight, moderate, or high, which implicitly reflects risk.  Finally. The authors 
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tested the proposed model on multiple scenarios constructed by varying the states in the parent 

nodes (i.e., potential threats) and investigated the impact of threats using sensitivity analysis. 

Benbachir et al. (2022) developed a fuzzy-based failure mode effect and criticality analysis model 

for decision-making prioritization of urban sewage systems (FMECA). In the conventional 

FMECA model, the first step is to assess the score of failure observed in the structure, which is 

based on a set of criteria designated for three parameters: risk, severity, and detectability. The last 

two parameters represent the consequences and how fast a failure mode is detected. Using 

inspection data and previous reports, experts’ judgments can be turned into individual scores for 

each criterion. The next step is to combine the scores of criteria in each parameter and present one 

entity that describes the criticality of the structure. Benbachir et al. (2022) assume that the 

criticality index is defined as the product of the indices on parameters (i.e., risk severity, 

detectability. The estimated criticality index reflects the structural condition of the structure. The 

domain of this index is divided into four main groups and mapped to a performance measure, 

which is used in decision-making. The integration of the FIS comes after the first step; risk, 

severity, and detectability indices are considered the antecedent part of the FIS rule base, while the 

performance parameter (i.e., desired outcome) is considered the consequent part. A set of rules are 

assigned by experts and fuzzy sets are defined for each parameter in the antecedent and consequent 

part. Finally, typical operations of the FIS system are performed to obtain the performance 

measure. 

Zhang et al. (2022) extended the application of the AHP model in risk assessment of water 

networks and pipeline systems in general to a new method called analytic network process (ANP). 

As discussed in previous studies, the AHP method is built based on different factors (i.e., risk 

factors) that contribute to the decision-making process, with impacts inherited from experts’ 
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opinions. However, the estimated impacts can only give information about the sensitivity of each 

factor relative to others located at the same level. The ANP method allows comparison among 

factors at all levels. The method starts by dividing the factors into primary and secondary factors 

as in the AHP method, then weights are calculated at both levels considering coupling or 

interaction effects. More details about this method are provided by Zhang et al. (2022). The 

outcome is a vector that represents the coupling proportions of factors on the risk. In the next stage 

of this study, the authors include fuzzy principles in the model, in which each factor was presented 

as a membership function. Using fuzzy principles have allowed explaining the outcomes of the 

model in terms of probability; for example, the probability of a pipeline to be in a safe state based 

on a specific factor or based on all factors. 

2.4. Gaps and Research Contributions 

 

After a comprehensive evaluation of related studies, it is observed that the common 

approaches in defining the deterioration of a pipeline system are either deterministic or 

probabilistic, which are applied to either analytical physical-based simple models, complicated 

numerical models, or statistical models such as Davis & Marlow (2008), Alani & Farazani (2015), 

and Phan et al. (2018), respectively. Despite the variety of models and approaches adopted, there 

is a lack of evaluation based on multiple failure modes. For example, Mahmoodian and Alani 

(2014) considered only wall thickness loss when evaluating the reliability of RCSPs. Similarly, 

Alani & Farazani (2015) and Tang et al. (2022) considered wall thickness loss in addition to 

flexural strength. Moreover, most of these studies showed significant limitations in the integration 

of environmental conditions. Numerous studies have predominantly focused on sulfide erosion as 

the primary environmental factor, which leads to a reduction in wall thickness and potential 
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exposure of reinforcement while overlooking other detrimental factors. These factors, including 

chloride corrosion, can significantly affect the mechanical properties of both concrete and 

reinforcements, potentially impacting the structural integrity of RCSPs. Considerations of 

chloride-induced corrosion impacts on the reliability of RCSPs are very limited, for example, 

Schoefs & Aduriz (2009) & Phan et al (2018) and many more studies considered uniform chloride-

induced corrosion acting on the rebar with limited assumptions; however, chloride corrosion is 

much more detrimental rather than being uniform and impact the area of the rebar. As explained 

later, it is found that chloride-induced corrosion, with its nonuniform pitting nature, leads to 

variations in the mechanical properties of the rebar along its length. Consequently, this corrosion 

is responsible for generating different failure modes, including ductility failure and a reduction in 

yield strength. The first goal of this research is to build a comprehensive probabilistic framework 

for evaluating the reliability of RCSPs by considering multiple failure modes at both service and 

ultimate levels, as well as to integrate chloride-induced corrosion in its pitting nature and its impact 

on the mechanical properties of concrete and steel such as compressive strength, yield strength, 

and the ultimate strain, in addition to sulfide-induced erosion. 

It is also observed in the research field of consequences of failure evaluation that the 

majority of studies use qualitative methods for evaluating the consequences such as the AHP 

method, since it is hard to quantify monetarily or quantitatively due to high level of uncertainty 

and hard measurements; therefore, the second goal of this research is to develop a probabilistic- 

based models for direct and indirect consequences with monetary interpretations considering all 

possible aspects of uncertainty. The suggested model will be developed for two reversed actions 

on RCSPs experiencing serviceability loss or complete failure using data collected from 
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construction bidding tabs of related actions. The outcome of this stage of the study will be 

combined with the prior stage for risk assessment at service and ultimate levels.  

Both failure mode likelihood and its corresponding consequences are combined to give the 

potential loss known as risk. It has been observed that there are different approaches to risk 

assessment. For example, some studies choose to use the simplest risk definition, which is the 

multiplication of both likelihood and consequences, while, others choose to use a risk matrix, 

which gives a qualitative or an ordinal risk scale based on a set of rules set up by experts. Also, 

probabilistic risk assessment has been considered through the application of the Bayesian network, 

which is trained based on experts’ beliefs. Finally, the FIS proved to be a very efficient tool in the 

practice of risk assessment and decision-making since it mimics human thinking and addresses 

uncertainties in decision rules and variables through the fuzzification and implication process. 

Despite the popularity of the FIS method, it has some drawbacks. The main parameters of the FIS 

method are usually defined heuristically by experts, which makes the risk model inefficient in 

applications by other organizations in which experts might have different opinions since different 

opinions imply different parameters. The third goal of this research is to construct a flexible FIS 

system by integrating it with a deep learning neural network model that can learn the new 

parameters based on new adjusted rules. Also, the author aims to modify the state of practice of 

this model by modifying the objective function used to optimize the model to satisfy the fuzzy 

logic principle, in addition to testing different optimization algorithms for faster convergence. 
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Chapter 3. Methodology 

3.1. Overview 

 

To address the goals mentioned in Section 2.4, the following chapter is divided into three 

main sections. Each section is oriented to one of the goals. In the first section, a detailed discussion 

will be provided about the probabilistic framework for addressing the likelihood of failure or loss 

of serviceability. Whether at the ultimate or service level, illustrations about the adopted limit state 

functions and main assumptions will be provided in subsections. The second section is divided 

into two main parts. The first part is concerned with developing a direct cost model related to two 

counteracting actions: pipe replacement and cured-in-place pipe (CIPP). The second part is 

concerned with the evaluation of a set of social or indirect cost categories that are imposed on the 

neighborhood and road users when either of the counteracting actions takes place. The third section 

will go over a brief discussion about risk assessment methodologies and present a novel method 

for risk assessment. Finally, the integration of all three sections will be demonstrated to have 

different types of risk estimation. 

3.2. Likelihood of Failure and Loss of Serviceability 

 

 To assess the reliability and likelihood of failure, it is essential to define the threats that 

cause the failure, define, or adopt all potential failure modes induced by these threats, and finally, 

define suitable limit state functions, which combine the actions of threats with the strength of the 

structure. A typical limit state function should be like the one shown in Eq. 1, where 𝑿 is a set of 

independent factors related to loads, threats, and structural properties. 
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𝐿𝑆(𝑋1, …… ,𝑋𝑛) = 𝐴𝑐𝑡𝑖𝑜𝑛(𝑋1, …… , 𝑋𝑛) − 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑋1, …… , 𝑋𝑛)   (1) 

In RCSPs, the applied loads include traffic load, the weight of soil fill, and the weight of 

carried wastewater. Typically, these pipes are designed to sustain these loading based on either 

ASTM C76 (2022), or the direct design method provided in the ASCE 15 (1998). Because the first 

method is based on a 3-edge bearing loading test and does not provide a clear formulation of the 

resistance of RCSPs under sustained loading, the second approach will be adopted in this study. In 

addition, to sustain loading, sulfide-induced wall erosion and chloride-induced reinforcement 

corrosion affect the reliability of RCSPs continuously over their service life. Therefore, their 

effects will be inherited in the formulation of limit state functions. Fig. 4 gives a summary of 

independent factors and limit state functions at both service and ultimate levels. 

 

Fig.  4. Independent factors and limit state functions at ultimate and service level.  
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The limit state functions in green and blue boxes are designated for serviceability and 

ultimate levels, respectively. Detailed discussion will be provided individually in the subsequent 

subsections. 

3.2.1. Serviceability limit states Functions 

 

3.2.1.1. Wall Thickness Loss 

 

In this study, wall thickness loss is considered as a serviceability issue. As explained in 

Section 1.2.1 and Fig. 2, the presence of sulfide in wastewater is the main threat behind the erosion 

of wall material along the perimeter of the RCSP. As the erosion continues from its initiation point, 

wall material degrades and starts to reduce, which eventually leads to reinforcement exposure. 

Therefore, a suitable limit state function to measure the reliability is provided in Eq. 2. This 

function implicitly defines serviceability loss when the remaining wall thickness ℎ𝑟(𝑡) reaches the 

wall thickness in inventory condition ℎ less than the cover 𝐶, which is the wall thickness to the 

reinforcement surface.  

 𝑊𝑇𝐿𝐿𝑆(𝑡) =  ℎ𝑟(𝑡) − (ℎ − 𝑐)   (2) 

 

Different approaches can be used to assess the amount of wall erosion at a specific time. 

Li et al (2019) conducted a regression analysis on a set of experimental data related to sulfide 

erosion on concrete. They successfully developed models for estimating the initiation time of 

sulfide erosion, 𝑡𝑖𝑛𝐻2𝑆 , and the amount of erosion, 𝐸𝑟, and are shown in Eqs. 3 & 4, where 𝑅𝐻 %, 

𝐻2𝑆, and 𝑇𝑐 are the relative humidity (%), sulfide concentration (PPM), and temperature (Celsius), 

respectively. 

 𝑡𝑖𝑛 𝐻2𝑆 = 147.7 − 0.160 𝐻2𝑆 − 1.01 𝑅𝐻 − 1.08 𝑇𝑐 (3) 
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 𝐸𝑟 = −1.96 + 0.0119 𝐻2𝑆 + 0.0293 𝑅𝐻 + 0.0016 𝑇𝑐 (4) 

Another approach was developed by Abuhishmeh (2019), in which laser inspection 

datasets for sewer main were processed and fitted into Weibull distribution. This distribution 

considers the variability of sulfide erosion level along the perimeter of the pipe. In this study, the 

second approach will be adopted since it considers the variability in erosion level. Simultaneously, 

Eq. 3 from the first approach will used to assess the initiation time.  A summary of the adopted 

approach is provided in Fig. 5. 

 

Fig.  5. Framework to assess the reliability of RCSPs against wall erosion. 
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3.2.1.2. Crack Width 

 

RCSPs are continuously subjected to chloride coming from wastewater in addition to 

moisture and air. Therefore, based on the review in Section 1.2.2, RCSP reinforcements are 

subjected to corrosion. Naturally, corrosion product has higher volume per unit weight compared 

to steel; therefore, when corrosion products develop, they will induce hoop and radial stress along 

the perimeter of the rebar, which causes concrete cracking starting at the interface when the hoop 

stresses exceed the tensile strength of the concrete and propagates through the entire cover. This 

process is accompanied by a reduction in radial compression stresses responsible for restraining 

the expansion of the concrete due to cracking. As discussed in Section 1.2.2, reinforcement 

corrosion does not start immediately, and initiation time must be considered for accurate 

investigation. Therefore, in this study, the empirical model, shown in Eq. 5, and (Tuutti 1982) will 

be used, which defines initiation time as the time when chloride level at the steel-concrete interface 

reaching a predefined value. 𝐶𝑙𝑠𝑢 is the chloride concentration at the surface (𝑔 𝑐𝑚3⁄ ); 𝐷𝑐𝑙 is the 

chloride diffusion coefficient, and 𝐶𝑙𝑡ℎ is the threshold value (𝑔 𝑐𝑚3⁄ ). 

 𝐶𝐿𝑆(𝑡) = 𝐶𝑙𝑠𝑢 [1 − 𝑒𝑟𝑓 (
C

2√𝐷𝑐𝑙𝑡
)] − 𝐶𝑙𝑡ℎ (5) 

The amount of chloride, air, and moisture varies significantly during cracking stages, which 

indicates that the corrosion rate varies as well and as a result, the level of corrosion. Yuan et al. 

(2010), Jiang & Yuan (2012), Jiang & Yuan (2013), Xi & Yuan (2017) investigated the variability 

of corrosion rate  𝑖𝑐𝑜𝑟𝑟 expressed in 𝜇𝐴/𝑐𝑚2 and the outcome of their investigation is summarized 

in Fig. 6.  As shown in Fig. 6, there are 5 main stages; the first stage is the initiation period at 

which no corrosion level occurs. In the second stage, no cracks occur although rust is developed 

since it fills the capillary pore at the steel-concrete interface. The 𝑖𝑐𝑜𝑟𝑟 reduces until reaches a 
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steady state (at time 𝑡1) due to the accumulation of rust that prevents enough moisture, chloride, 

and oxygen from reaching the interface. The amount of corrosion required to reach this stage can 

be estimated according to Eq. 6, which can be used to estimate the slope of 𝑖𝑐𝑜𝑟𝑟  at the second 

stage. 𝑤 𝑐⁄  and  𝐴0  are water-cement ratio and reinforcement’s nominal area. In the third stage, 

𝑖𝑐𝑜𝑟𝑟 stays in the steady state until cracks propagate through the entire cover and reach a width 

approximately close to 0.1 𝑚𝑚. Beyond this point, the rust starts to dissipate through the cracks 

and leach outside allowing more ingress of chloride, oxygen, and moisture; therefore, 𝑖𝑐𝑜𝑟𝑟 

increases immensely. Based on the authors observations, the reinforcements are considered fully 

exposed when the crack level reaches 0.5 𝑚𝑚; therefore, at the fifth stage, 𝑖𝑐𝑜𝑟𝑟 behaves as a 

steady state since constant ingress of chloride, moisture, and oxygen is achieved assuming constant 

environmental conditions. 

 

Fig.  6. Corrosion current density development based on cracks level. 
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 𝑃𝑠𝑡𝑒𝑎𝑑𝑦 = 𝑃𝑎𝑣𝑔(𝑡1) = (0.0302 
𝑤
𝑐⁄ − 0.0111) 𝐴0 (6) 

 

In previous studies, investigations were only limited up to the end of the third stage; 𝑖𝑐𝑜𝑟𝑟 

variation in the fourth stage is assumed to change linearly with crack width. Eq. 7 gives the relevant 

formula for estimating 𝑖𝑐𝑜𝑟𝑟 at any stage.  𝑖𝑜,𝑎,  𝑖𝑜,𝑐, 𝛽,&  ∆𝐸𝑒   are anodic and cathodic exchange 

current densities, anodic and cathodic Tafel slopes summation, and equilibrium potentials 

difference between anodic and cathodic regions, respectively. Detailed calculations of these are 

provided in Appendix I. 

 𝑖𝑐𝑜𝑟𝑟(𝑡) =

{
  
 

  
 
                                0                                                                  𝑡 ≤ 𝑡𝑖𝑛

                  
1

4
 𝑖𝑜,𝑎

0.5 𝑖𝑜,𝑐
0.5 𝑒

(
∆𝐸𝑒
𝛽
)  

                                        𝑡𝑖𝑛 < 𝑡 ≤ 𝑡1

                       𝑖𝑐𝑜𝑟𝑟(𝑡1)                                                      𝑡1 < 𝑡 ≤ 𝑡2

 𝑖𝑐𝑜𝑟𝑟(𝑡2) +
𝑤(𝑡−1)−𝑤(𝑡−2)

𝑤(𝑡−2)
 𝑖𝑐𝑜𝑟𝑟(𝑡2)                           𝑡2 < 𝑡 < 𝑡3

                   𝑖𝑐𝑜𝑟𝑟(𝑡3)                                                                 𝑡 ≥ 𝑡3 }
  
 

  
 

 (7) 

 

To estimate the average amount of corrosion, 𝑃𝑎𝑣𝑔, Eq. 8 is used, which is based on 

Faraday’s law discussed in ASTM G102 (2015). 𝑘1 is an empirical coefficient (𝑔 𝜇𝐴⁄ ), 𝜌 is the 

steel density (𝑔 𝑐𝑚3⁄ ), and 𝐸𝑊 is the equivalent weight (𝑔). 

 𝑝𝑎𝑣𝑔(𝑡) = 𝑘1
𝑖𝑐𝑜𝑟𝑟(𝑡−1)

𝜌
 𝐸𝑊 + 𝑝𝑎𝑣𝑔(𝑡 − 1)  (8) 

To estimate crack width, a thick wall cylinder approach is adopted. This model was used 

previously by other authors such as Bhargava et al. (2007), Coccai et al. (2016), and Lau et al. 

(2018).  Because cracks propagate gradually, the analysis included in this approach can be divided 

into three main phases; uncracked (elastic), partially cracked (elastoplastic), and fully cracked 
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(plastic), which are equivalent to stages 2, 3, and 4 in Fig. 6. Main assumptions in this approach 

are that the generated rust, 𝑉𝑟𝑢𝑠𝑡, can occupy the space in the capillary pores 𝑉𝑝𝑜𝑟𝑒𝑠 , the space 

provided by the radial displacement 𝑉𝑈𝑟𝑠 , and cracks 𝑉𝑐𝑟𝑎𝑐𝑘𝑠 , as shown in Eqs. 9 & 10, respectively. 

In the second stage, rust occupies the capillary pores 𝑉𝑝𝑜𝑟𝑒𝑠 , and the volume induced by the elastic 

radial displacement 𝑉𝑈𝑟𝑠  , while hoop stress 𝜎𝑡,𝑟𝑠 , at the interface 𝑟𝑠, is less than the tensile strength 

of concrete. In the third stage, rust additionally occupies the cracks 𝑉𝑐𝑟𝑎𝑐𝑘𝑠 ; 𝜎𝑡,𝑟𝑠, exceeds the 

tensile strength of concrete; and the radial compression stress 𝜎𝑟,𝑟𝑠, is developed by concrete in the 

elastic and plastic regions considering the softening effect of concrete due to cracking according 

to Roelfstra & Wittmann (1986) and Coccai et al. (2016). In the fourth stage, the concrete is 

completely cracked; this means that the 𝜎𝑟,𝑟𝑠, is completely developed by the cracked concrete. 

Also, it is assumed that the deformation at a distance 𝑟 from the center of the cylinder equals the 

concrete deformation plus the total crack width as shown in Eqs. 11 & 12. 𝜀𝑡,𝑐𝑟 is the ultimate 

tensile strain of concrete; 𝑟𝑐𝑟 is the radius of the cracked cylinder; 𝑛 is the number of cracks in the 

concrete cylinder; 𝑤 is the mean width of cracks per unit length of 𝑙𝑐𝑟. procedure for calculating 

all stages 𝜎𝑡,𝑟𝑠, 𝜎𝑟,𝑟, 𝑈𝑟𝑠, 𝑤, and 𝑙𝑐𝑟 are provided in Appendix AI. 

 𝑉𝑟𝑢𝑠𝑡 = 𝑉𝑝𝑜𝑟𝑒𝑠 + 𝑉𝑈𝑟𝑠 + 𝑉𝑐𝑟𝑎𝑐𝑘𝑠  (9) 

 𝜋𝛼(2𝑟𝑠𝑃𝑎𝑣𝑔(𝑡) − 𝑃𝑎𝑣𝑔(t)
2) = 𝜋(2𝑟𝑠(𝑃𝑎𝑣𝑔(t) + 𝑃𝑠𝑡𝑒𝑎𝑑𝑦) − (𝑃𝑎𝑣𝑔(t) + 𝑃𝑠𝑡𝑒𝑎𝑑𝑦)) +

𝜋(2𝑟𝑠𝑈𝑟𝑠(t) + 𝑈𝑟𝑠(t)
2) + 𝑛𝑤𝑙𝑐𝑟             (10) 

 ∆𝑡𝑜𝑡=  ∆𝑐𝑜𝑛 + ∆𝑐𝑟𝑎𝑐𝑘𝑠 (11) 

∆𝑡𝑜𝑡(𝑟) = 2𝜋𝜀𝑡,𝑐𝑟𝑟𝑐𝑟 = 2𝜋𝜀𝑡,𝑐𝑟𝑟 +  𝑛𝑤𝑙𝑐𝑟     (12) 

It is important to note that the thick wall cylinder model is only valid until cracks reach the 

surface (i.e., 𝑤 = 0 at the surface). Therefore, to overcome this issue, a fictitious cylinder with a 



30 

 

large radius (i.e., 𝑟 ≫ 𝑐
2⁄ )  is assumed and the crack width is calculated at the true surface (i.e., 

𝑟 = 𝑐 2⁄ ). A summary of the calculation procedure is provided in Fig.7.  The suggested procedure 

is divided into two main phases. This first phase is applied once during the analysis. First, a series 

of the radii 𝑟𝑐𝑟 of the cracked part of the cylinder is generated from the interface 𝑟𝑠 up to the 

fictitious radius, which is assumed to be ten times the cover thickness. Furthermore, the 

corresponding radial displacements 𝑈𝑟𝑠 and length of cracks 𝑙𝑐𝑟, and crack width 𝑤 are calculated 

according to Eqs. 13,14, &15, respectively. Finally, the level of corrosion penetration 

corresponding to each level of cracking 𝑃𝑐𝑟  is calculated according to Eq. 16. This parameter, 

along with the rest will be utilized to obtain the real crack width that corresponds to time-dependent 

average corrosion penetration as illustrated in the second phase in Fig. 7.  The second phase will 

be repeatedly applied over the analysis period to generate the pattern of crack propagation 

throughout the service life. 

𝑈𝑟𝑠 = 𝜀𝑡,𝑐𝑟𝑟𝑐𝑟 [1 + (
𝑐2−𝑟𝑐𝑟

2

𝑐2+𝑟𝑐𝑟
2
) + ln (

𝑟𝑐𝑟

𝑟𝑠
) + 𝑏 (𝑙𝑛 (

𝑟𝑐𝑟

𝑟𝑠
) − 1 + (

𝑟𝑐𝑟

𝑟𝑠
))+

𝜋 𝑟𝑐𝑟

𝑛 𝑤0

𝑎 𝜀𝑡,𝑐𝑟

2
(2 𝑙𝑛 (

𝑟𝑐𝑟

𝑟𝑠
)  − 3 + 4(

𝑟𝑐𝑟

𝑟𝑠
)
2

)  ] (13) 

 l𝑐𝑟 = 𝑟𝑐𝑟 − (𝑟𝑠 +U𝑐𝑟) (14) 

 𝑤 =
2𝜋𝜀𝑡,𝑐𝑟(𝑟𝑐𝑟−𝑟)

𝑛 𝑙𝑐𝑟
 (15) 

 𝑃𝑐𝑟 = 𝑟𝑠 − √𝑟𝑠
2 −

𝑈𝑟𝑠
2 +2 𝑟𝑠𝑈𝑟𝑠

2 +𝑛
𝑤 l𝑐𝑟
𝜋

𝛼−1
 (16) 

Finally, the estimated crack width at any time 𝑤(𝑡) can be compared with the allowable 

limit 𝑤𝑙𝑖𝑚𝑖𝑡 as shown in Eq. 17, which is 0.1𝑖𝑛𝑐ℎ (0.254 𝑚𝑚) according to ASTM C76 (2022). 

 𝐶𝑊𝐿𝑆(𝑡) = 𝑤(𝑡) − 𝑤𝑙𝑖𝑚𝑖𝑡  (17) 

  



31 

 

 

 

Fig.  7. Suggested procedure for crack width estimation. 
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3.2.1.3.Bond strength limit state 
 

Generally, the bond strength is attributed to different factors such as chemical adhesion, 

friction forces, and the bearing force against the ribs of the reinforcement (Zhou et al. 2016). Also, 

according to Coronelli (2002) and Coccai et al. (2016), the bond strength is attained by other 

factors such as the confinement provided by surrounding concrete 𝜏𝑐𝑜𝑛𝑐, and stirrups 𝜏𝑠𝑡𝑖𝑟, in 

addition to corrosion product 𝜏𝑐𝑟 as shown in Eq. 18. During initial corrosion stages corrosion 

stages and prior to cracking initiation (stage 2 and 3 in Fig. 6), rust occupies the capillary zone and 

the elastic radial displacement 𝑈𝑟𝑠, at the interface, which as a result cause increase the radial 

compression stress 𝜎𝑟,𝑟𝑠,and leads to the development of the confinement pressure. and the bond 

strength 𝜏𝑐𝑟. At later stages of corrosion, when cracks start to propagate the confinements provided 

by the concrete and rust decrease due to tension tension-softening effect of cracked concrete and 

the dissipation of rust through cracks, respectively.  

 𝜏(𝑡)= 𝜏𝑐𝑟(𝑡)+ 𝜏𝑐𝑜𝑛𝑐(𝑡)+ 𝜏𝑠𝑡𝑖𝑟(𝑡)+ 𝜏𝐴𝑑&𝐹𝑟(t) (18) 

In this research, the model in Eq. 19 will be adopted for estimating 𝜏𝑐𝑟. This model is 

developed by Coccai et al. (2016), which depends on 𝜎𝑟,𝑟𝑠and coefficient of friction 𝜇. The effect 

of 𝑝𝑎𝑣𝑔 on the friction will be considered using an empirical model modified by Bhargava et al. 

(2007) (Eq.20), in which, 𝑝𝑐𝑟𝑎𝑐𝑘 is the corrosion penetration required to induce cracks throughout 

the cover (𝑟𝑐𝑟 =
𝑐
2⁄ ). The radial compression stress 𝜎𝑟,𝑟𝑠, which depends on the level of corrosion 

and cracking can be calculated as guided in Appendix AI. 

 𝜏𝑐𝑟 (𝑝𝑎𝑣𝑔(𝑡)) = 𝜇 (𝑝𝑎𝑣𝑔(𝑡))𝜎𝑟,𝑟𝑠 (𝑝𝑎𝑣𝑔(𝑡)) (19) 

 𝜇 (𝑝𝑎𝑣𝑔(𝑡)) = 0.37 − 0.26 (𝑝𝑎𝑣𝑔(𝑡) − 𝑝𝑐𝑟𝑎𝑐𝑘) (20) 
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As cracking propagates through the cover, the tensile strength of the concrete  𝑓𝑐𝑡 

deteriorates significantly under the effect of soft tension estimated according to the bilinear tension 

softening model presented by Roelfstra & Wittmann (1986), shown in Fig 8, and described in Eq. 

21. Parameters 𝑎 and 𝑏 used in Eqs. 13&21 and for assessing the 𝜎𝑟,𝑟𝑠 in partial cracked and fully 

cracked stages can be estimated from this model as guided in Appendix AI.  As a result of 𝑓𝑐𝑡 

reduction, the confinement pressure from concrete 𝑃𝑚𝑎𝑥,𝑐 reduces, too according to Eq. 22; 

furthermore, corrosion effects not only the 𝑓𝑐𝑡, but also the friction ∅, and the ribs angle 𝛿 as shown 

in Eq. 23. Both cause reduction in the 𝜏𝑐𝑜𝑛𝑐 reduces as shown in Eq .24. 

 𝜏𝑐𝑜𝑛𝑐(𝑝𝑎𝑣𝑔(𝑡)) =
𝑛𝑟𝑖𝑏𝑠𝐶𝑟𝑡𝑎𝑛(𝛿+∅)(𝑝𝑎𝑣𝑔(𝑡))

𝜋
𝑃𝑚𝑎𝑥,𝑐(𝑝𝑎𝑣𝑔(𝑡)) (21) 

 𝑃𝑚𝑎𝑥,𝑐(𝑝𝑎𝑣𝑔(𝑡)) = [
𝑏1

𝑛𝑏𝑎𝑟(2𝑟𝑠 𝑝𝑎𝑣𝑔(𝑡)+2𝑑𝑐𝑝𝑎𝑣𝑔(𝑡))
− 1] 𝑓𝑐𝑡(𝑝𝑎𝑣𝑔(𝑡)) (22) 

 𝑡𝑎𝑛(𝛿 + ∅) (𝑝𝑎𝑣𝑔(𝑡)) = 1.857 − 0.9285 𝑝𝑎𝑣𝑔(𝑡) (23)

 𝑓𝑐𝑡(𝑝𝑎𝑣𝑔(𝑡)) = [𝑎
𝑤(𝑡)

𝑤0
+ 𝑏] 𝑓𝑐𝑡0 (24) 

 

Fig.  8. Bilinear soft tensioning model (Roelfstra & Wittmann 1986). 
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At the early stages of the corrosion process, the presence of ribs in reinforcement provides 

additional bonding strength in addition to the friction as concrete bears against them. However, 

corrosion induces geometrical changes in the reinforcement (such as the disintegrating of ribs) and 

therefore, eliminating the bearing contribution gradually. Coronelli (2002) has modified the 

adhesion and friction contribution 𝜏𝐴𝑑&𝐹𝑟(𝑡) to include corrosion impacts as shown in Eqs. 25 

through 28. 

 𝜏𝐴𝑑&𝐹𝑟(𝑝𝑎𝑣𝑔(𝑡)) =
𝑛𝑟𝑖𝑏𝐴𝑟(𝑝𝑎𝑣𝑔(𝑡))𝑓𝑐𝑜ℎ(𝑝𝑎𝑣𝑔(𝑡))[cot 𝛿(𝑝𝑎𝑣𝑔(𝑡))+tan(𝛿+∅) (𝑝𝑎𝑣𝑔(𝑡))]

2𝜋𝑟𝑟(𝑝𝑎𝑣𝑔(𝑡)) 𝑆𝑟
 (25) 

 cot 𝛿(𝑝𝑎𝑣𝑔(𝑡)) = 1.687 − 0.825(𝑝𝑎𝑣𝑔(𝑡) − 0.6𝑃𝑐𝑟𝑎𝑐𝑘) (26) 

 cot 𝛿(𝑝𝑎𝑣𝑔(𝑡)) = 1.687 − 0.825(𝑝𝑎𝑣𝑔(𝑡) − 0.6𝑃𝑐𝑟𝑎𝑐𝑘) (27) 

 𝑓𝑐𝑜ℎ(𝑝𝑎𝑣𝑔(𝑡)) = 3.41 − 21.21(𝑝𝑎𝑣𝑔(𝑡) − 𝑃𝑐𝑟𝑎𝑐𝑘) (28) 

Finally, the total bond strength 𝜏(𝑡) at any time can be compared to the pull-out stress 

estimated according to clause 12.2 in ACI 318R (2019), while the reliability of the pipes against 

pull-out failure under the effect of corrosion can be estimated according to Eqs. 29 & 30. 

 𝐵𝑆𝐿𝐿𝑆(𝑡)=𝜏(𝑡) − 𝑝𝑢𝑙𝑙𝑜𝑢𝑡 𝑠𝑡𝑟𝑒𝑠𝑠 (29) 

 𝑝𝑢𝑙𝑙𝑜𝑢𝑡 𝑠𝑡𝑟𝑒𝑠𝑠 =
𝑀𝑠

2𝐴𝑟𝑠𝑓𝑦(𝑑−
𝑎1
2
)𝜋𝑟𝑟  𝐿𝑑

 (30) 

3.2.2. Ultimate Level Limit States Functions 

 

3.2.2.1. Reinforcement Ductility Loss Limit State 

 

As discussed in Section 1.2.2 and in Section 3.2.1.2, chloride-induced corrosion has 

multiple deterioration aspects such as cracking 𝑤 and reduction in reinforcement area 𝐴𝑟𝑠. Yet, 
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another important aspect that is more detrimental than the first two is the reduction of mechanical 

properties of concrete and reinforcements. This aspect has not been considered in previous studies, 

despite its importance. The main characteristic of chloride corrosion is its pitting nature, in which 

rust development is neither uniform along the perimeter, nor along the reinforcements. Song et al. 

(2019) found that during the initial stages, rust accumulates at the location closer to the concrete 

surface, and then it starts to dissipate along the perimeter at high cracking stages due to oxygen 

and moisture surplus. This means that the distribution of rust is not uniform during the service life. 

Hingorani et al. (2013) conducted spatial variability analysis to investigate the distribution of rust. 

They found that the ratio of rust at the max penetration to rust at other locations, 𝑅, follows extreme 

value distribution. This factor can be used effectively to estimate the maximum corrosion 

penetration 𝑃𝑚𝑎𝑥(𝑡) from 𝑝𝑎𝑣𝑔(𝑡) as shown in Eq. 31. 

 𝑃𝑚𝑎𝑥(𝑡) = 𝑅 𝑃𝑎𝑣𝑔(𝑡) (31) 

Because of the pitting nature, it is important to note that the residual area of the 

reinforcement is not the same as in uniform corrosion 𝐴𝑟𝑠. Stewart & Harthy (2008) suggested the 

calculations shown in the Appendix AI of the residual area considering the pitting effect 𝐴𝑝𝑖𝑡.   

On the other hand, the effect of pitting corrosion on the mechanical properties of concrete 

and reinforcements was investigated in several studies (Du et al. 2005; Stewart & Harthy 2008; 

Stewart & Suo 2009; Hanjari et al. 2011; Imperatore et al. 2017; Fernandez & Berrocal 2019; 

Vanama & Ramakrishnan 2020). They found that pitting corrosion adversely affects the yield 

strength  𝑓𝑦 , the ultimate strain 𝜀𝑢, and the ultimate strength 𝑓𝑢. After significant experiments and 

regression analysis, they found that the reduction behavior of 𝜀𝑢 follows a linear or exponential 

trend, while it is completely linear for 𝑓𝑦  and 𝑓𝑢. 
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In RCSPs, wire reinforcement is commonly used, which has high yield strength and low 

ultimate strain; therefore, it is important to consider the reduction of the  𝜀𝑢 and as a result, the 

ductility over the lifetime of the pipe. In this study, both exponential and linear trends will be 

considered in evaluating 𝜀𝑢 as shown in Eq. 32. The residual 𝜀𝑢(𝑡) will be compared to 𝜀𝑦 as 

shown in Eq. 33 to report ductility loss or reinforcement brittle failure. it is assumed that brittle 

failure occurs when 𝜀𝑢(𝑡) reaches 𝜀𝑦.  

 𝜀𝑢(𝑡) = 𝑚𝑎𝑥 {
𝜀𝑢0
−𝛼1

𝐴𝑝𝑖𝑡(𝑡)

𝐴0

(1 − 𝛼1
𝐴𝑝𝑖𝑡(𝑡)

𝐴0
) 𝜀𝑢0

} (32) 

 𝐷𝐿𝐿𝑆(𝑡) = 𝜀𝑢(𝑡) − 𝜀𝑦  (33) 

The reduction in yield strength 𝑓𝑦  will also be considered in the upcoming limit state 

function as shown in Eq. 34. In addition, the impact of pitting corrosion 𝑃𝑚𝑎𝑥(𝑡) on the concrete 

compressive strength was investigated by Vecchio & Collins (1986) and provided in Eqs. 35 & 36. 

 𝑓𝑦(𝑡) = (1 − 𝛼𝑦
𝐴𝑝𝑖𝑡(𝑡)

𝐴0
)𝑓𝑦0 (34) 

 𝑓′
𝑐
(𝑃𝑚𝑎𝑥(𝑡)) =

𝑓′𝑐0

1+0.1
𝜀1(𝑃𝑚𝑎𝑥(𝑡))

𝜀𝑐𝑟

 (35) 

 𝜀1(𝑃𝑚𝑎𝑥(𝑡)) =
2𝜋 𝑛𝑏𝑎𝑟𝑠(𝛼−1)𝑃𝑚𝑎𝑥(𝑡)

𝑏1
 (36) 

 

3.2.2.2. Flexural, Shear, And Radial Tension Limit States 

 

Originally, RCSPs were designed using a 3-edge D-Load test (indirect design method); 

however, another option based on the standard installation direct design method (SIDD) (ASCE 
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15. 1998) is available. This method is used in situations where the indirect design method is not 

practical; for example, when pipes have high fill depth or large diameter; therefore, it is impractical 

to conduct the test. Another reason for using the SIDD method is the need for shear design; the 

indirect design method assumes that shear capacity is attained by the wall thickness and no shear 

reinforcements are required (Beakley et al. 2020). The SIDD method allows analytical calculations 

of applied moment 𝑀𝑢, shear 𝑉𝑢, and thrust 𝑁𝑢, loads on the pipe using Heger’s soil distribution 

factors (Heger 1962), which depends on the type of installation whether it is embankment or trench 

installation as shown in Appendix AI. In addition, these factors depend on the type of soil and 

compaction requirements and are available in ASCE 15 (1998). Calculations of  𝑀𝑢, 𝑉𝑢, and 𝑁𝑢 

are based on thin ring theory with elastic material properties. These calculated forces are higher 

than the true forces for small-diameter pipes or for large thickness-to-radius ratio pipes, which 

results in over conservatism. Typical loads on pipes including earth load 𝑊𝑒 , own weight 𝑊𝑝 , fluid 

load 𝑊𝑓  , and longitudinal and lateral live loads 𝑊𝐿𝐿1 & 𝑊𝐿𝐿2  can be obtained according to 

(AASHTO) LRFD Ch 12 (2019).   In this study, three ultimate limit state functions are adopted 

from this method. The first one is the flexural strength limit state function 𝐹𝐿𝐿𝑆(𝑡), shown in Eq. 

37, which assumes complete yield in reinforcement and considers the contribution of thrust load 

𝑁𝑢, in the strength. The second limit state is the shear strength limit state function 𝑆𝐿𝐿𝑆(𝑡), shown 

in Eq. 39. This function includes the basic shear formula, which reflects the lowest shear strength 

that a pipe can sustain at its critical section (𝑀 𝑉𝑑⁄ = 3) without shear reinforcement. The basic 

shear strength equals the general shear strength of concrete at the section 𝑀 𝑉𝑑⁄ ≥ 3 where the 

moment is no longer affecting shear (Heger & McGrath 1982). The effect of 𝑁𝑢 is also considered; 

compressive 𝑁𝑢 increases the shear strength; however tensile 𝑁𝑢 adversely affects the shear 

strength and could eliminate the shear strength if it exceeds the tensile strength of concrete as shear 
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is only resisted by concrete. The last limit state function is the radial tension strength limit state 

function 𝑅𝑇𝐿𝐿𝑆(𝑡), shown in Eq. 40. Radial tension stress can be produced due to ring bending or 

other stresses from internal or external pressure. The last one is negligible at the region where 

maximum ring bending occurs. The equation used in the SIDD method considers only radial 

tension due to ring bending. According to Heger & McGrath (1982), in curved flexural members, 

flexural strength is controlled or limited by the radial tension capacity of concrete since concrete 

is obliged to counteract the radial tension component in flexural reinforcement. In addition, the 

SIDD method considers the effect of pipe size explained through factor 𝐹𝑟𝑡, which entails that as 

the pipe size decrease, the relative proportion of cover thickness to wall thickness is larger, and 

flexural forces are lower; therefore, radial tension capacity increase. Calculation guide for factors 

such as 𝐹𝑑 , 𝐹𝑐 , &  𝐹𝑟𝑡 are provided in the Appendix AI. 

 𝐹𝐿𝐿𝑆(𝑡) = 𝑀𝑢 − [ 𝜃𝑓 [𝐴𝑟𝑠(𝑃𝑚𝑎𝑥(𝑡))𝑓𝑦(𝑃𝑚𝑎𝑥(𝑡)) (𝑑 −
𝑎1

2
)] + 0.5 𝑁𝑢(ℎ𝑟(𝑡) − 𝑎1)] (37) 

 𝑎1 =
𝐴𝑟𝑠(𝑃𝑚𝑎𝑥(𝑡))𝑓𝑦(𝑃𝑚𝑎𝑥(𝑡)) + 𝑁𝑢

0.85 𝑓𝑐(𝑃𝑚𝑎𝑥(𝑡))𝑏1
 (38) 

𝑆𝐿𝐿𝑆(𝑡) = 𝑉𝑢 − 0.083𝑏1 𝜃𝑣𝑝 𝑑 𝐹𝑣𝑝 √𝑓𝑐(𝑃𝑚𝑎𝑥(𝑡)) (1.1 + 63
𝐴𝑟𝑠(𝑃𝑚𝑎𝑥(𝑡))

𝑏1𝑑
) [

𝐹𝑑

𝐹𝑐
] [1 +

𝑁𝑢

14ℎ𝑟(𝑡)𝑏1
]  (39) 

 𝑅𝑇𝐿𝐿𝑆(𝑡) =
𝑀𝑢−0.45 𝑁𝑢 𝑑

𝑏1𝑅𝑠  𝑑
− 0.01 𝐹𝑣𝑝 𝐹𝑟𝑡√𝑓𝑐(𝑃𝑚𝑎𝑥(𝑡)) (40)  

3.2.3. Ultimate and Service Reliability 

 

In the previous section, failure mechanisms in RCSPs were discussed and integrated into 

limit state functions for reliability evaluation. Each of these functions is responsible for the 

reliability against a specific failure mode; however, to have a complete visionary and logical 

representation of the combined effect, a reliability block diagram (RBD) is used as previously 
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explored by Mohamoodian & Alani (2014) and Alani & Faramarzi (2015). In this study, the 

arrangement of limit state functions in RBD at both levels is shown in Fig. 9a & 9b.  In Fig. 9a, 

the serviceability limit state functions are set in parallel configuration to reflect redundancy, which 

means that all limit states at this level must be exceeded to reflect serviceability loss. Therefore, 

the likelihood of serviceability loss can be obtained using Eq. 41, which is similar to the “OR” 

logic operation. In Fig. 9b, the ultimate limit state functions are set in a series configuration, which 

means at least one limit state at this level must be exceeded to reflect ultimate failure. Therefore, 

the likelihood of failure can be obtained using Eq. 42, which is similar to the “AND” logic 

operation. 

 

Fig.  9. (a) RBD at the serviceability level; (b) RBD at the ultimate level. 

 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒(𝑡) = ∏ 𝑃𝑛(𝑡)
3
𝑛=1  (41) 

 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑡) = 1 − ∏ (1 − 𝑃𝑛(𝑡))
4
𝑛=1  (42) 
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The service life and failure time can be obtained by comparing 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒(𝑡) and 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑡) 

with their permissible values 𝑃𝑙𝑖𝑚𝑖𝑡 . 

3.2.4. Monte-Carlo Simulation  

 

To investigate the likelihood of failure at both ultimate and service levels at any time, 

reliability analysis should be conducted, and limit state functions should be evaluated at each time 

step. This process demands evaluation of input parameters every time step. However, because most 

of the input parameters are hard to measure or carry significant uncertainties, it is important to 

evaluate the limit states at all possible values to avoid biased estimation assuming input parameters 

as random variables rather than deterministic values. To estimate the mean response of the limit 

state function, Eq. 43 should be applied; however, this is computationally expensive as it requires 

𝑛 times integrations, where 𝑛 is the number of random input variables, 𝑓(𝒙) is the joint probability 

density function of random variables and ℎ(𝒙) is the limit state function of random variables. 

 𝐸[ℎ(𝒙)] =∭𝑓(𝒙)ℎ(𝒙) (43)  

 For this reason, Monte-Carlo simulation is adopted, which estimates the mean response 

by sampling from random variables 𝑁 samples, evaluates ℎ(𝒙) at each sample, and takes the 

arithmetic average as shown in Eq.44. As the number of samples increases, the variance of the 

expected outcome decreases as shown in Eq. 45. 

 𝐸[ℎ(𝒙)] =
ℎ(𝒙)

𝑁
 (44)  

 𝜎2 =
∑ ℎ(𝒙𝑖)−
𝑁
𝑖=1 𝐸[ℎ(𝒙)]

𝑁−1
 (45)  

In this research, Monte-Carlo simulation with an effective Latin hypercube sampling 

technique is used. This technique will generate an equivalent number of samples across different 
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input domains, which will effectively reduce the number of required simulations runs (Olsson et 

al 2003), hence the variance. The Monte-Carlo simulation will be applied in two consecutive 

stages. in the first stage, the goal of the simulation is to estimate the initiation time of chloride-

induced corrosion and sulfide-induced erosion. The outcomes of this stage will be integrated into 

the next stage to evaluate the rest of the limit state functions. A summary of the two stages is 

provided in Fig. 10. As shown there, the Monte-Carlo simulation is conducted at both stages; 

sampling is done initially followed by evaluation of limit state functions at each time step 

considering the time effect on specific input variables and on the limit state functions. To estimate 

the likelihood of failure or exceedance at each time step for each limit state function, Eq. 46 is 

used, which is the number of samples at which the strength is exceeded, or the limit state function 

is below zero divided by the total number of simulations. 

 𝑃 =
𝑐𝑜𝑢𝑛𝑡(𝐿𝑆<0)

𝑁
 (46)  
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Fig.  10. Two-stage Monte-Carlo simulation for determining initiation time and limit states 

evaluations. 
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3.3. Consequences of Failure 

 

 When RCSPs reach their anticipated service life or failure time, there will be adverse 

consequences. These consequences can be slight, moderate, or catastrophic depending on different 

impact factors. These factors are mostly related to pipe geometrical properties to reflect the cost 

of replacement or rehabilitation, proximity to adjacent critical structures, road type to reflect the 

traffic volume, user cost, the community at which the pipe is located, the type of building that the 

pipe serve, etc… Based on the literature review provided in Section 2.3, The state-of-practice of 

consequences evaluation is based on qualitative approaches, which depends on a set of criteria 

related to impact factors defined by agencies or decision-makers. The reasons for choosing 

qualitative approaches rather than quantitative approaches are the limitations, difficulties, and 

uncertainties in quantifying datasets and information related to the impact factors, hence the 

consequences. The goal of this study is to provide a probabilistic framework for quantitative 

monetary evaluation of consequences, which manifests clarity and interpretability while 

considering impact factors uncertainties. The consequences considered in the proposed approach 

can be classified into two different classes, as shown in Fig.11. The first class is designated as the 

direct cost, which includes all factors entitled to or paid by the agencies responsible for maintaining 

the service of these structures, while the second class is designated as the indirect cost and 

resembles all impact factors entitled or paid by surrounding communities other than agencies 

(Elmasry et al. 2017).  Details about these classes are discussed in the subsequent section. 

The consequences of structural failure or serviceability loss stay effective from the time at 

which the lifetime or the service life is anticipated to end with a certain likelihood until the 

completion of rehabilitation or replacement actions required to retain the integrity of the structure.  
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Fig.  11. List of Impact factors belonging to each class of consequences. 

3.3.1. Direct Cost 

 

This is the cost, or the consequences associated with the implementation of rehabilitation 

or construction (Matthew & Allouche 2010; Elmasry et al. 2017). This cost is paid by agencies 

who own the structures and depends on the intended methodology and the number of activities 

required to retain the structural integrity or to extend the service life of these structures. For 

example, the cost of pipe replacement includes the cost of the material per linear foot (which 

depends on the geometrical properties, i.e., diameter and thickness), the cost of excavation, 

installation, surface restoration, and additional site-related costs. There are a significant number of 
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technologies that can be used effectively to reinstate the pipes in general and are classified as 

rehabilitation or replacement technologies. The rehabilitation technologies include repair, and 

renovation techniques, which are applied locally or along the entire length of the pipe, respectively, 

to improve the current performance or the structural integrities. An example of repair methods is 

repaired by injections, sealers with mechanical devices, and cured-in-place patches. Renovation 

techniques are mostly related to lining practices such as cured-in-place pipe (CIPP). The 

replacement technologies include traditional open-cut or more advanced methods such as hammer 

drilling and pipe bursting, which are expected to reinstate the structural integrity to its inventory 

level. A more detailed discussion about these technologies including their advantages and 

disadvantages, and their applicability are demonstrated by Almeida et al. (2015).  

In this study, it is assumed that a rehabilitation or replacement technique should be 

conducted whenever the likelihood of serviceability loss, 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒(𝑡), or the likelihood of failure, 

𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑡), exceeds a threshold value. At the serviceability level, a CIPP pipe will be considered 

as a rehabilitation technique. Installation of CIPP requires first cleaning and CCTV inspection of 

the pipe, followed by installing a thin plastic tube through direct inversion or pullout, which is 

later attached to the pipe perimeter through air pressure or water. This tube includes resins, which 

are cured using hot steam/UV-light to gain strength. The last process includes reinstating any 

laterals connected to the pipe and performing a post-completion inspection for quality control. 

Details about installation methodology and different classes of CIPP are provided in AWWA M28 

(2014) and ASTM F1216 (2016). The replacement technique adopted in this study is the traditional 

open-cut (dig-replace) method, which includes excavation to reach the defective pipe, abandoning 

the old pipe, and replacing it with a new one. After installing the new pipe, additional activities 
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might be accomplished including manhole replacement or repair, pavement, and surrounding 

surface restorations.  

The impact factors that control either technique is exemplified in Fig.11, which are selected 

after reviewing a set of bidding tabs of projects in which either technique is adopted. Some of these 

impact factors are common in both techniques; for example, the diameter of the rehabilitated or 

the new pipe, traffic control (adding signals or signs at the working zone), lateral connection, 

inspection, and cleaning.; however, others are technique specific.  

In this study, the goal is to build a probabilistic prediction regression model for estimating 

the direct cost of both techniques, which allows consideration of uncertainties in the data. Fig. 12 

gives a summary of the suggested work. 

 

Fig.  12.  Suggested methodology to obtain a predictive distribution of the direct cost. 
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The framework starts by collecting bidding tabs related to both techniques, then extracting 

the cost of the features or the impact factors shown in Fig. 11. In the bidding tabs it is common to 

find the cost of impact factors are given in different units such as numbers, lump sum, or squared 

foot; however, the response (i.e., direct cost) is desired to be expressed in $/𝐿𝐹. Therefore, the 

costs of these factors are divided by the length of the pipe under investigation. Once the costs of 

impact factors are extracted and converted to $/𝐿𝐹, they are all summed up to constitute the total 

cost. To conduct the regression analysis, predictors and responses should be given. The response 

should be obtained as discussed earlier, while the predictors are expressed in a one-hot encoding 

format for all impact factors other than the diameter. A sample of the processed dataset to be used 

for training and validating the regression model is shown in Table 1. 

Table 1. Sample of dataset for either technique used to train and validate the regression model. 

𝐷𝑖𝑟_𝐶𝑜𝑠𝑡 

($/𝐿𝐹) 

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

(𝑖𝑛𝑐ℎ) 

𝐼𝐹1 𝐼𝐹2 𝐼𝐹3 𝐼𝐹4 𝐼𝐹5 𝐼𝐹6 

120 18 1 0 1 0 0 0 

: : : : : : : : 

: : : : : : : : 

135 24 1 1 1 0 0 1 

 

In total, 62 and 72 observations for replacement and CIPP techniques, respectively, are 

going to be used to train and validate a multi-linear regression model. The suggested multi-linear 

regression will be constructed using stepwise regression to allow the most significant predictors 

interactions to be in the model. In the first step, stepwise regression will be conducted on the entire 

dataset to get the most significant parameters including second-degree interactions among 

predictors. The significance of predictors will be determined based on P-value criteria assuming a 

95% confidence level. After obtaining significant predictors, a 10-fold cross-validation approach 
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is used to train and validate the models considering the new predictors, which results in ten 

different models for each technique. The model that provides the least mean absolute error on the 

validation set is selected and the rest is discarded. The results of the stepwise regression model and 

10-fold cross-validation for both replacement and CIPP alternatives are displayed in Table 2 and 

Table 3. 

Table 2. Coefficients and statistics of multi-linear regression model for replacement. 

predictors Coeff 𝑃_𝑣𝑎𝑙𝑢𝑒𝑠 Statistics 

𝐷𝑖𝑎 6.3 1.9𝑒 − 15 𝑅2 = 0.989 

𝑃𝑉𝐶 -116.17 1.26𝑒 − 7 𝐹_𝑠𝑡𝑎𝑡 = 398.5 

𝑆𝑢𝑟𝑓 𝑅𝑒𝑖𝑛𝑠𝑡 57.56 6.2𝑒 − 3 𝐿𝑜𝑔_𝐿𝑖𝑘 = −234 

𝑀𝑎𝑛 𝑅𝑒𝑝 160.76 4.75𝑒 − 8 𝑀𝐴𝐸 = 22.18 

𝑇𝑟𝑎𝑓𝑓 45.6 3.82𝑒 − 4 𝜎 = 35.75 

𝐼𝑛𝑠𝑝 & 𝐶𝑙 122.00 1.45𝑒 − 8  

𝑆𝑢𝑟𝑓 𝑅𝑒𝑖𝑛𝑠𝑡 _ 𝑀𝑎𝑛 𝑅𝑒𝑝 -80.69 1.45𝑒 − 4  

𝑆𝑢𝑟𝑓 𝑅𝑒𝑖𝑛𝑠𝑡 _ 𝐼𝑛𝑠𝑝 & 𝐶𝑙 -45.72 1.81𝑒 − 4  

𝑆𝑢𝑟𝑓 𝑅𝑒𝑖𝑛𝑠𝑡 _ 𝑇𝑟𝑎𝑓𝑓 45.6 3.82𝑒 − 4  

𝑀𝑎𝑛 𝑅𝑒𝑝 _ 𝑇𝑟𝑎𝑓𝑓 69.01 1.89𝑒 − 5  

𝑀𝑎𝑛 𝑅𝑒𝑝 _ 𝐿𝑎𝑡 𝐶𝑜𝑛𝑐 -92.65 5.95𝑒 − 5  

𝐼𝑛𝑠𝑝 & 𝐶𝑙 _ 𝑇𝑟𝑎𝑓𝑓 -45.72 1.81𝑒 − 4  

 

Table 3. Coefficients and statistics of multi-linear regression model for CIPP alternatives. 

predictors Coeff 𝑃_𝑣𝑎𝑙𝑢𝑒𝑠 Statistics 

𝐼𝑛𝑠𝑝 & 𝐶𝑙 -13.73 2.87e-02 𝑅2 = 0.977 

𝐿𝑎𝑡 𝐶𝑜𝑛𝑐 47.55 8.20e-09 𝐹_𝑠𝑡𝑎𝑡 = 355.7 

Man Reh 106.92 2.98e-09 𝐿𝑜𝑔_𝐿𝑖𝑘 = −291.43 

𝐵𝑦𝑝𝑎𝑠𝑠 77.63 3.73e-06 𝑀𝐴𝐸 = 15.21 

𝐼𝑛𝑠𝑝 & 𝐶𝑙_𝐵𝑦𝑝𝑎𝑠𝑠 -85.07 1.54e-06 𝜎 = 26.81 

𝐿𝑎𝑡 𝐶𝑜𝑛𝑐_𝑇𝑟𝑎𝑓𝑓 47.53 8.20e-09  

𝐿𝑎𝑡 𝐶𝑜𝑛𝑐_𝐵𝑦𝑝𝑎𝑠𝑠 18.20 3.41e-01  

Man Reh_Traff -182.98 7.47e-10  

Man Reh_Bypass 77.57 4.22e-07  
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Dia 6.41 2.23e-30  

 

Finally, to have a probabilistic prediction for a given set of values of predictors, Eq. 47 is 

used, which includes the estimates from the linear regression model above plus the added noise, 

which is assumed to follow a normal distribution with mean 0 and standard deviation of  𝜎. 

 𝐷𝑖𝑟_𝐶𝑜𝑠𝑡 (
$

𝐿𝐹
) = 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐨𝐫𝐬 𝐂𝐨𝐞𝐟𝐟 + N(0, σ) (47)  

3.3.2. Indirect Cost 

 

This consequences category includes all other costs that impact road users, adjacent 

structures, and communities. As shown in Fig. 11, these costs include traffic delay costs, vehicle 

operating costs, damage to adjacent pavements due to excavation, and noise costs. All these costs 

depend on different impact factors that have different values relevant to the direct cost alternatives, 

the level of urbanization, and road classifications. Details about these costs are provided in the 

following sections. 

3.3.2.1. Pavement Service Life Reduction Due to Excavation & Restoration Cost 

 

Replacement or rehabilitation operations where excavations are demanded to execute 

operations will significantly impact the reliability and reduce the service life of top adjacent 

pavement structures due to the reduction of lateral support of remaining pavements and hence, 

causing a reduction in value and an increase in future maintenance cost (Matthews et al 2014). 

According to Tighe et al (2002), the expected reduction value of surrounding pavement is expected 

to reach up to 30%. Ormsby et al (2009) developed an empirical model to estimate the reduction 

value in pavement based on current age and the expected service life as shown in Eq. 48. This 
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model reflects the difference between the present value at the original service life and the present 

value at the reduced service life due to trench excavations, which is assumed to be 70%. Also, the 

increase in maintenance value can be obtained based on Eq. 49, where  𝐶𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒  is the cost of 

routine maintenance per square ft and 𝐴𝑅 is the pavement area under maintenance. 

 𝐶𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑖𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 [1 −
𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 𝑎𝑔𝑒

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑙𝑖𝑓𝑒
] − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 [1 −

𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 𝑎𝑔𝑒

(0.3 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 𝑎𝑔𝑒+0.7  𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑙𝑖𝑓𝑒)
]  

 (48) 

 

 𝐶𝑖𝑛_𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑐𝑒 = 𝐶𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒  𝐴𝑅   (49) 

According to the Texas Department of Transportation (TXDOT. 2023)1 the design life of 

rigid and flexible pavements is 30 and 20 years, respectively. However, for analysis purposes, 40 

years should be used for both. The service life of pavement is defined as the time between two 

consecutive rehabilitation alternatives. The average service life for both rigid and flexible 

pavements in the state of Texas is 12 years. Within the service life of pavement, routine 

maintenance is conducted every 10 years with an average cost of $2,189 and $1,225 per lane per 

mile for rigid and flexible pavements, respectively. According to the Federal Highway Agency 

(FHWA 2015), the construction cost of pavement including traffic control is $8 per yard2 for a 1.5-

inch thickness and between $11 and $12 for a 2.5-inch thickness. Based on the life cycle cost 

analysis conducted by (Andrew et al 2009), the cost of flexible pavement ranges from $449,310 to 

$527,550 per lane per mile, while it is about $468,620 per lane per mile for rigid ones. 

3.3.2.2. Noise Pollution Cost 

 

Excessive construction activities and machine noise can disrupt the surrounding neighbors 

and therefore temporarily reduces the adjacent properties values due to induced noise. Noise level 
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defined in decibels (dB) for a typical project varies depending on the equipment used during 

construction including trucks, pumps, excavators, etc…. This unit of measurement is relative, and 

it is equal to the logarithmic ratio of the noise pressure to the ambient or reference pressure. Also, 

it is measured on a logarithmic scale, which means that every 10dB increment results in doubling 

the sound effect. Noise sources can be classified into either point source, which is caused by 

activities at a specific location such as in construction projects. It is represented by the maximum 

decibel level and spreads spherically in three dimensions. The second category of noise source is 

the line source, which is caused by moving objects along a track such as traffic on a highway 

(Knauer et al. 2006). Noise level depreciates over twice the distance from the noise source starting 

from a 50 ft radius and under topographic, atmospheric, and vegetation effects. According to 

Knauer et al. (2006) and Washington State Department of Transportation (WSDOT) (2012), there 

are four main steps to assess the noise level induced by a given project. This first step is to estimate 

the construction equipment noise level. This equipment can be classified as heavy non-impact 

equipment (such as earth-moving equipment), stationary equipment (such as pumps, and power 

generators), and heavy impact equipment (such as pile drivers and jackhammers). The ranges of 

noise levels for this equipment are 73 to 101dB, 68 to 88dB, and 79 to 110dB, respectively. When 

a project demands multiple equipment running simultaneously, noise levels for all operating 

equipment should be combined; however, because the noise level is on a logarithmic scale, they 

cannot be simply summed. A general state of practice for combining noise levels is shown in Table 

4.  
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Table 4. Method for combining multiple noise levels running simultaneously (USDOT. 1995). 

Difference between the two 

levels 

The amount added to the highest 

0 or 1 dB 3dB 

2 or 3 dB 2dB 

4 to 9 dB 1dB 

10dB or more 0dB 

 

The next step is to define the extent of project noise before depreciation to the reference 

level. Knauer et al. (2006) suggested that the extent of a project's noise depends on the extent of 

surrounding traffic. A general guideline is that if the distance required by project noise to reach the 

reference level is greater than the one required by the traffic, then the reference level is the traffic 

noise level; however, if the opposite is observed, then the reference level is the background level, 

which depends on the level of development and population intensity. The noise level at a specific 

distance and the required distance to reach the background level can be calculated according to 

Eq. 50 & 51. A list of background noise levels measured at 50 ft away from the noise point source 

is shown in Table 5. The traffic noise depends on the volume of traffic, the average speed, and the 

type of truck running on the road and ranges between 70 to 80dB (Corbisier 2003), which are 

typical values for traffic noise level provided by WSDOT (2012). Detailed calculation approaches 

for traffic-induced noise levels are explained by Miller et al. (2014). 

 𝑁𝐿(𝐷) = 𝑁𝐿(50𝑓𝑡) − 25 log (
𝐷

50
)   (50) 

 𝐷 = 50 10(𝑁𝐿−𝑁𝐿𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) 20⁄    (51) 

In this study, the estimated value reduction in surrounding properties will be estimated 

according to Eq. 52 (Matthews & Allouche 2010). First the number of populations will be used to 

select the ambient level of noise and the second step is to estimate the traffic noise. The background 
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noise will be the largest noise level among traffic and ambient. In the following step, the range of 

noise level related to construction equipment will be defined and the required distance to reach the 

background level will be estimated according to Eq. 51. Finally, the average number of properties 

𝑁𝑝 (assuming a specific number) located with a diameter of this distance and their corresponding 

values 𝑃𝑉𝑠 will be implied in Eq. 52 to estimate the reduced values, which is considered one of the 

indirect cost categories. A correction factor, 𝐶𝑁, is added since surrounding properties are not 

permanently affected and only during project duration. The calculation of the correction factor is 

shown in Table 6. 

 𝐶𝑅𝑉 = 𝐶𝑁 (𝑁𝐿 −𝑁𝐿𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) 𝑃𝑉𝑠 𝑁𝑝    (52) 

 

Table 5. Background noise level according to population density (Knauer et al. 2006). 

Population Density (people 

per square mile) 

Noise level excluding traffic 

1-100 35dB 

100-300 40dB 

300-1000 45dB 

1000-3000 50dB 

3000-10000 55dB 

10000-30000 60dB 

>30000 65dB 
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Table 6. Reduction factor of noise level based on project duration CN (Matthews & Allouche 

2010). 

Project Duration (Days) 𝐶𝑁 

<120 0.05 

60 0.1 

90 0.2 

120 0.3 

150 0.4 

180 0.5 

210 0.6 

240 0.7 

270 0.8 

300 0.9 

330 0.95 

≥360 1 

 

3.3.2.3. Traffic Delay Cost 

 

When construction activities take place on a road, there will be a complete or partial road 

closure within the working zone during the project duration. This will cause a loss of time value 

for drivers and passengers since they must take the detour in case of complete closure or drive at 

significantly low speed, which eventually will increase the travel time. Also, partially closed roads 

will divert allocated traffic to adjacent lanes which causes an increase in travel time due to queuing 

and low-speed traveling (Tighe et al. 1999). The expected delay can be attributed to either speed 

change delay, stopping delay, reduced speed delay, queue delay, detour delay, or a combination of 

them. The first two components are related to delays caused by reducing the speed or complete 

stop when approaching the working zone, respectively, depending on whether there is a queue in 

the working zone (i.e., demand volume is larger than the capacity) or not. The other components 

are related to the reduction in traveling speed due to restrictions, the development of queues due 
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to an increase in demand, deacceleration, or traffic control, and finally, due to traveling for a longer 

time while taking the detour. According to FHWA (2011), the first two components are neglected 

by state agencies as they are insignificant concerning others.  

Tighe et al. (1999) suggested three possible scenarios of actions taken in the working zone 

during trenching construction. These scenarios depend on the strategies adopted by decision-

makers to deal with approaching traffic.  

Scenario I: The road is completely open with traffic controlled by a flag person or signal.  

In this situation, the expected delay is caused by road capacity reduction due to traffic control, 

which induces queuing (i.e., the difference between arriving traffic volume and the capacity of the 

road). The expected delay can be obtained according to Eq. 53 (Tighe et al. 1999), where 𝑐, 𝑔, 𝐻𝑉, 

𝐶𝑟 are the cycle length, green time, hourly volume per lane, and the reduced capacity, respectively. 

For this case, the reduced capacity can be calculated according to Eq. 54.  Appropriate values for 

𝑐 & 𝑔 can be found in Tighe et al. (1999), which depends on the average annual daily traffic 𝐴𝐴𝐷𝑇. 

 𝐷𝑒 𝑐𝑎𝑠𝑒 𝐼 =
0.38 𝑐(1−

𝑔

𝑐
)
2
  

3600
+

173 (
𝐻𝑉

𝐶𝑟
)
2
[(
𝐻𝑉

𝐶𝑟
−1)+((

𝐻𝑉

𝐶𝑟
−1)

2
+16 

𝐻𝑉

𝐶𝑟
2 )

0.5

]

3600
    (53) 

 𝐶𝑟 = 𝐶 𝑔/𝑐    (54) 

Scenario II: the road is partially closed with associated traffic diverted to the shoulder. This 

case assumes that the shoulder can carry traffic with a capacity similar to the closed lane, which 

means that the road will maintain its capacity without queuing. Therefore, the expected delay is 

caused by speed restrictions in the construction zone. In this situation, the expected delay is the 

difference in the elapsed time under normal speed and restricted speed as shown in Eq. 55. The 

normal speed can be estimated according to Eq. 56, while the restricted speed is assumed to be 

20 𝑚𝑖𝑙𝑒𝑠/ℎ𝑟. Finally, the expected delay is estimated according to Eq. 56 in 𝑘𝑚/ℎ𝑟. 
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 𝐷𝑒 𝑐𝑎𝑠𝑒 𝐼𝐼 =
𝑤𝑜𝑟𝑘 𝑧𝑜𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑉𝑟
−

𝑤𝑜𝑟𝑘 𝑧𝑜𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑉𝑛
     (55) 

 𝑉𝑛 = 99.322 − 71.047(
𝐻𝑉

𝐶
) + 100.14(

𝐻𝑉

𝐶
)
2

− 61.622 (
𝐻𝑉

𝐶
)
3

   (56) 

Scenario III: when the road is completely closed, the capacity reduces to zero and the entire 

arriving hourly volume 𝐶, is diverted to a detour road. The delay time in this situation can be 

estimated according to Eq. 57, where 𝐿 is the detour length and the 𝑉𝑛 is the design speed in the 

detour.  

 𝐷𝑒 𝑐𝑎𝑠𝑒 𝐼𝐼𝐼 =
𝐿 𝐻𝑉

𝑉𝑛
   (57) 

The normal capacity of a road can be estimated according to Eq. 58, where 1700 is the 

design traffic volume in  𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ℎ𝑟 𝑙𝑛⁄⁄ , 𝐹𝐻𝑉 is the adjustment factor for the presence of heavy 

vehicles. The approaching hourly volume can be estimated based on the 𝐴𝐴𝐷𝑇 and other factors 

such as the hourly factor K, directional split D, number of lanes 𝑁, and peak hour factor 𝑃𝐻𝐹 as 

shown in Eq. 59. More details about the calculation of hourly volume 𝐻𝑉 can be found in the highway 

capacity manual TRB (2000). 

 𝐶 = 1700 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 ℎ𝑟 𝑙𝑛⁄⁄  𝐹𝐻𝑉   (58) 

 𝐻𝑉 =
𝐴𝐴𝐷𝑇 𝐷 𝐾

𝐹𝐻𝑉  𝑁 𝑃𝐻𝐹
  (59) 

Finally, the estimated traffic delay cost is calculated according to Eq. 60, where D is the 

delay in time per vehicle, and T is the project duration, respectively.  𝑉𝑢𝑠𝑒𝑟  is the users’ time value, 

which is assumed to be the additional cost paid by the motorist because of work zone activities.  

 𝐶𝑑𝑒𝑙𝑎𝑦 = 𝐷 𝑇 (𝐻𝑉 𝑇𝑟𝑢𝑐𝑘% 𝑉𝑢𝑠𝑒𝑟𝑇𝑟𝑢𝑐𝑘 𝐴𝑂𝑉𝑇𝑟𝑢𝑐𝑘 +  𝐻𝑉 (100−

𝑇𝑟𝑢𝑐𝑘%) 𝑉𝑢𝑠𝑒𝑟𝐶𝑎𝑟𝑠 & 𝐵𝑢𝑠𝑒𝑠𝐴𝑂𝑉𝐶𝑎𝑟𝑠 &𝐵𝑢𝑠𝑒𝑠)  (60) 
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For simplicity of application, the users’ time value is assumed to be their minimum wage 

at the state where the road is located. 

3.3.2.4. Vehicle Operating Cost 

 

This cost represents the additional expenses paid by the driver as a result of operating 

his/her vehicle for additional time and distance. According to FHWA (2011) and Matthews et al. 

(2015), the additional operating cost of a vehicle approaching a working zone is attributed to either 

an increase in the traveling time due to speed reduction in the working zone, complete stop, stop 

and go driving in the queue, or increasing in the traveling distance when taking a detour. The 

operating cost of a vehicle depends on five main components including fuel and oil consumption, 

tire wear, maintenance and repair, and depreciated values (FHWA 2000). The cost of each 

component is calculated with relevant adjustment and are summed for each vehicle type. In this 

research, a detailed cost calculation is out of scope and unnecessary since the operating costs of 

designated vehicles are already available. Therefore, the operating cost calculated for the year 2004 

for middle-size vehicles and trucks 𝑂𝐶𝐴𝐶𝑎𝑟  & 𝑂𝐶𝐴𝑇𝑟𝑢𝑐𝑘 are adopted and converted to the present 

values by multiplying it with the ratio of consumer price index (CPI) at the current year when the 

costs are estimated as shown in Table 7. Respective values of CPIs can be found in USDOT & 

BTS (2022), which are equal to 133.3 and 205.9, respectively. It is important to note that the 

adopted operating cost values are estimated considering speed variabilities, which are suitable for 

all potential scenarios in the working zone. Eq. 61 represents the additional operating cost imposed 

on the traffic volume due to delays associated with working zone activities, which technically 

depends on the scenarios discussed previously. 𝑆𝑛 and 𝑆𝑟 are the normal speed and the reduced 

speed caused by queue or speed restriction in the working zone, respectively. In case of detour 
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(i.e., scenario III), the 𝐷 (𝑆𝑛 − 𝑆𝑟) is replaced with (𝑑𝑒𝑡𝑜𝑢𝑟 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑤𝑜𝑟𝑘 𝑧𝑜𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ) 

assuming same speed. 

 𝐶𝑜𝑝𝑒𝑟𝑎𝑡 = 𝐷 (𝑆𝑛 − 𝑆𝑟) (𝐻𝑉 𝑇𝑟𝑢𝑐𝑘% 𝑂𝐶𝐴𝑇𝑟𝑢𝑐𝑘 +  𝐻𝑉 (100 − 𝑇𝑟𝑢𝑐𝑘%) 𝑂𝐶𝐴𝐶𝑎𝑟)𝑇   (61) 

To have a probabilistic estimation of indirect cost, Monte-Carlo simulation can be applied 

to all costs and summed up to obtain the total indirect cost. It is expected that the mean of generated 

samples (i.e., total indirect cost) will follow a normal distribution with mean 𝜇𝐼𝑛𝑑 and standard 

deviation of 𝜎𝐼𝑛𝑑. Finally, the probabilistic prediction of the total cost can be obtained using Eq. 

62 assuming mutual independence between the two consequences categories. The independence 

assumption has been taken for simplicity and because the indirect cost models impact factors are 

not related to the impact factors of the direct cost models as shown in Fig. 11. 

 𝑓(𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑛𝑐𝑒𝑠 𝑰𝑭⁄ ) =
1

2𝜋 (𝜎𝐼𝑛𝑑+𝜎𝐷𝑖𝑟) 
𝑒
−
1

2
(
𝐶𝑜𝑠𝑡(𝑰𝑭) −(𝜇𝐷𝑖𝑟+𝜇𝐼𝑛𝑑)

(𝜎𝐼𝑛𝑑+𝜎𝐷𝑖𝑟) 
)
  (62) 
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Table 7.Vehicle operating cost at different speed levels in 2022-dollar value. 

Speed (𝑚𝑝ℎ) Passenger Car ($ 𝑣𝑒ℎ 𝑚𝑖𝑙𝑒⁄ ) Truck ($ 𝑣𝑒ℎ 𝑚𝑖𝑙𝑒⁄ ) 

5 $0.099  $0.64  

10 $0.221  $1.23  

15 $0.370  $2.00  

20 $0.541  $2.89  

25 $0.763  $3.92  

30 $1.032  $5.12  

40 $1.616  $7.91  

50 $2.341  $11.22  

60 $2.71  $15.03  

70 $3.43 $19.34  

 

3.4. Risk Assessment 

 

After estimating both the likelihood and consequences of failure, the next step is to develop 

quantitative and qualitative measures that integrate these parameters to aid in the decision-making 

process. This integration should give a risk measure that reflects the potential losses induced on 

surrounding properties and communities. Quantitative or qualitative measures reflect the expected 

outcomes of any risk model and depend on the nature of the input, the output, and the algorithm 

used to infer risk. As observed in Section 2.3, There are three main approaches to evaluate risk: 

parameter multiplication, risk matrix, and the FIS with different outcome natures (i.e., qualitative, 

or quantitative). The goals of this study in the field of risk assessment are first to develop a new 

risk assessment framework called neuro-fuzzy system, which gives qualitative and quantitative 

risk measures, and it is based on the third approach. The second goal is to discuss the difference 

between the first two approaches and the new model through a case study. The following 

subsections will elaborate on the application of the first two approaches and the development of 

the new model, its training stages, and its application in risk assessment. 
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3.4.1. Parameters Multiplications 

 

In this approach, risk is defined as the multiplication of likelihood and consequences as 

shown in Eq. 63. This approach is considered as the basic definition of risk and has quantitative 

output expressed as expected loss.  

 𝑅𝑖𝑠𝑘 (𝑡) = 𝑃(𝑡) 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑛𝑐𝑒𝑠  (63) 

In this model, the expected loss (i.e., Risk) is directly proportional to the likelihood; it 

approaches its maximum value when the likelihood becomes closer to one. However, in structural 

reliability practice, a structure is considered completely out of service or failed when the likelihood 

value approaches a threshold level 𝑃𝑙𝑖𝑚𝑖𝑡 , which designates different reliability thresholds for 

service and ultimate levels. Therefore, in this study, the likelihood 𝑃(𝑡), is investigated up to 𝑃𝑙𝑖𝑚𝑖𝑡   

and scaled by its corresponding 𝑃𝑙𝑖𝑚𝑖𝑡  to redefine serviceability loss or failure based on reliability 

thresholds. 

This model is sufficient to prioritize rehabilitation or replacement of sewer pipes by 

comparing risk values at the time of investigation, 𝑡, and assigning higher priority to the pipe 

having higher expected loss or risk compared to others. However, the expected loss or risk can be 

converted to a risk index by dividing the consequences by an external parameter as shown in Eq. 

64, for example, the total budget. Each agency has different resources or funds that are directly 

allocated to these structures; therefore, scaling the risk dollar value by the allowable funds or 

resources will give a much clearer vision of the criticality of the structures. The range of risk index 

is restrained between zero and one as shown in Eq. 64, which means that at the failure time or the 

end of the service life, the consequences will be equal to the budget. 

 𝑅𝑖𝑠𝑘𝑖𝑛𝑑𝑒𝑥  (𝑡) =
𝑃(𝑡)

𝑃𝑙𝑖𝑚𝑖𝑡
 
𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑛𝑐𝑒𝑠

𝐵𝑢𝑑𝑔𝑒𝑡
 {𝑅𝑖𝑠𝑘𝑖𝑛𝑑𝑒𝑥  ∈ ℝ|0 ≤ 𝑅𝑖𝑠𝑘𝑖𝑛𝑑𝑒𝑥  < 1}  (64) 
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3.4.2. Risk Matrix 

 

Compared to the previous model, this model is qualitative. It starts by categorizing both 

likelihood, consequence, and risk into different classes. However, instead of inferring risk value 

directly through multiplications as shown in Eqs. 63 & 64 (which in this case is impossible since 

parameters are expressed verbally), both parameters are mapped into the risk domain through a set 

of rules in the form “If antecedent Then consequent”. The antecedent part of this rule represents 

the logical interaction “AND” between likelihood and consequences parameters, while the 

consequent part represents the risk value. In this study, a risk matrix used previously in assessing 

the risk of sewer pipe failure by Salman and Salem (2012) will be adopted shown in Fig. 13. 

 

Fig.  13. Risk matrix used in qualitative assessment of sewer pipes (Salman and Salem 2012). 

This matrix contains five different categories for each likelihood, consequence, and risk, 

which each reflects different levels of severity. To put this matrix in practice, the likelihood 𝑃(𝑡), 

scaled by 𝑃𝑙𝑖𝑚𝑖𝑡  at any time 𝑡, is assigned to the proper class based on its value. The consequences 

are defined as a random variable. The first step is to scale its distribution by the allocated budget 
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as in Eq. 64, then divide the distribution domain as shown in Fig. 14, where 𝐶𝑅 is the ratio of the 

consequences (Total cost) to the budget. Finally, the consequences class to be used in the risk 

matrix is the one that gives the highest probability over its range as shown in Eqs. 65 & 66, where 

𝐹 is the cumulative distribution function of the 𝐶𝑅, 𝑙𝑏𝑖 and  𝑢𝑏𝑖  are the lower and upper bounds 

of the 𝑖𝑡ℎ consequences class, respectively, while 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑐𝑙𝑎𝑠𝑠  is the consequences class 

that corresponds to the highest probability 𝑃𝐶𝑅𝑖. 

 

Fig.  14. Risk matrix used in qualitative assessment of sewer pipes. 

 𝑃𝐶𝑅𝑖 = 𝐹(𝑙𝑏𝑖 < 𝐶𝑅 < 𝑢𝑏𝑖)  (65) 

 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑐𝑙𝑎𝑠𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝐶𝑅𝑖)  (66) 

3.4.3. Neuro-fuzzy system 

 

According to the reviewed literature in Section 2.3, fuzzy inference system (FIS) or fuzzy 

principles has been successfully used in many risk assessment practices. This system was 

originally developed by Mamdani & Assilan (1975), which allows transitions from the absolute 
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truth found in classical logic to the partial truth characterized by subjectivity (Siddique 2013). In 

classical logic, a structure can be considered based on analysis as either failed or not failed, which 

can be interpreted binarily (1 for failed and 0 for not failed) as well; however, if the same structure 

lost 70% of its capacity, the absolute truth is not a good representation because the structure is 

about to fail (1), but it is still being classified as not failed (0). Hence, it is more convenient to 

interpret the condition of the structure using the partial truth, which in this situation can take a 

value in the [0,1] range for example, 0.7 to allow for the approximate conclusion. A typical FIS 

system application is shown in Fig. 15. The FIS consists of three different operations as shown 

starting from mapping the inputs from their crisp value into fuzzy sets represented by membership 

functions (i.e., fuzzification) and ending up with mapping the outputs fuzzy sets back to crisp value 

(i.e., defuzzification) after being subjected to the inference mechanism. 
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Fig.  15. Mamdani fuzzy inference engine with three rules used to evaluate the risk of failure. 

The inference mechanism is the process, in which the input fuzzy sets are nonlinearly 

mapped from the input space to the output space using logical operators, the knowledge base in 

the form of a set of if-then rules (Zadeh 1968), and two consecutive processes; rules implication 

and aggregations. The knowledge base can be acquired from a decision matrix similar to the one 

shown in Fig.14. Finally, the result of rules aggregation is converted back to a crisp value using a 

defuzzification operation. In practice, there are three different inference mechanisms: Mamdani, 
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Sugano, and Tsukamoto (Mamdani & Assilan 1975; Sugeno 1985). Despite the computational 

burdens in the Mamdani inference mechanism, it is preferred in decision-making applications since 

it provides a better interpretation of the knowledge base and expresses the outputs in terms of 

membership functions, which is not available in both Sugano and Tsukamoto mechanisms (Kaur 

& Kaur 2012). 

A major disadvantage of the FIS application is that it is not flexible or trainable. When 

applied in a certain field, the knowledge base, and other parameters such as membership functions 

are defined heuristically by decision-makers, which reflects their desired thresholds and 

prospectives. However, the knowledge base and parameters may change over time based on some 

constraints, changes in decision-makers opinions, or changes in prioritization policies such as the 

addition of extra fuzzy sets to the input fuzzy space, removing specific rules from the knowledge 

base, or adjusting weights (i.e., confidence level) of specific rules. All these potential changes 

make the original FIS inefficient as parts of its essential components are altered. Integrating a 

supervised machine learning algorithm will compensate for the drawback of the FIS and provide 

more flexibility to it. In this study, a neuro-fuzzy system will be configured to enhance the state of 

practice of FIS in risk assessment. Generally, there are three main configurations of combining 

neural networks with FIS: cooperative, concurrent, integrated, or non-cooperative (Abraham 

2005). In this study, the integrated configuration will be used since it allows updating and 

performing the FIS within the same model making the application more practical. In this 

configuration, the FIS is presented in the form of a neural network that has a predefined structure. 

Similar to a conventional neural network, the neuro-fuzzy system consists of a set of layers, in 

which each node and layer carries different parameters and operations in the FIS system. In this 

study, a suggested structure of a neuro-fuzzy system is shown in Fig. 16. To train this system two 
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training phases are required; the first one is the structural learning phase, which aims to define the 

number of nodes in each layer and their activation function, while the second one is supervised 

learning phase, which aims to obtain the optimal FIS parameters using optimization algorithms.  

 

Fig.  16. Example of integrated neuro-fuzzy model for risk assessment. 

3.4.3.1. Structural Learning Phase 

 

Before discussing the optimization algorithm and its alternatives to be used in learning the 

optimal parameters of any FIS system, the goal of this phase is to define or construct essential 

parameters in any FIS system including input and their fuzzy sets and corresponding activation 

functions in addition to the outputs as reflected in the neuro-fuzzy system. This section will discuss 

in detail the role of each layer and corresponding nodes in the proposed system. 

Layer I: this layer is the input layer with several neurons 𝑃 equal to the number of inputs, 

which are in this case the likelihood and the consequences. 
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Layer II: this layer represents an essential operation in the FIS system, which is 

fuzzification. The total number of neurons is 𝑃𝑁, where 𝑁 is the number of neurons connected to 

either input, which represents its corresponding fuzzy sets. As observed in Fig.16, this is a partially 

connected layer since each input in the preceding layer is connected to its corresponding fuzzy sets 

only. The weights matrix in this layer 𝒘𝟐𝟏 and has a size of (𝑃 ×  𝑁) with a unit value where 

connections exist and zero elsewhere. This layer is responsible for mapping the discrete inputs 𝑦𝑝
1 

to their fuzzy set through a distinct membership function designated for each neuron. The typical 

shape of these functions is a Gaussian as shown in Eq. 67, where  𝑦𝑝𝑛
2 is the output of the 𝑛𝑡ℎ 

fuzzy set corresponding to the 𝑃𝑡ℎ  feature, and 𝑎 and 𝑏 are the mean and standard deviation, 

respectively. Other shapes can be assumed such as trapezoidal and triangular; however, this shape 

simplifies the optimization process since it is continuously differentiable.  

  𝑦𝑝𝑛
2 = 𝑒

−(
(𝑎−𝑦𝑝

1 )
2
 

2𝑏2
)

   (67) 

Layer III: the total number of nodes in this layer 𝐽 equals the anticipated number of rules 

in the knowledge base. By default, the anticipated number of rules is equal to the number of fuzzy 

set combinations from the previous layer 𝑁𝑃. This layer is also partially connected as shown in 

Fig. 16, where each node is connected only to two fuzzy sets: one from each feature 𝑃. 𝒘𝟑𝟐 have 

a size of (𝑁2 × 𝑁𝑃). Each row resembles a rule, where the weight values are set to one at indices 

correspondence to the fuzzy sets located in the antecedent part of the 𝑗𝑡ℎ  node (i.e., two fuzzy sets 

for each rule) and zeros elsewhere. This layer is responsible for performing the logical operation 

of the antecedent part of each rule (i.e., node). Therefore, the activation function for all nodes in 

this layer is the logical operation “AND”, which can be interpreted as shown in Eq. 68. 𝑦𝑗
3is the 
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𝑗𝑡ℎ  node output from the third layer and 𝒍𝒋 is the set of nodes (i.e., fuzzy sets) in the second layers 

that are connected to the 𝑗𝑡ℎnode (i.e., rule) in the third layer. 

  𝑦𝑗
3 = 𝑚𝑖𝑛(𝑦1𝑛

2, 𝑦2𝑛
2)  ∀ 𝑛 ∈ 𝒍𝒋    (68) 

 

Layer IV: this layer represents the fuzzy sets of the output, which is a risk. The number of 

neurons 𝐾 equals the number of fuzzy sets designated to the output. This layer implicates the 

outcomes of Layer III on the default consequent parts and then aggregates the results across the 

entire rules set. Initially, it is assumed that this layer is fully connected with the weight matrix 𝒘𝟒𝟑 

of the size of (𝐾 ×  𝑁2), which means that there will be conflicting rules; however, once the 

knowledge base is learned in the supervised learning phase, conflicting rules will be eliminated 

(i.e., assigned zero values to their weights) and only left with informative rules with weights values 

ranging from 0 to 1. The learned values represent the firing strength or the confidence level of 

these rules. The knowledge base learning process depends on other FIS parameters learned during 

the supervised learning phase; therefore, the knowledge base or the rules weights are updated after 

each supervised learning step. It is also possible to allow these weights to be fixed by decision-

makers according to their preferences. The implication and aggregation of rules can be obtained 

by applying Eq. 69, where 𝑦𝑘
4 is the output of the 𝑘𝑡ℎ node, 𝑤𝑘𝑗

2  is the square of weight of the 

𝑗𝑡ℎrule connected to the 𝑘𝑡ℎ output fuzzy set, and 𝑙𝑘 is the set of nodes (i.e., rules) in the third layer 

that are connected to the 𝑘𝑡ℎnode in this layer. 

 

  𝑦𝑘
4 = 𝑚𝑎𝑥𝑗∈𝑙𝑘(𝑤𝑘𝑗

2 𝑦𝑗
3)     (69) 
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Layer V: Similar to conventional neural network, the last layer is the output layer. This output of 

this layer represents the outcome of defuzzification process discussed in previously in the 

application of FIS. Since the target output is risk, the number of neurons in this layer is only one 

with activation function set as centre of area method. The weights connected to this layer are all 

set to one. Because of the complexity of the final shape generated from prior actions, an 

approximation suggested by Kim and Kasabov (1999) will be used, as shown in Eq. 70, where 

𝑑𝑘  & 𝑐𝑘 are the mean and the standard deviation of the output’s Gaussian membership functions. 

  𝑦𝑙
5 =

∑  𝑦𝑘
4𝑑𝑘  𝑐𝑘

𝐾
𝑘=1

∑  𝑦𝑘
4𝑑𝑘  

𝐾
𝑘=1

   (70) 

3.4.3.2. Supervised Learning Phase 

 

The power of machine learning and supervised learning techniques in adopting and 

learning patterns found in a dataset will be utilized to learn the optimal parameters of the FIS 

system. These parameters include membership functions parameters for both inputs and outputs, 

in addition to the knowledge base or rules defined by their weights 𝒘𝟒𝟑. A list of trainable 

parameters is summarized in Table. 8.  

Generally, the learning stages in the proposed model are divided into two main parts. The 

first one is related to the parameter learning stage, in which backpropagation optimization is used 

to track the error path and find the optimal membership function within the parameters space that 

gives the least possible error. The second one is the knowledge acquisition stage and depends on 

the first stage, and it is used to learn the weights of the default rule set 𝒘𝟒𝟑. 
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Table 8. List of trainable and nontrainable parameters in each layer. 

Parameters Description Trainable or Not 

Trainable 

𝒘𝟐𝟏 Weights connecting the first layer 

to the second layer 

Not Trainable 

𝒂𝒑𝒏 & 𝒃𝒑𝒏  Inputs memberships function 

parameters 

Trainable 

𝒘𝟑𝟐 Weights connecting the second 

layer to the third layer 

Not Trainable 

𝒘𝟒𝟑 Weights connecting the third 

layer to the fourth layer, are 

rules’ firing strength 

Trainable 

𝒄𝒌𝒍  & 𝒅𝒌𝒍  outputs memberships function 

parameters 

Trainable 

 

3.4.3.2.1. Parameters Learning Stage 

 

Using available datasets, this model can be trained using a backpropagation algorithm. The 

goal of the backpropagation algorithm is to obtain the optimal parameters that minimize the 

objective functions. A typical objective function is the mean square error shown in Eq. 71, where 

𝑛 is the size of the dataset used to train the model and 𝑦𝑖
5 and 𝑦𝑖 are the expected and true 

responses. Different optimization alternatives can be adopted to conduct this stage and will be 

discussed later. These alternatives vary in their efficiency; however, the trend or the frequency of 

updating the parameters according to Eq. 72 is the same for all of them. The frequency or the trend 

depends mainly on the size of the dataset used to train the model and generally, there are three 

main trends. The first one is the full batch, which allows the utilization of the entire dataset to 

update the parameters per training iteration or epoch. The second one is mini batch, in which 

parameters get updated 𝑛 times per training epoch using the 𝑛𝑡ℎ subset of datasets. The final 

approach is the online batch. It is the same as the mini batch but with the 𝑛 equal to the length of 



71 

 

the dataset. This means that the parameters are updated after each data point per epoch. In this 

study, the mini-batch approach will be used as it provides a balance between the bias and the 

variance in the training process. 

  𝐸𝑏𝑎𝑡𝑐ℎ = 1 𝑛⁄ ∑ (𝑦𝑖
5 − 𝑦𝑖)

2𝑛
𝑖=1     (71) 

  𝒘𝒕 = 𝒘𝒕−𝟏 − 𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆   (72)  

This objective function was adopted in many applications of the neuro-fuzzy system 

(Kothamasu & Huang 2007; Shoaib et al. 2016; Navarro-Almanza et al. 2022); however, this 

function does not guarantee satisfaction one of the main properties found in the neuro-fuzzy 

system. The fuzzy system demands that at any point within the fuzzy domain of either inputs or 

outputs, the summation of membership functions of fuzzy sets should converge to one. To integrate 

this constraint within the objective function, equality constraints are added to the objective 

function according to Lagrange theory (Duc et al. 2006) as shown in Eq. 73. For risk application, 

there are three constraints are added: one for each input (i.e., likelihood and consequences) and 

one for the output (i.e., risk). 

  𝐸𝑏𝑎𝑡𝑐ℎ = 1 𝑛⁄ ∑ [(𝑦𝑖
5 − 𝑦𝑖)

2 +∑ 𝜆𝑗(1 − ∑ 𝜇𝑘𝑖
𝑠
𝑘=1 )3

𝑗=1

2
]𝑛

𝑖=1     (73) 

The mean square error in Eq. 73 is only valid for continuous output, which may not always 

be the case in risk applications. As discussed in Section 3.4.1 and 3.4.2, risk can be interpreted 

numerically as a continuous random variable or qualitatively to reflect the expected loss. However, 

the first approach does not depend on decision rules to infer risk. Since the goal of the FIS is to 

mimic human behavior, which is based on a set of rules, while avoiding overstatement or 

understatement in the qualitative interpretation of risk, the neuro-fuzzy will be trained on data that 

follow certain rule patterns and with risk-interpreted in ordinal scale that reflects the qualitative 

classes of risk. Accordingly, the objective function in Eq. 73 is modified as shown in Eq. 74. 
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𝐸𝑏𝑎𝑡𝑐ℎ = 1 𝑛⁄ 𝑠𝑢𝑚𝑖∈𝑛

[
 
 
 
 

{
 
 

 
 0 𝑦5

𝑖
∈ 𝑅𝑗 ∧ 𝑦𝑖 ∈ 𝑅𝑘 , 𝑗 = 𝑘

(𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑅𝑗 − 𝑦
5
𝑖
)
2

𝑦5
𝑖
∈ 𝑅𝑗 ∧ 𝑦𝑖 ∈ 𝑅𝑘, 𝑗 > 𝑘

(𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑅𝑘 − 𝑦
5
𝑖
)
2

𝑦5
𝑖
∈ 𝑅𝑗 ∧ 𝑦𝑖 ∈ 𝑅𝑘, 𝑗 < 𝑘}

 
 

 
 

+ ∑ 𝜆𝑗(1 −
3
𝑗=1

∑ 𝜇𝑘𝑖
𝑠
𝑘=1 )

2

]
 
 
 
 

                (74) 

The first part of the objective function in Eq. 74 is a piecewise function. This part should 

give zero when the model prediction 𝑦5
𝑖
, belong to the same risk class as the true value 𝑦𝑖 ,(i.e., 

the ordinal value representing the designated class). If 𝑦5
𝑖
 belongs to a higher risk level (i.e., 𝑅𝑗 >

𝑅𝑘)  than the true value or the opposite (i.e., 𝑅𝑗 < 𝑅𝑘), then 𝑦5
𝑖
 is subtracted from the 

𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑅𝑗 of  𝑅𝑗 or the lower bound of 𝑅𝑘 , respectively. Finally, the function is averaged out 

across the entire dataset within a batch including the added equality constrained. The error on the 

epoch level is simply the average error on a batch level as shown in Eq. 75. 

  𝐸𝑒𝑝𝑜𝑐ℎ = 1 #𝑏𝑎𝑡𝑐ℎ ∑ 𝐸𝑏𝑎𝑡𝑐ℎ𝑖
#𝑏𝑎𝑡𝑐ℎ
𝑖⁄     (75) 

After defining the objective function, the next step is to select a suitable backpropagation 

optimization algorithm. Indeed, stochastic gradient descent (SGD) is the most used in neuro-fuzzy 

applications in previous studies. The goal of this study is to try more advanced optimization 

algorithms that could potentially boost the training performance and reduce the required number 

of training epochs to minimize the objective function. The algorithms that will be considered in 

this study are summarized in Table. 9. Finally, recommendations about the best algorithm will be 

given based on the number of epochs required for 𝐸𝑒𝑝𝑜𝑐ℎ  to reach a specific error threshold, which 

is assumed to be 0.0005. This threshold has been chosen after conducting such training 
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experiments after which it is found the error would stabilize around it making further reduction 

very slow. 

Table 9. Summary of optimization algorithms used in training the model. 

Optimization 

algorithm 

Description  Reference  

Adam It stands for adaptive moment estimation; it updates the 

first moment (mean) and the second moment 

(uncentered variance) of the gradients exponentially 

using the decaying moving average of the first and 

second moments. It is best suited when having sparse, 

noisy gradients, or large parameters. 

  

(Kingma & Ba 2014) 

Gradient 

descent with 

momentum 

(momentum) 

This algorithm uses the concept of momentum to 

expedite the convergence. The amount of parameter 

change depends on the current gradient, the most recent 

change, and the momentum coefficient. 0.9 is the typical 

momentum coefficient value. 

 

(Qian 1999) 

Nesterov 

accelerated 

gradient. 

(NAG) 

It has a similar concept to the Gradient descent with 

momentum, but instead of evaluating the gradient using 

the previous step parameters, it evaluates the gradients 

using the look-ahead value. This will minimize the 

overshooting pitfall in the Gradient descent with 

momentum. 

 

(Nesterov 1983) 

Adagrad This algorithm updates the parameters based on the 

summation of the squared gradients for all previous 

steps and works perfectly with sparse gradients. The step 

size for each parameter is the learning rate divided by 

the square root of the summation of the gradients added 

to an error tolerance. One major drawback of this 

algorithm is that the step size for each parameter is 

continuously decreasing over time. 

 

(Duchi et al 2011) 

Adelta This algorithm is an enhancement of Adagrad. It was 

developed mainly to reduce the aggressive reduction in 

the step size in the Adagrade algorithm by taking the 

decaying average of all past gradients instead of their 

summation. 

(Zeiler 2012) 

 



74 

 

3.4.3.2.2. Knowledge base learning stage 

 

The purpose of this stage is to learn the corresponding weights 𝒘𝟒𝟑, of rules in the 

knowledge base that truly reflect the data, which resemble decision-makers beliefs. To do so, the 

approach proposed by Wang and Mendel (1992) as displayed in Fig. 17 will be adopted. This 

approach depends on other parameters of the FIS system including fuzzy sets numbers and interval 

and membership functions; therefore, this learning stage is applied after each parameter updates 

in the parameters learning stage and used in the subsequent iteration. In Fig. 17, the first step is to 

pass all training datasets of length 𝑚 into the predefined 𝐽 rules, evaluate the membership functions 

of the fuzzy sets in the antecedent and consequent parts within rules, and take their products. This 

should result in a matrix 𝒘 of size (𝑚 × 𝐽), which will be filtered in the subsequent steps. In the 

next step, for each instant (i.e., each row of matrix 𝒘), the highest weight and corresponding rule 

are selected and added to matrix 𝑴 of size (2 × 𝑚). In this matrix, there is a potential for 

duplicated rules, but with different weights; therefore, similar rules are isolated in separate 

submatrices 𝑲𝒓. Finally, the highest weight in each of the submatrices 𝑲𝒓 is taken and added with 

its corresponding rule to matrix 𝑳 of size (2 × 𝑅). 𝑅 is the true number of rules in the knowledge 

base, which can be equal to or less than the default number of rules 𝐽. This process will inherit the 

rules that most reflect the pattern found in data along with their firing strengths or weights, which 

resemble the confidence level. 

  



75 

 

 

Fig.  17. Evaluation approach of rules firing strengths. 
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3.4.3.3. Application in Risk Assessment 

 

This section aims to orient the scope of this model on risk assessment and suggest a 

framework to collect the training data, which will be used to obtain the knowledge base and the 

true parameters through the training process. In risk assessment practice, the first step is to define 

the potential threats and failure modes under certain hazards. For example, sewer main are exposed 

to sulfide (hazard), which potentially induce wall erosion (potential threats) and induce certain 

failure modes such as reinforcement exposure, flexural failure, etc… The second step is to find the 

likelihood of occurrence of failure mode and related consequences. As shown in Section 3.4.2, 

risk can be defined qualitatively (e.g., low, moderate, high, and very high) and used later to infer 

risk. Up to this point, this would be sufficient in the case of using a predefined risk matrix; 

however, training the neuro-fuzzy system would require a set of training data. Fig. 18 suggests a 

framework to gather training data and use it in neuro-fuzzy. It starts by collecting a set of failure 

observations under certain threats for a particular hazard event, then these observations are passed 

to decision-makers or engineers who will assign a qualitative class to the risk according to their 

beliefs for every observation. At this point, the size of the training dataset would be the number of 

observations times the number of decision-makers. By defining other parameters such as the 

number of fuzzy sets and fuzzy intervals, the proposed model can be then trained to obtain the 

firing strengths and the parameter values that best describe the training data. The power of this 

model is not only in its ability to learn the optimal parameters but also in its ability to adopt future 

changes in FIS such as reducing the firing strengths or changing the fuzzy intervals. These changes 

might occur based on risk perception and the attitude of decision-makers. 
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Fig.  18. Proposed application of neuro-fuzzy system for risk assessment. 

3.5. Methodology Practice 

 

In previous sections, the likelihood of failure and serviceability loss, consequences of 

failure, and risk evaluation approaches were introduced. The likelihood and consequence of failure 

approaches are only intended for RCSPs; however, the proposed risk model applies to any structure 

under specific threats. Therefore, to put the methodology into practice, the first step is to define 

hazard events and their potential threats. For both service and ultimate level, the hazard events are 

chloride and sulfide exposure. These events are going to induce threats on the structures such as 

wall erosion and reinforcement corrosion which under sustained loading will reduce the 

serviceability and increase the chance of failure from different perspectives. The next step is to 

define all sets of input parameters as either random variables or deterministic depending on their 

availability or ease of measurement. Afterward, a Monte-Carlo simulation is conducted to have an 

estimate of likelihood at both service and ultimate levels, which defines loss of serviceability or 

failure whenever exceeding their permissible values. When the interest of decision-makers is to 

evaluate the risk associated with serviceability, they can refer to the consequences of the failure 
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approach and mainly to the CIPP alternative and its associated indirect cost to have a probabilistic 

estimate of the total cost or the consequences; otherwise, they can refer to the replacement 

alternative as it is more suitable with failure. Finally, the likelihood at any time for a specific level 

can be integrated with its relevant consequences using either risk approach mentioned above. The 

entire process is summarised in Fig. 19 and illustrated in the upcoming case study. 

 

Fig.  19. Procedure to estimate the risk of failure or serviceability loss of RCSPs under sulfide 

and chloride hazards. 
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Chapter 4. Case Study 

4.1. Overview 

  

This chapter will demonstrate the application of all three risk approaches in addition to the 

likelihood of failure and serviceability loss and consequences of failure frameworks presented in 

Chapter 3 through a case study. In the first section, the reliability of the 42 𝑖𝑛𝑐ℎ RCSP located in 

Arlington, Texas at both service and ultimate level will be examined. The outcome of this section 

is profiles or cumulative probability density functions that show the variation of likelihood at any 

time during the lifetime of the RCSP. In the next section, a detailed calculation of direct and 

indirect costs in addition to the total cost of consequences predictive distribution will be obtained 

for both CIPP and replacement alternatives. In the last section, a detailed risk assessment using all 

three approaches in addition to the demonstration of training the neuro-fuzzy model including 

recommendations on the best optimization algorithm, and presenting model adaptability will be 

provided. 

4.2. Reliability Analysis 

 

A 42 𝑖𝑛𝑐ℎ RCSP located in Arlington, Texas, and installed in 1984 will be investigated for 

120 years from the date of installation. This pipe has been under service since then, after 

inspection, it was found that this pipe exhibits significant deterioration under the effect of sulfide 

and chloride attack. Therefore, the goal of this section is to investigate the reliability of this pipe 

considering all limit states or failure modes defined in the Chapter. 3. According to Fig. 19, to 

investigate the reliability at both service and ultimate levels, the first step is to define the set of 

input parameters. Values of these parameters are provided in Table 10. These values can be 

obtained from inventory records, specifications, standards, and previous studies and can 
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interpreted as either deterministic or random variables. This depends on different factors related to 

data availability, ease of measurement, and error levels. These parameters can be classified as 

either weather, environmental, mechanical, or geometrical parameters, which are designated in 

different colors in Fig. 9. 

Table 10. Deterministic and stochastic input variable of limit state functions. 

Variable Distribution Value References 

Class Deterministic III (ASTM C76 2022) 

 𝐶 Normal 𝜇 = 25.4𝑚𝑚, 𝜎 = 0.1𝜇 

𝐶𝑟 Deterministic 0.8 (Coronelli 2002) 

𝐶𝑙𝑠𝑢 Lognormal 𝜇 = 0.65 %, 𝜎 =
0.078%  of concrete unit 

weight 

(Sulikowski &Kozubal 

2016) 

𝐶𝑙𝑡ℎ Lognormal 𝜇 = 0.40 %, 𝜎 = 0.09%  

of concrete unit weight 

𝐷𝑐𝑙 Lognormal 𝜇 = 50𝑚𝑚2 𝑦𝑒𝑎𝑟⁄ , 
𝜎 = 16 𝑚𝑚2 𝑦𝑒𝑎𝑟⁄  

𝐷𝑖𝑛 Deterministic  1219.2 𝑚𝑚 (ASTM C76 2022) 

𝐸𝑊 Deterministic 18.62 𝑔  

 

(ASTM G102 2015) 

𝐻 Uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 1.83𝑚, 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 7.1𝑚, 

(ACPA 2017) 

𝑅 Extreme value 𝜇 = 5.41 , 
𝜎 = 1.16 

(Hingorani et al. 2013) 

𝐻2𝑆 Uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 0 𝑝𝑝𝑚, 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

= 50 𝑝𝑝𝑚 

(Li et al. 2019) 

𝑅𝐻 Normal 𝜇 = 80% , 
𝜎 = 8% 

assumed 

𝑅𝑠 Deterministic 609.6 𝑚𝑚 (ASTM C76 2022) 

𝑏1 Deterministic 1 𝑚 (ASCE 15 2017) 

ℎ Uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
= 10.16 𝑐𝑚, 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
= 14.1 𝑐𝑚 

(ASTM C76 2022) 

𝑤 𝑐⁄  Uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 0.48, 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 0.53 
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Table 11. Deterministic and stochastic input variable of limit state functions (continued). 

Variable Distribution Value References 

𝑤 𝑐⁄  Uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 0.48, 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 0.53 

 

𝑓𝑐0 Normal 𝜇 = 27.6 Mpa , 
𝜎 = 2.76 Mpa 

𝑓𝑦0 uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
= 483 𝑀𝑝𝑎, 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
= 552 𝑀𝑝𝑎 

𝑓𝑐𝑡0 Deterministic 3.3 𝑀𝑝𝑎 (Den & Uijl 1996) 

 

𝑘1 Deterministic 3.27

∗  10−3
𝑚𝑚

𝑔 𝜇𝐴 𝑐𝑚 𝑦𝑒𝑎𝑟
 

(ASTM G102 2015) 

𝑛 Deterministic 3 (Den & Uijl 1996) 

𝑛𝑟𝑖𝑏𝑠 Deterministic 1 Assumed 

𝑛𝑏𝑎𝑟𝑠 Deterministic 1 Assumed 

𝑟𝑠 Deterministic  8𝑚𝑚, 7𝑚𝑚,& 5.73𝑚𝑚 (ASTM C76 2022) 

𝑤𝑙𝑖𝑚𝑖𝑡  Deterministic 0.254 𝑚𝑚 (ASTM C76 2022) 

𝑤0 Deterministic 0.254 𝑚𝑚 (Den & Uijl 1996) 

𝛼 Uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 2.9, 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 3.3 

(Zhou et al 2011) 

𝛼1 Uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 0.012, 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =0.0198 

(Imperatore 2022) 

𝛼𝑦 Uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 0.012, 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =0.0547 

𝜀𝑐𝑟 Deterministic 0.003 (Den & Uijl 1996) 

𝜀𝑢0 Uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 0.08, 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 =0.01 

(ACI PRC 439.5 2018) 

𝜀𝑦 Deterministic 0.005 (ASTM C76 2022) 

𝜌 Deterministic 7.86 
𝑔

𝑐𝑚3
 

(ASTM C76 2022) 

𝛽𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , 𝛽𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒  Deterministic 4.7, 2.9 (Holicky 2009) 

𝜃𝑓  Deterministic 0.95 (ASCE15 2017) 

 
𝜃𝑣𝑝 Deterministic 0.9 𝜃𝑣𝑝 

 

Based on Tables 10 & 11, The pipe under investigation is a class III pipe designed using 

the D-Load test method according to ASTM C76 (2022) to sustain maximum load until 0.1 𝑖𝑛𝑐ℎ 
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(0.254 𝑚𝑚) is observed. The designated pipe class has three different wall types, with different 

reinforcement, wall thickness, and concrete cover requirements. Since the available inventory 

records did not specify the wall type, these parameters are assumed as random variables with 

uniform distribution ranging from the least permissible to the maximum one. Similarly, inventory 

records did not show any information about the buried depth 𝐻; therefore, it is assumed to follow 

a uniform distribution with limits recommended by ACPA (2017). This allows consideration of 

variabilities in earth and vehicular loading; hence, in the applied moment 𝑀𝑢, shear 𝑉𝑢, and thrust 

𝑁𝑢. mechanical properties of concrete and wire reinforcement were selected based on 

recommendations found in ASTM C76 (2022), ASTM A1064 (2013), and ACI 439.5R (2018). 

Environmental factors such as chloride concentration threshold 𝐶𝑙𝑡ℎ, chloride concentration at 

surface 𝐶𝑙𝑠𝑢, and chloride diffusion coefficient 𝐷𝑐𝑙, sulfide concentration 𝐻2𝑆, are also retrieved 

from relevant references. Finally, because the analysis depends on the temperature in both Kalvin 

and Celsius (𝑇𝑘 and 𝑇𝑐) and relative humidity 𝑅𝐻, relevant data were retrieved from the (National 

Weather Service 2022) as shown in in Fig. 20. In the time-dependent analysis, the analysis will be 

conducted on month levels; therefore, the average monthly temperatures from the date of pipe 

installation until the end of year 2021 will be used. For the remaining 83 years, the average monthly 

temperatures are randomly predicted within the 25th and 75th quantiles of the previous monthly 

average data shown in Fig.20. 𝑅𝐻 data are assumed to follow uniform distribution ranging from 

80% to 100% percent. Despite the results are provided monthly, they are present on a yearly scale 

for interpretability. 
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Fig.  20. Average monthly temperature variation from 1986 until 2021 in the Dallas Fort Worth 

metropolitan area. 

The essence of this framework is the Monte-Carlo simulation. In this case study, Monte-

Carlo simulation with Latin hypercube sampling technique will be used. The Latin hypercube 

sample is a very effective sampling technique compared to a random number generator as it 

ensures equal sampling across the entire domain of sampling. It starts by dividing the domains of 

random variables into 𝑘 different intervals, which is, in this case, going to be ten, then 𝑛 different 

samples are generated from each interval, which is, in this case, equal to 4000. This makes the 

total number of samples 𝑁 equal to 𝑘 × 𝑛 or 40000. This process is conducted only at the 

beginning, then samples are used to evaluate the likelihood on a monthly base according to Eq. 44.  

Before starting the simulation process, it is important to have an estimate of the permissible 

likelihood values that define serviceability loss 𝑃𝑙𝑖𝑚𝑖𝑡𝑠𝑒𝑟 ,or failure time 𝑃𝑙𝑖𝑚𝑖𝑡𝑢𝑙𝑡 . To do so, 
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reliability index values for 1 year’s investigation period 𝛽𝑠𝑒𝑟𝑣𝑖𝑐𝑒  and 𝛽𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒  and given in Table 

11 are converted to equivalent likelihoods for a 120-year investigation period according to Eqs. 

76, 77, & 78, where 𝐹 is the cumulative distribution of standard normal distribution. The values of  

𝑃𝑙𝑖𝑚𝑖𝑡𝑠𝑒𝑟 and  𝑃𝑙𝑖𝑚𝑖𝑡𝑢𝑙𝑡  are 0.1587 and 0.212, respectively. 

 . (𝛽𝑠𝑒𝑟𝑣𝑖𝑐𝑒) 120 = 𝐹𝑛𝑜𝑟𝑚𝑎𝑙((𝛽𝑠𝑒𝑟𝑣𝑖𝑐𝑒) 1)
120  (76) 

 . (𝛽𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒) 120 = 𝐹𝑛𝑜𝑟𝑚𝑎𝑙((𝛽𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒) 1)
120 (77) 

 (𝑃𝑙𝑖𝑚𝑖𝑡)120 = 𝐹
−1

𝑛𝑜𝑟𝑚𝑎𝑙(−(𝐵𝑙𝑖𝑚𝑖𝑡)120) (78) 

After generating samples, the next step is to evaluate the initiation of environmental 

chloride and sulfide hazards following the procedure described in Sections 3.2.1.1 and 3.2.1.2. 

The 𝑡𝑖𝑛𝐶𝑙  is the time when the likelihood 𝑃(𝐶𝐿𝑆(𝑡) ≤ 0) exceeds the permissible values 𝑃𝑙𝑖𝑚𝑖𝑡𝑠𝑒𝑟, 

which is in this case 1 year. The 𝑡𝑖𝑛𝐻2𝑆 is a predictive normal distribution shown in Fig. 21 with a 

mean equal to 130 months (i.e., 11 years).  

𝑡𝑖𝑛𝐶𝑙  and 𝑡𝑖𝑛𝐻2𝑆   are used to evaluate reliability, hence the likelihood of each failure mode 

or limit state function at service and ultimate levels. The evaluation process starts at time 𝑡 equals 

to min (𝑡𝑖𝑛𝐶𝑙 , 𝑡𝑖𝑛𝐻2𝑆). Fig. 22 & 23 show the likelihood variation of different limit states at both 

service and ultimate levels in addition to the combined likelihoods at both levels estimated using 

reliability block diagrams explained in Section 3.2.3. These likelihoods can be used to estimate 

the end of service life or the lifetime of RCSPs from different prospectives as shown in Table 12. 

For example, if decision-makers are only interested in observing cracks, then the likelihood of 

observing cracks can be compared with 𝑃𝑙𝑖𝑚𝑖𝑡𝑠𝑒𝑟 to estimate the service life; however, if decision-

makers are interested in all limit states, then they can use the combined likelihood. 
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Fig.  21. Predictive distribution of sulfide attack initiation time. 

Table 12. Expected time of serviceability loss and time of failure based on limit state functions 

or their combinations. 

Limit state function 𝑡𝑠𝑒𝑟 

(𝑦𝑒𝑎𝑟𝑠) 
𝑡𝑓𝑎𝑖𝑙  

(𝑦𝑒𝑎𝑟𝑠) 

𝑃𝑙𝑖𝑚𝑠𝑒𝑟𝑣
= 0.1587, 

𝑃𝑙𝑖𝑚𝑢𝑙𝑡
= 0.2121, 

𝐶𝑊𝐿𝑆 16 -  

𝐵𝑆𝐿𝐿𝑆 9 -  

𝑊𝑇𝐿𝐿𝑆 31 -  

𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 40 -  

𝐹𝐿𝐿𝑆 - 54  

𝑆𝐿𝐿𝑆 - 61  

𝑅𝑇𝐿𝐿𝑆 - 107  

𝐷𝐿𝐿𝑆 - 66  

𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 - 36  
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Fig.  22.  (a) Likelihood of observing crack width more than 0.254 mm. (b) Likelihood of losing 

bond strength. (c) Likelihood of losing wall thickness cover. (d) System’s likelihood profile at 

service.  
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Fig.  23. (a) Likelihood of flexural failure at the crown; (b) Likelihood of shear failure at critical;  

(c) Likelihood of radial tension failure; (d) Likelihood of reinforcements ductility Loss (e) 

System Likelihood profile at ultimate. 
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4.3. Consequences of Failure 

 

Whether evaluating reliability at service or ultimate levels, counteracting actions applied 

to mitigate failure or extend the service life of RCSPs are accompanied by consequences in other 

words cost. As discussed in Section 3.3, the cost is divided into two main categories, direct and 

indirect cost, and depends on different impact factors. These factors are site, material, and action 

specific. The 42 𝑖𝑛𝑐ℎ RCSP with a total length of 0.5 𝑚𝑖𝑙𝑒𝑠  (i.e., 2640 𝑓𝑡) is located under one 

of the main roads in Arlington, Texas. To investigate the direct cost associated with either 

replacement or rehabilitation using CIPP, it is essential to evaluate associated activities, which are 

the impact factors. Table 13 gives values of impact factors for the two alternatives to be used in 

this case study. Regression models defined in Section 3.3.1 along with Eq. 47 can be used to obtain 

the predictive distributions for both alternatives, which are displayed in Fig. 24. 

Table 13. Set of construction activities to be conducted on either alternative. 

Impact Factor Open-Cut Replacement (ultimate 

level) 

Cured in Place Liner 

(CIPP) (service level) 

Diameter 42-inch 42-inch 

Material PVC pipe - 

Surface Reinstatement 1 - 

Manhole Replacement 1 - 

Inspection & Cleaning 1 1 

Traffic Control 1 1 

Lateral Connection 1 1 

Manhole Rehabilitation - 1 

Bypass pumping - 1 
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Fig.  24. Direct cost predictive distribution: (a) Cured-in-place liner CIPP; (b) Replacement. 

After estimating the direct cost predictive distribution, the next step is to estimate the 

predictive distribution of the indirect costs. According to Section 3.3.2, the indirect cost in this 

study includes costs related to reduction in the service life of pavement, noise pollution, traffic 

delay cost, and vehicle operating costs. Because of the high uncertainties associated with these 

costs, a Monte-Carlo simulation will be conducted to generate predictive distribution. A summary 

of input deterministic and stochastic random variables with their references is provided in Table 

14. 

For any activities to be conducted on this pipe, there are three main scenarios for traffic 

control as shown in Fig. 25. The first one is closing one lane and controlling the second one by 

traffic control. The second one is to divert the traffic flow to the shoulder. The third scenario 

includes the complete closure of the road and the detour of the traffic to a different road.  For 

simplicity, the first scenario will be used in this study. Additionally, construction activities induce 

different levels of noise depending on the type of equipment used to conduct them. A typical set 

of equipment used in both CIPP and replacement with their associated noise level measured in dB 

is shown in Table 15. 
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Table 14. List of input parameters to be used in indirect cost evaluation. 

Parameters Distribution Values Reference 

𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 𝑎𝑔𝑒 Deterministic 36 𝑦𝑒𝑎𝑟𝑠 Assumed to have same 

ages as the pipe. 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑙𝑖𝑓𝑒 Normal 𝜇 = 12 𝑦𝑒𝑎𝑟𝑠 , 

𝜎 = 2 𝑦𝑒𝑎𝑟𝑠 

(TXDOT 2023)1 

𝑖𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 Normal 𝜇 = 468,620 $ 𝑙𝑎𝑛𝑒.𝑚𝑖𝑙𝑒⁄ , 

𝜎 = 50,000 $ 𝑙𝑎𝑛𝑒.𝑚𝑖𝑙𝑒⁄  

(Andrew et al. 2009) 

Assuming rigid pavements 

𝐶𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 Normal 𝜇 = 2,189 $ 𝑙𝑎𝑛𝑒.𝑚𝑖𝑙𝑒⁄ , 

𝜎 = 218.9 $ 𝑙𝑎𝑛𝑒.𝑚𝑖𝑙𝑒⁄  

(Andrew et al. 2009) 

Assuming rigid pavements 

𝐶𝑟𝑒ℎ𝑎𝑏 lognormal 

 

𝜇 = 29.85 $ 𝑓𝑡⁄ , 

𝜎 = 2.98 $ 𝑓𝑡⁄  

Estimated from the direct 

cost bidding tabs of 

replacement project 

Population 

Density 

Uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
= 100𝑐𝑎𝑝𝑖𝑡𝑎 𝑚𝑖𝑙𝑒2⁄ , 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

= 14,000𝑐𝑎𝑝𝑖𝑡𝑎 𝑚𝑖𝑙𝑒2⁄  

(staticatlas.com) 

Speed Discrete [35,40,45,50,55]𝑚𝑝ℎ Typically founded in local 

and arterial roads 

𝐴𝐴𝐷𝑇 lognormal 𝜇 = 4542.61 𝑣𝑒ℎ 𝑑𝑎𝑦⁄ , 

𝜎 = 454.3 𝑣𝑒ℎ 𝑑𝑎𝑦⁄  

(gis-

txdot.opendata.arcgis.com) 

𝐻𝑉 Uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 2%, 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 25% 

Valid values found in 

(HCM. 2000) 

Replacement 

duration 

Normal 𝜇 = 60 𝑑𝑎𝑦𝑠, 

𝜎 = 5 days 

Assumed 

CIPP duration Normal 𝜇 = 30 𝑑𝑎𝑦𝑠, 

𝜎 = 5 days 

Assumed 

𝑃𝑉 Normal 𝜇 = 250,000 $ , 

𝜎 = 50,000 $ 

Assumed 

The average 

population per 

household 

Deterministic 5 Assumed 

𝑉𝑢𝑠𝑒𝑟 𝑇𝑟𝑢𝑐𝑘 lognormal 𝜇 = 47.94 $ ℎ𝑟⁄  , 

𝜎 = 4.8 $ ℎ𝑟⁄  

(TXDOT. 2023)2 

𝑉𝑢𝑠𝑒𝑟𝐶𝑎𝑟 lognormal 𝜇 = 34.93 $ ℎ𝑟⁄  , 

𝜎 = 3.5 $ ℎ𝑟⁄  

(TXDOT. 2023)2 

𝐴𝑂𝑉𝐶𝑎𝑟𝑠  Discrete [1,2,3] 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 (TXDOT. 2023)3 

𝐴𝑂𝑉𝑇𝑟𝑢𝑐𝑘 Deterministic 1 𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟 (TXDOT. 2023)3 

Detour ratio Uniform 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 1, 
𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 = 2 

Assumed 
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Fig.  25. Traffic control scenarios; (a) One lane closure with traffic control; (b) One lane closure 

with diverting traffic to shoulder; (c) Complete road closure. 
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Table 15. Noise level of construction equipment used in CIPP and replacement alternatives. 

Alternative Equipment Noise Level (dB) 

Cured in Place Liner (CIPP) Air compressor 80 

Generator 80 

Pump 77 

Utility Truck 84 

TV Truck 84 

Jeter Truck 84 

Refrigerator Unit 82 

Replacement Air compressor 80 

Backhoe 80 

Pump 77 

Crane Mobility 85 

Dump Truck 84 

Utility Truck 84 

Grader 85 

Roller 85 

Jack Hammer 85 

Paver 85 

 

Some indirect cost categories might be irrelevant to some construction alternatives; for 

example, CIPP does not necessarily require excavation unless, in certain circumstances, access to 

the pipe is available. Therefore, in this case study, the pavement reduction value and maintenance 

are excluded from this alternative. For the replacement alternative, all categories will be included 

in the analysis. Since the age of the adjacent pavement exceeds the service life at the time of failure, 

the pavement reduction value will simply be the cost of rehabilitation or reinstatement of the 

pavement adjacent to the pipe along the working zone and not the reduced value added to the 

increase in maintenance cost. The outcome of Monte-Carlo simulation is a predictive distribution 

for each alternative, which can be assumed to follow normal distribution according to the central 

limit theorem.  
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Finally, the predictive distributions of direct and indirect cost can be combined according 

to Eq. 62. Fig. 26 presents the total cost or consequences distribution. 

 

Fig.  26. Total cost predictive distribution: (a) cured in place liner (CIPP); (b) Replacement. 

4.4. Risk Assessment 

 

4.4.1. Parameters Multiplications 

 

To conduct this approach, the likelihood 𝑃(𝑡), at both levels must be scaled by its 

permissible value 𝑃𝑙𝑖𝑚𝑖𝑡 . On each level, the risk can be evaluated on either failure mode or multiple 

failure modes. In this case study, the crack width failure mode will be used at the service level, 

while the combined effect of all failure modes will be used at the ultimate level. The reason behind 

selecting the crack width as the main failure mode to address serviceability is that under the effect 

of chloride-induced corrosion, crack propagation is more detrimental than wall erosion as reflected 

by the service life shown in Table 12, while at the ultimate level, most failure modes have 

consistent effect. The expected outcome of this approach is a risk random process shown in Fig. 

27, which is a finite set of random variables over time steps [0, 120].  
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Fig.  27. Risk random process at: (a) Service level; (b) Ultimate level. 

Risk interpreted monetarily can be expressed on an ordinal scale by scaling risk values by 

allowable budgets as shown in Fig.27. For this case study, it is assumed that the budget is a constant 

value over the study period since no information was available about the annual allocation for 

rehabilitation or replacement. The total budget will be $1,000,000 and $2,000,000 for a typical 

rehabilitation and replacement, respectively. However, in future studies, a time series forecasting 

model can be used to estimate the budget at a certain year based on available datasets of prior years 

and the rate of inflations. 
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Fig. 28. Risk random process scaled by allowable budget: (a) Service level; (b) Ultimate level. 

4.4.2. Risk matrix 

 

The risk matrix is a qualitative approach to risk assessment described in Section 3.4.2. It 

consists of a set of rules that combine maps of the interactions between the likelihoods and 

consequences of qualitative classes to risk classes. Therefore, to make this approach available, 

likelihoods and consequences must be converted to qualitative classes. As shown in Table 16, 

likelihoods and consequences must be scaled by the permissible likelihood values and available 

budget, respectively. Fig 29 shows the consequences of class distribution based on budget. The 

designated class of consequences for each alternative is the class that occupies the largest area 

under the distribution. This can be found by finding the largest cumulative density function value 

among class intervals as illustrated in Section 3.4.2. Finally, risk classes over RCSP's lifetime at 

both levels can be obtained as shown in Fig 30 using a set of rules defined in the risk matrix in Fig 

13. 
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Table 16. Qualitative class definitions for both likelihood and consequences. 

 Likelihood Consequences 

Low 
0 ≤

𝑃(𝑡)

𝑃𝑙𝑖𝑚𝑖𝑡
< 0.2 0 ≤

𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑛𝑐𝑒𝑠

𝐵𝑢𝑑𝑔𝑒𝑡
< 0.2 

Low to Moderate 
0.2 ≤

𝑃(𝑡)

𝑃𝑙𝑖𝑚𝑖𝑡
< 0.4 0.2 ≤

𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑛𝑐𝑒𝑠

𝐵𝑢𝑑𝑔𝑒𝑡
< 0.4 

Moderate 
0.4 ≤

𝑃(𝑡)

𝑃𝑙𝑖𝑚𝑖𝑡
< 0.6 0.4 ≤

𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑛𝑐𝑒𝑠

𝐵𝑢𝑑𝑔𝑒𝑡
< 0.6 

High 
0.6 ≤

𝑃(𝑡)

𝑃𝑙𝑖𝑚𝑖𝑡
< 0.8 0.6 ≤

𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑛𝑐𝑒𝑠

𝐵𝑢𝑑𝑔𝑒𝑡
< 0.8 

Very High 
0.8 ≤

𝑃(𝑡)

𝑃𝑙𝑖𝑚𝑖𝑡
< 1 0.8 ≤

𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑛𝑐𝑒𝑠

𝐵𝑢𝑑𝑔𝑒𝑡
 

 

 

Fig.  28. Consequences to the budget ratio: (a) Cured-in-place liner (CIPP); (b) Replacement 

with PVC pipe. 
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Fig.  29. Risk qualitative classes over time: (a) Service level; (b) Ultimate level. 

4.4.3 Neuro-Fuzzy system 

 

The neuro-fuzzy system is the integration of the FIS with the neural network as described 

in Section 3.4.3. Before using this system in risk assessment applications, it must be trained on a 

desired dataset to have the optimal parameters of the FIS system interpreted in the activation 

functions and weights of the neural network. It has two learning phases: structural and supervised 

learning phases. 

4.4.3.1. Structural Learning Phase  

 

 The first step in the training process is the structural learning phase described in Section 

3.4.3.1, which includes setting up the number of fuzzy sets for each input and output parameter 

and their membership functions. The neuro-fuzzy system defined in Fig. 16 will be adopted in this 

study. It consists of two inputs, likelihood, and consequences ratio 𝐶𝑅; five fuzzy sets for each 

input and output, which reflects five classes (i.e., low, low to moderate, moderate, high, and very 

high) used in the risk matrix shown in Fig. 13; and gaussian membership function type for all 
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fuzzy sets except the last fuzzy set for 𝐶𝑅. After evaluating the 𝐶𝑅, it is found to be unbounded 

from the left side, which means that when assuming a Gaussian membership function for the last 

fuzzy set (i.e., Very High), this membership function will give zero membership value similar to 

other membership functions of other fuzzy sets within the universe of discourse, especially for 

large 𝐶𝑅 . Therefore, a sigmoid membership function shown in Eq. 79 is assigned to the last fuzzy 

set of 𝐶𝑅, wherein  𝑎25 & 𝑏25 are the inflection point and factor controlling the transition width, 

respectively. Ranges of fuzzy sets in addition to initial parameter values of membership functions 

are shown in Table 17. 

  𝑦25
2 =

1

1+𝑒−𝑏25(𝑦2
1−𝑎25)

   (79) 

Compared to prior risk assessment approaches, this approach presents a risk on an ordinal 

scale from zero to one with the risk fuzzy sets ranges defined on that scale. For the inference 

mechanism, Mamadani-based approaches will be used with the default number of rules equal to 

25 based on the number of inputs fuzzy sets combination as explained in Section 3.4.3.1. 
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Table 17. Initial input and output parameter values. 

 Fuzzy set Range   Parameters  

likelihood 

(input) 

   

 Low 𝑝{𝑝 ∈ ℝ|0 ≤ 𝑝 < 0.2} 𝑎11 = 0.1, 𝑏11 = 0.1 

 Low to Moderate 𝑝{𝑝 ∈ ℝ|0.2 ≤ 𝑝 < 0.4} 𝑎12 = 0.25, 𝑏12 = 0.1 

 Moderate 𝑝{𝑝 ∈ ℝ|0.4 ≤ 𝑝 < 0.6} 𝑎13 = 0.52, 𝑏13 = 0.1 

 High 𝑝{𝑝 ∈ ℝ|0.6 ≤ 𝑝 < 0.8} 𝑎14 = 0.78, 𝑏14 = 0.1 

 Very High 𝑝{𝑝 ∈ ℝ|0.8 ≤ 𝑝 ≤ 1.0} 𝑎15 = 0.95, 𝑏15 = 0.1 

Consequences 

Ratio (input) 

   

 Low 𝑐{𝑐 ∈ ℝ|0 ≤ 𝑐 < 0.2} 𝑎21 = 0.1, 𝑏21 = 0.1 

 Low to Moderate 𝑐{𝑐 ∈ ℝ|0.2 ≤ 𝑐 < 0.4} 𝑎22 = 0.34, 𝑏22 = 0.1 

 Moderate 𝑐{𝑐 ∈ ℝ|0.4 ≤ 𝑐 < 0.6} 𝑎23 = 0.6, 𝑏23 = 0.1 

 High 𝑐{𝑐 ∈ ℝ|0.6 ≤ 𝑐 < 0.8} 𝑎24 = 0.74, 𝑏24 = 0.1 

 Very High 𝑐{𝑐 ∈ ℝ|0.8 ≤ 𝑐} 𝑎25 = 0.95, 𝑏25 = 5 

Risk 

 (output) 

   

 Low 𝑅1{𝑅 ∈ ℝ|0 ≤ 𝑅 < 0.2} 𝑐11 = 0.05, 𝑑11 = 0.1 

 Low to Moderate 𝑅2{𝑅 ∈ ℝ|0.2 ≤ 𝑅 < 0.4} 𝑐12 = 0.25, 𝑑12 = 0.1 

 Moderate 𝑅3{𝑅 ∈ ℝ|0.4 ≤ 𝑅 < 0.6} 𝑐13 = 0.55, 𝑑13 = 0.1 

 High 𝑅4{𝑅 ∈ ℝ|0.6 ≤ 𝑅 < 0.8} 𝑐14 = 0.8, 𝑑14 = 0.1 

 Very High 𝑅5{𝑅𝑖𝑠𝑘 ∈ ℝ|0.8 ≤ 𝑅 ≤ 1} 𝑐15 = 0.95, 𝑑15 = 0.1 

    

 

4.4.3.2. Supervised Learning Phase 

 

After setting up the structure of the neuro-fuzzy system and initial parameter values, the 

next step is to train and validate the model on datasets to obtain the optimal parameter values. The 

dataset can be obtained using the proposed framework shown in Section 3.4.3.1, which requires a 

set of pipe observations; evaluation of corresponding likelihood and consequences; and 

classification of likelihood, consequences, and associated risk by experts. Since these observations 

are not available in hand and because the purpose of this study is to demonstrate the power of the 
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neuro-fuzzy system in learning the optimal parameters and the knowledge base, this model will be 

trained on randomly generated data from the risk matrix shown in Fig.13. a sample of the dataset 

are shown in Table 18. For training purposes, the risk output in the dataset is taken as the median 

of fuzzy set intervals, which ensures faster convergence. 

Table 18. Sample training data set used for training the model. 

No. 

sample 

Failure 

likelihood  

Consequences 

of failure  

Risk Risk interval 

1 0.81 0.58 3.5 (High) 𝑅4{𝑅 ∈ ℝ|0.6 ≤ 𝑅 < 0.8} 

2 0.96 0.63 4.5 (Very High) 𝑅5{𝑅 ∈ ℝ|0.8 ≤ 𝑅 < 1.0} 

3 0.15 0.54 1.5 (Low to 

Moderate) 

𝑅2{𝑅 ∈ ℝ|0.2 ≤ 𝑅 < 0.4} 

4 0.14 0.99 2.5 (Moderate) 𝑅3{𝑅 ∈ ℝ|0.4 ≤ 𝑅 < 0.6} 

m 0.09 0.11 0.5 (Low) 𝑅1{𝑅 ∈ ℝ|0 ≤ 𝑅 < 0.2} 

 

The size of the generated dataset is 1,000 samples, which is equivalent to 100 observations 

evaluated by ten experts. 80% of this data will be used to train the model, while the rest will be 

used for validation. 

In the following sections, the analysis will be conducted as follows: Firstly, a stochastic 

gradient descent optimization algorithm will be used to train and obtain the optimal parameters. 

Secondly, the model will be retrained on different optimization algorithms seeking to enhance the 

training process, and finally, an illustration of model adaptability will be shown by training the 

model after inducing different changing scenarios either in the fuzzy sets or the knowledge base. 
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4.4.3.2.1. parameter learning 

 

In this section, stochastic gradient descent (SGD) will be used to train the model (i.e., 

obtain trainable parameters shown in Table 8 and the knowledge base). This algorithm is applied 

using the backpropagation process illustrated in Appendix II to minimize the objective function 

shown in Eq.74. The training process will be conducted in mini batches of size 40 samples and 

with a learning rate of 0.005. The training process is halted whenever the error on the epoch level 

𝐸𝑒𝑝𝑜𝑐ℎ  reaches 0.0005. After running the training process the total number of epochs required to 

reach the desired error level is 811 epochs; the values of trainable parameters and knowledge base 

rules weights are displayed in Table 19 and Fig. 31. Finally, the trained membership function 

shapes for likelihood, consequences, and risk are displayed in Fig. 32, where the trained 

membership functions are displayed in colored solid lines. 
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Table 19. Final inputs and outputs membership functions parameters. 

 Fuzzy set Parameters  

likelihood 

(input) 

  

 Low 𝑎11 = 0.042,𝑏11 = 0.096 

 Low to Moderate 𝑎12 = 0.273,𝑏12 = 0.095 

 Moderate 𝑎13 = 0.502 𝑏13 = 0.092 

 High 𝑎14 = 0.722,𝑏14 = 0.089 

 Very High 𝑎15 = 0.944,𝑏15 = 0.098 

Consequences 

(input) 

  

 Low 𝑎21 = 0.035,𝑏21 = 0.094 

 Low to Moderate 𝑎22 = 0.271,𝑏22 = 0.098 

 Moderate 𝑎23 = 0.527,𝑏23 = 0.108 

 High 𝑎24 = 0.867, 𝑏24 = 0.16 

 Very High 𝑎25 = 1.08, 𝑏25 = 9.99 

Risk 

 (output) 

  

 Low 𝑐11 = 0.029,𝑑11 = 0.087 

 Low to Moderate 𝑐12 = 0.268,𝑑12 = 0.103 

 Moderate 𝑐13 = 0.526,𝑑13 = 0.108 

 High 𝑐14 = 0.771,𝑑14 = 0.093 

 Very High 𝑐15 = 0.975,𝑑15 = 0.073 

 

Lagrange 

multipliers 

 

 

likelihood 

Consequences 

Risk 

 

 

𝜆1 = 0.0158 

𝜆2 = 0.0403 

𝜆3 = 0.001 
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Fig.  30. Rules firing strength (i.e., layer IV weights) after training using the modified method in 

this study. 

 

Fig.  31. Initial and updated membership functions for (a) likelihood of failure, (b) Consequence 

ratio, and (c) Risk. 
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4.4.3.3. Outperforming Optimization Algorithm  

 

In this section, a set of optimization algorithms with different learning rates are 

investigated. Suggested optimization algorithms are discussed in Table 9. The best optimization 

algorithm is the one that provides the least number of epochs to reach the desired error threshold 

(i.e., 0.005). Based on Table 20, Adam's optimizer with a learning rate of 0.001 shows the best 

performance. 

Table 20. Optimization algorithms performance in training the neuro-fuzzy system. 

Optimiser Adama Adeltaa Adagrada NAGa NAGb Momentuma Momentumb SGDb  

Number 

of epochs 

19 31 2263 392 69 395 73 811  

Training 

error 

0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005  

Validation 

error 

0.0041 

 

0.0041 0.0040 0.0042 0.0043 0.0043 0.0042 0.0047  

Validation 

error- 

Training 

error 

0.0036 0.0036 0.0035 0.0037 0.0038 0.0038 0.0037 0.00042  

Note: 
a  Optimisation algorithm with 𝛾 of 0.001. 
b Optimisation algorithm with 𝛾 of 0.005. 

 

4.4.3.4. Model’s adaptability 

 

One of the advantages of the neuro-fuzzy model is its ability to accommodate changes in 

the fuzzy intervals and rule weights. These changes are commonly induced by decision-makers to 

match their perspectives and desires. In this case study, three potential scenarios will be induced 

as displayed in Fig. 33. In the first scenario, part of the rules presented in grey color are restrained 

to a firing strength of 0.5, which reflects incomplete or vague knowledge, or high uncertainty about 
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these decisions; therefore, limiting their contribution in the inference process. The other two 

scenarios are related to changes in the fuzzy intervals of consequences ratio and risk as presented 

in green and yellow labels in Fig. 33. The last two scenarios are all about reducing the impact of 

“Low” and “Very High” fuzzy sets of consequences ratio and risk in the decision-making process 

due to insignificant impact or mandating immediate interventions. For example, from a decision-

maker point of view, “Low” and “Very High” linguistic expressions in consequences relate to 

either structures in abandoned areas that have negligible impacts, or to structures that can have 

massive economic or social impacts. Similarly, “Low” and “Very High” linguistic expressions in 

risk relate to either structures in inventory conditions (insignificant failure likelihood) with 

negligible failure impacts, or to structures with forthcoming failure (high failure likelihood) that 

have high impact and demand immediate intervention. In both cases, decision makers would prefer 

to eliminate these structures from the decision process to some extent by reducing the size of 

intervals, which they affiliate to as they are not critical, or decisions have already been made about 

them. 
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Fig.  32. Illustration of different changes to the original risk matrix based on three different 

scenarios. 

The model will be retained using the outperforming optimization algorithm, which is the 

Adam optimizer with a learning rate of 0.001 as shown in the previous section. Results including 

trainable parameters are displayed in Table 21 and Table 22. 
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Table 21. Final inputs and outputs membership functions parameters for scenarios I & II. 

 Fuzzy set Scenario I Scenario II 

likelihood 

(input) 

   

 Low 𝑎11 = 0.044 𝑏11 = 0.098 𝑎11 = 0.055, 𝑏11 = 0.109 
 Low to 

Moderate 
𝑎12 = 0.280 𝑏12 = 0.095 𝑎12 = 0.290, 𝑏12 = 0.093 

 Moderate 𝑎13 = 0.506, 𝑏13 = 0.090 𝑎13 = 0.506, 𝑏13 = 0.083 
 High 𝑎14 = 0.729, 𝑏14 = 0.092 𝑎14 = 0.723, 𝑏14 = 0.082 
 Very High 𝑎15 = 0.954, 𝑏15 = 0.094 𝑎15 = 0.942, 𝑏15 = 0.104 

Consequences 

Ratio (input) 

   

 Low 𝑎21 = 0.041, 𝑏21 = 0.095 𝑎21 = 0.016, 𝑏21 = 0.092 
 Low to 

Moderate 
𝑎22 = 0.270 𝑏22 = 0.098 𝑎22 = 0.251, 𝑏22 = 0.168 

 Moderate 𝑎23 = 0.502, 𝑏23 = 0.088 𝑎23 = 0.577, 𝑏23 = 0.137 
 High 𝑎24 = 0.798, 𝑏24 = 0.140 𝑎24 = 0.973, 𝑏24 = 0.159 
 Very High 𝑎25 = 1.082, 𝑏25 = 5.164 𝑎25 = 1.213, 𝑏25 = 4.98 

Risk 

 (output) 

   

 Low 𝑐11 = 0.026, 𝑑11 = 0.089 𝑐11 = 0.022, 𝑑11 = 0.061 
 Low to 

Moderate 
𝑐12 = 0.265, 𝑑12 = 0.100 𝑐12 = 0.290, 𝑑12 = 0.105 

 Moderate 𝑐13 = 0.517, 𝑑13 = 0.102 𝑐13 = 0.541, 𝑑13 = 0.096 
 High 𝑐14 = 0.755, 𝑑14 = 0.090 𝑐14 = 0.759, 𝑑14 = 0.073 
 Very High 𝑐15 = 0.96, 𝑑15 = 0.073 𝑐15 = 0.954, 𝑑15 = 0.069 

 

Lagrange 

multipliers 

 

 

likelihood 

Consequences 

Risk 

 

 

𝜆1 = 0.099 

𝜆2 = 0.000 

𝜆3 = 0.000 

 

 

𝜆1 = 0.000 

𝜆2 = 0.000 

𝜆3 = 0.000 
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Table 22. Final inputs and outputs membership functions parameters for scenarios III. 

 Fuzzy set Scenario III 

likelihood 

(input) 

  

 Low 𝑎11 = 0.046, 𝑏11 = 0.098 
 Low to 

Moderate 
𝑎12 = 0.280, 𝑏12 = 0.092 

 Moderate 𝑎13 = 0.498, 𝑏13 = 0.086 
 High 𝑎14 = 0.717, 𝑏14 = 0.093 
 Very High 𝑎15 = 0.949, 𝑏15 = 0.098 

Consequences 

Ratio (input) 

  

 Low 𝑎21 = 0.039, 𝑏21 = 0.102 
 Low to 

Moderate 
𝑎22 = 0.269, 𝑏22 = 0.119 

 Moderate 𝑎23 = 0.503, 𝑏23 = 0.090 
 High 𝑎24 = 0.800, 𝑏24 = 0.117 
 Very High 𝑎25 = 1.09, 𝑏25 = 5.10 

Risk 

 (output) 

  

 Low 𝑐11 = 0.018, 𝑑11 = 0.094 
 Low to 

Moderate 
𝑐12 = 0.263, 𝑑12 = 0.103 

 Moderate 𝑐13 = 0.516, 𝑑13 = 0.102 
 High 𝑐14 = 0.752, 𝑑14 = 0.087 
 Very High 𝑐15 = 0.962, 𝑑15 = 0.076 

 

Lagrange 

multipliers 

 

 

likelihood 

Consequences 

Risk 

 

 

𝜆1 = 0.095 

𝜆2 = 0.000 

𝜆3 = 0.000 
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4.4.3.5. Risk Assessment Results Using Neuro-Fuzzy System 

 

After training the model and obtaining the best parameters, it can be used for risk 

assessment. Similar to the application of previous approaches, the likelihood at the service and 

ultimate level in addition to the predicted consequences ratio will be used for risk assessment. Fig. 

34 show the variation of risk expressed on an ordinal scale [0,1] at both level over the lifetime of 

the RCSP under investigation. 

 

Fig.  33. Risk assessment results using neuro-fuzzy approach at (a) Service level; and (b) 

Ultimate level. 
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Chapter 5. Discussion  

5.1. Overview 

  

This chapter provides a discussion about the outcomes of both reliability and risk 

assessment methodologies after the case study application. The first section will discuss the 

outcomes of reliability analysis including the impact of different factors on the reliability. The 

second section will discuss the outcomes of the consequences evaluation and the impact of each 

of the cost categories impact factors on the consequences. The final section will present a 

discussion about the results of the three risk assessment approaches, the outperforming 

optimization algorithm, neuro-fuzzy model adaptability, and finally comparison among risk 

assessment approaches and their best state-of-practice. 

5.2. Reliability Analysis and Likelihoods 

 

After conducting the Monte-Carlo simulation to estimate the initiation time of 

environmental condition 𝑡𝑖𝑛𝐶𝑙  and 𝑡𝑖𝑛𝐻2𝑆, which are 1 and 11 years, respectively, subsequent time-

dependent simulations were conducted at both service and ultimate levels to examine the service 

life and failure time of RCSP under investigation. The outcomes of these simulations are profiles 

that show the variation of likelihoods for different failure modes and their combinations at both 

levels as shown in Fig. 22 & 23. Starting at the serviceability level, compared to crack width and 

bond strength loss limit states, the wall thickness loss limit state under the impact of sulfide-

induced erosion provides the highest reliability and service life for almost two to three times higher 

than other limit states. This is attributed to the early commencement of chloride-induced corrosion, 

which primarily affects crack width propagation and bond strength loss. Another reason for the 
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high reliability of RCSP against wall erosion is the rate of failure, as shown in Fig. 22, the wall 

thickness loss shows the lowest rate of failure compared to other limit states.  

Based on Fig. 22, the rate of bond strength loss is higher than crack width propagation. 

During the uncracked and partially cracked stage shown in Fig. 6, the radial compressive stresses 

𝜎𝑟,𝑟𝑠 from concrete causing confinement increases and reach its maximum values when cracks 

extend through 94% of the cover thickness on average as shown in Fig. 35a. Higher or lower 

values depend on the corrosion current density 𝑖𝑐𝑜𝑟𝑟 ; as 𝑖𝑐𝑜𝑟𝑟 increases, the average amount of 

corrosion 𝑝𝑎𝑣𝑔 increases, which results in higher hoop stresses and faster crack propagation, hence 

earlier strength loss. At a full cracked stage, the confinement provided by concrete diminishes 

significantly due to the softening effect. Similarly, the confinement provided by corrosion products 

reduces, too, and depends on the crack width 𝑤. As the 𝑤 increases, the radial displacement 𝑈𝑟𝑠 

increases causing dissipation of corrosion product, hence reduction in 𝜎𝑟,𝑟𝑠as shown in Fig. 35b. 

The residual bond strength shown in Fig. 35b is retained by the friction and the adhesion between 

reinforcement and concrete. 

 

Fig.  35. (a) Cracked cover percentage at 𝜏𝑚𝑎𝑥; (b) The change of 𝜎𝑟,𝑟𝑠with 𝑤. 
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Following the reduction in bond strength, crack width propagation at the surface occurs at 

a fast rate. The rate of propagation depends on a set of factors including the corrosion product 

expansion ratio 𝛼, concrete cover, and reinforcement sizes. The 𝛼 ratio is basically, the density 

ratio of corrosion products relative to reinforcement and it ranges from 2.9 up to 6 depending on 

the environment. In the sewer environment, this ratio varies from 2.9 to 3.3 according to Zhao et 

al (2011) and its effect on the rate of crack propagation is explained in Fig. 36a, which shows a 

1.67% increase in the rate of crack development for each 1% increase in the 𝛼. Fig. 36b & c show 

the variation in the rate of crack width propagation based on the rebar size and concrete cover. It 

is obvious that the rate of crack propagation increases with the increase in the rebar diameter and 

the decrease in the cover due to a reduction in 𝜎𝑟,𝑟𝑠, which provides confinement action from 

surrounding concrete as shown in Fig. 36d. 
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Fig.  34. (a) The effect of rust to steel volume ratio 𝛼 on the cracking process; (b) The effect of 

rebar size 𝑟𝑠 of the cracking process; (c) The effect of cover thickness 𝐶 on the cracking process; 

(d) The effect of rebar size on 𝜎𝑟,𝑟𝑠. 

At the ultimate level, all limit state functions expect the radial tension loss have a consistent 

failure rate. All these functions reflect the reduction in the resistance or the capacity because of 

geometrical and mechanical properties changes in both concrete and reinforcement. Fig. 37 shows 

the time-dependent reduction in the concrete compressive strength, reinforcement yield strength, 

and ultimate strain. Although the rate of reduction in the ultimate strain is higher than the reduction 

of other properties, the brittle failure rate displayed in Fig. 23b is lower than in flexural and shear, 
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which depend mainly on the compressive strength and yield strength, respectively. This is expected 

since for ASTM A1064 deformed wires used in RCSP, the ultimate strain 𝜀𝑢, is 20 times larger 

than the yield strain 𝜀𝑦, according to (ACI PRC 439.5 2018), additionally, the flexural and shear 

strength depends on other factors that also deteriorate under environmental conditions such as wall 

thickness and reinforcement area, which expedite their rate of failure. 

 

Fig.  35. Reduction rates of compressive strength 𝑓𝑐 ′, yield strength  𝑓𝑦  ,  and ultimate strain 𝜀𝑢. 

The rate of flexural failure is the highest among the rest of the limit states because of its 

significant dependencies on such parameters including the yield strength 𝑓𝑦 , the residual 

reinforcement 𝐴𝑠𝑟, and the remaining wall thickness ℎ𝑟, that deteriorate under environmental 

conditions. The first two factors cause a reduction in the wire reinforcement in carrying tensile 

stresses, while the last factor, ℎ𝑟 reduces the thrust loading contribution in resisting the 
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compressive strength. Additionally, since the rate of reduction of the compressive strength 𝑓𝑐 ′, is 

higher than the yield strength 𝑓𝑦 , the depth of the compressive zone 𝑎1, obtained from Eq. 38 

increases, which leads to a reduction in the lever arm between the tensile forces 𝐴𝑠𝑟𝑓𝑦 , and thrust 

load 𝑁𝑢𝑙𝑡; therefore, reducing the flexural capacity. 

The shear stresses exerted on the pipe are assumed to be resisted sufficiently by concrete 

thickness according to ASTM C76 (2022). The resistance part is the basic shear formula, which 

reflects the lowest possible shear strength that a pipe can sustain at the critical section, which is 

located at  𝑀 𝑉𝑑⁄ = 3 from the pipe crown. As shown in Eq. 39, the residual shear strength 

capacity depends on the compressive strength 𝑓𝑐 ′, the residual reinforcement 𝐴𝑠𝑟, which are 

responsible for strength reduction. 

The lowest observed rate of failure was found in the radial tension limit state function. Due 

to the pipe’s circular shape, tensile forces in rebar 𝐴𝑠𝑟𝑓𝑦  has a radial component that is expected 

to cause splitting cracks along the wall thickness and should be resisted by the concrete. Because 

the rate of reduction of the compressive strength 𝑓𝑐 ′ is higher than the rate of reduction of the 

residual reinforcement 𝐴𝑠𝑟 and the yield strength 𝑓𝑦 , there will be a chance for a radial tension 

failure, but at a very low rate as demonstrated in Fig. 23c.  

This study adds a contribution to the field of service life and failure predictions of RCSPs. A 

Previous study such as Alani and Faramarzi (2015) considered only the effect of sulfide erosion in 

the reliability evaluation of similar structures; Mahmoodian and Alani (2013) and Fu and Kodikara 

(2022) considered the same limit states functions suggested by ASCE 15 (2017). However, the 

first study considered the effect of sulfide-induced erosion only, which is an unconservative 

evaluation, since it was proved in this study that chloride-induced corrosion plays a vital role in 
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diminishing the mechanical and geometrical properties of concrete and reinforcement. The second 

study assumed uniform corrosion and evaluated crack width likelihood using crack control factor 

limit state function, which does not consider the impact of the corrosion process on the cracking 

rate, and it is more about specifying the least amount of flexural reinforcement to maintain a 50 % 

likelihood of observing cracks of 0.254 𝑚𝑚 due to flexural loading. Other studies such as Phan et 

al. (2018), Wu and Wang (2022); Tang et al. (2022), and Marquez-Pe˜naranda et al. (2022) have 

considered the impact of chloride-induced corrosion on the reliability of RCSPs; however, it was 

assumed to occur uniformly in a constant rate based on random assumptions and without any 

consideration of the reduction in the mechanical properties of both concrete and reinforcement. 

5.3. Consequences of Failure  

 

Risk assessment of a structure under an anticipated hazard event responsible for a single or 

a combination failure mode requires two main components. The first component is the likelihood 

of failure modes to occur, which has been discussed previously, while the second component is the 

consequences associated with the occurrence of failure modes. Previous studies discussed in 

Section 2.3 discussed different methods for evaluating the consequences, most of which are 

qualitative due to the high level of uncertainty in the impact factors. In this study, the consequences 

are evaluated monetarily while considering uncertainties in impact factors and they have been 

divided into two main parts depending on the impact factors and the entities that are liable for 

them. The first part is the direct cost, which is the cost liable by the authorities that own the 

structure and includes the cost of activities directly associated with retaining the structural integrity 

or extending the service life of the RCSPs. The second part is the indirect cost, which is the cost 

that affects surrounding communities indirectly because of service interruption and maintenance 

activities on the defective structure.  
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The direct cost was estimated using an alternative-based stepwise multilinear regression 

model. A pipe replacement alternative is associated with failure time or the ultimate level, while 

the cured-in-place liner (CIPP) is associated with service life or the serviceability level. Based on 

the acquired processed dataset explained in Section 3.3.1, regression analysis conducted on both 

alternatives shows a high coefficient of determination 𝑅2 and high 𝐹_𝑠𝑡𝑎𝑡 indicating good fitness 

and ability of the model in describing the variation in the response (cost in $ 𝐿𝐹⁄ ) based on input 

impact factors, respectively after training and validation using 10-Fold cross-validation. Using 

estimated standard error 𝜎, the predictive distributions of the direct cost of both alternatives at 

service and ultimate level were successfully estimated as shown in Fig. 24 using Eq. 47. It is 

important to note that the direct cost of either alternative is not only specific to the diameter of the 

designated pipe as has been proposed by such studies such as Brown & Caldwell (1999) and 

Kaushal et al (2020); however, it is more controlled by the project conditions and associated cost 

on-site as manifested by Zhao & Rajani (2002). For example, excluding manhole repair from the 

direct cost of the CIPP alternative will reduce it by 22%, similarly, eliminating manhole 

replacement in the replacement alternative will reduce the direct cost by 2%. The variation in the 

reduction depends on the individual cost burden induced by the sole activity. The cost $ 𝐿𝐹⁄  at 

service level is 8.7% less than the cost at ultimate, which is lower than what is expected by Kaushal 

et al. (2020). This is attributed to the selected diameter and pipe material used in the replacement 

alternative. For example, if the pipe under investigation is 32 𝑖𝑛𝑐ℎ in diameter, the difference will 

increase to 12.4%. This makes the CIPP alternative more cost-effective for small diameters 

compared to large ones as accredited by Kaushal et al. (2020). Similarly, if the decision-makers 

opt to use HDPE pipe or RCP pipe instead of PVC pipe, the cost difference will rise by 25.6% 

approximately. Other factors such as inspection cost, manhole replacement, and traffic control, 
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positively add to the cost at different levels. Compared to previous studies by Brown & Caldwell 

(1999) Jung & Sinha (2007), and Kaushal et al. (2020), these models provide a better explanation 

of the variability of the direct cost, which makes it suitable in risk assessment practice. 

In the indirect cost, four different categories were considered including traffic delay, 

vehicle operating, noise pollution, and pavement reduction value were analyzed using Monte-

Carlo simulation considering uncertainties in controlling variables. The Pavement reduction value 

was excluded from the CIPP alternative since it doesn’t require excavation. The outcomes of the 

Monte-Carlo simulation are normal predictive distributions of the combination of indirect cost 

categories. These distributions were added to the predictive distribution of direct costs to obtain 

the total cost or consequences. Based on the simulation results, the mean and standard deviation 

of indirect costs for CIPP alternatives are $61,718. 54 and $21,992.41 respectively, while they are 

$305,477.67 and $82,354 for replacement alternatives.  The Average cost breakdown is shown in 

Table 23.  The first thing to observe is that the average ratio of the indirect costs to the total cost 

of both CIPP and replacement is 5.96% and 22.23%, respectively.   Pavement reduction value has 

the highest contribution to the indirect cost of the replacement alternative since the age of the 

pavement exceeds the mean service life of pavement shown in Table 14, which means that 

pavement adjacent to the trench requires a complete reinstatement. The noise pollution cost has 

the least contribution to the indirect cost of the CIPP alternative, while has the highest contribution 

to the indirect cost of the replacement alternative because of the difference in the noise levels 

induced by construction equipment and the project duration. The vehicle operating cost is 1.88 

higher than the traffic delay cost for both alternatives, which is attributable to the significant 

increase in the operational cost when the speed drops from the it is normal values [35,40,45,50,55] 

mph to the speed at the working zone, which is assumed to be 20 mph. 
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Table 23. The average costs breakdown of the indirect costs. 

 Cured In Place Liner 

(CIPP) 

Replacement 𝐼𝑛𝑑𝑖𝑟_𝐶𝑜𝑠𝑡 𝑇𝑜𝑡𝑎𝑙_𝐶𝑜𝑠𝑡⁄  

Pavement reduction 

value 

0 $119,544.82 0%, 8.7% 

Traffic delay cost $17,749.73 $35,512.08 1.71%, 2.58% 

Vehicle operating 

cost 

$33,615.20 $67,266.90 3.24%,4.9% 

Noise pollution cost $10,353.6 $83,153.85 1.00%, 6.1% 

 

All previous studies on indirect costs such as Ormsby (2009), Matthew & Allouche (2010), 

Matthew et al (2014), and Kaushal et al. (2020) proved that the indirect cost of trenchless 

technology is significantly lower than the traditional replacement method and agree with results 

acquired by this study. However, variation in the indirect cost contribution is observed among all 

studies also with results obtained in this study. This variation is related to the categories of indirect 

costs adopted by each study and the input parameters ranges. This study tried to overcome the 

limitations in data availability and overcome bias evaluations by considering uncertainties and 

conducting simulations. 

5.4. Risk Assessment 

 

In this study, three different risk assessment approaches are suggested. The first approach 

is simply the multiplication of both likelihood and consequences, which allows risk monetary 

interpretation as shown in Fig. 27. It is observable that the average risk increases linearly from the 

point where the likelihoods become nonzero, which are 6 and 6.5 years up to the point where they 

reach their threshold values, which are 15 and 37 years for service and ultimate levels, respectively. 

Also, the variation of risk value at a certain age depends on the likelihood at that age and the 
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consequences, too; for example, at early ages, the risk values at both levels have the least variations 

since the likelihoods are close to zero, while at higher ages such as 20 and 60 years, the 

corresponding risk values exhibit the largest variation at service and ultimate level, respectively 

since the likelihoods reach their highest value leaving the variation to be explained by the 

consequences.  

The second approach defines risk in classes based on a set of rules in a decision matrix. 

Risk classification at either level was done based on five different classes (Low, Low to Moderate, 

Moderate, High, and Very High). Risk classification at both levels over time is shown in Fig. 30. 

For service and ultimate levels, the risk classification remains in the Moderate class for a period 

up to 9 and 22 years before it abruptly rises to the High class, which is sustained until 13 and 30 

years, respectively. At the end of service life and failure time, the risk class is “Very High”. As 

mentioned in Chapter 3, the risk classification depends on both likelihoods and consequences 

ratio classes. Since the likelihood changes from zero to one over time, risk classification at early 

ages and at ages close to the service life or failure time is more controlled by the consequences 

ratio. According to Fig. 30, both levels produce a “Very High” consequences class, which entails 

“Moderate”, “High”, and “Very High” risk classes. Despite the first approach gives more appealing 

representation of risk in terms of dollar values, it doesn’t reflect any useful meaning when it comes 

to decision-making practices. For example, saying that the risk is $500,000 in 30 years is not 

informative enough compared to saying that the risk is “Very High”. Additionally, the first 

approach might be misleading at some point; for example, at a certain year, a pipe might have a 

likelihood of failure of 0.1 and consequences of failure of $500,000, while another pipe is 

approaching failure with a likelihood close to 0.9, but with consequences of failure of only 

$50,000. Both cases provide approximately the same risk value; however, a possible decision-
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maker perspective is to give higher priority to the second pipe; therefore, using the first approach 

may not be sufficient to support decisions. 

As discussed in Chapter. 2, fuzzy principles are widely used in engineering practices 

including risk assessment as they allow partial knowledge interpretation and mimic human 

thinking. The proposed model moves one step further and allows continuous updating of the fuzzy 

inference parameters to match decision-makers needs. The training process starts with a structural 

learning process, in which the number of fuzzy sets and intervals for likelihood, consequences, 

and risk are defined based on decision-makers preferences, which are adopted from the risk matrix 

used in the second approach. The second step is supervised learning, which includes the integration 

of both knowledge-based learning and parameter learning processes. It starts with initial parameter 

values and then consecutive forward and backpropagation processes over batches of training data 

until the training error reaches a threshold value. The model was trained using stochastic gradient 

descent (SGD) algorithms with a total number of epochs of 811. Results include optimized 

membership function parameters and rule weights that give the least possible training error as 

shown in Table 19 and Fig. 31. It is obvious that the changes in the membership functions (i.e., 

represented by solid lines in Fig. 32) are at different levels; for example, the “Low” membership 

functions of the likelihood, consequences ratio, and risk moved significantly to the right, while the 

“Moderate” and “Very High” membership functions of the likelihood didn’t change significantly. 

This is mainly controlled by the initial parameters’ values and how close they are to the true values 

and the added Lagrange constraints that maintain proper interactions among membership 

functions. 

 Finally, the neuro-fuzzy model was able to learn the true rules of the risk matrix and their 

corresponding weights as shown in Fig. 32. These weights vary approximately from 0.7 to 0.97, 



122 

 

which are significantly affected by the learned membership functions parameters and by the 

training data. It is recognized that the rules leading to “Low” and “Very High” risk classes have 

the lowest weights compared to other rules, which is attributable to interaction among fuzzy sets 

membership functions in all domains; for example, in the first rule, the Low membership functions 

in all domains shifted significantly to the left side and have a reduced standard deviation; therefore, 

the membership values are expected to drop significantly beyond the means of these fuzzy sets, 

which leads to reduction in the estimated weights related to this rule according to the procedure 

explained in Fig. 17.  

Additional effort in this study is to enhance the performance of the model during the 

training process. Originally, the model was trained using the SGD algorithm with the total number 

of epochs equal to 811; therefore, to reduce the computational cost, other optimization algorithms 

have been tested as exemplified in Section 4.4.3.3. In general, all tested algorithms were able to 

reach the desired training error value, which is 0.0005, but with significant differences in the 

training epochs. According to Table 18, Adam optimizer gives a tremendous improvement to the 

training process among other optimizers as only requires 19 epochs to reach the desired error level. 

Adam optimizer estimates the 𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆 in Eq. 70 using the moving average �̂�𝑡 and its square 

(i.e., uncentered variance) �̂�𝒕 as shown in Eqs. A47 & A48 in Appendix II. During the initial stages,  

�̂�𝑡   increases exponentially at a higher rate than �̂�𝒕 which causes an increase in the 𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆 until 

reaching close to the global minima of the objective function in the parameters’ space where the  

�̂�𝑡 reduces, while the �̂�𝒕  remains constant and results in a reduction in the 𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆. Adagrad 

has the lowest performance among adaptive optimization algorithms (i.e., Adam, Adagrad, and 

Adelta) since it scales the learning rate by the square root of the gradient summation (see Eq. A51 

in Appendix II), which causes a continuous reduction in the 𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆. Replacing the square root 
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with only gradient summation mitigates the reduction in 𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆 and improves the performance 

as suggested in Adelta optimizer. The momentum optimizer is an extension of the SGD algorithm 

that allows the 𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆 to increase every training batch by inducing momentum term 𝜌  as shown 

in Eq. A51 in Appendix II if the gradient maintains the same direction. Despite that the momentum 

optimizer expedites the training process as shown in Table 20, it can result in oscillation near the 

global minimum. This can be avoided by using the NAG optimizer, which evaluates the gradient 

based on the overlooked value of the parameter, 𝒘𝒐𝒗𝒆𝒓𝒍𝒐𝒐𝒌𝒆𝒅 as shown in Eqs. A52 & A53 in 

Appendix II. However, according to Table 20, there is no difference between NAG and 

momentum, which indicates that there is no oscillation near the global minima. 

After showing the ability of the neuro-fuzzy system to learn the parameters of the FIS, in 

addition to training on different optimization algorithms to enhance the performance, the model’s 

ability to accommodate future scenarios related to changes in the FIS to accommodate decision-

makers needs was evaluated and their results are shown in Table. 21 & 22. The first scenario is 

related to adjusting the weights of part of the learned rules to 0.5, which results in insignificant 

changes in the parameters from the control state. Based on Fig. 31, all learned rules that have the 

same consequent (i.e., risk level) have almost identical weights; therefore, when applying Eq. 69 

to the modified rule weights, the outcome will be the same as the control state since it is mainly 

controlled by the rule that exhibits the highest weight (not the adjust one). As a result, the same 

error will propagate backward, leading to the same parameter obtained in the control state. In the 

second scenario, the fuzzy sets of domains of consequences have changed. This has led to changes 

in the parameters of membership functions and the consequences.  The “Low” fuzzy sets 

membership function has a lower mean and standard deviation to accommodate the narrowing in 

the domain; however, the “Low-Moderate” and “High” membership functions have higher mean 
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and standard deviation to accommodate the expansion in their domains. The “Very High” 

membership function showed a higher inflection point as the lower bound of this fuzzy set 

increased from 0.8 to 1.0. A similar trend to the second scenario was observed in the third one but 

with a lower impact. The reason behind this is that the amount of error propagates to the second 

layer node where the consequences membership functions are defined is higher than the error in 

the fifth layer, which means that for similar changes in the domains of fuzzy sets of the inputs and 

outputs, the degree of parameter changes will be higher in the input’s membership functions relate 

to the output’s membership functions. This indicates that the membership functions of the 

likelihood and consequences ratio are more sensitive in the decision-making process compared to 

the risk. Additionally, it is observed that whether the changes are taking place at either the input or 

output levels, the changes will only affect the corresponding fuzzy sets membership functions, 

which reflects independence among inputs and outputs. 

Using the trained model, risk at both levels through time was estimated through the 

feedforward process of the neuro-fuzzy model. The feedforward process is simply the set of fuzzy 

operations used in the FIS system, which map crisp inputs (i.e., likelihood and consequences) to 

defuzzied crisp output (risk). Fig. 34 shows the variation in risk at both levels over time and it is 

expressed in a continuous variable from zero to one, which represents different risk classes as 

explained in Table 18. At the service level, the risk is close to 0.5 and maintains this value for 10 

years, beyond which it starts to increase linearly at different rates until reaching a mean value of 

0.86. The behaviour is the same at the ultimate level but with different values. First, risk maintains 

a value of 0.43 for 16 years, before it starts to increase linearly at different rates until reaching a 

mean value of 0.77 at year 37. At both levels, the predicted risk values over all time steps belong 

to the same risk classes presented in Fig. 30 and obtained from the risk matrix approach, which 
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reflects the efficiency and the accuracy of the neuro-fuzzy model in learning the true parameters 

and rules when trained on a dataset generated from the same matrix used in the risk matrix 

approach.  It is also observed that the variation of risk values at a specific time is not uniform, 

which can be best described by the outputs of the fourth layer (i.e., the output of the implication 

and aggregation FIS operations) as shown in Fig. 38. 

 

Fig.  36.  Outputs of the fourth layer over time; (a) Service level; (b) Ultimate level. 

The mean outputs of the fourth layer 𝑦4 at service level show a dominance of the 

“Moderate” risk class relative to other classes within the first 10 year while they show almost a 

mutual contribution of both “High” and “Very High” risk classes beyond the year 15. On contrary,  

𝑦4 at ultimate level give a close contribution of “Low-Moderate” and “Moderate” classes during 

the first 16 years and a dominance of the “High” class beyond the year 37. This reflects a significant 

correlation between the variation in inputs (i.e., variation in the consequence ratio) and 𝑦4. 

Whenever a certain fuzzy set dominates the contribution, the defuzzification result will always be 

within its domain; therefore, there will be insignificant variation in risk values. This would justify 
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insignificant variation in risk values within initial and final time interval of service and ultimate 

level, respectively, despite the variation in the consequence ratio. 

Major differences among the three approaches are observed in Fig. 28, Fig. 30, and Fig. 34. At 

early ages the multiplication approach gives risk equal to zero while both the risk matrix approach 

and the neuro-fuzzy model give risk equal to “Moderate” and some random values, respectively. 

Similarly at ages beyond the service life and the failure time, the multiplication approach gives 

risk equal to one while both the risk matrix approach and the neuro-fuzzy model give risk values 

of “Very High” and some random values, respectively. This is attributed to the dependency of the 

risk matrix approach and the neuro-fuzzy model on the knowledge base or decision rules rather 

than mathematical operation. Additionally, the output of the neuro-fuzzy model does not only 

depend on the decision rules or always be zero or one at the early age or beyond the lifetime, 

respectively, but also on the values of the consequence ratio. For example, because the mean of 

the consequences ratio of the replacement alternative is higher than the CIPP, the risk output is 

higher at the failure time than at the end of service life although both risk values belong to “Very 

High” class due to soft transitions among classes.  This conclude that the simple multiplication 

approach is suitable to use when there are not any decision rules; likelihood and consequences are 

accurately predicted; or for comparison between rehabilitation and replacement alternatives. Both 

the risk matrix approach and the neuro-fuzzy system are suitable for decision making such as 

prioritization of rehabilitation or replacement; however, the neuro-fuzzy system gives a better 

performance as it allows prioritization among pipes belong to the same risk class, which makes 

resource allocation more efficient and practical. A summary of different properties of the three 

risk approaches are provided in Table. 24. ` 
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Table 24. Comparison among proposed risk models based on different criteria. 

Criteria Simple Multiplication Risk Matrix Neuro-Fuzzy 

Decision-making Not recommended Recommended Recommended 

Interpretability Monetary/scale Qualitative Scale 

Alternative 

comparison 

Recommended Not recommended Not recommended 
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Conclusion 
 

In this research, three different topics were discussed and combined for risk assessment of 

the sewer main. The first topic is related to the reliability analysis of sewer main against service 

loss or failure, while the second and third topics are related to the evaluation of consequences of 

failure and proposing a novel risk assessment model. All these topics were demonstrated through 

a case study. 

The conclusion related to the reliability analysis is: 

 At the service level, wall thickness loss represents the least detrimental limit state functions 

compared to crack width and bond strength loss limit states. This suggests that the 

serviceability of RCSPs is more affected by chloride-induced corrosion rather than 

sulphide-induced corrosion. 

 At the ultimate level, the rates of failure given by all limit states except the radial tension 

are consistent. The rates of failure are highly affected by the residual geometrical and 

mechanical properties of reinforcement and concrete. 

 The chloride-induced corrosion has the highest impact on the compressive strength; 

therefore, causing a significant drop in the flexural, shear, and radial tension capacities.  

 Based on the parametric study, the expansion coefficient of the corrosion product, wire 

diameter, and cover thickness play a vital role in controlling the propagation of crack width. 

In addition to the bond strength. 

 A reliability block diagram (RBD) has been used to obtain the overall reliability at both 

service and ultimate levels assuming parallel and series configurations of limit states, 

respectively. The parallel configuration used at the service level exaggerates the service 
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life; therefore, for best practice, it is recommended to use the most detrimental limit state 

function to find the service life. 

Possible future research directions encompass conducting extended experiments to explore 

sulfide erosion and chloride corrosion in settings resembling sewer environments. Additionally, 

conducting further experiments to investigate the progression of chloride corrosion during the late 

cracking stage and its susceptibility to weather conditions is imperative. Moreover, in-depth 

investigations into pitting corrosion, including its distribution during the initial and later stages of 

cracking, as well as its impact on the mechanical and microstructural properties of reinforcements, 

could help address numerous uncertainties within this framework. 

The conclusion related to the consequences evaluation model is: 

 Direct cost models related to cured-in-place liners and pipe replacement showed high 

𝑅2 and 𝐹_𝑠𝑡𝑎𝑡 indicating good fitness and ability of the model in describing the 

variation in the direct cost based on impact factors. 

 The proposed models show a high dependency on the diameter and material. The 

difference between both alternatives reduces as the diameter of the defective pipe 

increases or the material of the new pipe matches the old one (i.e., RCSP). Other impact 

factors have been included in the analysis and proved their contribution to the direct 

cost at different levels. 

 For indirect costs, the results of the Monte-Carlo simulation show that the mean of 

indirect costs associated with cured-in-place liner is significantly lower than the mean 

associated with replacement alternatives. 
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 The pavement reduction value as a result of replacement is mainly controlled by the 

age of the pavement at the time of restoration; the noise-associated cost provides the 

main contribution to the indirect cost of the replacement alternative, while the least 

contribution is the cured-in-place liner. Finally, the difference between the speed at the 

working zone and the off-working zone is what significantly impacts the vehicle 

operating cost. 

Possible improvement in predicting the consequences of failure includes developing a 

Bayesian regression model similar to the stepwise regression model developed in this study that 

allows decision-makers to interpret their belief in the model.  

The conclusion related to the risk evaluation model is: 

 By integrating the previous topics, both risk at service and ultimate level can be evaluated 

qualitatively or quantitatively. The first risk assessment approach allows the risk to be 

interpreted monetarily or on a scale measure, while the second risk assessment allows 

qualitative risk assessment. The proposed fuzzy system presents risk on a scale from zero 

to one, which reflects the qualitative classes of risk. 

 Through a training simulation, the neuro-fuzzy system showed high ability in learning 

decision rules, their weights, and membership functions parameters, which could not be 

learned in the ordinary FIS system while satisfying the fuzzy logic through Lagrange 

constraints, in addition to accommodating changes in the FIS system as explained through 

potential scenarios. 
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 Compared to many optimization algorithms, the Adam optimizer gives the highest training 

performance to the neuro-fuzzy system even with a small learning rate by reducing the 

number of training epochs. 

 Based on the acquired results, the simple multiplication model is more suitable in cases 

such as missing the decision rules or for comparison between rehabilitation and 

replacement alternatives. However, since the risk matrix and the neuro-fuzzy approaches 

depend mainly on the decision rules and less on the exact values of likelihood and 

consequences, they are more suitable for decision-making and prioritizing actions. 

 Compared to the risk matrix approach with the neuro-fuzzy system, the latter shows higher 

interpretability than the risk matrix approach through soft transitions among classes, which 

allows better decision-making practice and prioritization of action on pipes that belong to 

the same risk class. 

A future work related to risk assessment is to demonstrate the application of the neuro-

fuzzy system through training on a genuine dataset related to different sewer pipe threats and 

failure modes collected using the suggested framework described earlier. 

The validation of reliability analysis results and the consequences of failure models can be 

achieved by verifying the accuracy of input data to accurately represent the characteristics of the 

real-world system or through comparisons with similar case studies. The validation of the neuro-

fuzzy system can be conducted after training the model on a genuine dataset. The model can then 

be tested on various potential case studies and validated based on feedback from experts to ensure 

alignment with their knowledge and expertise.  
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Appendix 
 

Appendix I. Complementary Equations for Reliability Analysis 

 

Corrosion Current Density 𝒊𝒄𝒐𝒓𝒓 Parameters  

 

 

{
 

 𝑖𝑜,𝑎 = 3 ∗ 10
−2 𝑒9500( 

1

298
−
1

𝑇
)

𝑖𝑜,𝑐 = 1 ∗ 10−2 𝑒2612( 
1

𝑇
−

1

298
)

∆𝐸𝑒(𝑇) = 525 + 1.44 𝑇 }
 

 
 (A1) 

 {

𝛽(𝑡) = 143.79 − 54 𝑤 𝑐⁄ + 0.018 𝑅                                    𝑡 = 𝑡𝑖𝑛
𝛽(𝑡) = 𝛽1 + (0.78 − 0.92

𝑤
𝑐⁄ + 0.00012𝑅)𝑡          𝑡𝑖𝑛 < 𝑡 ≤ 𝑡1

𝛽(𝑡) = 𝛽(𝑡1)                                                                        𝑡1 < 𝑡 ≤ 𝑡2

} (A2) 

 𝑅𝑒 = (75605 
𝑤
𝑐⁄ − 106,228)𝑒

(−0.441 𝐶𝑙−7.7213 𝑆𝑡+2889(
1

𝑇
−

1

303
))

 (A3) 

 𝑆𝑡
𝛾1 𝑅𝐻

𝛾2 𝑅𝐻+ 𝛾3 𝑅𝐻
 (A4) 

 𝛾1 = (2.914 
𝑤
𝑐⁄ − 2.584)  10−3 𝑇𝑐 − 0.20

𝑤
𝑐⁄ + 0.165  (A5) 

 𝛾2 = (2.907 
𝑤
𝑐⁄ − 0.001145  𝑇𝑐 + 1.5594 ∗  10

−5 𝑇𝑐
3 + 4.45) ∗ 10−3 (A6) 

 𝛾3 = (2.158 
𝑤
𝑐⁄ − 3.28) ∗ 10−3 𝑇𝑐 − 0.33 

𝑤
𝑐⁄ + 0.32 (A7) 

Radial Stress at The Interface at the Uncracked Stage 

 

 𝑈𝑟𝑠 =
−2𝑟𝑠±√4𝑟𝑠

2−4(𝛼−1)(2𝑟𝑠 𝑝𝑎𝑣𝑔(𝑡)− 𝑝𝑎𝑣𝑔(𝑡)
2)

2
 (A8) 

 𝜀𝑟𝑠 = 𝑈𝑟𝑠𝑟𝑠 (A9) 

 𝜎𝑟,𝑟𝑠 = 𝐸𝐶𝜀𝑟𝑠 (
𝑐2−𝑟𝑠

2

𝑐2+𝑟𝑠
2) (A10) 
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 𝜎𝑡,𝑟𝑠 =
𝑟𝑠
2

𝑐2−𝑟𝑠
2 𝜎𝑟,𝑟𝑠 (1 −

𝑐2

𝑟𝑠
2) (A11) 

Radial Stress at The Interface at the Partially Cracked Stage 

 

 𝜎𝑟,𝑟𝑠
𝐸𝐿 =

𝑟𝑐𝑟

𝑟𝑠
𝑓𝑐𝑡𝑐1 (A12) 

 𝜎𝑟,𝑟𝑠
𝑁𝐿 = 𝑓𝑐𝑡 [

𝑎 𝐶2𝑟𝑠

2
(
𝑟𝑐𝑟

𝑟𝑠
− 1)

2

+ 𝑏 (
𝑟𝑐𝑟

𝑟𝑠
− 1)] (A13) 

 𝐶2 =
2𝜋𝜀𝑡,𝑐𝑟

𝑛𝑤0
 (A14) 

 𝜎𝑟,𝑟𝑠 = 𝜎𝑟,𝑟𝑠
𝐸𝐿 + 𝜎𝑟,𝑟𝑠

𝑁𝐿  (A15) 

Radial Stress at The Interface at the Fully Cracked Stage 

 

 𝜎𝑟,𝑟𝑠 = 𝑓𝑐𝑡 [(𝑎𝐶3 + 𝑏) (
𝑐1

𝑟𝑠
− 1) −

𝑎𝐶2𝑟𝑠

2
((

𝑐1

𝑟𝑠
)
2

− 1)] (A16) 

 𝐶3 =
2𝜋𝜀𝑡,𝑐𝑟𝑟

𝑛𝑤0
 (A17) 

Tension Softening Model Parameters 

 

The bilinear soft tension model consists of two parts; the two parts coincide when the ratio of total 

crack width 𝑤 to the crack width at zero tensile strength 𝑤0 equals to 𝛼 and the percentage of 

residual tensile strength equals to 𝛽. 

First branch tension softening 

 𝑎 = − 
1−𝛽

𝛼
,  𝑏 = 1 (A18) 

Second branch tension softening 
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 𝑎 = −
1−𝛽

𝛼
,  𝑏 =

1−𝛽

𝛼
 (A19) 

 {
  𝛽 = 0.25   𝑓𝑐0 = 30 𝑀𝑝𝑎

𝛽 = 0.25 − 0.15(𝑓𝑐0 − 30) 𝑓𝑐0 > 30 𝑀𝑝𝑎
} (A20) 

Moment, Shear, and Thrust Load 

𝑀𝑢 = (1.3 𝐶𝑚𝑝𝑊𝑝 + 1.3𝐶𝑚𝑒  𝑊𝑒 + 1.3 𝐶𝑚𝑓  𝑊𝑓 + 2.17 𝐶𝑚𝐿1 𝑊𝐿𝐿1 ++2.17 𝐶𝑚𝐿2 𝑊𝐿𝐿2)
𝐷𝑚

2
   (A21) 

𝑁𝑢 = 1.0 𝐶𝑛𝑝𝑊𝑝 + 1.0 𝐶𝑛𝑒  𝑊𝑒 + 1.5 𝐶𝑛𝑓  𝑊𝑓 + 1.3 𝐶𝑛𝐿1 𝑊𝐿𝐿1 + 1.3 𝐶𝑛𝐿2 𝑊𝐿𝐿2         (A22) 

𝑉𝑢 = 1.3 𝐶𝑣𝑝  𝑊𝑝 + 1.3 𝐶𝑣𝑒  𝑊𝑒 + 1.3 𝐶𝑣𝑓  𝑊𝑓 + 2.17 𝐶𝑣𝐿1 𝑊𝐿𝐿1 + +2.17 𝐶𝑣𝐿2 𝑊𝐿𝐿2    (A23) 

Reinforcement Ductility Loss Limits State Function 

 

[
 
 
 𝐴1 + 𝐴2  𝑃𝑚𝑎𝑥(𝑡) ≤

2𝑟𝑠

√2

𝐴𝑂 − 𝐴1 + 𝐴2 
2𝑟𝑠

√2
< 𝑃𝑚𝑎𝑥(𝑡) ≤ 2𝑟𝑠

𝐴𝑂 𝑃𝑚𝑎𝑥(𝑡) > 2𝑟𝑠 ]
 
 
 

 (A24) 

 𝐴0 = 𝜋𝑟𝑠
2 (A25) 

 𝑏 = 2 𝑃𝑚𝑎𝑥(𝑡)√1 − (
𝑃𝑚𝑎𝑥(𝑡)

2𝑟𝑠
)
2

 (A26) 

 𝐴1 = 0.5 [𝜃1(𝑟𝑠)
2 − 𝑏 |𝑟𝑠 −

 𝑃𝑚𝑎𝑥(𝑡)
2

2𝑟𝑠
|] (A27) 

 𝐴2 = 0.5 [𝜃2𝑃𝑚𝑎𝑥(𝑡)
2 − 𝑏

 𝑃𝑚𝑎𝑥(𝑡)
2

2𝑟𝑠
] (A28) 

 𝜃1 = 2 arcsin (
𝑏

𝑟𝑠
) (A29) 

 𝜃2 = 2 arccos (
𝑏

2 𝑃𝑚𝑎𝑥(𝑡)
) (A30) 

 𝐹𝑑 = 0.8 +
1.6

𝑑
 (A31) 
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 𝐹𝑐 = 1 +
2𝑑

𝐷𝑖𝑛
 (A32) 

 𝐹𝑟𝑡 =
(3600−𝐷𝑖𝑛)

2

16.8∗106
+ 0.8 (A33) 

 

Appendix II. Back Propagation Algorithm 

 

The goal of the back propagation algorithm is to find model parameters that minimize the objective 

function. For better presentation, the objective function in Eq.74 is divided into four different parts 

as shown in Eqs. A34, A35, A36, & A37; each part triggers a different purpose. For example, Eq. 

A34 is concerned with model predictions to be closer to the true values; Eqs. A35, A36, & A37 

are concerned with satisfying the equality constraints related to membership functions for inputs 

and outputs. The subscriptions 𝑖 and 𝑡  denote the  𝑖𝑡ℎ instance in the 𝑡𝑡ℎ   batch of training data. 

 𝐸1𝑖 =

{
 
 

 
 

0 𝑦5
𝑙𝑖
∈ 𝑅𝑗 ∧ �̂�𝑖 ∈ 𝑅𝑘 , 𝑗 = 𝑘

(𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑅𝑗 − 𝑦
5
𝑙𝑖
)
2

𝑦5
𝑙𝑖
∈ 𝑅𝑗 ∧ �̂�𝑖 ∈ 𝑅𝑘 , 𝑗 > 𝑘

2 (𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑅𝑘 − 𝑦
5
𝑙𝑖
)
2

𝑦5
𝑙𝑖
∈ 𝑅𝑗 ∧ �̂�𝑖 ∈ 𝑅𝑘 , 𝑗 < 𝑘}

 
 

 
 

  (A34) 

 𝐸2𝑖 = 𝜆1 (1 − ∑ 𝜇𝑘 (𝑦
5
𝑙𝑖
)𝑆

𝑘=1 )
2

  (A35) 

 𝐸3𝑖 = 𝜆2 (1 − ∑ 𝜇𝑘
𝑆
𝑘=1 (𝑥21))

2

  (A36) 

 𝐸4𝑖 = 𝜆3(1 − ∑ 𝜇𝑘(𝑥
2
2)

𝑆
𝑘=1 )

2
  (A37) 

Layer V 

The error at layer five 𝛿5. 
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 𝛿5𝑖 = (
𝜕𝐸1𝑖

𝜕𝑦5𝑙𝑖

+
𝜕𝐸2𝑖

𝜕𝑦5𝑙𝑖

) =

{
 
 

 
 0 𝑦5

𝑙𝑖𝑖
∈ 𝑅𝑗 ∧ �̂�𝑖 ∈ 𝑅𝑘 , 𝑗 = 𝑘

2 (𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑅𝑘 − 𝑦
5
𝑙𝑖
) 𝑦5

𝑙𝑖
∈ 𝑅𝑗 ∧  �̂�𝑖 ∈ 𝑅𝑘 , 𝑗 > 𝑘

2 (𝑙𝑜𝑤𝑒𝑟  𝑏𝑜𝑢𝑛𝑑𝑅𝑘 − 𝑦
5
𝑙𝑖
) 𝑦5

𝑙𝑖
∈ 𝑅𝑗 ∧  �̂�𝑖 ∈ 𝑅𝑘 , 𝑗 < 𝑘 }

 
 

 
 

+ 𝜆1 (1 −

∑ 𝜇𝑘 (𝑦
5
𝑙𝑖
)𝑆

𝑘=1 ) ∑
−1

𝑑𝑘𝑡−1
2 (𝑐𝑘𝑡−1 − 𝑦

5
𝑙𝑖
)𝑆

𝑘=1 𝑒
−(

(𝑐𝑘𝑡−1
−𝑦5𝑙𝑖)

2
 

2 𝑑𝑘𝑡−1
2 )

       (A38) 

The parameters to be updated at this layer are the mean and standard deviation of output 

membership functions 𝑐𝑘 and 𝑑𝑘 , respectively. The error gradients with respect to both parameters 

are shown in Eqs. A39 & A40. 

  
𝜕𝐸𝑖

𝜕𝑐𝑘 
= 𝛿5  

𝜕𝑦5

𝜕𝑐𝑘  
= [

𝜕𝐸1𝑖

𝜕𝑦5𝑙𝑖

𝜕𝐸2𝑖

𝜕𝑦5𝑙𝑖
]

[
 
 
 
 
 

𝑦4𝑘𝑖
𝑑𝑘𝑡−1

∑ 𝑦4𝑘𝑖
𝑑𝑘𝑡−1

𝐾
𝑘=1

𝜆1 (1 −∑ 𝜇𝑘 (𝑦
5
𝑙𝑖
)𝑆

𝑘=1 ) 
1

𝑑𝑘𝑡−1
2 (𝑐𝑘𝑡−1 − 𝑦

5
𝑙𝑖
)𝑒

−(
(𝑐𝑘𝑡−1

−𝑦5𝑙𝑖
)
2
 

2 𝑑𝑘𝑡−1
2 )

]
 
 
 
 
 

  (A39) 

  
𝜕𝐸𝑖

𝜕𝑑𝑘 
= 𝛿5  

𝜕𝑦5

𝜕𝑑𝑘 
= [

𝜕𝐸1𝑖

𝜕𝑦5𝑙𝑖

𝜕𝐸2𝑖

𝜕𝑦5𝑙𝑖
]

[
 
 
 
 
 

𝑦4𝑘𝑖
(𝑐𝑘𝑡−1∑ 𝑦4𝑘𝑖

𝑑𝑘𝑡−1
𝐾
𝑘=1 −∑ 𝑦4𝑘𝑖

𝑐𝑘𝑡−1𝑑𝑘𝑡−1
𝐾
𝑘=1 )

(∑ 𝑦4𝑘𝑖
𝑑𝑘𝑡−1

𝐾
𝑘=1 )

2

𝜆1 (1 −∑ 𝜇𝑘 (𝑦
5
𝑙𝑖
)𝑆

𝑘=1 ) ∑
−1

𝑑𝑘𝑡−1
3 (𝑐𝑘𝑡−1 − 𝑦

5
𝑙𝑖
)
2

𝑆
𝑘=1 𝑒

−(
(𝑐𝑘𝑡−1

−𝑦5𝑙𝑖)
2
 

2 𝑑𝑘𝑡−1
2 )

]
 
 
 
 
 

  (A40) 

Layer IV 

The error at the fourth layer 𝜹𝟒 is [1 𝑥 𝐾] vector. 

 𝜹𝟒𝒊(𝑘) =
𝜕𝐸1𝑖
𝜕𝑦4𝑘𝑖

=
𝜕𝐸1𝑖
𝜕𝑦5𝑙𝑖

 
𝜕𝑦5𝑖

𝜕𝑦4𝑘𝑖
 
=

𝜕𝐸1𝑖
𝜕𝑦5𝑙𝑖

 
𝑑𝑘𝑡−1(𝑐𝑘𝑡−1 ∑ 𝑦4𝑘𝑖

𝑑𝑘𝑡−1
𝐾
𝑘=1 −∑ 𝑦4𝑘𝑖

𝑐𝑘𝑡−1𝑑𝑘𝑡−1
𝐾
𝑘=1 )

(∑ 𝑦4𝑘𝑖
𝑑𝑘𝑡−1

𝐾
𝑘=1 )

2   (A41) 

Layer III 

. The error at the third layer 𝜹𝟑  is [1 𝑥 𝐽] matrix. 

  𝜹𝟑𝑖 =
𝜕𝐸1𝑖
𝜕𝑦3𝑗𝑖

=
𝜕𝐸1𝑖
𝜕𝑦5𝑙𝑖

 
𝜕𝑦5𝑖

𝜕𝑦4𝑖 
 
𝜕𝑦4𝑖

𝜕𝑦3𝑖
= 𝜹𝟒𝒘𝟒𝟑  (A42) 

The errors located in the consequent parts of the rules 𝜹𝟒 are transferred to the corresponding 

antecedent parts by determining the amount of error allocated for each rule 𝜹𝟑(𝑗) based on their 

firing strength. In this layer, there are no parameters to update. 
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Layer II 

The first step is to define the controlling fuzzy set in the antecedent part of each rule in the third 

layer; there are two fuzzy sets per rule; one from each input. This can be determined using Eq. 

A43; the controlling fuzzy set is the fuzzy set that belongs to the group 𝒍𝒋 and provides the least 

membership degree 𝑚𝑖𝑛 (𝜇(𝑥1), 𝜇(𝑥2)). 𝒍𝒋 contains all fuzzy sets that constitute the antecedent 

part of the 𝑗𝑡ℎ  and can be obtained from the third layer weights 𝒘𝟑𝟐. Running Eq. A43 across all 

rules will result in a list of controlling fuzzy sets, one per each rule. 

  𝒓𝑖 = 𝐴𝑟𝑔𝑚𝑖𝑛𝑛∈𝑙𝑗(𝑦
2
𝑛𝑖
)  (A43) 

Since each fuzzy set contributes not just to one but multiple rules as shown in Fig. 16, a fuzzy set 

might control multiple rules. Therefore, the error propagated to an input fuzzy set is the summation 

of all errors from nodes in the third layer at which the fuzzy set is controlling as shown in Eq. A44. 

𝑙𝑛 is the set of rules that contains the 𝑛𝑡ℎ fuzzy set as one of its antecedents. 

The error at the second layer 𝜹𝟐 [1 𝑥 𝑁] matrix. 

  𝜹𝒊
2(𝑛) =

𝜕𝐸1𝑖
𝜕𝑦2𝑛𝑖

=
𝜕𝐸1𝑖
𝜕𝑦5𝑖

 
𝜕𝑦5𝑖

𝜕𝑦4𝑖 
 
𝜕𝑦4𝑖

𝜕𝑦3𝑖
 
𝜕𝑦3𝑖

𝜕𝑦2𝑛𝑖
 
= {

∑ 𝜹𝟑𝑖(𝑗)𝑗∈𝑙𝑛 𝑛 ∈  𝑟𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}   (A44) 

Finally, to update the mean and standard deviation 𝑎𝑛 & 𝑏𝑛 of membership functions, Eqs. A45 & 

A46 are used. Both equations consider the error transferred to the second layer 𝜹𝑖
𝟐
  and the 

gradients of errors in Eq. A47 & A48 related to the constraint. 

  
𝜕𝐸

𝜕𝑎𝑛
= [ 𝜹𝑖

𝟐(𝑛) 1] [

𝜕𝑦2𝑡𝑖
𝜕𝑎𝑛 

(
𝜕𝐸3𝑖
𝜕𝑎𝑛

 𝑜𝑟 
𝜕𝐸4𝑖
𝜕𝑎𝑛

)

]= [ 𝜹𝑖
𝟐(𝑛) 1]  

[
 
 
 
 
 
 

𝑒
−(

(𝑥𝑖−𝑎𝑛𝑡−1
)
2
 

𝑏𝑛𝑡−1
2 )

2 (𝑥𝑖−𝑎𝑛𝑡−1
)
2

𝑏𝑛𝑡−1
2

𝜆2(1− ∑ 𝜇𝑡(𝑥𝑖))
1

𝑏𝑛𝑡−1
2 (𝑎𝑛𝑡−1 −𝑥𝑖)

2
𝑒
−(

(𝑎𝑛𝑡−1
−𝑥𝑖)

2
 

2 𝑏𝑛𝑡−1
2 )

 𝑁/2
𝑛=1

]
 
 
 
 
 
 

 (A45) 

  
𝜕𝐸

𝜕𝑏𝑛
= [ 𝜹𝑖

𝟐(𝑛) 1] [

𝜕𝑦2𝑡𝑖

𝜕𝑎𝑛 

(
𝜕𝐸3𝑖

𝜕𝑎𝑛
 𝑜𝑟 

𝜕𝐸4𝑖

𝜕𝑎𝑛
)
] = [ 𝜹𝑖

𝟐(𝑛) 1] 

[
 
 
 
 
 

𝑒
−(

(𝑥𝑖−𝑎𝑛𝑡−1)
2
 

𝑏𝑛𝑡−1
2 ) 2 (𝑥𝑖−𝑎𝑛𝑡−1)

2

𝑏𝑛𝑡−1
2

𝜆2(1− ∑ 𝜇𝑡(𝑥𝑖))
−1

𝑏𝑛𝑡−1
3 (𝑎𝑛𝑡−1 − 𝑥𝑖)

2
𝑒
−(

(𝑎𝑛𝑡−1−𝑥𝑖)
2
 

2 𝑏𝑛𝑡−1
2 )

 
𝑁/2
𝑛=1 ]

 
 
 
 
 

 (A46) 
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  𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆𝑡 = 𝑎𝑙𝑝ℎ𝑎 
𝒎�̂�

√𝒗�̂�
2 +𝜀

  (A47)  

  �̂�𝑡 =
(𝐵1�̂�𝑡−1+(1−𝐵1)(

𝝏𝑬

𝝏𝒘
))

1−𝐵1
𝑡    (A48)  

  �̂�𝑡 =
(𝐵2�̂�𝑡−1+(1−𝐵2)(

𝝏𝑬

𝝏𝒘

2
))

1−𝐵2
𝑡    (A49) 

  𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆𝑡 = 𝛾
1

√∑
𝝏𝑬

𝝏𝒘
𝑡−1
𝑡=1 +𝜀

2
  (A50)  

   𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆𝑡 = 𝜌𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆𝑡−1 + 𝛾
𝝏𝑬

𝝏𝒘
  (A51)  

   𝒘𝒐𝒗𝒆𝒓𝒍𝒐𝒐𝒌𝒆𝒅 = 𝒘𝑡−1 ∓ 𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆𝑡−1  (A52)  

     𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆𝑡 = 𝛾𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆𝑡−1 + 𝑎𝑙𝑝ℎ𝑎
𝝏𝑬

𝝏𝒘𝒐𝒗𝒆𝒓𝒍𝒐𝒐𝒌𝒆𝒅
  (A53)  
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