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Abstract 

Improving Operational Hydrologic Forecasting via Conditional Bias-Penalized Multi-sensor 

Precipitation Estimation and Bayesian Multi-model Averaging of River Forecasts 

 

Ali Jozaghi, Ph.D. 

The University of Texas at Arlington, 2021 

Supervising Professor: Dong-Jun Seo 

 

Many multivariate analysis techniques involve minimizing mean square error (MSE) or error 

variance under unbiasedness. In the presence of observation error, variance minimization tends to 

introduce negative and positive biases, or conditional bias (CB), over the upper and lower tails of 

the predictands, respectively.  This work describes and evaluates three multivariate merging 

techniques, 1) adaptive conditional bias-penalized cokriging (CBPCK), 2) conditional bias-

penalized Multiple Linear Regression (CBP-MLR), and 3) conditional bias-penalized Bayesian 

Model Averaging (CBP-BMA) which implements CBP-MLR in place of MLR. CBPCK and CBP-

MLR minimize a linearly weighted sum of errors squared and the sum of the Type-II error squared, 

thereby addressing the type-II CB explicitly. CBPCK is applied to improve multisensor 

precipitation estimation using rain gauge data and remotely-sensed quantitative precipitation 

estimates (QPE). The remotely-sensed QPEs used are radar-only and radar-satellite-fused 

estimates. For comparative evaluation, true validation is carried out over the continental United 

States (CONUS) for Sep 13-30, 2015, and Oct 7-9, 2016. The hourly gauge data, radar-only QPE, 

and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar 

Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), 
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respectively. For radar-satellite fusion, conditional bias-penalized Fisher estimation is used. The 

reference merging technique compared is ordinary cokriging (OCK) used in the National Weather 

Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean-

field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional 

root mean square error (RMSE) of radar-only QPE by 9 to 16% over the CONUS for the two 

periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 

1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for Sep 

2015 reduces the unconditional RMSE of the MFB-corrected radar by 4 and 6% over the entire 

and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for 

estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over 

OCK for estimation of significant amounts of precipitation despite the higher computational cost, 

and the SCaMPR QPE should be used selectively in multisensor QPE.  

CBP-MLR and CBP-BMA are described and evaluated for improved multi-model streamflow 

prediction using several operationally produced streamflow forecasts. For comparative evaluation, 

10-fold cross-validation is carried out over the NWS Middle Atlantic River Forecast Center’s 

(MARFC) service area for the period of Jan 1, 2017, to Oct 29, 2018. The input streamflow 

forecasts used are the MARFC single-valued forecast, the Hydrologic Ensemble Forecast System 

(HEFS) ensemble forecast, the National Water Model (NWM) medium-range single-valued 

forecast, and the Meteorological Model-based Ensemble Forecast System (MMEFS) ensemble 

forecasts forced by the Global Ensemble Forecast System (GEFS), the North American Ensemble 

Forecast System (NAEFS), and the Short-Range Ensemble Forecast System (SREF). Whereas 

CBP-MLR improves prediction over tails, it degrades the performance near the median. To retain 

MLR-like performance near median while exploiting the ability of CBP-MLR to improve 
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prediction over tails, composite MLR (CompMLR), which linearly weight-averages the MLR and 

CBP-MLR estimates, is also developed and evaluated. 

MLR and CBP-MLR do not consider uncertainty in the regression model. They typically choose 

a single model and fit it to the data. This approach disregards the uncertainty in the model selection 

which leads to overconfident inferences. To address the model uncertainty while improving 

performance for large flow, CBP-MLR is implemented in BMA to produce CBP-BMA. The 

proposed methods are applied for multi-model streamflow prediction using several operationally 

produced streamflow forecasts as predictors. The results for the MARFC’s service area show that 

the relative performance among different input forecasts varies most significantly with the range 

of the verifying observed streamflow, and both CompMLR and CBP-BMA are generally superior 

to the best performing forecasts in the mean squared error sense under widely varying conditions 

of predictability and predictive skill. 

Keywords: QPE, Conditional Bias, CBPCK, CBP-MLR, Streamflow, CompMLR, BMA, 

CBP-BMA 
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. General Introduction 

Water-related hazards are the most common among all natural hazards and pose large threats 

to people and their socio-economic well-being (Hassanzadeh et al., 2020; ICHARM, 2009; Noji 

and Lee, 2005). Of all-natural disasters, water-related disasters account for about 72% of the total 

economic losses; 26% of these water-related disasters are attributed to floods (ICHARM 2009). 

Globally, there have been 273 water-related disasters since 1980, the total cost of which 

approaches $2 trillion. In the US, floods have caused $43.6 billion in damages and claimed 132 

lives among all disasters costing billion dollars or more. While this is staggering, it is only a portion 

of a larger trend for weather and climate disasters over the past 40 years. Due to climate change, 

deforestation, land-use change, population growth in flood-prone areas, and rising sea levels, the 

number of people vulnerable to water-related disasters is projected to increase to two billion by 

2050 globally, which will inevitably increase water-related damages (ICHARM, 2009; Vogel et 

al., 2011). 

Providing early warnings for water-related disasters, in particular floods, is a very cost-effective 

way to protect lives and properties and to minimize disruptions to socioeconomic activities. As 

such, much investment has been made over the years to provide timely and location-specific 

predictions of water-related hazards. With advances in science and technology, the amount and 

array of data that may provide helpful information for early hazard warnings are rapidly increasing. 

Methodological advances are necessary to translate them into actionable information and merge 

the hydrometeorological and hydrologic data from multiple sources in varying quality and quantity 

objectively and effectively. 
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In general, the accuracy of hydrologic predictions depends critically on that of precipitation 

input. Because decision support for warnings of water-related hazards increasingly calls for high-

resolution information for improved spatiotemporal specificity, there is an ever-increasing demand 

for high-quality, high-resolution quantitative precipitation estimates (QPE). In many parts of the 

world, multisensor quantitative precipitation estimation (QPE) based on radar QPE products and 

rain gauge data is a common practice (Habib et al., 2009; Jozaghi et al., 2019; Kim et al., 2018; 

Kitzmiller et al., 2013; Seo et al., 2010; Tang et al., 2018; Young et al., 2000). While rain gauge 

networks are usually sparse, ground-based weather radars provide spatially continuous 

precipitation estimates at high temporal frequency. It is a must to merge rain gauge data and radar 

estimates in order to obtain precipitation estimates that are more accurate than those obtainable 

from either sensor alone. However, the coverage of ground-based weather radars is limited to land 

areas that are mainly free from beam blockages and offshore areas within the effective range of 

the radar. With the advancement of satellite remote sensing, satellite QPE is now routinely 

available in many parts of the world and may complement weather radar and rain gauges. The first 

element of this research addresses advancing multisensor estimation of precipitation using radar 

QPE and rain gauge data and multisensor fusion using radar and satellite QPE toward improving 

the accuracy of precipitation input, particularly for heavy-to-extreme events. 

Streamflow is arguably the most critical predictand in operational hydrology and water 

management. With the fast-increasing availability of multiple streamflow forecasts from different 

sources in many parts of the world (Muhammad et al., 2018), objectively combining multiple 

forecasts in ways that will yield consistently superior forecast products is of great broad interest. 

Many machine learning techniques have been used for streamflow prediction, including support 

vector machines (SVM; Liu et al., 2021; Meng et al., 2019), artificial neural network (Napolitano 
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et al., 2011; Sahoo et al., 2006), gradient-boosting decision tree (Lu et al., 2018), random forest 

(Schoppa et al., 2020), multiple linear regression (MLR; Jozaghi et al. 2021a), and Bayesian Model 

Averaging (BMA; Jozaghi et al., 2021b, 2020; Wang et al., 2017). The second and third elements 

of this work address advancing multimodel streamflow prediction using multiple linear regression 

(MLR; Freedman, 2005) and BMA (Duan et al., 2007a; Jennifer A. Hoeting et al., 1999; Madigan 

and Raftery, 1994; Raftery, 1995; Raftery et al., 2005), particularly for floods. 

Many of the techniques for multisensor estimation or multimodel prediction involve 

minimizing mean square error (MSE) or error variance under unbiasedness. However, when the 

predictors are subject to significant uncertainty, variance minimization is subject to conditional 

bias (CB), often resulting in under- and overprediction of the predictand over the upper and lower 

tails, respectively (Fuller, 1987; Hausman, 2001; Seber and Wild, 1989). One of the most critical 

societal functions of hydrologic prediction is minimizing or reducing surprises, i.e., the Type-II 

errors. Because extreme events are rare, warning them requires an accurate forecast of the variables 

of interest over the tail end of their distributions, where the Type-II CB is particularly important. 

With urbanization and climate change, calibrating hydrologic models, including uncertainty 

models, is becoming an increasingly tenuous practice based on long periods of records (Alizadeh, 

2019; Alizadeh et al., 2020b). In parts of the US, there is also growing evidence that the uncertainty 

in the initial conditions of operational hydrologic models may be increasing (Cotter, 2015). The 

record-breaking flooding of the Blanco River in central TX in May 2015 (Furl et al., 2018), which 

was attributed to rapid urbanization whose potential impact was assessed and predicted as early as 

2007 (Curran, 2008), is one of many recent examples that encapsulate the challenges in hydrologic 

prediction in changing conditions. The above picture suggests that, for prediction of extremes, 

every datum, be it an observation or a model output, in the upper tail may potentially carry 
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significant information content, and it is hence essential that multisensor or multimodel techniques 

be able to account for the Type-II error which may be obscured by small sample size. 

A distinguishing aspect of information fusion for water-related hazards vs. that for many other 

applications is that for the former, performance in the upper tail is far more critical than that near 

median. Whereas the issue of CB has been widely recognized in statistics and econometrics, 

particularly in the context of least-squares regression (Fuller, 1987; Hausman, 2001; Seber and 

Wild, 1989), only a limited number of reports may be found elsewhere (Ciach et al., 2000; David 

et al., 1984; Emery, 2006; Guertin, 1984; Olea, 2012; Pan, 1998). Moreover, to the best of the 

author’s knowledge, none addresses Type-2 CB explicitly. Recently, Seo (2013) introduced a 

linear geostatistical estimation technique, conditional bias-penalized kriging, which minimizes the 

sum of squared error and Type-II error squared to address specifically the detrimental effects of 

Type-II CB on spatial prediction. The technique has since been cast also in the context of Kalman 

filter for temporal prediction to yield CB-penalized Kalman filter (CBPKF; Seo et al. 2018a, b; 

Shen et al. 2019) and, in ensemble form, CB-penalized ensemble KF (CBEnKF; Lee et al., 2019; 

Shen et al., 2020) 

With the above backdrop, the overarching objective of this work is to advance information 

fusion for multisensor estimation of heavy-to-extreme precipitation and multimodel streamflow 

prediction, particularly for floods. This work consists of three elements. The first element newly 

develops adaptive conditional bias-penalized cokriging (ACBPCK) for merging radar QPE and 

rain gauge observations and applies Simple Estimation (Rafieeinasab et al., 2015) for the fusion 

of radar and satellite QPE products for improved spatial prediction of heavy-to-extreme 

precipitation. The second element casts CB-penalized optimal estimation in the context of MLR 

to newly develop CB-penalized MLR (CBP-MLR) for improved multimodel prediction of large 
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flows. MLR and CBP-MLR are then combined to yield composite MLR (CompMLR), which 

constitutes a parsimonious nonlinear regression comprising two linear regressions. In the third 

element, CBP-MLR is used in place of MLR in BMA with Bayesian regression linear model with 

Zellner's g-prior (Zellner, 1986) to yield  CBP-BMA for improved prediction of large flows. This 

dissertation is organized as follows. Ch 2 is a reproduction of Jozaghi et al. (2019) and describes 

the adaptive CBPCK and fusion algorithms and presents the evaluation results. Ch 3 is a 

reproduction of Jozaghi et al. (2021a) and describes CBP-MLR and CompMLR for multimodel 

streamflow prediction and apply to the NWS Middle Atlantic River Forecast Center’s (MARFC) 

service area. Ch 4 describes the CBP-BMA, which is then applied to the MARFC’s service area 

for multimodel streamflow prediction. Ch 5 provides the general conclusions and future research 

recommendations. 
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. CBPCK: Theory and Application to Multisensor Precipitation 

Estimation 

2.1 Introduction 

Accurate real-time quantitative precipitation estimation (QPE) is a prerequisite for precise 

water forecasting. With the widespread use of weather radar systems, multisensor QPE using 

ground-based radar and rain gauge data is routine in many parts of the world. Given the increasing 

availability of various real-time satellite QPE products (AghaKouchak et al. 2011; Habib et al. 

2009, 2012; Huffman et al. 2007, 2017; Joyce et al. 2004; Okamoto et al. 2005; Sorooshian et al. 

2000; Turk and Miller 2005; Vicente et al. 1998), effective utilization of satellite data for 

multisensor QPE is an increasingly important topic (Ashouri et al. 2014; Gourley et al. 2011; 

Kalinga and Gan 2010; Prat and Nelson 2013). Numerous efforts have been made to reduce 

systematic and random errors in multisensor QPE via bias correction and multivariate analysis 

(Kondragunta et al. 2005; Nelson et al. 2010; Prat et al. 2014, 2015; Seo et al. 2010; Smith and 

Krajewski 1992; Smith et al. 1996; Vasiloff et al. 2007). Here, by bias correction, we mean 

multiplicative or additive correction applied to the raw gridded precipitation data at an effective 

spatiotemporal scale larger than a single grid box or a time step. By multivariate analysis, we mean 

data assimilation with multivariate observation equation with or without a dynamical model. Many 

bias correction and multivariate analysis techniques involve minimizing mean square error (MSE) 

or error variance under unbiasedness (Ciach et al. 2000; Goudenhoofdt and Delobbe 2009; Gandin 

1963; Seo and Breidenbach 2002; Seo 1998a,b; Smith et al. 2006). It is well known in statistics 

and econometrics that, in the presence of observation error, variance minimization tends to 

introduce negative and positive biases, or conditional bias (CB), over the upper and lower tails of 

the predictands, respectively (Fuller, 1987; Seber and Wild, 1989; Hausman, 2001). In regression, 
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the above effect is referred to as regression dilution, which results in attenuation bias in the 

regression coefficients (Hughes 1993; Frost and Thompson 2000). Such bias may not pose an issue 

when prediction is made for the same predictands via the same regression model using new 

observations from the same observing systems. For example, if one desires the predictands to be 

subject to the same uncertainty characteristics as the observed outcomes of the predictands used 

in the regression analysis itself, the attenuation bias would not be a concern. In QPE, however, the 

objective is to estimate true precipitation amounts as accurately as possible so that they may be 

used as observed initial or boundary conditions in a wide range of applications. Because 

precipitation observations almost always have significant uncertainties, particularly at high 

spatiotemporal resolutions, the presence of CB in QPE is the norm rather than the exception. 

Therefore, addressing CB is an essential topic in multisensor QPE. 

One may, in general, differentiate the CB into Types I and II. The Type-I CB, defined as 

𝐸[𝑋|𝑋̂ = 𝑥̂] − 𝑥̂, where 𝑋, 𝑋̂ and 𝑥̂ denote the unknown truth, the estimate, and the realization of 

𝑋̂, respectively (Joliffe and Stephenson 2003), is associated with false alarm. The Type-II CB, 

defined as 𝐸[𝑋̂|𝑋 = 𝑥] − 𝑥, where 𝑥 denotes the realization of 𝑋, is associated with failure to 

detect an event. Whereas the Type-I CB may be reduced by calibration, the Type-II CB cannot 

(Wilks 2006; Seo et al. 2018a,b). Ciach et al. (2000) found that minimizing the MSE in radar 

rainfall estimates increases the CB and that, when estimating extremes is of interest, there is a 

trade-off to consider between minimizing the MSE and reducing the CB. To address the 

detrimental effects of the Type-II CB on estimating extremes, Seo (2013) introduced a new optimal 

linear estimation method that minimizes the weighted sum of error variance and expectation of the 

CB squared. When cast in the form of kriging, the method yields CB-penalized kriging (CBPK), 

which has been shown to broadly outperform conventional kriging in the prediction of high flows 
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and estimation of heavy to extreme rainfall (Brown and Seo 2013; Seo 2013; Seo et al. 2014; Kim 

et al. 2018). When cast in the form of the Kalman filter (KF), the method yields the CB-penalized 

KF (Seo et al. 2018a,b; Shen et al. 2019) and, in ensemble form, the CB-penalized ensemble KF 

(Lee et al. 2019). Though the CB-penalized estimation techniques significantly improve 

performance over the tails, they do not minimize the MSE in the unconditional sense. This 

deterioration in unconditional performance may be reduced by prescribing the weight to the CB 

penalty adaptively based, e.g., on the best available estimate of the unknown true state (Kim et al. 

2018; Shen et al. 2019); if the best estimate is near the median or in the tails of the distribution, 

one may reduce the weight close to zero or to a large value, respectively. When there exist large 

observational uncertainties, or the precipitation field has limited predictability, however, the above 

approach may not be able to identify the state of the system with sufficient accuracy and 

consistency to be effective. 

In this chapter, we introduce adaptive CB-penalized optimal estimation for merging rain gauge 

data and radar-only or radar-satellite-fused QPE, which explicitly optimizes the weight for the CB 

penalty in real-time. The specific optimal linear estimation technique considered is the CB-

penalized cokriging (CBPCK, Kim et al. 2018). The resulting technique is referred to as adaptive 

CBPCK. The outcome sought is improved estimation over the tails of the distribution of 

precipitation while performing comparably to OCK in the unconditional sense. We then 

comparatively evaluate adaptive CBPCK with OCK used in the National Weather Service’s 

(NWS) Multisensor Precipitation Estimator (MPE, Habib et al. 2013; Kitzmiller et al. 2013; 

Nelson et al. 2016; Seo et al. 2010). As part of the evaluation, we also assess the incremental value, 

in reference to the radar-only QPE, of rain gauge-based mean field bias (MFB) correction of radar-

only QPE, merging of rain gauge data and MFB-corrected radar QPE, the fusion of MFB-corrected 
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SCaMPR QPE with MFB-corrected radar QPE, and merging of rain gauge data and radar-satellite-

fused QPE. The main contributions of this work are the development and comparative evaluation 

of adaptive CBPCK, assessment of the incremental value of MFB correction, fusion, and merging, 

and advances in the understanding of the CB in multisensor QPE and its correction. The rest of 

this chapter is organized as follows. Section 2.2 describes the data used. Section 2.3 describes the 

methods used. Section 2.4 presents the results. Section 2.5 provides the conclusions and future 

research recommendations. 

2.2 Data used 

Two analysis periods are used: Oct 7-9, 2016, and Sep 13-30, 2015. Figs 2.1 and 2.2 show the 

radar-only precipitation totals. The first period includes Hurricane Matthew on the East Coast, 

weakly organized convective storms in the central US, and a coastal storm in the Pacific 

Northwest. The second period generally includes convective events in the Pacific Northwest, 

Midwest, Northeast, and Southeast of the US. The rain gauge data used are the hourly observations 

collected through the Hydrometeorological Automated Data System (HADS, Kim et al. 2009) 

operated by the NWS. Fig 2.3 shows the gauge locations, which total over 21,000. The HADS is 

a real-time data acquisition, processing, and distribution system supporting the NWS’s Flood and 

Flash Flood Warning programs. The system acquires raw hydrologic and meteorological 

observations throughout the US from the Geostationary Operational Environmental Satellites 

(GOES) Data Collection Platforms, mostly owned and/or operated by various federal, state, and 

local agencies. The hourly radar QPEs used are from the Multi-Radar Multi-Sensor System 

(MRMS; Zhang et al. 2011, 2016) at 1 km resolution. MRMS is a system of automated algorithms 

that integrate data from multiple radars, surface and upper-air observations, lightning detection 

systems, and satellite and numerical weather forecast models. 
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Figure 2.1: Radar-only precipitation map for Oct 7-9, 2016. The 11 geographic tiles shown are used in the MRMS 

for parallel processing. The first six tiles cover the full CONUS, and the last 5 straddle the first 6 to reduce the edge 

effects. The map is obtained by averaging all overlapping estimates over the CONUS 

 
Figure 2.2: Same as Fig 2.1 but for Sep 13-30, 2015. 
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Figure 2.3: Rain gauge location map. 

The system generates a suite of 2D multisensor products for monitoring and short-term 

prediction of hail, wind, tornado, QPE, convection, icing, and turbulence. The hourly satellite QPE 

used in the study was from the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR; 

Kuligowski 2002, 2010; Kuligowski et al. 2013) at 4 km resolution. SCaMPR uses GOES infrared 

data for predictor information and calibrates them against microwave-based rain rates. The 

algorithm performs rain/no rain discrimination using discriminant analysis, precipitation rate 

calibration using regression, nonlinear transformations of the predictors to optimize the regression 

fits, and accounts for evaporation of hydrometeors below the cloud base in dry environments. In 

this work, all multisensor QPE operations are carried out for each of the 11 geographic tiles used 

in the MRMS. The first six tiles cover the full CONUS, and the last 5 straddle the first 6 to reduce  
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Figure 2.4: Schematic of the merging and fusion processes used. 

the edge effects (see Fig 2.1 or 2.2). The final analysis is obtained by averaging all overlapping 

estimates over the CONUS. 

2.3 Methods used 

This section describes the multisensor QPE methods used in this work. Fig 2.4 shows the 

schematic of the estimation process. 

2.3.1 Bias correction of gridded QPE 

The MRMS radar-only and SCaMPR QPEs (Sep 2015 only for the latter) are first MFB-

corrected for each tile using the respective gridded QPEs and all available gauge data within the 

tile. The procedure used is the MFB correction algorithm of Seo et al. (1999), which has been in 

operation in the MPE since the mid-2000s. In the MPE, the algorithm operates for each radar and 

updates the radar umbrella-wide biases at multiple temporal scales of aggregation ranging typically 

from hourly to multi-annual. The bias estimated is the multiplicative correction factor, 𝛽𝑘 =

∫ 𝐺𝑘(𝑢)𝑑𝑢
𝐴𝑐

/ ∫ 𝑅𝑘(𝑢)𝑑𝑢
𝐴𝑐

, to be applied to the radar-only QPE spatially-uniformly where 𝛽𝑘 

denotes the MFB in the gridded QPE at the k-th hour, 𝐴𝑐 denotes the precipitation area, and 𝐺𝑘(𝑢) 
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and 𝑅𝑘(𝑢) denote the gauge and radar precipitation at location u, respectively. To estimate 𝛽𝑘, the 

procedure uses all available (including posting-delayed) collocated and synchronous pairs of 

positive gauge and positive radar precipitation observations, and updates 𝛽𝑘 in real-time at multiple 

time scales via exponential smoothing (Schweppe 1973). Conceptually, the smoothing operation 

amounts to recursively estimating age-weighted moving averages of gauge and radar precipitation 

observations over time windows of different lengths. The updated bias associated with the smallest 

time scale is then chosen as the final estimate among those with an effective sample size greater 

than the user-set minimum. In this way, a shorter- and longer-term bias is used in gauge-rich and 

–poor areas, respectively. For further details, the reader is referred to Seo et al. (1999). Unlike in 

the MPE, here we estimate 𝛽𝑘 for an entire tile which is much larger than the typical effective 

coverage of a single S-band radar such as the Weather Surveillance Radar – 1988 Doppler version. 

The above choice is made necessary by the fact that the MRMS radar-only QPE is already a mosaic 

of data from multiple radars (Zhang et al. 2016). MFB correction for the SCaMPR QPE is 

completely analogous. Given the large latitudinal dimension of the tiles, multiple storms with 

disparate biases may exist in a single tile. In such cases, the effectiveness of MFB correction, as 

implemented in this work, is likely to be reduced. Performance assessment under different tile 

sizes, however, was beyond the scope of this work and is left as a future endeavor. 

2.3.2 Merging of rain gauge data and gridded QPE 

We use OCK and CBPCK to estimate the true precipitation amount at an arbitrary location, 𝑢0, 

using rain gauge observations at 𝑢𝑖, 𝑖 = 1, … , 𝑛𝑔, and remotely-sensed QPE at 𝑢𝑖 , 𝑖 = 𝑛𝑔 +

1, … , 𝑛𝑔 + 𝑛𝑟, where 𝑛𝑔 and 𝑛𝑟 denote the number of rain gauges and remotely-sensed QPE, 

respectively. Though referred to as cokriging, the formulation described here applies to kriging as 
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well, except that in the latter, all observations are from a single observing system. Dropping the 

time index for brevity, we write the linear estimator for gauge precipitation at an ungauged 

location, 𝑢0, as: 

𝑍0
∗ = ∑ 𝜆𝑖

n

𝑖=1

𝑚0

𝑚𝑖
𝑍𝑖 (2.1) 

∑ 𝜆𝑖

n

𝑖=1

= 1 (2.2) 

In the above, 𝑍0
∗ denotes the precipitation estimate at 𝑢0, 𝑛 denotes the total number of data 

used in the estimation, 𝑛 = 𝑛𝑔 + 𝑛𝑟; 𝑍𝑖 , i = 1, … , 𝑛𝑔, denote the nearest gauge observations; 

𝑍𝑖  , i = 𝑛𝑔 + 1, … , 𝑛𝑔 + 𝑛𝑟, denote the nearest remotely-sensed precipitation estimates; 𝜆𝑖, 𝑖 =

1, … , 𝑛, denote the weights for 𝑍𝑖, i=1,…,n; and 𝑚0 and 𝑚𝑖 denote the climatological mean 

precipitation at locations 𝑢0 and 𝑢𝑖, respectively, for which we use the monthly PRISM 

climatology (Daly et al. 1994). The constraint, Eq. (2.2), renders the estimate 𝑍0
∗ in Eq. (2.1) 

unbiased in the mean under the assumption that the gridded QPE is unbiased relative to the gauge 

observations. Implicit in Eq. (2.1) is the assumption that the MFB-corrected radar QPE is 

climatologically unbiased (Seo et al. 2010).  

OCK and CBPCK differ mainly in the calculation of the weights, 𝜆𝑖 , 𝑖 = 1, … , 𝑛 in Eq. (2.1). 

Whereas OCK minimizes the error variance of 𝑍0
∗, 𝐽𝐸𝑉 = 𝐸[{𝑍0

∗ − 𝑍0}2], CBPCK minimizes the 

weighted sum of 𝐽𝐸𝑉 and the expectation of the CB squared, 𝐽𝐶𝐵 = 𝐸[{E[𝑍0
∗|𝑍0] − 𝑍0}2], i.e., 𝐽 =

𝐽𝐸𝑉 + 𝛼𝐽𝑐𝐵 where 𝛼 denotes the weight given to the CB penalty. If 𝛼 = 0, CBPCK reduces to 

OCK. Accordingly, one may consider CBPCK as generalized OCK. The CBPCK system is given 

by (Kim et al. 2018): 

∑ 𝜆𝑗
n
𝑗=1 (ρ𝑖𝑗 + 𝛼 · ρ𝑖0 · ρ𝑗0)σ𝑖 · σ𝑗 = (1 + 𝛼)ρ𝑖0 · σ𝑖 · σ0    𝑖 = 1, … , n                                    (2.3) 
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∑ 𝜆𝑖
n
𝑖=1 = 1                                                                                                                                (2.4) 

where ρ𝑖𝑗 denotes the (cross-) correlation between the two variables at 𝑢𝑖 and 𝑢𝑗; and 𝜎𝑖 and 𝜎𝑗  

denote the standard deviation of the two variables at ui and uj, respectively. The objective function, 

𝐽, is associated with the CBPCK solution from Eqs. (2.3) and (2.4) is given by (Kim et al. 2018): 

𝐽 = (1 + 𝛼)(𝜎0
2 − Σ𝑖=1

𝑛 𝜆𝑖𝜌𝑖0𝜎𝑖𝜎0) − 𝜇           (2.5) 

where 𝜇 denotes the Lagrange multiplier. Because 𝐽 reflects not only the error variance but also 

the CB penalty, it is larger than 𝐽𝐸𝑉 for 𝛼 > 0. To evaluate 𝐽𝐸𝑉, we decompose 𝐽 into 𝐽𝐸𝑉 and 𝛼𝐽𝑐𝐵 

to obtain: 

𝐽𝐸𝑉 = Σ𝑖=1
𝑛 Σ𝑗=1

𝑛 𝜆𝑖𝜆𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗 − 2Σ𝑖=1
𝑛 𝜆𝑖𝜌𝑖0𝜎𝑖𝜎0 + 𝜎0

2                    (2.6) 

Because CBPCK does not minimize (unconditional) error variance, Eq. (2.6) is necessarily 

larger than the OCK error variance for 𝛼 > 0. The optimal weights, 𝜆𝑖, i=1,…,n, are functions of 

the covariance among the gauge observations, covariance among the remotely-sensed QPE, and 

cross-covariance between the gauge observations and remotely-sensed QPE. For example, the 

cross-covariance between the gauge observation at 𝑢𝑖, 𝑍𝑖  , i = 1, … , 𝑛𝑔, and the remotely-sensed 

QPE at 𝑢𝑗 , 𝑍𝑗  , j = 𝑛𝑔 + 1, … , 𝑛𝑔 + 𝑛𝑟, may be written as (seo 1998 a,b): 

𝐶𝑜𝑣[𝑍𝑖 , 𝑍𝑗] = 𝜎𝑔𝜎𝑟[𝑚𝐼𝑔(1 − 𝑚𝐼𝑔)]
1/2

[𝑚𝐼𝑟(1 − 𝑚𝐼𝑟)]1/2𝜌𝑐(|𝑢𝑖 − 𝑢𝑗|)𝜌𝐼𝑐(|𝑢𝑖 − 𝑢𝑗|)

                             + 𝑚𝑔𝑚𝑟[𝑚𝐼𝑔(1 − 𝑚𝐼𝑔)]1/2[𝑚𝐼𝑟(1 − 𝑚𝐼𝑟)]1/2𝜌𝐼𝑐(|𝑢𝑖 − 𝑢𝑗|) +

                                         𝜎𝑔𝜎𝑟𝑚𝐼𝑔𝑚𝐼𝑟𝜌𝑐(|𝑢𝑖 − 𝑢𝑗|)                      (2.7) 

where 𝜎𝑔 and 𝜎𝑟 denote the standard deviation of gauge and remotely-sensed precipitation, 

respectively; 𝑚𝐼𝑔 and 𝑚𝐼𝑟 denote the mean fractional coverage by gauge and remotely-sensed 

precipitation; 𝑚𝑔 and  𝑚𝑟 denote the unconditional mean of gauge and remotely-sensed 
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precipitation; and 𝜌𝑐(|𝑢𝑖 − 𝑢𝑗|) and 𝜌𝐼𝑐(|𝑢𝑖 − 𝑢𝑗|) denote the conditional and indicator cross-

correlation at a separation distance of |𝑢𝑖 − 𝑢𝑗| which model the inner variability (i.e., variability 

of positive precipitation) and intermittency of precipitation (i.e., variability of precipitation vs. no 

precipitation), respectively. Subsection 2.3.4 describes how the statistical parameters in Eq. (2.7) 

estimated in this work. Due to the generally large skewness in hourly precipitation and larger errors 

near median than OCK, CBPCK produces negative estimates more frequently than OCK in areas 

of very light precipitation (see Seo 2013; Seo et al. 2014). To address this, we apply the correction 

procedure of Kim et al. (2018) in which the negative and positive CBPCK estimates are set to zero 

and adjusted by a scaling factor, respectively. For details, the reader is referred to Kim et al. (2018) 

and Seo et al. (2014).  

The CBPCK solution depends on 𝛼. If there is little or no CB, we have 𝛼 ≈ 0, and OCK 

suffices. If there is a large CB due to small predictability in the precipitation field, sparsity in the 

rain gauge network or large uncertainty in the remotely sensed precipitation data (Seo 2013), one 

may expect CBPCK with a large 𝛼 to produce more accurate estimates and error variances than 

OCK. Because there are multiple sources of CB, prescribing 𝛼 a priori is a difficult proposition. 

In adaptive CBPCK, the weight 𝛼 is optimized in real-time in a data-driven manner such that the 

MSE, or any other performance measure or measures of choice, are optimized. To that end, we 

add the following adaptive steps to CBPCK: 1) discretize the possible range of α, 2) given a value 

of 𝛼, use CBPCK to estimate precipitation at all gauge locations within the tile in a cross-validation 

mode, 3) repeat Step 2 for all values of 𝛼, 4) identify the MSE-minimizing 𝛼, and 5) perform 

CBPCK analysis over the entire tile using the “optimal” 𝛼. Because the sample size from cross-

validation may vary greatly from hour to hour within the same tile and from tile to tile for the same 
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hour, the resulting 𝛼 is subject to potentially large sampling uncertainties. The time series plots of 

𝛼 identified in this way often show unrealistically large fluctuations compared to the characteristic 

time scales of CB that may be expected from the predictability conditions. For the above reason, 

we employ exponential smoothing (Schweppe 1973) of the error statistics at multiple time scales 

in a manner analogous to that used in MFB correction. Though effective in reducing sampling 

uncertainties, such smoothing may potentially over-smooth the error statistics in fast-changing 

conditions, in which case the quality of the resulting 𝛼 would be lower. 

Because changing 𝛼 has similar effects to changing the covariance structure (see Eq. (2.3)), it 

is possible that optimizing 𝛼 may not only correct for the CB but also compensate for possibly 

incorrect covariance structure. Differentiation of the two, however, is not readily possible because 

the true covariance structure is not known in the real world. Synthetic experiments to address the 

above are beyond the scope of this work and are left as a future endeavor. In practice, the lack of 

differentiation may not pose a significant issue because the uncertainty in the covariance structure 

is likely to be a contributing factor to the CB as well. In this work, we exponentially smooth the 

second-order statistics used in CBPCK in a manner analogous to that used in MFB correction. In 

this way, all statistical parameters used are subject to similar levels of sampling uncertainty. 

Subsection 2.3.4 provides details on how the statistical parameters are estimated. 

2.3.3 Radar-satellite fusion 

The MRMS radar-only and the SCaMPR QPEs are first MFB-corrected individually, as 

described in Subsection 3.1. The resulting gridded QPEs are fused via Simple Estimation (SE; 

Rafieeinasab et al., 2015). In this procedure, the 1-km hourly MRMS radar-only estimates are 

aggregated to the spatial scale of the 4-km hourly SCaMPR estimates. The two estimates are then 
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fused at each SCaMPR grid box according to Eq. (2.8), where the time index has been dropped for 

brevity: 

𝑋𝑈
∗ = 𝑤𝑅𝑈 + (1 − 𝑤)𝑆𝑈             (2.8) 

In the above, 𝑅𝑈 denotes the upscaled MFB-corrected radar QPE; 𝑆𝑈 denotes the MFB-

corrected SCaMPR QPE; 𝑤 denotes the optimal weight to be determined; and 𝑋𝑈
∗  denotes the 

hourly fused estimate at a 4-km scale. The weight, 𝑤, is obtained via adaptive CB-penalized 

optimal linear estimation, which minimizes the linearly weighted sum of the error variance and the 

Type-II CB squared: 

𝐽 = 𝐸[(𝑋𝑈
∗ − 𝑋𝑈)2] + 𝛼𝑓𝐸[(𝐸[𝑋𝑈

∗ |𝑋𝑈] − 𝑋𝑈)2]          (2.9) 

where 𝛼𝑓 denotes the weight given to the CB penalty term for fusion. Seo (2013) arrives at the 

following Fisher-like solution for the CB-penalized optimal linear estimate, 𝑋𝑈
∗ , and the error 

variance, Σ: 

Σ = 𝐵[𝑈̂𝑇Λ−1𝑈]
−1

                       (2.10) 

𝑋𝑈
∗ = [𝑈̂𝑇Λ−1𝑈]

−1
𝑈̂𝑇Λ−1𝑍 = [𝑤  (1 − 𝑤)] [

𝑅𝑈

𝑆𝑈
]                   (2.11) 

In the above, the (2×1) modified unit vector 𝑈̂, the modified observation error covariance 

matrix Λ, and the scaling matrix, B, are given by: 

𝑈̂𝑇 = (1 + 𝛼𝑓)𝑈𝑇                             (2.12) 

Λ = ℛ − 𝛼𝑓(𝛼𝑓 + 1)𝑈𝜎𝑋𝑈

2 𝑈𝑇          (2.13) 

𝐵 = 𝛼𝑓𝜎𝑋𝑈

2 𝑈̂𝑇Λ−1𝑈̂+(1+𝛼𝑓)𝐼                      (2.14) 

In the above, 𝜎𝑋𝑈

2  denotes the variance of 𝑋𝑈, and the observation error covariance matrix, ℛ, 

is given by: 
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ℛ = [
𝑉𝑎𝑟[𝑅𝑈 − 𝑋𝑈] 0

0 𝑉𝑎𝑟[𝑆𝑈 − 𝑋𝑈]
]         (2.15) 

If 𝛼𝑓 = 0, Eqs. (2.12) and (2.13) reduce to the classical Fisher (i.e., maximum likelihood) 

solution (Schweppe 1973). The diagonality of ℛ reflects the very reasonable assumption that the 

observation errors in 𝑅𝑈 and 𝑆𝑈 are independent. To estimate 𝑉𝑎𝑟[𝑅𝑈 − 𝑋𝑈] and 𝑉𝑎𝑟[𝑆𝑈 − 𝑋𝑈] 

in Eq. (2.15), we update the error statistics of the radar and SCaMPR QPEs vs. gauge precipitation 

in real-time via exponential smoothing. The weight, 𝛼𝑓, is optimized in real-time analogously to 

adaptive CBPCK. To obtain the hourly fused estimate at a 1-km scale, 𝑋𝑈
∗  is disaggregated under 

the assumption that the 1-km hourly radar QPE perfectly captures the spatial variability of 

precipitation within each grid box of the SCaMPR QPE: 

𝑋𝑖,𝑗
∗ =

𝑋𝑈
∗

𝑅𝑈
𝑅𝑖,𝑗, 𝑅𝑈 > 0;  𝑖 = 1, … ,4;  𝑗 = 1, … 4        (2.16) 

In the above, 𝑅𝑖,𝑗 and 𝑋𝑖,𝑗
∗  denote the radar and fused estimates at the ij-th pixel, respectively. 

By replacing 𝑋𝑈
∗  in Eq. (2.16) with Eq. (2.8), we may rewrite 𝑋𝑖,𝑗

∗  as: 

𝑋𝑖,𝑗
∗ = (𝑤 + (1 − 𝑤)

𝑆𝑈

𝑅𝑈
) 𝑅𝑖𝑗 = 𝑤𝑅𝑖,𝑗 + (1 − 𝑤)𝑆𝑖,𝑗

∗ , 𝑅𝑈 > 0; 𝑖 = 1, … ,4;  𝑗 = 1, … 4   (2.17) 

where 

𝑆𝑖,𝑗
∗ =

𝑅𝑖,𝑗

𝑅𝑈
𝑆𝑈, 𝑅𝑈 > 0; 𝑖 = 1, … ,4;  𝑗 = 1, … 4                    (2.18) 

Eq. (2.17) states that one may interpret SE as a multiplicative correction of radar-only QPE 

where the correction factor is given by 𝑤 + (1 − 𝑤)
𝑆𝑈

𝑅𝑈
. Alternatively, SE may be interpreted as a 

combination of naïve downscaling via Eq. (2.18) of the SCaMPR QPE and constrained linear 

regression via Eq. (2.17) of the radar QPE and the downscaled SCaMPR QPE. Unlike in merging, 

the weight 𝑤 does not vary in space owing to the gridded nature of the input QPEs, which renders 
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the fusion algorithm extremely simple. It is important to note that, whereas rain gauge data are 

used to estimate the observation error statistics, they are not used in the fusion itself unlike in OCK 

or CBPCK. As such, the timeliness of the rain gauge data is not as critical to fusion as it is to 

merging. 

2.3.4 Estimation of statistical parameters 

As implemented in this work, both OCK and CBPCK require modeling spatial covariance 

structures of intermittency and inner variability of precipitation. Under the assumption of local 

homogeneity, we equate the mean fractional coverage of precipitation with the probability of 

precipitation. As in Seo (1998b), we assume 𝜎𝑔 = 𝜎𝑟; 𝑚𝐼𝑔 = 𝑚𝐼𝑟; 𝑚𝑔 = 𝑚𝑟; 𝜌𝑔(|𝑢𝑖 − 𝑢𝑗|) =

𝜌𝑐(|𝑢𝑖 − 𝑢𝑗|) = 𝜌𝑟(|𝑢𝑖 − 𝑢𝑗|); and 𝜌𝐼𝑔(|𝑢𝑖 − 𝑢𝑗|) = 𝜌𝐼𝑐(|𝑢𝑖 − 𝑢𝑗|) = 𝜌𝐼𝑟(|𝑢𝑖 − 𝑢𝑗|). The 

correlograms are estimated using the hourly radar-only QPE (Seo 1998b). It is impractical to model 

fully spatiotemporally-varying covariance structures in real-time due to insufficient data, modeling 

complexity, and large computing requirements. In the current implementation of OCK in the MPE, 

the correlation structures are not estimated in real-time but are based on climatological estimates 

(Seo 1998b, Seo and Breidenbach 2000). In this work, we assume the exponential model (Journel 

and Huijbregts 1978) for both intermittency and inner variability and estimate the parameters for 

the correlation model for each hour for each tile. To reduce computing time, we estimate the 

correlation coefficients only for the first few lags, from which the nugget effect and the range are 

estimated (Journel and Huijbregts 1978). Though the exponential model very often provides the 

best fit for hourly radar and rain gauge precipitation among widely used correlogram models (Seo 

and Breidenbach 2002; Seo et al. 2014), it may not be reasonable for stochastically highly-regular 

(i.e., mean-square differentiable) precipitation fields (Vanmarcke 1983) or orographic 

precipitation (Chua and Bras 1982). In addition, the correlation structure may not be homogeneous 
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within a tile given the large latitudinal dimension (see Fig 2.1). As such, the covariance models 

are subject to potentially significant uncertainties, which may also contribute to the CB. Additional 

research is needed to improve real-time modeling of the spatiotemporally-varying covariance 

structure of precipitation over large areas. 

In the western US, significant radar coverage gaps and areas of significant beam blockage or 

occultation exist (Breidenbach et al. 1999, 2001; Maddox et al. 2002). In these areas, the lag-0 

cross-correlation coefficients, 𝜌𝐼𝑐(|0|) and 𝜌𝑐(|0|), are generally significantly lower, particularly 

when beam overshooting occurs or radar observes frozen hydrometeors (Seo et al. 2000, 2010). 

When and where the correlation coefficients are very small, OCK and CBPCK are effectively 

reduced to OK and CBPK using rain gauge data alone, respectively. In the other extreme, when 

and where the correlation coefficients are very high, the OCK and CBPCK analyses largely mimic 

the MFB-corrected radar QPE except in the immediate vicinity of the rain gauge locations. 

Because we are using ordinary, rather than simple, cokriging (Journel and Huijbregts 1978), 

specifying the radius of influence requires additional care. In this work, we set the default radius 

of influence for locating the neighboring gauge observations to be 2.5 times larger than the larger 

of the indicator and conditional correlation scales. In this way, weakly correlated rain gauge 

observations may also be included in the estimation process. It is well known that the predictability 

of precipitation depends strongly on the magnitude of precipitation. In general, the predictability 

peaks around the median and decreases toward the tail ends of the distribution of precipitation 

amount (Seo 1996). Because high-resolution positive precipitation is highly skewed, the 

predictability tends to decrease rather quickly as the precipitation amount increases. The above 

dependence may be modeled explicitly using nonlinear estimation techniques such as indicator 

cokriging (Brown and Seo 2013). They are, however, computationally very expensive and require 
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large amounts of data for parameter estimation. In this work, we partially affect the above 

dependence by parameterizing the radius of influence with the radar precipitation amount at 𝑢0 as 

follows: 

𝑅𝑂𝐼 = 𝑅𝑂𝐼𝑑𝑒𝑓exp (−
𝑍𝑅(𝑢0)

𝐿
)                                 (2.19) 

where 𝑅𝑂𝐼 denotes the radius of influence, 𝑅𝑂𝐼𝑑𝑒𝑓 denotes the default radius of influence, 

𝑍𝑅(𝑢0) denotes the radar precipitation at 𝑢0, and 𝐿 denotes the characteristic precipitation amount 

(mm). If radar precipitation does not exist at 𝑢0, the default radius of influence is used. The 

maximum number of neighboring gauge observations used in the estimation process is 30 to limit 

the amount of computation. The actual number of rain gauge observations used (i.e., those within 

𝑅𝑂𝐼), however, is generally much smaller, particularly in gauge-sparse areas. The fractional 

coverage of precipitation is estimated by dividing the number of positive observations by the total 

number of observations within 𝑅𝑂𝐼𝑑𝑒𝑓.  

2.3.5 Evaluation 

For comparative evaluation of the different QPEs considered, we carried out true validation. 

For Sep 13-30, 2015, we randomly selected 4 to 5% of all available gauge observations within 

each tile for each hour, withheld them for validation, and used the rest for parameter estimation. 

The gauge network density varies greatly from one tile to another and within each tile (see Fig 

2.3). In gauge-poor areas, setting aside more gauges would keep the neighboring gauges too distant 

to provide a predictive skill that may actually exist. The choice of 4 to 5% represents a compromise 

between retaining as much of the actual gauge network as possible and increasing the sample size 

for validation. For large-sample validation, the above experiment was repeated five times; each 

time withholding previously unwithheld gauges. The total number of data points obtained in this 
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way for validation is over 20,000 for the 11 tiles. For Oct 7-9, 2016, 3 to 4% of the gauges were 

withheld. The experiment was then repeated ten times using previously unwithheld gauges. The 

total number of data points obtained for validation is over 19,000 for this analysis period. 

Comparative evaluation for the Oct 2016 case is focused on addressing the following questions: 

How much does the MFB-corrected radar QPE improve over the radar-only?; How much do the 

OCK estimates from merging gauge data and MFB-corrected radar QPE improve over the latter 

alone?; and How much does adaptive CBPCK improve over OCK? Comparative evaluation for 

the Sep 2015 case is focused on addressing: How much do the SE estimates from fusing the MFB-

corrected SCaMPR and radar QPEs improve over the latter alone?; How much do the OCK 

estimates from merging gauge data and MFB-corrected gridded QPE improve over the latter 

alone?; and How much does adaptive CBPCK improve over OCK? For both cases, we also address 

how the above comparative performance may vary according to the magnitude of precipitation 

being estimated. 

For evaluation metrics, we use the root mean square error (RMSE), its decomposition, and 

percent reduction in RMSE relative to reference QPE. The RMSE collectively measures biases in 

the mean and standard deviation and strength of correlation. Both OCK and CBPCK are unbiased 

estimators, and their performance with respect to the three attributes above has also been reported 

in Seo et al. (2010), Seo et al. (2014), and Kim et al. (2018). The RMSE is given by: 

𝑅𝑀𝑆𝐸 = √∑ ∑ [𝑍𝑘,𝑖
∗ − 𝐺𝑘,𝑖]2𝑛𝑔,𝑘

𝑖=1
𝐾
𝑘=1 / ∑ 𝑛𝑔,𝑘

𝐾
𝑘=1         (2.20) 

where 𝐾 denotes the total number of hours in the analysis period; 𝑛𝑔,𝑘 denotes the total number 

of gauges used in the true validation at hour k; 𝑍𝑘,𝑖
∗  denotes the estimated precipitation at location 
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𝑢𝑖 at hour k; and 𝐺𝑘,𝑖 denotes the verifying gauge observation at location 𝑢𝑖. The percent reduction 

in RMSE, or 𝑃𝑅𝑖𝑅𝑀𝑆𝐸(𝑄𝑃𝐸𝑒𝑣𝑎𝑙), is defined as: 

𝑃𝑅𝑖𝑅𝑀𝑆𝐸(𝑄𝑃𝐸𝑒𝑣𝑎𝑙) = 
𝑅𝑀𝑆𝐸(𝑄𝑃𝐸𝑟𝑒𝑓)−𝑅𝑀𝑆𝐸(𝑄𝑃𝐸𝑒𝑣𝑎𝑙)

𝑅𝑀𝑆𝐸(𝑄𝑃𝐸𝑟𝑒𝑓)
  × 100                                               (2.21) 

where 𝑅𝑀𝑆𝐸(𝑄𝑃𝐸𝑒𝑣𝑎𝑙) and 𝑅𝑀𝑆𝐸(𝑄𝑃𝐸𝑟𝑒𝑓) denote the RMSEs of the QPE under evaluation 

and the reference QPE, respectively. MSE decomposition (Murphy and Winkler 1987; Nelson et 

al. 2010) is given by: 

𝑀𝑆𝐸 = (𝑚𝑒 − 𝑚𝑜)2 + (𝜎𝑒 − 𝜎𝑜)2 + 2𝜎𝑒𝜎𝑜(1 − 𝜌𝑒,𝑜)       (2.22) 

where 𝑚𝑒 and 𝑚𝑜 denote the mean of the estimate and verifying observation, respectively, 𝜎𝑒 

and 𝜎𝑜 denote the standard deviation of the estimate and verifying observation, respectively, and 

𝜌𝑒,𝑜 denotes the correlation between the estimate and verifying observation. MFB correction and 

merging address the first- (i.e., systematic) and second-order (i.e., random) errors, respectively. 

One may consider the CB a 1.5th-order error in that it is systematic but exists only over the tails of 

the distribution. First-order errors impact the accuracy across the board. As such, one may expect 

MFB correction to have the largest impact if significant first-order errors exist. The focus of this 

work is on addressing the CB. We are hence interested in assessing the accuracy of the merged 

QPE relative to that of the MFB-corrected radar, in addition to that of the radar-only QPE. For this 

reason, we present the results of both MFB correction and merging relative to radar-only QPE so 

that the improvement due solely to each may be ascertained.  

2.4 Results  

This section presents the merging results for Oct 7-9, 2016, and Sep 13-30, 2015, and the fusion 

and merging results for Sep 13-30, 2015.  
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2.4.1 Radar-gauge merging 

The performance of the procedures described above depends on the predictability of the 

precipitation field, the skill in the remotely sensed QPE, and the gauge network density. To assess 

the first two factors between the two periods, we first examine the indicator and conditional spatial 

correlation scales of radar QPE, and the (spatial) lag-0 indicator and conditional cross correlation 

between gauge observation and radar QPE as estimated in the simulated real-time mode. Fig 2.5 

shows the histograms of the above four parameters for the entire analysis periods over the CONUS.  

Because these estimates reflect different types of precipitation events in different phases of 

development and dissipation under a wide range of conditions for radar observation of 

precipitation, the sample statistics necessarily vary greatly. Nonetheless, it is readily seen that all 

four parameters for Sep 2015, particularly the conditional correlation and conditional correlation 

scale, are significantly smaller than those for Oct 2016, an indication that the precipitation fields 

in the first period are characterized by significantly smaller predictability. One may hence expect 

merging to be more potent for Oct 2016, and the CB to be larger for Sep 2015. 

Oct 7-9, 2016 

This period includes precipitation from storms in largely three different regions: extreme 

amounts from Hurricane Matthew along the Atlantic Coast; significant amounts from a relatively 

weakly organized convective storm in the central US; and significant amounts from a coastal storm 

in the Pacific Northwest (see Fig 2.1). Fig 2.6a shows the RMSE of the radar-only, MFB-corrected 

radar, OCK, and adaptive CBPCK estimates over the CONUS conditional on the verifying 

observed hourly precipitation exceeding the amount shown on the x-axis. The values on the y-axis 

at x=0 represent the RMSE conditional on the verifying observation being nonzero, which is very 

close to the unconditional RMSE. 
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Figure 2.5: Histograms of (a) lag-0 indicator correlation, (b) lag-0 conditional correlation, (c) indicator correlation 

scale, and (d) conditional correlation scale for Sep 13-30, 2015, and Oct 709, 2016. 

As such, we refer to the results for x=0 and x > 0 as unconditional and conditional performances, 

respectively. Also shown in the figure is the sample size, whose axis is shown at the right end of 

the plot on a logarithmic scale. Fig 2.6b shows the percent reduction in RMSE of the MFB-

corrected radar, OCK, and adaptive CBPCK estimates relative to the radar-only QPE. In both 

figures, the conditioning threshold is cut off at about 34 mm, above which the results are very 

noisy due to the small sample size. 



39 

 
Figure 2.6: (a) RMSE of radar-only, MFB-corrected radar, OCK, and adaptive CBPCK estimates for Oct 7-9, 2016, 

conditional on truth exceeding the amount on the x-axis, (b) same as (a) but for percent reduction in RMSE of radar-

only QPE by MFB-corrected radar, OCK, and adaptive CBPCK estimates. 

Fig 2.6b may be summarized as follows. Both OCK and adaptive CBPCK reduce the 

unconditional RMSE of radar-only QPE by about 16%, whereas MFB correction provides no 

reduction. Adaptive CBPCK performs comparably to OCK unconditionally, an indication that 

adaptively optimizing 𝛼 does produce the desired effect of improving the unconditional 

performance of CBPCK. For precipitation amounts exceeding 1.5 mm, adaptive CBPCK improves 

over OCK. At the conditioning amount of 24.5 mm, MFB correction, OCK and adaptive CBPCK 

reduce the conditional RMSE of radar-only QPE by about 13, 22 and 25%, respectively. The 

relatively modest improvement by adaptive CBPCK over OCK is a reflection that the CB is 

generally not very large in this period owing to the large spatial predictability in the well-developed 

precipitation systems in the east. 

To show how the different estimates may compare, we show in Fig 2.7 the scatter plots of radar-

only (upper-left), MFB-corrected radar (upper-right), OCK (lower-left), and adaptive CBPCK 

(lower-right) estimates vs. the verifying gauge precipitation.  
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Figure 2.7: Scatter plots of (a) radar-only, (b) MFB-corrected radar, (c) OCK, and (d) adaptive CBPCK estimates for 

Oct 7-9, 2016, vs. truth. 

The data points are color-coded by region so that the performance for different storms within 

the CONUS may be examined. The generally positive impact of MFB correction of radar QPE is 

readily seen in the figure as reflected by a nearly diagonal quantile-quantile (QQ) plot, but at the 

expense of inflating large, overestimated radar-only precipitation. Such mis-corrections occur 

because biases in radar-only QPE may be spatially nonuniform (Seo and Breidenbach 2000) or 
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nonlinear, i.e., precipitation magnitude-dependent, which cannot be addressed by MFB correction 

alone. The lower panel shows that both OCK and adaptive CBPCK greatly reduce the scatter 

around the diagonal. Overall, the OCK and adaptive CBPCK estimates are very similar, as Fig 2.6 

would suggest. For the eastern region, which encompasses Hurricane Matthew, the two estimates 

show little difference, an indication that there is little CB present owing to the large predictability, 

dense gauge networks, and generally favorable conditions for radar observation of precipitation. 

Though small, noticeable differences are seen in the plotting areas of 40 < truth < 60 (mm) and 20 

< estimate < 40 (mm) for the Central Region, and 0 < truth < 20 (mm) and 0 < estimate < 20 (mm) 

for the Western Region, where a number of adaptive CBPCK estimates are closer to the diagonal 

than the OCK estimates. 

Sep 13-30, 2015 

This analysis period includes multiple mostly convective events of relatively low predictability 

in the Pacific Northwest, Midwest, Northeast, and Southeast of the US (see Figure 2.2). Fig 2.8 is 

the same as Fig 2.6 but for Sep 2015.  

 
Figure 2.8: Same as figure 2.6 but for Sep 13-30, 2015 
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Figs 2.8ab may be summarized as follows. MFB correction reduces the unconditional RMSE 

of radar-only QPE by about 9%. Both OCK and adaptive CBPCK are able to increase the margin 

of reduction to about 17%. For these lower predictability events, however, the effectiveness of 

merging is reduced as the conditioning amount increases. For truth exceeding about 18 mm, the 

OCK estimates are no longer more accurate than the MFB-corrected radar in the mean squared 

error sense. The adaptive CBPCK estimates, on the other hand, perform better than the better of 

the OCK and the MFB-corrected radar estimates for all conditioning amounts. The larger margin 

of improvement by adaptive CBPCK over OCK reflects the presence of larger CB due to smaller 

spatial predictability in this period. About 65% of the true-validated estimates in Fig 2.8 are 

associated with α=0, i.e., the adaptive CBPCK estimates are the same as the OCK estimates.  

To assess the quality of the adaptive CBPCK estimates exclusively, it is necessary to consider 

only those estimates associated with non-zero α. To that end, we plot in Fig 2.9 the RMSEs of the 

radar-only, MFB-corrected radar, OCK, and adaptive CBPCK estimates (upper panels), and the 

percent reduction in RMSE of the radar-only QPE by the MFB-corrected radar, OCK, and adaptive 

CBPCK estimates (lower panels) for different ranges of positive α and conditioning amounts of 

truth. Also shown in the upper panels are the 90% confidence intervals for the OCK and adaptive 

CBPCK estimates obtained via bootstrapping. Fig 2.9 indicates that, when the CB is present (i.e., 

α > 0), the adaptive CBPCK estimates are superior to the OCK estimates for truth exceeding 25.4 

mm at a significance level of 0.10, but that, when all amounts of truth are considered, the 

improvement is not statistically significant. The latter is not at all surprising given the fact that 

smaller amounts of precipitation, for which little CB exists, far outnumber large amounts. 
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Figure 2.9: (a) RMSE of radar-only, MFB-corrected radar, OCK, and adaptive CBPCK estimates and 90% 

confidence interval of the OCK and adaptive CBPCK estimates, for Sep 13-30, 2016, conditional on α exceeding the 

value on the x-axis for truth exceeding zero, (b) same as (a) but for truth exceeding 25.4 mm, (c) same as (a) but for 

percent reduction in RMSE of radar-only QPE by MFB-corrected radar, OCK, and adaptive CBPCK estimates, (d) 

same as (c) but for truth exceeding 25.4 mm. 

Fig 2.10 shows the scatter plots of the estimates vs. the observed. Reduction of bias and scatter 

due to bias correction and merging, respectively, is readily seen. For this period, larger differences 

are seen between the OCK and adaptive CBPCK estimates than in Oct 2016, particularly in the   
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Figure 2.10: Same as figure 7 but for Sep 13-30, 2015. 

eastern region. The general direction of change is that the CBPCK estimates tend to decrease and 

increase very small and larger OCK estimates, respectively. 

Figs 2.11a, 2.11b, and 2.11c show the (𝑚𝑒 − 𝑚𝑜)2, (𝜎𝑒 − 𝜎𝑜)2, and 𝜌𝑒,𝑜 terms in the MSE 

decomposition of Eq. (2.22), respectively. They are for the radar-only, MFB-corrected, OCK, and 

adaptive CBPCK estimates conditioned on the truth exceeding 0, 6.4, 12.7, and 25.4 mm. In each 

figure, the sample statistics for the Sep 2015 and Oct 2016 periods are plotted on the x- and y-

axes, respectively. For each conditioning threshold, the sample statistics for the four different 

estimates are connected with a dashed line. The most desirable estimates would place the sample 

statistics of (𝑚𝑒 − 𝑚𝑜)2 and (𝜎𝑒 − 𝜎𝑜)2 closest to the lower-left corner in Figs 2.11a and 2.11b, 
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respectively, and that of 𝜌𝑒,𝑜 closest to the upper-right corner in Fig 2.11c. Fig 2.11 indicates that 

the MFB-corrected estimates are least biased in the mean and standard deviation, followed by the 

CBPCK estimates, and that the CBPCK estimates are most strongly correlated with the truth, 

followed by the OCK estimates. The first result is not very surprising in that the sole purpose of 

MFB correction is to reduce bias in the mean. Also, being conditional expectation operators, OCK 

and adaptive CBPCK necessarily reduce variability due to averaging. One may avoid such 

smoothing by performing conditional simulation (Deutsch and Journel 1992, Seo et al. 2000) using 

OCK or adaptive CBPCK in an ensemble framework. Such an approach, however, is 

computationally too expensive to be practical for real-time QPE. Fig 2.11 indicates that OCK and 

adaptive CBPCK reduce MSE over MFB-corrected radar by a combination of smoothing and 

improved correlation with the truth (i.e., reduced 𝜎𝑒 and increased 𝜌𝑒,𝑜in Eq. (2.22), respectively), 

and that the adaptive CBPCK estimates are superior to the OCK estimates in all categories except 

in unconditional bias in the mean and conditional bias in the standard deviation for the 25.4-mm 

threshold. 

 
Figure 2.11: Decomposition of MSE of radar-only, MFB-corrected, OCK, and adaptive CBPCK estimates for Sep 

13-30, 2015 (x-axis) and Oct 7-9, 2016 (y-axis) into (a) (𝑚𝑒 − 𝑚𝑜)2, (b) (𝜎𝑒 − 𝜎𝑜)2, and (c) 𝜌𝑒,𝑜 conditioned on 

truth exceeding 0, 6.4, 12.7, and 25.4 mm. 
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Figure 2.12: Same as figure. 2.8 but for radar-only, MFB-corrected radar, SE-fused, OCK, and adaptive CBPCK 

estimates. SE fuses the MFB-corrected radar and MFB-corrected SCaMPR. OCK and adaptive CBPCK merge the 

SE-fused estimates and rain gauge data. 

2.4.2 Fusion of SCaMPR QPE 

Fig 2.12 is the same as Fig 2.8, but for the radar-only, MFB-corrected radar, SE-fused, OCK, 

and adaptive CBPCK estimates for Sep 2015 over the CONUS. The SE results are based on fusing 

the MFB-corrected radar, and MFB-corrected SCaMPR estimates as described in Subsection 2.3.3 

(see also Fig 2.4).  

The OCK and adaptive CBPCK results are based on merging the gauge data with the fused 

QPE. Fig 2.12 indicates that the MFB-corrected radar and adaptive CBPCK provide significantly 

better conditional performance than the others. Fig 2.12b shows that the percent reduction in 

unconditional RMSE by the MFB-corrected radar, SE-fused, OCK, and adaptive CBPCK over the 

radar-only QPE is about 8, 12, 18 and 18%, respectively. As the conditioning amount increases, 

however, the accuracy of the OCK estimates deteriorates and, at the conditioning amount of about 

15 mm, it falls below that of the fused estimates. The adaptive CBPCK estimates, on the other 

hand, remain better than the MFB-corrected radar for conditioning amounts of up to 25 mm. The 
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above results demonstrate the adaptive CBPCK’s ability to improve conditional performance over 

OCK while performing comparably to OCK in the unconditional sense. 

We now assess the impact of the MFB-corrected SCaMPR QPE in radar-satellite fusion by 

comparatively evaluating the SE-fused vs. the MFB-corrected radar estimates. Note that, in this 

comparison, we are not assessing the relative value of the radar- and SCaMPR-only estimates, but 

that of the MFB-corrected radar and MFB-corrected SCaMPR estimates. Accordingly, additional 

factors such as the rain gauge network density, spatiotemporal variability of precipitation, the skill 

in radar-only QPE, and the efficacy of MFB correction come into play. Fig 2.12b shows that MFB 

correction reduces the RMSE of the radar-only QPE by about 8% over the CONUS, and the fused 

QPE additionally reduces the RMSE by about 4%. The tile-specific results indicate that, for the 

western half of the CONUS (i.e., Tiles 1 through 3), the additional reduction by the fused QPE is 

over 6% whereas for the eastern half it is only about 3%. Compared to the western half of the 

CONUS, the eastern half has significantly denser rain gauge networks (see Fig 2.4), and is 

generally more favorable for radar QPE. The latter point may be seen in the tile-specific correlation 

coefficient of radar-only QPE with rain gauge observations; for Sep 2015, the correlation is 0.64, 

0.44, 0.66, 0.77, 0.77 and 0.77 for Tiles 1, 2, 3, 4, 5, and 6, respectively. It is surmised that, for the 

eastern half, the combination of the skillful radar QPE and the dense rain gauge networks is able 

to produce significantly more accurate MFB-corrected radar QPE, and that the comparative skill 

of the MFB-corrected SCaMPR estimates is too small to improve on the former significantly. The 

western region, on the other hand, has substantially lower density of rain gauges and are not very 

favorable for radar QPE. As such, the MFB-corrected SCaMPR is able to provide larger 

improvement. Co-examination of Figs 2.8 and 2.12 indicates that, whereas the addition of the 

SCaMPR QPE does improve the accuracy of the final merged QPE in the unconditional sense, in 
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particular in the western half of the CONUS, it deteriorates the conditional performance. Figs 2.8b 

and 2.12b show that the added value of the SCaMPR estimates is lost when the precipitation 

amount exceeds about 1.5 mm, above which merging rain gauge data and MFB-corrected radar 

QPE via adaptive CBPCK is superior. The above findings suggest that the SCaMPR product 

should be used selectively in the multisensor QPE framework of this work. 

Computationally, adaptive CBPCK requires solving an (𝑛𝑔 + 𝑛𝑟)-dimensional linear system 

multiple times whereas OCK requires solving a comparable system only once. In the above, 𝑛𝑔 

and 𝑛𝑟 are usually on the orders of 10 and 1, respectively, and 𝛼 may range from 0 to 4 incremented 

by 1. With the naïve optimization of 𝛼 used in this work, adaptive CBPCK is hence several times 

more expensive than OCK. To improve understanding of the dependence of the CBPCK solution 

on 𝛼, and to develop a more effective and computationally efficient approach for its optimization, 

additional research is needed. 

2.5 Conclusions and future research recommendations 

The principal conclusion of this work is that, to produce multisensor estimates that are more 

accurate than the ingredient QPEs for all precipitation amounts, it is necessary to address the CB 

and that adaptive CBPCK described in this chapter improves the estimation of significant amounts 

of precipitation by explicitly considering the CB. It is shown that, beyond the reduction in RMSE 

due to MFB, both OCK and adaptive CBPCK additionally reduce the unconditional RMSE of 

radar-only QPE by 16 and 9 % over the CONUS for the more and less predictable Oct 7-9, 2016, 

and Sep 13-30, 2015, events, respectively, and that adaptive CBPCK improves over OCK for 

estimation of hourly precipitation exceeding about 1 mm. Jointly, MFB correction and adaptive 

CBPCK reduce the RMSE of the radar-only QPE by about 16 to 26% for the more predictable Oct 



49 

7-9, 2016, events and by about 10 to 17% for the less predictable Sep 13-30, 2015, events for all 

ranges of precipitation amounts.  

It is shown that for the Sep 2015 events, fusing the MFB-corrected radar QPE with the MFB-

corrected SCaMPR QPE reduces the unconditional RMSE of radar-only QPE by about 12% over 

the CONUS, whereas the reduction by MFB-corrected radar QPE alone over radar-only QPE is 

about 8%. For the western half of the CONUS, where the rain gauge network is sparser, and the 

radar QPE is less skillful, the margin of reduction increases to 6% from the above 4%. The 

conditional performance of the fused QPE, however, falls below that of the MFB-corrected radar 

QPE as the conditioning amount exceeds about 7 mm of hourly precipitation. The above suggests 

that the SCaMPR product should be used selectively in the multisensor QPE framework of this 

study.  

The error variance estimates from adaptive CBPCK were not used in this work. Co-utilizing 

both the estimate and the error variance is likely to improve optimization of 𝛼. Additional 

evaluation is needed to assess the performance of adaptive CBPCK further, and to optimize its 

parameters. We note here that the algorithm described in this work is being comparatively 

evaluated with Stage IV (Nelson et al. 2010) in real time for possible operational implementation 

in MRMS (Tang et al. 2019), and the results will be reported in the near future. 
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: CBP-MLR and CompMLR: Theory and Application to 

Multimodel Streamflow Prediction 

3.1 Introduction 

Streamflow is arguably the most important predictand in operational hydrology and water 

management. With the fast-increasing availability of multiple streamflow forecasts from different 

sources in many parts of the world (Muhammad et al., 2018), objectively combining forecasts in 

ways that will yield consistently superior forecast products is of great wide interest. For the above 

purpose, multiple linear regression (MLR) is an extremely attractive technique because of its 

simplicity and interpretability. MLR also forms the basis for the standard Bayesian normal 

conjugate linear model if an extension to Bayesian modeling, such as Bayesian Model Averaging 

(BMA, Madigan and Raftery 1994; Hoeting et al. 1999; Raftery et al. 2005, 2015; Duan et al. 

2007), is desired. MLR is arguably one of the most popular modeling and prediction techniques 

used in a wide range of areas. Khan et al. (2013) used MLR for nonlinear fuzzy set-based 

uncertainty propagation for improved prediction of dissolved oxygen. Khanmohammadi et al. 

(2018) used MLR for evapotranspiration trend calculation. Carl and Kühn (2008) used linear 

regression and wavelet analysis to analyze spatial ecological data. Diks and Vrugt (2010) 

compared point forecast accuracy of model averaging methods in hydrologic applications, which 

included MLR. It is well known in statistics and econometrics that observation error in the 

predictors may introduce significant low and high biases in the least-squares solution over the 

upper and lower tails of the predictand, respectively (Fuller, 1987; Hausman, 2001; Seber and 

Wild, 1989). In regression, the above effect is referred to as regression dilution, which results in 

attenuation, or conditional, bias in the regression coefficients (Frost and Thompson, 2000; Hughes, 

1993). Theil (1961) assessed the impact of measurement error on ordinary least squares (OLS) 
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estimation in regressions with two predictors measured with error. He showed that the multivariate 

attenuation factor, which applies to all coefficients and generalizes the standard attenuation factor 

in univariate regressions, increases with increasing correlation between the two explanatory 

variables (Abel, 2017). Levi (1973) examined the case with two or more predictors where one 

variable is observed with measurement error and the rest are observed without error. He showed 

that the OLS estimate of the coefficient for the variable measured with error is attenuated toward 

zero (Abel, 2017).  

To address the detrimental effects of conditional bias (CB) on estimation of extremes, Seo 

(2013) introduced a linear estimation method that minimizes the weighted sum of error variance 

and expectation of the Type-II error squared. Recall that the Type-I and II errors are associated 

with false alarm and failure to detect, respectively. Whereas the Type-I CB may be reduced by 

calibration, the Type-II CB cannot (Seo et al., 2018a, 2018b; Wilks, 2005). As such, reducing the 

Type-II CB is of particular interest in estimation and prediction of extremes. When cast in the form 

of kriging, CB-penalized linear estimation yields CB-penalized kriging (CBPK), which has been 

shown to broadly outperform conventional kriging in the prediction of high flows and estimation 

of heavy to extreme rainfall (Brown and Seo, 2013; Jozaghi et al., 2019; Kim et al., 2018; Seo, 

2013; Seo et al., 2014). When cast in the form of the Kalman filter (KF), the method yields the 

CB-penalized KF (CBPKF, Seo et al. 2018a, b; Shen et al. 2019) and, in ensemble form, the CB-

penalized ensemble KF (CBEnKF, Lee et al. 2019). CBPKF and CBEnKF have been shown to 

outperform KF and EnKF for the prediction of extremes and floods, respectively (Lee et al., 2019; 

Shen et al., 2019). In this work, we cast conditional bias-penalized linear estimation in the form of 

MLR and apply the resulting conditional bias-penalized multiple linear regression (CBP-MLR) to 

multi-model streamflow prediction for multiple forecast groups in the NWS Middle Atlantic River 
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Forecast Center’s service area. A forecast group is an NWS term referring to a collection of 

forecast locations generally making up some portion of the same river basin. Whereas CBP-MLR 

improves prediction over tails, it yields degraded performance near the median in the mean squared 

error (MSE) sense. To retain MLR-like performance near the median while harnessing the skills 

of CBP-MLR over tails, we develop composite MLR (CompMLR), which linearly weight-

averages the MLR and CBP-MLR estimates according to the standard-normalized MLR estimate. 

In multi-model streamflow prediction, the predictors are not observations but forecasts of 

streamflow valid at some future times. Accordingly, forecast errors in multi-model streamflow 

prediction act as observation errors in MLR. Streamflow forecasts are subject to forcing, 

hydrologic and anthropogenic uncertainties modulated by hydroclimatological, 

hydrometeorological, hydrologic and hydraulic processes, as well as human control of storage and 

movement of water (Krzysztofowicz, 1999; Seo et al., 2006). These uncertainties result in errors 

in streamflow forecasts that are both systematic and random in nature and vary in space and time, 

in magnitude, and with lead time (Alizadeh et al., 2020a). The wide range of possible errors in 

streamflow forecasts means that regression-based multi-model streamflow prediction is subject to 

CB of varying magnitude, and is likely to benefit from CBP- and CompMLR. The significant new 

contributions of this paper are the development of CBP- and CompMLR, assessment of predictive 

skill of operationally produced streamflow forecasts in the MARFC’s service area, comparative 

evaluation of multiple streamflow forecasts and MLR-based multi-model prediction, and advances 

in understanding of the multi-objective nature of multi-model streamflow prediction. This paper 

is organized as follows. In Section 2, we describe the CBP- and CompMLR methods. Section 3 

describes how evaluation is carried out. Section 4 presents the results. Section 5 offers discussion.  
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Figure 3.1: Schematic of CompMLR, a linear weighted average of MLR and CBP-MLR estimates 

Section 6 provides the conclusions and future research recommendations. Fig 3.1 shows the 

flowchart of this study. 

3.2 Methods 

In this section, we describe the formulations of CBP- and CompMLR. The development of 

CBP-MLR is analogous to that of other conditional bias-penalized estimation techniques (Lee et 

al., 2019; Seo, 2013; Shen et al., 2019). The main difference is that CBP-MLR rests solely on 

least-squares minimization whereas the others build on Fisher and Bayesian estimation 

(Schweppe, 1973). The identity between the two estimates follows from the fact that the Fisher 

solution, or the maximum likelihood solution under normality, is identical to the weighted least 

squares solution (Schweppe, 1973). 
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3.2.1 Conditional bias-penalized multiple linear regression 

 The MLR model is given by: 

𝑌 = 𝑋𝑏 + 𝑒                (3.1) 

where 𝑌 is the (𝑛 × 1) vector of the predictand or the response variable, 𝑋 is the (𝑛 × 𝑚) matrix 

of the predictors or the explanatory variables,  𝑏 is the (𝑚 × 1) coefficient vector and 𝑒 is the 

(𝑛 × 1) vector of independent and identically distributed zero-mean normal errors, 𝑒~𝑁(0, 𝜎2𝐼). 

The OLS estimate for 𝑏 in Eq. (3.1), 𝑏̂, is obtained by solving min
𝑏∈ℝ𝑚

‖𝑌 − 𝑋𝑏‖2 where ‖∙‖ denotes 

the Frobenius norm as: 

𝑏̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑌            (3.2) 

The least squares-fitted predictands, 𝑌̂, are given by: 

𝑌̂ = 𝑋𝑏̂ = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑌           (3.3) 

Variance of 𝑏̂ is given by: 

E[(𝑏̂ − 𝑏)(𝑏̂ − 𝑏)
𝑇

] = 𝜎2(𝑋𝑇𝑋)−1         (3.4) 

To derive CBP-MLR, we first define the Type-II error of 𝑌̂, 𝐸[𝑌̂|𝑌 = 𝑦] − 𝑦, where 𝑌, 𝑌̂ and 

𝑦 denote the unknown truth, its estimate, and its realization, respectively (Jolliffe and Stephenson, 

2011). The Type-I error, on the other hand, is defined as 𝐸[𝑌|𝑌̂ = 𝑦̂] − 𝑦̂, where 𝑦̂ denotes a 

realization of 𝑌̂. CBP-MLR jointly reduces systematic Type-II error, or Type-II CB, and the sum 

of errors squared. For the CB penalty, we use the expectation of the Type-II error squared as in 

Seo (2013), Lee et al. (2019) and Shen et al. (2019): 

Σ𝐶𝐵 = 𝐸[(𝑌 − 𝐸[𝑌̂|𝑌])𝑇(𝑌 − 𝐸[𝑌̂|𝑌])]         (3.5) 

Using Eq. (3.3), we may write the Type-II CB in Eq. (3.5) as: 
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𝑌 − 𝐸[𝑌̂|𝑌] = 𝑌 − 𝐸[𝑋|𝑌]𝑏̂                      (3.6) 

Note that, because 𝑋 is not a random variable, the expectation operation of 𝐸[𝑋|𝑌] in Eq. (3.6) 

is meaningless. The expression is used here only to indicate that it is an estimate of 𝑋 and depends 

on 𝑌. To model 𝐸[𝑋|𝑌], we use MLR (i.e., reverse MLR) just as we used MLR to approximate 

𝐸[𝑌|𝑋] in Eq. (3.3): 

𝐸̂[𝑋|𝑌] = 𝑌(𝑌𝑇𝑌)−1𝑌𝑇𝑋                                   (3.7) 

where 𝐸̂[ ] signifies that it is only an estimate. We may then write the Type-II error of 𝑌̂ as: 

𝑌 − 𝐸[𝑌̂|𝑌] = 𝑌[𝐼 − (𝑌𝑇𝑌)−1𝑌𝑇𝑋𝑏̂]              (3.8) 

Whereas MLR minimizes only the sum of errors squared, Σ𝐸𝑉 = (𝑌 − 𝑌̂)𝑇(𝑌 − 𝑌̂), CBP-MLR 

minimizes a linearly weighted sum of Σ𝐸𝑉 and the sum of the Type-II error squared: 

𝐽 = Σ𝐸𝑉 + 𝛼Σ𝐶𝐵            (3.9a) 

= (𝑌 − 𝑌̂)
𝑇

(𝑌 − 𝑌̂)+𝛼(𝑌 − 𝐸𝑌̂[𝑌̂|𝑌])
𝑇

(𝑌 − 𝐸𝑌̂[𝑌̂|𝑌])                  (3.9b) 

= (𝑌 − 𝑋𝑏̂𝑐𝑏)
𝑇

(𝑌 − 𝑋𝑏̂𝑐𝑏) + 𝛼(𝐼 − 𝐶𝑏̂𝑐𝑏)
𝑇

𝑌𝑇𝑌(𝐼 − 𝐶𝑏̂𝑐𝑏)      (3.9c) 

where 𝛼 denotes the weight given to the CB penalty and 𝐶 = (𝑌𝑇𝑌)−1𝑌𝑇𝑋. Minimizing 𝐽 with 

respect to 𝑏̂𝑐𝑏, we have the following least-squares solution for the CBP-MLR coefficient: 

𝑏̂𝑐𝑏 = (𝑋𝑇𝑋 + 𝛼𝐶𝑇𝑌𝑇𝑌𝐶)−1(𝑋𝑇𝑌 + 𝛼𝐶𝑇𝑌𝑇𝑌)      (3.10a) 

= (1 + 𝛼)[𝑋𝑇𝑋 + 𝛼𝑋𝑇𝑌(𝑌𝑇𝑌)−1𝑌𝑇𝑋]−1𝑋𝑇𝑌      (3.10b) 

Eq. (3.10b) follows from Eq. (3.10a) via the matrix inversion lemma (Schweppe, 1973). Eq. 

(3.10b) is somewhat similar in appearance to Tikhonov regularization (Tikhonov et al., 1995; 

Tikhonov and Arsenin, 1977) or ridge regression (Hoerl, 1962; Hoerl and Kennard, 1970), but the 

nature of the penalty is very much different. Whereas ridge regression or its 𝐿1 version, the Least 
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Absolute Selection and Shrinkage Operator (LASSO, Tibshirani 1996, 1997), seeks to shrink the 

coefficients, CBP-MLR looks to stretch them as shown in the Results Section.  

In Eq. (3.10), 𝛼 may be seen as a tuning parameter that controls the strength of the penalty as 𝜆 

does in ridge regression or LASSO. If there is no penalty for CB (i.e., 𝛼 = 0), 𝑏̂𝑐𝑏 is reduced to 

the conventional linear regression coefficient in Eq. (3.2). If in the other extreme, the objective 

function is made solely of the CB penalty (i.e., 𝛼 → ∞), we have for 𝑏̂𝑐𝑏: 

𝑏̂𝑐𝑏 = [𝑋𝑇𝑌(𝑌𝑇𝑌)−1𝑌𝑇𝑋]−1𝑋𝑇𝑌                    (3.11) 

Note that, with Eq. (3.11), the CB penalty term in Eq. (3.9) vanishes. It is instructive to consider 

the above solution in the context of simple linear regression. With 𝑚 = 1, Eq. (3.9) with 𝛼 = 0 

and 𝛼 → ∞ yields 𝑏̂𝑐𝑏 = 𝜌𝑋𝑌
𝜎𝑌

𝜎𝑋
 and 𝑏̂𝑐𝑏 =

1

𝜌𝑋𝑌

𝜎𝑌

𝜎𝑋
, respectively, when expressed in terms of 

statistical parameters where 𝜌𝑋𝑌 denotes the correlation between 𝑋 and 𝑌, and 𝜎𝑋 and 𝜎𝑋 denote 

standard deviation of 𝑋 and 𝑌, respectively. Note that the second expression for 𝑏̂𝑐𝑏 above is the 

slope in linear reverse regression (Conway and Roberts, 1983; Goldberger, 1984; Green and 

Ferber, 1984). The CBP-MLR solution, therefore, lies between the (forward) regression slope and 

the reverse regression slope, and its slope depends on the relative importance between the MSE 

and Type-II error squared penalties. Unlike MLR, the variance of 𝑏̂𝑐𝑏 does not have an analytical 

solution. One may, however, obtain an approximation by expressing Eq. (3.9) analogously to Eq. 

(3.3): 

𝑏̂𝑐𝑏 = (𝐴𝑇𝐴)−1𝐴𝑇𝑌                       (3.12) 

where 

𝐴 = (𝑋𝑋𝑇)−1𝑋(1 + 𝛼)−1[𝑋𝑇𝑋 + 𝛼𝑋𝑇𝑌(𝑌𝑇𝑌)−1𝑌𝑇𝑋]                  (3.13) 

With the above, one may approximate variance of 𝑏̂𝑐𝑏 as: 
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E[(𝑏̂𝑐𝑏 − 𝑏)(𝑏̂𝑐𝑏 − 𝑏)
𝑇

] ≈ 𝜎2(𝐴𝑇𝐴)−1         (3.14) 

The choice of 𝛼 depends on whether the state of the system that manifests the predictor-

predictand relationship being observed is in a normal range or in an extreme range. If the system 

is at or near its median state, 𝛼 should be set to near zero so that CBP-MLR is effectively reduced 

to MLR and produce the least-squares solution. If the system is in an extreme state, 𝛼 should be 

set to a large value so that CB is reduced as much as possible. Because the true state of the system 

is not known, prescribing 𝛼 dynamically is a challenge. In this work, we optimize 𝛼 in the training 

period for maximum conditional performance, i.e., performance over the tails, and linearly weight-

average the MLR and CBP-MLR estimates according to the exceedance probability of the MLR 

prediction. For example, if the sample size for the training data set is 𝑛, one may obtain the 𝑛 MLR 

estimates first, sort them and assign exceedance probabilities using, e.g., the Weibull plotting 

position 𝑟/(𝑛 + 1) where 𝑟 denotes the rank from largest to smallest (Makkonen, 2006). If the 

exceedance probability of the MLR estimate is near the median (i.e., 0.5), CB is likely to be small 

and we weigh more heavily the MLR estimate. If the exceedance probability of the MLR estimate 

is very small, CB is likely to be large and we weigh more heavily the CBP-MLR estimate. In the 

real-time mode, one may estimate the exceedance probability of a real-time MLR estimate via a 

lookup table or interpolation of the training results. The above approach, CompMLR, amounts to 

performing two regressions, MLR and CBP-MPR, and weight-averaging the two in the transition 

zone. Fig 3.2 illustrates the concept in which the diagonal line (dashed) is also shown for reference. 

The details of CompMLR follow below. 
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Figure 3.2: Illustration of CompMLR (black) as a composite of MLR (blue) and CBP-MLR (red) regressions. 

3.2.2 Composite MLR 

CompMLR linearly weight-averages the MLR and CBP-MLR estimates according to: 

𝑦̂𝑐𝑜,𝑖 = 𝜛𝑖𝑦̂𝑖 + (1 − 𝜛𝑖)𝑦̂𝑐𝑏,𝑖         (3.15) 

where 𝑦̂𝑖 and 𝑦̂𝑐𝑏,𝑖 denote the MLR and CBP-MLR estimates for the 𝑖-th prediction, 𝜛𝑖 denotes 

the weight for the 𝑖-th MLR estimate, and 𝑦̂𝑐𝑜,𝑖 denotes the 𝑖-th CompMLR estimate. There are a 

number of different ways to prescribe 𝜛𝑖 (see Kim et al. 2018; Shen et al. 2019 for examples in 

conditional bias-penalized cokriging and CBPKF, respectively). We experimented with several 

for multi-model streamflow prediction and found the following to be effective:  

𝜛𝑖 = 𝑒−|𝛽𝑧𝑖|𝛾
, 𝛾 > 0          (3.16) 

In the above, 𝑧𝑖 denotes the standard normal deviate of the 𝑖-th MLR estimate 𝑦̂𝑖, 𝛽 and 𝛾 denote 

the width and smoothing parameters to be determined, respectively. If the 𝑖-th MLR estimate is at 
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the median, we have 𝑧𝑖 = 0 and hence 𝜛𝑖 = 1. If it is in a tail end, we have a very large |𝑧𝑖| and 

hence a very small 𝜛𝑖. The width parameter 𝛽 controls the width of the sub-range of 𝑧𝑖 centered 

around the median (zero in the standard normal space) over which MLR is heavily weighted in 

Eq. (3.15). The smoothing parameter 𝛾 controls the shape of the curve connecting the two slopes 

(see Fig 3.2). A small 𝛾 renders 𝜛𝑖 to approach a finite-width pulse centered at 𝑧𝑖 = 0. A large 𝛾 

renders 𝜛𝑖 to vary very smoothly from one regression line to the other.  

Before we describe how the parameters in Eq.(3.16) are estimated, it is useful to describe the 

nature of the regression problem posed by CompMLR. Because the MLR estimate, and hence 𝑧𝑖 

in Eq. (3.16), are never perfect, 𝜛𝑖 as described above can only be prescribed suboptimally. The 

goal of CompMLR is, therefore, to perform as closely to MLR as possible when the (unknown) 

true state of the system is predicted to be near the median and as closely to CBP-MLR as possible 

when it is predicted to be in the tails. Because 𝜛𝑖 is meant to reflect only the relative magnitude 

of the verifying truth, the predictive skill sought in 𝑧𝑖 is rank correlation rather than product-

moment correlation. Given the above picture, one may view CompMLR as a nonlinear regression 

comprising two linear regressions with a transition zone in between (see Fig 3.2). A useful way to 

assess the upper bound of the performance of CompMLR is to prescribe 𝑧𝑖 in Eq. (3.16) perfectly 

by using the verifying observation in place of the MLR estimate (see, e.g., Shen et al. 2019 for an 

example using CBPKF). With the uncertainty in prescribing 𝑧𝑖 eliminated, such “idealized” 

CompMLR should perform very closely to MLR near the median and CBP-MLR over the tails, 

and further guide the modeling of 𝜛𝑖 for improved performance.  

As described above, there are three parameters to be optimized in CompMLR: 𝛼, 𝛽 and 𝛾. 

Given that MLR and CBP-MLR are least-squares solutions, it behooves to minimize the MSE of 
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the predictions for parameter optimization. The MSE reflects correlation and biases in mean and 

standard deviation (Murphy and Winkler, 1987; Nelson et al., 2010), all of which are important 

performance attributes for streamflow forecasting. Minimizing only the unconditional MSE, 

however, is too limiting a criterion for CBP-MLR as elaborated below. In the unconditional MSE 

sense, CBP-MLR is inferior to MLR. As such, CBP-MLR reduces unconditional MSE over MLR 

only if significant CB exists. One may hence expect MLR to frequently outperform CBP-MLR in 

the unconditional MSE sense, resulting in 𝛼 of zero. In CompMLR, we allow the unconditional 

MSE of CBP-MLR to exceed that of MLR by some margin, referred to herein as the maximum 

acceptable increase in percent MSE, 𝛿 (%), and optimize 𝛼 given 𝛿 by minimizing the MSE 

conditional on the verifying observation exceeding a user-specified threshold (e.g., action stage 

for flood warning). Generally speaking, the larger the value of 𝛿 is, the larger the conditional MSE-

minimizing 𝛼 is. If the primary interest is with modeling and prediction of extremes in the upper 

tail, one may choose a large 𝛿 for improved conditional performance but at the expense of reduced 

unconditional performance. If conditional performance is not of concern, one may set 𝛿 to zero so 

that CBP-MLR with non-zero 𝛼 takes effect only when the training data indicates a presence of 

significant CB. Pictorially (see Fig 3.2), optimizing the four parameters, 𝛿, 𝛼, 𝛽 and 𝛾, amounts 

to adjusting the slope of the CBP-MLR solution and the shape of the curve that connects the two 

regression lines such that the resulting nonlinear regression jointly maximizes conditional and 

unconditional performances.  

Because 𝛿 and 𝛼 pertain only to the conditional performance of CBP-MLR, they may be 

estimated first before 𝛽 and 𝛾. Also, most predictands have much larger probability densities near 

median than over tails. As such, one may estimate 𝛽 with 𝛾 fixed at some large value so that 𝜛𝑖 in 

Eq. (3.16) is effectively a rectangular pulse with a peak of unity and a base of zero. The width 
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parameter, 𝛽, may be optimized by minimizing the unconditional MSE of CompMLR which 

already reflects the optimized 𝛿 and 𝛼 from minimization of conditional MSE. Lastly, the 

smoothing parameter, 𝛾, may be optimized by further minimizing the unconditional MSE of 

CompMLR given 𝛿, 𝛼 and 𝛽. In this work, the parameters are optimized by defining their feasible 

regions, discretizing them and carrying out a 2-dimensional search for 𝛿 and 𝛼, and two 1-

dimensional searches: first for 𝛽 given 𝛿, 𝛼 and a very large 𝛾, and then for 𝛾 given 𝛿, 𝛼 and 𝛽. 

Admittedly, the parameter estimation procedure described above is ad hoc and may potentially be 

improved significantly. More objective and rigorous multi-objective parameter optimization using, 

e.g., Pareto optimality (Goodarzi et al., 2014; Jahan et al., 2016) is left as a future endeavor. 

3.3 Evaluation 

In this section, we describe the input forecasts, i.e., the predictors, used, how comparative 

evaluation is carried out, and the performance measures used.  

3.3.1 Input forecasts used 

The input forecasts considered are the MARFC single-valued forecast, the Hydrologic 

Ensemble Forecast System (HEFS, Demargne et al. 2014) ensemble forecast, the National Water 

Model (NWM, Graziano et al. 2017) medium-range single-valued forecast, and the Meteorological 

Model-based Ensemble Forecast System (MMEFS, Adams 2015) ensemble forecasts forced by 

the Global Ensemble Forecast System (GEFS, Toth and Kalnay 1997; Cui et al. 2012), the North 

American Ensemble Forecast System (NAEFS, Zhu, Y., Toth 2008) and the Short-Range 

Ensemble Forecast System (SREF, Du et al. 2004). The above streamflow forecasts are referred 

to as RFC, HEFS, NWM, GEFS, NAEFS and SREF for brevity. All flow forecasts are for 

instantaneous discharges. For ensemble streamflow forecasts (i.e., HEFS, GEFS, NAEFS and 
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SREF), only the ensemble mean is used. The period of record was from Jan 1, 2017, to Oct 29, 

2018. The first year was moderately drier than normal, whereas the second year was significantly 

wetter than normal. The short period of record reflects the availability of routinely archived 

forecasts at MARFC and hence provides a realistic constraint on the amount of data that may be 

readily available for parameter estimation in an operational setting. 

The pairs of the RFC and SREF, the GEFS and NAEFS, and the HEFS and NWM streamflow 

forecasts have maximum lead times of 4.25, 7, and 10 days, respectively. In this work, we cap the 

lead time at seven days so that there are at least four different forecasts available at all lead times. 

This provides six candidate forecasts for Days 1 through 4, and 4 candidate forecasts for Days 5 

through 7. For all forecasts except NWM, the hydrologic models used are the continuous 

Antecedent Precipitation Index model (API-CONT, Sittner et al. 1969; Fedora and Beschta 1989) 

for soil moisture accounting, unit hydrograph (Chow et al., 1988) for surface runoff routing, 

SNOW-17 (Anderson, 2006, 1973) for snow ablation and Lag/K for routing (National Weather 

Service, 2006). A number of forecast points are influenced by reservoirs and flow regulations. 

Reservoirs and their operations are simulated via the RES-SNGL regulation models (NWS 

2008ab; Adams 2016) in the Community Hydrologic Prediction System (CHPS, Roe et al. 2010), 

the primary operational forecasting system at the RFCs. The HEFS, GEFS, NAEFS and SREF 

streamflow forecasts are initialized with the same model states that MARFC maintains for their 

deterministic runs. As such, any differences among the above four forecasts are due solely to the 

differences in forcings.  

The ensemble quantitative precipitation forecast (QPF) and quantitative temperature forecast 

(QTF) for HEFS are generated with the Meteorological Ensemble Forecast Processor (MEFP, 

(Schaake et al. 2007; Wu et al. 2011; NWS 2016). The MEFP uses ensemble mean QPF and QTF 
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from GEFS using statistical parameters obtained from the GEFS reforecast dataset (Hamill et al., 

2013). The NAEFS forcing forecast combines the ensemble forecasts from the Meteorological 

Service of Canada and the NWS (Zhu and Toth, 2008). A degree of collinearity may exist among 

the HEFS, GEFS and NAEFS streamflow forecasts given that they share a common forecast 

system, i.e., the GEFS, for their forcing forecasts and the same hydrologic models and ICs. The 

NWM, which uses WRF-Hydro (Gochis et al., 2018), uses the control run of the GEFS forcing 

forecast for its medium-range streamflow forecast. The hydrologic models used in NWM are, 

however, very much different from those used in the others. As such, collinearity is not likely to 

be an issue.  

3.3.2 Evaluation strategy and performance measures used 

For comparative evaluation of the MLR-based predictions, we performed 10-fold cross-

validation for each forecast point. The period of record was divided into ten subperiods of equal 

length, each of which was used for validation while the rest were used for parameter estimation. 

Initially, the four parameters, 𝛿, 𝛼, 𝛾 and 𝛽, were optimized in each training period as described 

above, and the resulting parameter values were used in validation. Early results indicated, however, 

that 𝛿, 𝛽 and 𝛾 do not vary much among different training periods or forecast points, and that 𝛿 =

15 (%), 𝛽 = 1/2 and 𝛾 = 0.1 generally work well. As such, only 𝛼 is estimated for each training 

period and for each forecast point. Instead of training the procedure for each forecast point, one 

may consider regionalization and pool multiple forecast points into a group. Such an approach was 

not pursued in work so that we may examine the variations in contributions of different input 

forecasts across different forecast points. One may also consider seasonal stratification in 

parameter estimation similarly to the MEFP (Schaake et al. 2007; Wu et al. 2011; NWS 2016) or 
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the ensemble streamflow post-processor in HEFS (Seo et al. 2006; NWS 2015). Due to the limited 

amount of training data, however, such stratification was not considered in this work. 

Evaluation is focused on prediction of high flows for flood forecasting and for all ranges of 

flows for water supply and environmental flow forecasting. We use conditional and unconditional 

RMSE, mean error (ME), and CORR to measure the performance for the above. The conditioning 

is on verifying observed flow exceeding the 95th percentile flow for each forecast point. The 95th 

percentile is not in general associated with flooding conditions. The use of a higher threshold, 

however, would reduce the sample size and, more importantly, predominantly sample under-

forecasts due to the limited predictive skill for large flows, particularly at longer lead times. Such 

biased sampling would favor for conditional performance in a forecast system that consistently 

over-forecasts and hence has a large high overall bias. The use of the 95th percentile threshold is 

to avoid the above situation by including both over- and under-forecasts in the diffuse upper tail 

for balanced sampling. For performance evaluation over all ranges of flow, we use unconditional 

RMSE, ME and CORR.  

3.4 Results 

In this section, we first assess the comparative predictive skill of all available forecasts for the 

selection of the predictors. We then present the evaluation results.  

3.4.1 Assessment of skill in input forecasts 

If a subset of the input forecasts is substantially more skillful than the rest, one may not expect 

merging all input forecasts to outperform consistently the best input forecast (Konstantine P 

Georgakakos et al., 2004). As such, we first assess the predictive skill of all available input 

forecasts and their spatio-temporal variations to screen the predictors. Fig 3.4 shows the 
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unconditional CORR for headwater forecast points in the North Branch of the Susquehanna and 

James forecast groups. All unconditional performance or skill measures are based on including all 

ranges of verifying observed flow. The first represents the northernmost forecast group and the 

second represents one of the southernmost forecast groups in the MARFC’s service area (see Fig 

3.3). We also examined similar plots for correlation conditional on the verifying observed flow 

exceeding the 95th percentile, referred to as conditional CORR, and for downstream forecast points 

for the 13 forecast groups. Collectively, Fig 3.4 and similar figures for all other forecast groups 

may be summarized as follows. In general, the NWM streamflow forecast is consistently less 

skilful than all other forecasts for most of the forecast horizon. The above suggests that uniformly 

including NWM is not likely to benefit multi-model merging. The forecasts are significantly more 

skilful for the northern forecast groups than the southern and for the cool season than the warm, in 

reflection of the relative skill in precipitation forecast (Brown et al., 2014a, 2014b; Siddique et al., 

2015). For the southernmost forecast groups, the skill is sharply lower due to smaller skill in QPF 

and larger hydrologic uncertainty. Contributing factors to the latter include less accurate 

calibrations for some locations due to sparser rain gauge networks and storages that are not well 

accounted for. In addition, the southern forecast groups exhibit varying degrees of collinearity (i.e., 

very high correlation among different input forecasts) among the HEFS, GEFS, NAEFS and SREF 

streamflow forecasts in very dry conditions during inter-storm periods. The above is attributable 

to the fact that the 4 forecasts share the same hydrologic models, ICs and mean areal potential 

evapotranspiration. The above observations suggest that merging all input forecasts (i.e., without 

NWM) some of which are likely to be collinear is not likely to benefit the southern forecast groups. 

Based on the above assessment, we use all input forecasts except NWM for all headwater forecast 

points in the Chemung, Delaware, North Branch of the Susquehanna and Passaic forecast groups, 
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and for all downstream forecast points in the Lower Main Stem of the Susquehanna Forecast Group 

in addition to the above 4. There are 10, 31, 11, 14 and 12 forecast points in the Chemung, 

Delaware, Lower Main Stem of the Susquehanna, North Branch of the Susquehanna and Passaic 

forecast groups, respectively. All results presented below are hence based on RFC, HEFS, GEFS, 

NAEFS and SREF for lead times of 0.25 to 4.25 days, and HEFS, GEFS and NAEFS for lead 

times of 4.5 to 7 days. 

 

Figure 3.3: Map of forecast groups in the MARFC’s service area. 
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Figure 3.4: Unconditional correlation of forecasts with verifying observed flow vs. lead time for headwater forecast 

points in the (a) North Branch of the Susquehanna and (b) James Forecast Groups. 

3.4.2 Comparative evaluation results 

Figs 3.5ab show the conditional RMSE of all predictions for all headwater and downstream 

forecast points in the evaluation domain, respectively. The sample size ranges from 453 to 517 for 

headwater forecast points and 751 to 857 for downstream points across all lead times. As expected, 

the downstream points are much more predictable for which the conditional RMSE plateaus at 

about 4 days into the future. The headwater results show peak RMSE values recurring every 24 

hrs due to the diurnal cycle in the skill of precipitation forecast (Brown et al., 2014a, 2014b; 

Siddique et al., 2015). Fig 3.5a shows that CBP-MLR is superior to the best input forecast in the 

MSE sense for the headwater points at all lead times, and that CompMLR is slightly inferior to 

CBP-MLR as one may expect from Eqs. (3.15) and (3.16). MLR, on the other hand, is increasingly 

inferior to CBP-MLR as the lead time increases, a reflection of increasing CB for less predictable 

headwater points as the lead time increases. Fig 3.5b shows that CBP- and CompMLR are superior 

to the best input forecast in the MSE sense for the downstream points except at the longest lead 

times. For downstream points, the MLR prediction stays superior to the best input forecast up to 

about 4 days into the future owing to the larger predictability. Fig 3.5b indicates that, among all 

(a) (b) 
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input forecasts, NAEFS has the best overall conditional performance though HEFS is somewhat 

better than NAEFS for lead times of about 2 to 3.5 days for downstream points, and that CBP- and 

CompMLR outperform NAEFS for both headwater and downstream points except at the longest 

forecast lead times where the predictive skill in input forecasts is too small for merging to be 

effective. 

Figs 3.5cd are the same as Figs 3.5ab, respectively, but for unconditional RMSE. The sample 

size ranges from 8,750 to 9,750 for headwater points and 14,150 to 16,000 for downstream points 

across all lead times. With all ranges of flow included, the skillful lead time is increased to about 

3 and 5 days or longer for headwater and downstream points, respectively. Figs 3.5cd show that 

the relative unconditional performance among the input forecasts is very much different from the 

relative conditional performance seen in Figs 3.5ab. With all ranges of observed flow considered, 

HEFS is by far the best performing input forecast in the MSE sense, and the MMEFS forecasts, 

i.e., GEFS, NAEFS and SREF, have significantly larger unconditional RMSE particularly for 

downstream points. Among the MLR-based predictions, MLR provides the best unconditional 

performance as expected, whereas CBP-MLR is inferior. CompMLR out- and underperforms 

CBP-MLR and MLR, respectively, as may be expected from Eq. (3.16), and generally outperforms 

the best-performing input forecast. Collectively, Fig 3.5 illustrates the challenge in multi-model 

streamflow prediction of improving over the best input forecast both conditionally and 

unconditionally, and for both less predictable headwater forecast points and more predictable 

downstream points. Fig 3.5 shows that only CompMLR is generally able to meet this objective. 
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Figure 3.5: Conditional RMSE vs. lead time of CBP-MLR, CompMLR, MLR, HEFS, GEFS, NAEFS, and SREF for 

the verifying observed flow exceeding the 95th percentile for (a) headwater, and (b) downstream forecast points, (c) 

same as (a) but unconditional RMSE, and (d) same as (b) but unconditional RMSE. 

Figs 3.6ab show the conditional and unconditional ME, respectively, for downstream forecast 

points. Those for headwater points are qualitatively similar. Figs 3.6a shows that the MMEFS 

forecasts have significantly smaller conditional ME than all other input forecasts and all MLR-

based predictions. HEFS, on the other hand, has very large negative CB (i.e., consistently under-

forecasts large flows) for both headwater and downstream points. Figs 3.6b shows that MLR and 

HEFS are unconditionally unbiased, but that the MMEFS forecasts are unconditionally biased high 

(a) (b) 

(c) (d) 
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(i.e., over-forecast in the mean) and the high unconditional bias increases as the lead time 

increases. Fig 3.6 serves to illustrate the nature of the multi-model streamflow prediction challenge 

in that the smaller bias in the MMEFS forecasts for high flows was achieved at the expense of 

large high bias in flows of all magnitudes, and the unconditional unbiasedness in HEFS was 

achieved at the expense of large low bias in high flows. It is interesting to observe in Fig 3.6 that 

CBP- and CompMLR place their conditional and unconditional MEs between the respective two 

bounds associated with the HEFS and MMEFS forecasts. The above result is a reflection of the 

balancing act of reducing biases in mean and standard deviation, and increasing the strength of 

linear association under the MSE minimization (Murphy and Winkler, 1987; Nelson et al., 2010). 

To help visualize the key aspects summarized in Figs 3.5 and 3.6, Fig 3.7 shows an example 

set of scatter plots of forecast vs. verifying observed flow for all ranges of flow for all downstream 

points in the Chemung forecast group for lead time of 6.75 days. Recall that, at this lead time, only 

HEFS, GEFS and NAEFS are available as input forecasts. In each panel, the solid red line shows 

the quantile-quantile (QQ) plot. If the empirical distribution or, equivalently, all statistical 

moments of the prediction match those of the observed, the QQ plot would lie on the diagonal line. 

Three observations are noteworthy. The GEFS and NAEFS streamflow forecasts are 

unconditionally biased high (Figs 3.7ef) which contributes to superior conditional performance 

among the input forecasts. The HEFS streamflow forecast is conditionally severely biased (Fig 

3.7d) even though it is unconditionally unbiased. MLR is unconditionally unbiased but is 

significantly conditionally biased (Fig 3.7a) which CBP-MLR addresses (Fig 3.7b). CompMLR 

appears very similar to CBP-MLR due to the fact that differences are predominantly near median 

(Fig 3.7c). Figs 3.8ab show the unconditional CORR for headwater and downstream points, 

respectively. The conditional CORR results are similar. It is readily seen in Fig 3.8 that predictive 
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skill diminishes much more quickly for headwater forecast points than for downstream points. Fig 

3.8 indicates that, albeit modestly, multi-model merging generally improves both conditional and 

unconditional CORR over all input forecasts for both headwater and downstream points, and this 

improved CORR contributes to the reduction in RMSE seen in Fig 3.5.   

  

Figure 3.6:(a) Conditional and (b) unconditional ME vs. lead time of CBP-MLR, CompMLR, MLR, HEFS, GEFS, 

NAEFS, and SREF for downstream forecast points. 

 

Figure 3.7:Scatter plots of forecast vs. verifying observed flow for all ranges of flow for all downstream forecast 

points in the Chemung Forecast Group for lead time of 6.75 days. 

(a) 

(b) 
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Figure 3.8:Unconditional correlation of streamflow forecasts vs. lead time for (a) headwater and (b) downstream 

forecast points. 

The very contrasting conditional vs. unconditional performance of the HEFS and MMEFS 

forecasts seen above indicates that the MMEFS forecasts may be better-suited for flood forecasting 

than water supply or environmental flow forecasting whereas the opposite may be true for HEFS. 

The HEFS streamflow forecast performs very well unconditionally because MEFP is designed to 

generate ensemble forecasts that are unconditionally unbiased (Schaake et al. 2007; Wu et al. 2011; 

NWS 2016). The current version of MEFP, however, is CB-unaware and hence the MEFP 

forecasts are significantly conditionally biased resulting in rather poor conditional performance as 

shown in the literature (Ghazvinian et al., 2020; Zhang et al., 2017). The distinguishing value of 

CB-aware MLR is that it is generally superior to the best input forecast both in the conditional 

sense and in the unconditional sense under wide-ranging conditions of predictability and predictive 

skill. 

Figs 3.9a and 3.9b show the box-and-whisker plots of the MLR and CBP-MLR weights for 

headwater and downstream forecast points for lead time of 2 and 4 days, respectively. It is readily 

seen that the CBP-MLR weights have larger ranges of variation than the MLR weights. This   

(a) (b) 
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Figure 3.9:Box-and-whisker plots of the MLR and CBP-MLR weights for (a) headwater forecast points for lead time 

of 2 and (b) downstream forecast points for lead time of 4 days 

‘stretching’ of the boxes and whiskers by CBP-MLR is often quite large even at short lead times, 

an indication that MLR predictions are subject to significant CB. For a number of forecast points, 

the weights are significantly negative, an indication that there might exist multi-collinearity among 

certain input forecasts. To examine this possibility, we performed additional experiments in which 

HEFS and GEFS were excluded one at a time as well as together while NAEFS was kept in all 

cases as the most skillful forecast for headwater points.  Similarly, we excluded GEFS and NAEFS 

(a) 

(b) 
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one at a time as well as together while HEFS was kept in all cases as the most skillful for 

downstream points. It was found that the above exclusions do not significantly change the weight 

patterns of the remaining input forecasts, an indication that multi-collinearity is not a significant 

issue. Fig 3.9 indicates that large variations in the weights across different forecast points makes 

selecting a single “best” forecast for the day or for the event at hand may be impractical in real-

time operation. 

Figs 3.10ab show the mean of the CBP-MLR weights for each input forecast and for each lead 

time for all headwater and downstream forecast points, respectively. Those of the MLR weights 

are very similar as may be inferred from Fig 3.9. It is seen that all forecasts included in merging 

contribute significantly. Fig 3.10 indicates that NAEFS contributes the most to CBP-MLR for 

headwater forecast points whereas HEFS contributes the most for downstream points in agreement 

with Fig 3.5. GEFS shows the largest variations across forecast lead time, for attribution of which 

additional investigation is needed. We also examined similar plots for cool vs. warm seasons. They 

indicate that the contributions of different input forecasts are most evenly spread for headwater   

  

Figure 3.10: Mean of the CBP-MLR weights for each input forecast and for each lead time, conditional on verifying 

observed flow exceeding the 95th percentile, for all (a) headwater, and (b) downstream forecast points. 

(a) (b) 
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Figure 3.11: Example hydrographs of CBP-MLR, CompMLR, MLR, HEFS, GEFS, NAEFS, SREF and verifying 

observed flow for large events for (a) headwater and (b) downstream forecast points. 

forecast points in the cool season. This is due to the more uniform predictive skill among different 

forcing forecasts in the cool season, and the fact that biases in the forcing forecasts do not grow as 

large for headwater points, in terms of streamflow volume, as for downstream points due to much 

smaller contributing areas. 

Figs 3.11ab show examples of the hydrograph representation of MLR-based predictions for 

large events for headwater and downstream forecast points, respectively. For comparison, the 

verifying observed hydrographs and all input forecasts are also shown. These examples are chosen 

to illustrate qualitatively the key characteristics of different forecasts and predictions rather than 

to indicate representative performance. Fig 3.11a shows that, albeit still under-forecasts, the CBP- 

and CompMLR rise above MLR, and all input forecasts to provide significantly more realistic 

peak flow predictions. Without being CB-aware, such predictions are not possible. Fig 3.11a also 

illustrates the detrimental impact of CB in HEFS as it is barely able to indicate a rise in flow. 

Whereas Fig 3.11a provides an example of CBP- and CompMLR acting as extrapolators, Fig 3.11b 

(a) (b) 
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provides one as interpolators. In Fig 3.11b, owing to the larger predictability and predictive skill 

at this downstream location, the hydrograph representations of the MLR-based predictions are very 

realistic. Also seen in Fig 3.11b is the high bias in NAEFS and SREF amplified through integration 

over a large contribution area.  

A potential criticism of the proposed approach is that MLR-based predictions are forecast lead 

time-specific and do not consider temporal dependence, instead relying solely on the model 

dynamics of the input forecasts for temporal consistency. When presented as hydrographs for 

practical applications, MLR-based predictions may hence lack realism. Indeed, the secondary peak 

associated with the MLR-based predictions in Fig 3.11a at lead time of 3.25 days is, in all 

likelihood, not real but an artefact of the lead time-specific weights lacking temporal consistency 

due to sampling uncertainty. In theory, it is possible to include input forecasts valid at multiple 

lead times to account for temporal dependence albeit at the expense of significantly larger 

dimensionality of the estimation problem. Experience with regression-based statistical post-

processing for streamflow prediction (Seo et al. 2006; Regonda et al. 2013; NWS 2015; Alizadeh 

et al. 2020) suggests that adding temporally-dependent predictors provides only marginal 

improvement, and is more likely to produce unstable solutions due to under-determinedness 

inherent in large-dimensional regression and multi-collinearity. Further research is needed, 

however, to assess potential gains in the context of CBP- and CompMLR. 

3.5 Discussion 

The premise of multi-model streamflow forecasting is that one may optimally combine multiple 

streamflow forecasts from different sources to produce a new forecast which is more accurate in 

the MSE sense than the best-performing individual forecasts at all times at all locations. The above 
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premise is realized in practice, but in the unconditional MSE sense only, via the Gauss-Markov 

theorem (Deutsch 1965) on which MLR stands. Due to regression dilution, however, MLR-based 

multi-model forecast is conditionally biased, resulting in under- and overprediction of large and 

small flows, respectively. For this reason, a multi-model forecast for large flows based on MLR is 

inferior to the best-performing individual forecast even though the former is superior to the latter 

when all ranges of flow are considered. For example, in Figs 3.5a and 3.5b in the revised version, 

MLR-based multi-model forecast is inferior to NAEFS or SREF beyond Day 2 for headwater 

locations, and to NAEFS or GEFS beyond Day 4.5 for downstream locations, respectively. 

Accurate prediction of floods, in particular, extreme floods, is arguably the most important service 

in operational streamflow forecasting as they greatly impact society. As illustrated in Fig 3.2 (see 

also Seo 2013, Jozaghi et al. 2019, Lee et al. 2019, Shen et al. 2019), MLR is adversely impacted 

by CB with increasing severity as the predictand increases in magnitude. Accordingly, the larger, 

and hence more impactful, the flood flow is, the less effective MLR-based multi-model prediction 

becomes relative to the best-performing individual forecasts. 

Given the above picture, one might instead consider compositing the best-performing 

individual forecasts according to the flow conditions, location and lead time. Such an approach, 

however, is impractically difficult because the best forecast varies with the magnitude and 

predictability of the (unknown) flow being predicted. In addition, such compositing is bound to 

produce very frequently forecast hydrographs that are physically unrealistic over the forecast 

horizon and across the range of variations in flow magnitude. Relative to MLR, CompMLR 

reduces RMSE by about 10 and 4 percent or more beyond lead times of 2 and 4.5 days for flows 

above the 95th percentile for headwater and downstream locations, respectively (see Figs 3.5ab). 

Whereas these reductions may seem only modest, they critically render CompMLR the best 
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performing forecast for both headwater and downstream locations, for both high flows and all 

ranges of flows, and across all lead times except for the longest lead times where the collective 

predictive skill of individual forecasts is too small for multi-model prediction to benefit from. The 

singular advantage of the proposed method over MLR hence is that it provides the best performing 

forecast in the MSE sense over the entire effective forecast horizon regardless of the flow 

conditions and locations with only a modest increase in complexity and without additional data 

requirements. Needless to say, such performance characteristics are a prerequisite for machine 

learning-based automatic multi-model streamflow forecasting. 

Due to the additional parameters involved, parameter estimation or training of CompMLR is 

more involved than that of MLR. As explained in Section 3, however, three of the 4 additional 

parameters vary little from one training data set to another and only 𝛼 requires active optimization. 

Pictorially, the above means that the general shape of the curve in Fig 3.2 connecting the two 

regression lines does not change much from one training data set to another, but that the slope of 

the 2nd regression does. If the dimensionality of the predictand is high, solving for the 2nd slope 

can be computationally significantly more expensive than solving for the 1st slope only (i.e., as in 

MLR) due to the additional matrix inversion involved (see Eq.(3.10b)). If the predictand is 1-

dimensional as in this work, however, the additional inversion, i.e., (𝑌𝑇𝑌)−1 where 𝑌 is the 

predictand, is not computationally significant. Note also that any additional computation for the 

proposed method relative to MLR is limited only to training. For real-time operation, the additional 

computation for CompMLR is negligible.  

Finally, as alluded to in the Introduction Section, another possible point of comparison for the 

proposed method is BMA (Madigan and Raftery 1994; Hoeting et al. 1999; Raftery et al. 2005, 
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2015; Duan et al. 2007, Jozaghi et al. 2020). If the formulation is based on the standard Bayesian 

normal conjugate linear model (Raiffa and Schlaifer 1961), BMA amounts to Bayesian MLR 

weight-averaged via the total probability law according to the goodness of different model 

combinations. As such, BMA is subject to CB just as MLR is. It is noted here that we are also 

evaluating BMA for multi-model streamflow prediction. To improve performance for large flow, 

however, we have implemented CBP-MLR in the BMA package, BMS (Zeugner 2011). We are 

currently carrying out a comparative evaluation of BMA based on CBP-MLR (Jozaghi et al. 

2021a) and the results will be reported in the near future.  

3.6 Conclusions and future research recommendations 

For modeling and prediction of extremes such as floods using multiple linear regression (MLR), 

attenuation bias is a very serious issue as it results in systematic under- and over-prediction in the 

upper and lower tails of the predictand, respectively. In this work, we introduce conditional bias-

penalized multiple linear regression (CBP-MLR) which reduces attenuation bias, or conditional 

bias (CB), by jointly minimizing mean squared error (MSE) and Type-II error squared. Whereas 

CBP-MLR improves prediction over tails, it degrades performance near the median. To effect 

MLR-like performance near median while performing closely to CBP-MLR over tails, we employ 

CompMLR, which linearly weight-averages the MLR and CBP-MLR estimates. We then apply 

MLR, CBP- and CompMLR to multi-model streamflow prediction for multiple forecast groups in 

the US National Weather Service (NWS) Middle Atlantic River Forecast Center’s (MARFC) 

service area. The input forecasts considered are six different streamflow forecasts produced by the 

NWS MARFC and the National Water Model. The maximum lead time considered is seven days. 

The main conclusions are as follows.  
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The relative performance among different input forecasts varies most significantly with the 

range of the verifying observed flow. Generally speaking, the streamflow forecasts forced by the 

North American Ensemble Forecast System, or NAEFS, and the Short-Range Ensemble Forecast, 

or SREF, are better-suited for flood forecasting whereas those generated with the Hydrologic 

Ensemble Forecast Service, or HEFS, are better-suited for water supply and environmental flow 

forecasting. It is shown that CompMLR generally outperforms the best individual forecasts in the 

MSE sense for observed flow exceeding the 95th percentile, for all ranges of observed flow, for 

less predictable headwater forecast points, and for more predictable downstream points for lead 

times of up to about six days. If forecasting high flows is of little importance, CB is not likely to 

be an issue and MLR may suffice. Large variations are seen in the MLR and CBP-MLR weights 

associated with different input forecasts across the 7-day forecast horizon and across different 

forecast points. The above suggests that selecting a single “best” forecast system for the forecast 

point of interest or a single “best” forecast for the day or event at hand is likely a difficult 

proposition. The distinguishing value of CB-aware MLR is that it produces predictions that are 

generally superior to the best input forecast both in the conditional sense and in the unconditional 

sense under wide-ranging conditions of predictability and predictive skill. In this work, objective 

screening of non-contributing forecasts via systematic variable selection was not considered. We 

are currently implementing CBP-MLR in Bayesian Model Averaging (BMA) using the standard 

Bayesian normal conjugate linear model (Jozaghi et al. 2020, 2021b). Possible gains from variable 

selection will be evaluated in the context of BMA through model combinations, and the results 

will be reported in the near future. Finally, the results presented in this work are based on a period 

of record of less than two years. Systematic assessment of data requirements vs. performance, 

particularly for forecasting extreme floods, is necessary along with potential benefits of 
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regionalization for space-for-time trade-off. With limited data available for each station and 

forecast horizon, unified machine learning techniques, in particular ANN’s, similar to the one 

proposed by Ghazvinian et al. (2021) can be possibly used. Such a network not only can digest 

and project spatio-temporal binary predictors (e.g., forecast lead time and station ID’s, 

embeddings) to a large vector of inputs but also performs well in characterizing predictor 

interactions translating to superior predictive skills.    
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: CBP-BMA: Theory and Application to Multimodel 

Streamflow Prediction 

4.1 Introduction 

Accurate streamflow prediction over a range of lead times is essential to various water and 

emergency management activities such as flood warning and control (Danandeh Mehr et al., 2015; 

Liu et al., 2018; Luo et al., 2019), water supply, irrigation (Jozaghi et al., 2018; Jozaghi and 

Shamsai, 2017), navigation, recreation, water quality and sediment transport (Adnan et al., 2019). 

The accuracy of hydrological forecasts is affected by various sources of uncertainty such as forcing 

inputs, and model parameters, initial conditions, and structures (Chen et al., 2008; Tiwari and 

Adamowski, 2013; Xu et al., 2019). To assess the uncertainty in hydrological forecasting, various 

techniques have been developed over the years (Kasiviswanathan and Sudheer, 2017; Liu et al., 

2017). Among them, the ensemble streamflow prediction approaches are the most popular 

(Madadgar and Moradkhani, 2014; Michaels, 2015; Seo, 2006). Whereas those techniques using 

multiple inputs and parameter sets can capture significant portions of the predictive uncertainty, 

they cannot address the uncertainty within an individual hydrologic model structure (Konstantine 

P. Georgakakos et al., 2004; Vrugt and Robinson, 2007). Recently, multi-model techniques, which 

merge forecasts from multiple sources, have been used to obtain more skillful forecasts by 

addressing the model structural uncertainty. 

The increasing availability of streamflow forecasts from multiple sources (Muhammad et al., 

2018) provides an opportunity to improve forecast accuracy by optimally merging multiple 

forecasts (Beven, 2001; Doblas-Reyes et al., 2000; Konstantine P. Georgakakos et al., 2004; 

Madigan and Raftery, 1994; Regonda et al., 2006). Toward that end, a number of techniques for 
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multi-model streamflow prediction have been developed (Ajami et al., 2006; Doblas-Reyes et al., 

2005; Duan et al., 2007a; Rajagopalan et al., 2002; Yun et al., 2005). Among them, statistical 

techniques and regression analysis are the most popular (Policelli et al., 2019; Rahman et al., 2020; 

Sahoo et al., 2009; Shih and Shih, 1979; Supriya et al., 2015; Um et al., 2011) of which the simplest 

are multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO; 

Tibshirani, 1997, 1996), ridge regression (Hoerl and Kennard, 1970), simple averaging (DelSole 

and Tippett, 2007), Granger–Ramanathan averaging (Granger and Ramanathan, 1984). These 

statistical methods, however, do not consider structural uncertainty in the statistical models used 

in that they typically choose a model which is then to the data. Such approaches disregard the 

uncertainty in model selection, resulting in overconfident inferences (Jennifer A. Hoeting et al., 

1999; Madigan and Raftery, 1994; Raftery et al., 2005). To address the above, more complex 

approaches have been  developed such as Artificial Neural Network (ANN; Ghazvinian et al., 

2021; Hassanzadeh et al., 2020; Lashkarara et al., 2021) and Bayesian Model Averaging (BMA; 

Hoeting et al., 1999; Raftery, 1995, 1993; Raftery et al., 2005, 1997) which produce more reliable 

probabilistic forecasts by quantifying predictive uncertainty better. BMA is an extension of the 

Bayesian perspective approaches to the model selection problems in which one models uncertainty 

in model posteriors and posterior parameters via Bayes’ theorem in addition to modeling 

parametric uncertainty through the prior distribution. Numerous efforts have been made to 

demonstrate the  ability of the BMA approach in generating more skillful predictions (Arsenault 

et al., 2015; Baharvand et al., 2020; Cees G.H. Diks and Vrugt, 2010; Genell et al., 2010; Jozaghi 

et al., 2021b, 2020; Liu et al., 2016; Viallefont et al., 2001; Wang et al., 2004). Most BMA 

implementations employ the standard Bayesian normal-conjugate linear model which uses MLR 

as the base model. Because MLR is based on least squares minimization, its solution is subject to 
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low and high biases, or conditional bias (CB), over the upper and lower tails of the predictands, 

respectively (Fuller, 1987; Hausman, 2001; Seber and Wild, 1989) with detrimental effects for 

prediction of extremes, as elaborated below. 

It is well known in statistics and econometrics that error variance (i.e., least squares) 

minimization is subject to potentially significant negative and positive biases over the upper and 

lower tails of the predictand, respectively, in the presence of observation error in the predictors 

(Fuller, 1987; Hausman, 2001; Seber and Wild, 1989). This effect in regression is referred to in 

the statistical literature as regression dilution, which causes conditional bias in the regression 

coefficients (Frost and Thompson, 2000; Hughes, 1993). In multi-model streamflow prediction 

using regression techniques, the regressors are the streamflow forecasts from different sources. As 

such, forecast errors, which are very often very significant, act as observation errors in multi-model 

streamflow prediction. Only a few reports may be found in the statistical literature that attempt to 

address CB (Jozaghi et al., 2019; Kim et al., 2018; Lee et al., 2019; Seo et al., 2014; Shen et al., 

2019). Ciach et al. (2000) described the CB problem as the error-in-variable or attenuation effects. 

Seo (2013) proposed a linear estimation technique that minimizes the weighted sum of error 

variance and expectation of the Type-II error squared to address the harmful effects of conditional 

bias (CB) on estimating extremes.  

This study develops and evaluates Conditional Bias-Penalized Bayesian Model Averaging 

(CBP-BMA) which replaces MLR in BMA with CBP-MLR for improved performance for large 

flows. CBP-BMA is then applied to multi-model streamflow prediction for 13 forecast groups in 

the NWS Middle Atlantic River Forecast Center’s (MARFC) service area. The new contributions 

of this work are the development of CBP-BMA, evaluation of predictive skill of individual 

https://link.springer.com/article/10.1007/s00477-012-0567-z#ref-CR3
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forecast, comparative assessment of CBP-BMA, assessment of the performance of BMA and CBP-

BMA in relation to hydroclimatology and hydrologic conditions, assessment of the impact of using 

non-diffuse priors, and advances in understanding of the multi-objective nature of multi-model 

streamflow prediction. This chapter is organized is as follows. Subsection 2 describes the study 

area and data used. Subsection 3 describes the methods used. Subsection 4 describes the evaluation 

metrics used. Subsection 5 presents the results and Subsection 6 provides the conclusions and 

future research recommendations. 

4.2 Study area and data used 

The input forecasts used in the model are from the MARFC. The MARFC service area 

includes the Chemung, North Branch Susquehanna, Delaware, Upper Main Stem Susquehanna, 

West Branch Susquehanna, Passaic, Raritan, Schuylkill, Lower Main Stem Susquehanna, Juniata, 

Potomac, Rappahannock, James, Lehigh, and Appomattox Forecast Groups (see Fig 3.2). The last 

two groups are not considered in this study due to their small size. The MARFC produces multiple 

hydrologic forecasts. In addition to flood forecasts which are the most well-known product, 

MARFC provides river and water information used for reservoir operations, recreation, navigation, 

and water supply plans. In this study, we consider six streamflow forecasts: the MARFC single-

valued forecast, the National Water Model (NWM) medium-range single-valued forecast 

(Graziano et al., 2017), the Hydrologic Ensemble Forecast System (HEFS) ensemble forecast 

(Demargne et al., 2014), and the Meteorological Model-based Ensemble Forecast System 

(MMEFS) ensemble forecasts (Adams, 2015). The MMEFS ingests the numerical weather 

prediction ensemble grids from the NOAA/NWS National Centers for Environmental Prediction, 

including the Global Ensemble Forecast System (GEFS; Cui et al., 2012; Toth and Kalnay, 1997), 

North American Ensemble Forecast System (NAEFS; Zhu and Toth, 2008), and Short Range 



86 

Ensemble Forecast System (SREF; Du et al., 2004). The resulting streamflow forecasts are referred 

to herein as RFC, NWM, HEFS, GEFS, NAEFS, and SREF, respectively. In this study, we use the 

ensemble mean for ensemble forecasts HEFS (48 ensemble members), GEFS (21 ensemble 

members), NAEFS (42 ensemble members), and SREF (26 ensemble members). All streamflow 

forecasts are instantaneous discharges. The analysis period is from Jan 1, 2017, to Oct 29, 2018. 

Although the period of record is short, it reflects the availability of operational forecasts at 

MARFC. It hence provides a realistic constraint on the amount of data that can be used for 

forecasting. Two forecasts RFC and SREF, have maximum lead times of 102 hours, GEFS and 

NAEFS 168 hours, and HEFS and NWM 240 hours (see Fig 4.2 forecast horizon). We evaluate 

the proposed model for lead times up to 168 hours; therefore, we will have all six forecasts up to 

102 hours lead times and four forecasts NAEFS, GEFS, HEFS, and NWM for all lead times. 

The total uncertainty in streamflow forecast in HEFS is considered as a combination of the 

meteorological and hydrologic uncertainties (Seo et al., 2010). The Meteorological Ensemble 

Forecast Processor (MEFP) is used to model forcing uncertainties. The MEFP uses ensemble mean 

quantitative precipitation forecast (QPF) and quantative temperature forecast (QTF) from GEFS 

to produce QPF and QTF conditional on raw ensemble mean forecast (Schaake et al., 2007; Wu et 

al., 2011). The total uncertainty in streamflow forecast is addressed in two steps. The forcing 

ensemble forecasts are first generated with MEFP which are then input to the hydrologic models. 

The resulting raw streamflow ensemble forecasts may be post-processed with the Ensemble 

Postprocessor (EnsPost; Seo, 2006) to reduce hydrologic uncertainty. For more information on 

HEFS, the reader is referred to Brown et al. (2014b, 2014a). To produce more skillful forecast, the 

NAEFS blends the GEFS of the NWS and the Canadian Meteorological Centre Ensemble (CMCE) 

of the Meteorological Service of Canada (MSC; Candille, 2009). The NAEFS combines 21 
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ensemble members from the Canadian Meteorological Centre operational Global Environmental 

Multiscale (GEM) model and 21 ensemble members from the NOAA/NWS GEFS. Except for 

NWM, all input forecasts to multimodel streamflow prediction utilize the Continuous Antecedent 

Precipitation Index model (API-CONT) for soil moisture accounting (Sittner et al., 1969), unit 

hydrograph for surface runoff routing (Chow et al., 1988), SNOW-17 for snow ablation (Anderson, 

2006) and Lag/K for channel routing (National Weather Service, 2006). The initial conditions used 

are the same for HEFS, GEFS, NAEFS, and SREF streamflow forecasts. Consequently, the 

differences in these forecasts are due to the differences in forcings. Due to the same hydrologic 

models used,  the  above streamflow forecasts may contain some degree of collinearity (Jozaghi et 

al., 2021a). The NWM, on the other hand, uses the control run of the GEFS forcing forecast 

through WRF-Hydro for its medium-range streamflow forecast (Gochis et al., 2018). As such, 

collinearity is not an issue. 

4.3 Methods used 

Multimodel streamflow prediction is conducted using BMA and CBP-BMA. This section 

describes the formulation of the proposed model.  The multimodel streamflow prediction process 

is depicted in Fig 4.2. Before describing the CBP-BMA procedure, we first assess the predictive 

skill of all available forecasts according to Shannon's information theory (Shannon, 1948).  

 
Figure 4.1: Forecast horizon for each of input forecasts 
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Figure 4.2: Schematic of the merging input forecasts (see section 3 for details) 

4.3.1 Feature selection by Shannon's Entropy  

The predictive skill of all available input forecasts is first evaluated for each lead time using 

Shannon entropy (1948). In the context of information theory, entropy is described as a measure 

of the amount of information required to describe a random variable (Keum and Coulibaly, 2017). 

As such, entropy may be considered as a measure of uncertainty in a random variable. The basis 

of the information theory is that the information obtained from an event with the probability of 

occurrence 𝑝 is log (1/p). The formal definition of entropy of an input variable 𝑋 with pdf 𝑝(𝑥) 

is: 

𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) log(𝑝(𝑥𝑖)) = 𝐸 [𝑙𝑜𝑔 (
1

𝑝(𝑥)
)]𝑛

𝑖=1    (4.1) 

where 𝐻(𝑋) is the marginal entropy of input forecast 𝑋 in bits (the base of the logarithm is 

assumed to be equal to 2), 𝐸[ ] denotes the expectation operation and 𝑛 denotes the number of 
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observations. For streamflow, which is a continuous variables, a finite number of discrete intervals 

are chosen. A similar procedure is used to calculate the information content for individual forecasts 

and observed flow. Dropping the 𝑖 index for brevity, we write the joint entropy between each of 

the input forecasts of RFC, HEFS, NWM, GEFS, NAEFS and SREF and the verifying observed 

flow as: 

𝐻(𝑋, 𝑌) = − ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔(𝑝(𝑥, 𝑦))

𝑥,𝑦

 
(4.2) 

In the above, 𝑝(𝑥, 𝑦) denotes the joint probability distribution for the input forecast, 𝑋 and the  

verifying observed flow, 𝑌; 𝐻(𝑋, 𝑌) is the joint entropy between 𝑋 and 𝑌. The joint entropy 

measures the uncertainty in 𝑋 and 𝑌 taken together. If the variables are independent, the joint 

entropy is equal to the summation of their marginal entropies. Eq. (4.3) shows the relation between 

the marginal and joint entropies: 

𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐼(𝑋, 𝑌) (4.3) 

where 𝐼(𝑋, 𝑌) is the mutual information (MI) between the input forecast 𝑋 and observed flow 𝑌. 

The MI is zero if 𝑋 and 𝑌 are statistically independent. The MI is given by: (Shannon and Weaver, 

1949) 

𝐼(𝑋, 𝑌) = ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
= 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋)

𝑥,𝑦

 
(4.4) 

where 𝐻(𝑋|𝑌) denotes the conditional entropy of 𝑋 given 𝑌, and H(Y|X) is the conditional entropy 

𝑌 given 𝑋. The conditional entropy of 𝑋 given 𝑌 is given by: 

𝐻(𝑋|𝑌) = −𝐸[𝑙𝑜𝑔(𝑝(𝑥|𝑦))] = − ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔(𝑝(𝑥|𝑦))

𝑥,𝑦

 
(4.5) 
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The conditional entropy shows how much uncertainty remains about the random variable 𝑋 given 

the value of 𝑌. In contrast to correlation coefficients that only address the linear relationship 

between two variables, mutual information contains information about both linear and nonlinear 

dependencies (Smith, 2015). 

4.3.2 CBP-BMA 

We implemented CBP-BMA in the R BMS package (Zeugner 2011) by replacing  MLR with 

CBP-MLR. In this section, we describe MLR, CBP-MLR and BMA.  

4.3.2.1 MLR 

Given an (𝑛 × 1) dependent variable vector, 𝑌 and an (𝑛 × 𝑚) matrix of the independent 

variables where 𝑛 is the number of observations and 𝑚 is the number of independent variables, the 

MLR model is given by: 

𝑌 = 𝑋𝛽𝛾 + 𝜀      𝜀~𝑁(0, 𝜎2𝐼)  (4.6) 

where 𝛽𝛾 is the (𝑚 × 1) vector of regression coefficients to be estimated, and 𝜀 denotes an (𝑛 × 1) 

vector of independent and identically distributed zero-mean normal errors. The ordinary least 

squares (OLS) estimate for 𝛽𝛾 in Eq. (4.6), 𝛽̂𝛾, is given by minimizing ‖𝑌 − 𝑋𝑏‖2, where ‖∙‖ 

denotes the Frobenius norm, as: 

𝛽̂𝛾 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌        (4.7) 

Variance of 𝛽̂𝛾 is given by: 

E[(𝛽̂𝛾 − 𝛽𝛾)(𝛽̂𝛾 − 𝛽𝛾)
𝑇

] = 𝜎2(𝑋𝑇𝑋)−1       (4.8) 
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4.3.2.2 CBP-MLR 

To address the detrimental effects of CB in MLR, Jozaghi et al. (2021a) proposed CBP-MLR, 

which reduces Type-II CB by jointly minimizing the sum of errors squared, Σ𝐸𝑉 = (𝑌 − 𝑌̂)𝑇(𝑌 −

𝑌̂), and the sum of the Type-II error squared: 

𝐽 = Σ𝐸𝑉 + 𝛼Σ𝐶𝐵 (4.9) 

In the above, 𝛼 denotes the weight given to the CB penalty and Σ𝐶𝐵 is the CB penalty derived from 

the expectation of the Type-II error squared as in Seo (2013): 

Σ𝐶𝐵 = 𝐸[(𝑌 − 𝐸[𝑌̂|𝑌])𝑇(𝑌 − 𝐸[𝑌̂|𝑌])]  (4.10) 

The least-squares solution for the coefficients is given by Jozaghi et al. (2021a): 

𝛽̂𝑐𝑏𝛾
= (1 + 𝛼)[𝑋𝑇𝑋 + 𝛼𝑋𝑇𝑌(𝑌𝑇𝑌)−1𝑌𝑇𝑋]−1𝑋𝑇𝑌                                  (4.11) 

E[(𝛽̂𝑐𝑏𝛾
− β𝑐𝑏𝛾

) (𝛽̂𝑐𝑏𝛾
− β𝑐𝑏𝛾

)
𝑇

] = 𝜎2(𝐴𝑇𝐴)−1     
(4.12) 

where 𝐴= (𝑋𝑋𝑇)−1𝑋(1 + 𝛼)−1[𝑋𝑇𝑋 + 𝛼𝑋𝑇𝑌(𝑌𝑇𝑌)−1𝑌𝑇𝑋]. In Eq. (4.11), if we consider no 

penalty for CB (i.e., 𝛼 = 0), 𝛽̂𝑐𝑏𝛾
 is reduced to the least square solution for the MLR model of Eq. 

(4.7).  

4.3.2.3 BMA 

To address the model structural uncertainty, BMA employs all 2𝑚 MLR or CBP-MLR  

models, where 𝑚 is the number of input forecasts, and weight-averages all of 2𝑚 models via the 

total probability law below. The model-weighted posterior distribution for coefficients, 𝛽 , is 

given by (Jennifer A. Hoeting et al., 1999; Raftery, 1995): 

𝑝(𝛽|𝑦, 𝑋) = ∑ 𝑝(𝛽|𝑀𝛾, 𝑦, 𝑋). 𝑝(𝑀𝛾|𝑦, 𝑋)

2𝑚

𝛾=1

 (4.13) 
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where 𝑀𝛾 are the candidate MLR models, 𝑝(𝛽|𝑀𝛾, 𝑦, 𝑋) denotes the conditional probability of the 

model coefficients, 𝑝(𝑀𝛾|𝑦, 𝑋) is the posterior model probability (PMP) of the model 𝑀𝛾. The 

PMP of model 𝑀𝛾 may be obtained via Bayes’ theorem as: 

𝑝(𝑀𝛾|𝑦, 𝑋) =
𝑝(𝑦|𝑀𝛾 , 𝑋)𝑝(𝑀𝛾  )

∑ 𝑝(𝑦|𝑀𝑖 , 𝑋)𝑝(𝑀𝑖 )
2𝑚

i=1

 
(4.14) 

where 𝑝(𝑌|𝑀𝛾 , 𝑋) = ∫ 𝑝(𝑌|𝜃𝑖 , 𝑀𝑖, 𝑋). 𝑝( 𝜃𝑖|𝑀𝑖) 𝑑𝜃𝑖 is the integrated likelihood of the model 𝑀𝑖, 

𝑝(𝑌|𝜃𝑖 , 𝑀𝑖 , 𝑋) is the likelihood function of the model 𝑀𝑖, 𝜃𝑖 denotes the vector of parameters 

(𝛽𝑖, 𝜎) in model 𝑀𝑖, and 𝑝(𝑀𝑖 ) denotes the prior probability that model 𝑀𝑖 is the true model.  

BMS uses Zellner’s g-prior, i.e., 𝛽|𝜎2 ~ 𝑁(0, 𝑔𝜎2(𝑋𝑇𝑋)−1) where g denotes the scalar 

hyperparameter (Goel and Zellner, 1986). Under the normal conjugate linear model, the posterior 

distribution of coefficients Eq. (4.6), 𝑝(𝛽𝑖|𝑀𝑖 , 𝑦, 𝑋) has a t-distribution with conditional mean and 

covariance of: 

𝐸[𝛽𝑖|𝑀𝑖, 𝑦, 𝑋, 𝑔] =
𝑔

𝑔+1
𝛽̂𝑖         (4.15) 

𝐶𝑜𝑣(𝛽𝑖|𝑦, 𝑋, 𝑔, 𝑀𝑖) =
(𝑦 − 𝑦̅)′(𝑦 − 𝑦̅)

𝑁 − 3

𝑔

1 + 𝑔
(1 −

𝑔

1 + 𝑔
𝑅𝑖

2) (𝑋𝑖
′𝑋𝑖)

−1 (4.16) 

 
 

In the above, 𝛽̂𝑖 is the standard OLS estimator for 𝑖𝑡ℎ MLR or CBP-MLR model, 𝑁 is the number 

of observations, and 𝑅𝑖
2 is the coefficient of determination given by: 

𝑅2 = 1 −
(𝑦 − 𝑋𝛽̂)

′
(𝑦 − 𝑋𝛽̂)

(𝑦 − 𝑦̅)′(𝑦 − 𝑦̅)
 (4.17) 
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The hyperparameter g assesses how certain one is about the coefficients indeed being zero. A large 

g means large variance for the prior coefficients. It hence implies that one  is very uncertain that 

the coefficients are zero. In contrast, a small g means that one is quite certain that the coefficients 

are indeed zero.  

4.4 Evaluation 

For comparative evaluation of BMA and CBP-BMA, we carried out 10-fold cross-validation for 

each forecast point. That is, we divided the period of record into ten equal subperiods for each lead 

time. A single subperiod is used for validation while the rest are used for parameter estimation. 

Comparative evaluation is focused on addressing the following questions:  

1) What is the relative skill among different input forecasts? What are their strengths and 

weaknesses? 

2) Does BMA improve over individual input forecasts?  

3) Under what conditions does BMA perform well or poorly, and why? 

4) Does CBP-BMA improve over BMA? What factors impact its performance? 

5) What forecast attributes do BMA and CBP-BMA improve? 

6) How does performance of BMA and CBP-BMA vary with hydroclimatology and hydrologic 

conditions?  

7) How to model priors? Does the use of priors improve performance? 

8) What is the marginal value of NWM in multimodel streamflow prediction? 

For evaluation metrics, we use conditional and unconditional root mean square error (RMSE), 

mean error (ME) and correlation coefficient (CC). The mutual information metrics are used to 

assess the skill of input forecasts. In this work, we focus on predicting high flows for flood 

forecasting and all ranges of streamflows for water supply and environmental flow forecasting. 
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The 95th percentile of verifying observed flow is used to evaluate the model performance for 

prediction of high flows for flood forecasting.  

4.5 Results 

In this section, we first evaluate the predictive skill of all available input forecasts in order to 

select the skillful predictors. We then present the evaluation results in both conditional and 

unconditional senses.  

4.5.1 Assessment of predictive skill of input forecasts  

Figs 4.3ab show the MI (Battiti, 1994) values for all headwater and downstream forecast 

points in the study area, respectively. The MI measures the amount of information that an input 

forecast contains about the verifying observed flow and can be thought of as the reduction in 

uncertainty in predicting the (unknown) verifying observation given the input forecast. As such, 

low MI indicates a small reduction in uncertainty. Large MI idicates a large reduction in 

uncertainty. An MI of zero means that the observed flow and input forecast are independent. Figs 

4.3ab indicate that the NWM forecast carries a small amount of information about the observed  

  
Figure 4.3: Unconditional Mutual Information of all input forecasts for total forecast horizon in a) all downstream 

forecast points, b) all headwater forecast points 

(a) (b) 
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Figure 4.4: Unconditional Correlation Coefficient (CC) of all input forecasts for total forecast horizon in (a) all 

downstream forecast points, (b) all headwater forecast points, (c) as in (b) but for North Branch of Susquehanna 

forecast group, (d) as in (c) but for James forecast group 

flow for both headwater and downstream forecast points. The  figures show that the input 

forecasts  have much larger predictive skills for downstream basins than headwater basins, and  

that the skill decreases with increasing lead time.  

To compare the results of MI theory for linear dependency, we show in Figs 4.4ab the 

unconditional correlation coefficient of RFC, HEFS, NWM, GEFS, NAEFS, and SREF 

streamflow forecasts for the headwater and downstream forecast points over  the entire forecast 

horizon. All unconditional performance or skill measures are quantified by including all ranges of 

(a) (b) 

(c) 
(d) 
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observed flow. As Fig 4.3, the dark colors show a significant correlation between the observed 

flow and the input forecast, and the light colors indicate a small correlation. The small amount of 

skill is readily seen in NWM forecasts. To assess forecast skill for headwater forecast points in 

extreme ends of the service area, we choose the North Branch Susquehanna and James forecast 

groups which represent the northern- and southernmost forecast groups in the MARFC’s service 

area, respectively (see Figs 4.4cd). Figs 4.4cd show that the predictive skill of input forecasts is 

significantly larger in the northern forecast group than in the southern.  

Figs 4.5a-d show the unconditional RMSE and ME of the streamflow forecasts. The lead time 

is capped at 4.25 days so that there are six different forecasts available at all lead times. Figs 4.5ab 

indicate that the unconditional RMSE of NWM is significantly larger than the other forecasts for 

both downstream and headwater forecast points. As expected, the unconditional RMSE increases 

with lead times. Figs 4.5cd show the unconditional Mean Error (ME) for downstream and 

headwater forecast points, respectively. It is readily seen in Figs 4.5cd that the NWM forecast is 

unconditionally biased low, HEFS is unconditionally unbiased, and the MMEFS forecasts are 

unconditionally biased high. Figs 4.3 through 4.5 may be summarized as follows. In general, the 

skill of input forecasts varies significantly from one forecast group to another. The input forecasts 

are significantly more skillful in the northern forecast groups than in the southern. The skill in the 

southernmost forecast groups is sharply lower due to smaller skill in QPF and larger hydrologic 

uncertainty (Brown et al., 2014a, 2014b; Siddique et al., 2015). The RFC, HEFS, GEFS, NAEFS, 

and SREF streamflow forecasts are significantly more skillful than the NWM streamflow forecast. 

The HEFS is by far the best performing forecast in the MSE sense. The NWM forecast has 

consistently smaller predictive skill than all other streamflow forecasts for almost all forecast 

horizons.  
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Figure 4.5: Unconditional RMSE of all input forecasts for total forecast horizon in (a) all downstream forecast 

points, (b) all headwater forecast points, (c) as in (a) but for ME, (d) as in (b) but for ME 

4.5.2 Impact of skewness and heteroscedasticity 

The performance of BMA depends on the predictability of streamflow. BMA assumes 

normality and homoscedasticity whereas streamflow is non-negative and generally skewed. As 

such, one may expect reduced performance for those forecast points where skewness and/or 

heteroscedasticity is ignificant. In this subsection, we aim to relate the two characteristics with the 

performance of BMA. To that end, we first assess the predictive skill of the BMA forecast for all 

forecast points in the entire study area. Figs 4.6ab show the number of BMA-favorable (green) and 

–unfavorable (red) forecast points for each forecast group. Fig 4.6a indicates the performance of 

the BMA for all 85 downstream forecast points. It is shown that BMA performs well  for 60 

forecast points whereas it performs relatively poorly for 25. Note  that BMA performs well for the 

northern forecast groups of Chemung, North Branch Susquehanna, Delaware, Upper Main Stem 

Susquehanna, and Passaic whereas it performs relatively poorly for the southern forecast groups  

(a) (b) 

(c) (d) 
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Figure 4.6: the BMA performance among different forecast groups for (a) downstream and (b) headwater 

of James, Potomac, and Rappahannock. Fig 4.6b is the same as Fig 4.6a but for all 61 headwater 

forecast points. It is readily seen that the headwater forecast points are less favorable to BMA as 

only 23 forecast points are favorable to BMA. Figs. 4.7ab show the scatter plots of Absolut Mean 

Exponent (AME) of p-values versus the skewness of observed flow for BMA favorable and BMA 

unfavorable locations for lead time 48 hours, respectively. The AME is derived from the Breusch-

Pagan test for heteroscedasticity of errors in a linear regression model. It measures how errors 

increase across the observed streamflow. The black solid curve attempts to separate the forecast 

points with low skewness and heteroscedasticity from the rest. Fig. 4.7a indicates that, among the 

23 forecast points with favorable BMA performance, 15 forecast points correctly identified as 

BMA-favorable whereas the other 8 forecast points are rejected incorrectly. Fig. 4.7b shows that, 

among the 38 BMA-unfavorable headwater forecast points, 30 forecast points are correctly 

identified as  BMA-unfavorable whereas only 8 forecast points are accepted incorrectly. Fig. 4.8a 

shows the AME vs. skewness for BMA-favorable downstream forecast points. Fig. 4.8a shows 

that 7 forecast points are misidentified as BMA-favorable whereas the other 53 forecast points are 

correctly identified as BMA-favorable. Fig. 4.8b is the same as Fig. 4.8a but for BMA-unfavorable 

forecast points. Fig. 4.8b shows that 18 forecast points are correctly identified as BMA-

unfavorable whereas the other 7 forecast points are incorrectly identified as BMA-unfavorable.  
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Figure 4.7: Scatterplots of AME vs. the skewness of observed flow in each of the headwater forecast points with 

lead time 48 hours for locations with (a) good and (b) poor BMA performance 

  

Figure 4.8: Scatterplots of AME vs. the skewness of observed flow in each of the downstream forecast points with 

lead time 48 hours for locations with (a) good and (b) poor BMA performance 

Fig. 4.9a through 4.9c show the scatterplot of coefficient of variation (CV) versus skewness of 

observed streamflow, skewness versus basin size, and CV versus basin size, respectively. The blue 

and red symbols represent the headwater and downstream forecast points, respectively. A positive 

relationship is readily seen between CV and skewness in Fig. 4.9a. Expectedly, the headwater 

basins are more skewed and smaller in size whereas downstream basins are larger with smaller 

skewness. Figs 4.6-4.9 may be summarized as follows. The downstream forecast points, for which 

flow routing is the dominant hydrologic process, tend to be more predictable, less skewed, and  
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Figure 4.9: Scatterplots of (a) coefficient of variation vs. skewness, (b) skewness vs. basin area, and (c) coefficient 

of variation vs. basin area for all headwater and downstream basins  

hence more favorable to BMA. The headwater forecast points, for which rainfall-runoff is the 

dominant hydrologic process, are less predictable, more skewed, and hence less favorable to BMA. 

4.5.3 Impact of priors on BMA performance 

This study compares two model priors available in the BMS package, the uniform and custom 

prior inclusion probability (PIP). A uniform model prior assumes equal weight for each of all 

combinations of MLR models. This study uses five different input forecasts as predictors. There 

are hence 32 different model combinations. A uniform model assigns a weight equals to 1/32 for 

each MLR model. A custom PIP assumes user-specified PIP values. In this work, they were 

prescribed by the posterior model probabilities obtained from forecast group-wide runs of BMA. 

As such, the custom PIP as implemented in this work amounts to using regional PIP values as the 

prior for the forecast point-specific. Figs 4.10ab show the conditional and unconditional RMSE of 

RFC, HEFS, GEFS, NAEFS, SREF, BMA, and CBP-BMA versus lead times where BMA and 

CBP-BMA used the custom PIP. Figs 4.10cd are the same as Figs 4.10ab, respectively, but used 

the uniform PIP. These and similar results for other forecast points indicate that the use of the 

custom PIP does not consistently improve over the uniform PIP, but that more extensive, larger-

sample evaluation is necessary to draw firm conclusions. 
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Figure 4.10: (a) the unconditional RMSE, (b) the conditional RMES vs. lead times using custom PIP as a model 

prior, (c) as (a) but using uniform model prior, and (d) as (b) but using uniform model prior 

4.5.4 Comparative evaluation results 

Figs. 4.11 ab show the correlation coefficient of RFC, HEFS, GEFS, NAEFS, SREF, BMA, 

and CBP-BMA forecasts for the headwater forecast points in the North Branch Susquehanna 

forecast group conditional on truth exceeding the amount of the x-axis for lead times of 1 and 4 

days, respectively. The values on the 𝑦 axis at 𝑥 = 0 represent the correlation coefficients 

conditional on the verifying observed flow being nonzero, i.e., the unconditional correlation. As 

such, we refer to the outcomes for 𝑥 > 0 and 𝑥 = 0 as conditional and unconditional performance, 

respectively. Fig. 4.11a shows that both BMA and CBP-BMA have larger correlation with the 

observed than the input forecasts for all ranges of streamflow for Day-1 prediction.  Among all 

(a) 
(b) 

(c) (d) 
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input forecasts, HEFS has by far the best performance in terms of correlation coefficient, and the 

MMEFS forecasts, i.e., GEFS, NAEFS, and SREF, perform better for flows greater than 40 (cms). 

Fig. 4.11b is the same as Fig. 4.11a but for a lead time of 4 days. It is  readily seen that correlation 

is significantly reduced for all  forecasts at this lead time. The BMA and CBP-BMA are still the 

best performing forecast for flows less than 30 (cms). It is seen that NAEFS, GEFS, and SREF are 

perform better for larger flows whereas HEFS does not.  

Fig. 4.12 is the same as Fig. 4.11 but for RMSE in logarithmic scale. The gray area shown in the 

figure indicates the sample size whose logarithmic axis is plotted at the right end of the figure. 

Similarly to Fig. 4.11a, Fig. 4.12a indicates good performance of BMA and CBP-BMA in both 

conditional and unconditional sense. The HEFS has the smallest RMSE among all input forecasts 

but for larger flows.  

  

Figure 4.11: Correlation coefficient of RFC, HEFS, GEFS, NAEFS, SREF, BMA, and CBP-BMA forecasts over 

headwater forecast points in North Branch Susquehanna conditional on truth exceeding amount of the x-axis for lead 

times of (a) 1, and (b) 4 days 
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Figure 4.12: As in Fig. 4.11, but for RMSE values on the y-axis in logarithmic scale 

  
Figure 4.13: Expected value of CBP-BMA coefficients for each input forecast and each lead time for (a) James and 

(b) Delaware forecast groups. 

To show the contribution of each input forecast as a function of lead time, Figs. 4.13ab plot the 

unconditional CBP-BMA coefficients for RFC, HEFS, GEFS, NAEFS, and SREF for the James 

and Delaware forecast groups, respectively. The former is located in the southern part of the study 

area, and the latter is a northern forecast group. It is seen that the NAEFS forecast contributes the 

most to CBP-BMA for James whereas the contributions of input forecasts are evenly spread for 

Delaware. The above suggests that the predictive skill among different forecasts in the northern 

(a) (b) 
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groups is more uniform than in the southern. The GEFS forecast shows the most significant 

variations across the forecast lead times. 

Fig. 4.14ab plots RMSE vs. lead time of RFC, HEFS, GEFS, NAEFS, SREF, BMA, and CBP-

BMA for all ranges of observed flow and observed flow exceeding the 95th percentile, 

respectively. Fig. 4.14a indicates that both BMA and CBP-BMA unconditionally outperform all 

input forecasts at all lead times. The NAEFS, as shown in Fig. 4.13a, has the best skill among all 

input forecasts. Fig. 4.14b shows the conditional RMSE of all forecasts for downstream forecast 

points in the James forecast group. As expected, BMA falls behind CBP-BMA, particularly at 

larger lead times where the CB is increased. The CBP-BMA outperforms all input forecasts except 

at larger lead times where the number of available input forecast is reduced to three. The HEFS 

has the smallest overall skill in the conditional sense among all input forecasts. 

Figs 4.15ab show the unconditional RMSE for all headwater forecast points in dry (Apr to Oct) 

and wet (Nov to Mar) seasons, respectively. It is shown that BMA outperforms all forecasts in the 

unconditional RMSE in both dry and wet seasons. However, the margin of improvement by BMA 

and CBP-BMA is more significant in the wet season than in the dry season. Figs 4.15cd show the 

unconditional sense for all downstream forecast points in dry and wet seasons, respectively. It is 

seen that forecasts have the largest skill for downstream points in the wet season for which HEFS 

outperforms all other input forecasts owing to the greatly reduced CB resulting from 

spatiotemporal smoothing. The BMA and CBP-BMA outperform all input forecasts in the 

unconditional sense in both dry and wet seasons, and their margin of improvement is larger in the 

wet season than in the dry season.  
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Figure 4.14: RMSE vs. lead time of RFC, HEFS, GEFS, NAEFS, SREF, BMA, and CBP-BMA (a) for all ranges of 

observed flow and (b) for the verifying observed flow exceeding the 95th percentile for James forecast group. 

.

 

 

  

Figure 4.15: Unconditional RMSE vs. lead times of (a) dry season, (b) wet season for all headwater forecast points, 

(c) as (a) but for downstream forecast points, and (d) as (b) but for downstream forecast points 

 

(a) (b) 

(a) (b) 

(c) (d) 
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4.6 Conclusions and Future Research Recommendations 

The principal conclusion of this work is as follows. The relative skill of input forecasts 

significantly varies with the range of the verifying observed flow. The effectiveness of 

multimodel streamflow prediction depends largely on streamflow predictability and the 

predictive skill in the input forecasts. It is found that skewness and heteroscedasticity are very 

useful indicators of the performance of BMA. The smaller the skewness is and the more 

homoscedastic the streamflow is, the more likely BMA and CBP-BMA perform effectively. In 

general, the streamflow forecasts forced by the NAEFS, and the SREF, are better-suited for flood 

forecasting whereas those generated with the HEFS are better-suited for water supply and 

environmental flow forecasting. It is shown that BMA generally outperforms the best individual 

forecasts in the MSE sense for all ranges of observed flow. CBP-BMA is generally superior to 

BMA for prediction of large flows. Generally speaking, the multimodel prediction is most effective 

for downstream locations in the cool season and for northern forecast groups owing to the larger 

predictability. Additional evaluation is needed to assess the performance of CBP-BMA further and 

to prescribe α optimally in real-time. 
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: General Conclusions and Future Research Recommendations 

The principal conclusion from Element 1 (see Ch 2) is that, to produce multisensor estimates 

that are more accurate than the ingredient quantitative precipitation estimates (QPE) for all 

precipitation amounts, it is necessary to address the conditional bias (CB), and that adaptive 

conditional bias-penalized cokriging (CBPCK) improves the estimation of significant amounts of 

precipitation by explicitly considering the CB. It is shown that beyond the reduction in root mean 

square error (RMSE) due to mean-field bias (MFB) correction, both ordinary cokriging (OCK) 

and adaptive CBPCK additionally reduce the unconditional RMSE of radar-only QPE by 16 and 

9 % over the continental US (CONUS) for the more and less predictable Oct 7-9, 2016, and Sep 

13-30, 2015, events, respectively, and that adaptive CBPCK improves over OCK for estimation of 

hourly precipitation exceeding about 1 mm. Jointly, MFB correction and adaptive CBPCK reduce 

the RMSE of the radar-only QPE by about 16 to 26% for the more predictable Oct 7-9, 2016, 

events and by about 10 to 17% for the less predictable Sep 13-30, 2015, events for all ranges of 

precipitation amounts. It is shown that for the Sep 2015 events, fusing the MFB-corrected radar 

QPE with the MFB-corrected SCaMPR QPE reduces the unconditional RMSE of radar-only QPE 

by about 12% over the CONUS, whereas the reduction by MFB-corrected radar QPE alone over 

radar-only QPE is about 8%. For the western half of the CONUS, where the rain gauge network is 

sparser, and the radar QPE is less skillful, the margin of reduction increases to 6% from the above 

4%. The conditional performance of the fused QPE, however, falls below that of the MFB-

corrected radar QPE as the conditioning amount exceeds about 7 mm of hourly precipitation. The 

above suggests that the SCaMPR product should be used selectively in multisensor QPE.  
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The main conclusions from Element 2 (see Ch 3) are as follow. The relative performance among 

different input forecasts varies most significantly with the range of the verifying observed flow. 

Generally speaking, the streamflow forecasts forced by the North American Ensemble Forecast 

System, or NAEFS, and the Short-Range Ensemble Forecast, or SREF, are better-suited for flood 

forecasting. In contrast, those generated with the Hydrologic Ensemble Forecast Service, or HEFS, 

are better suited for water supply and environmental flow forecasting. It is shown that CompMLR 

generally outperforms the best individual forecasts in the MSE sense for observed flow exceeding 

the 95th percentile, for all ranges of observed flow, for less predictable headwater forecast points, 

and for more predictable downstream points for lead times of up to about six days. If forecasting 

high flows is of little importance, CB is not likely to be an issue and MLR may suffice. Large 

variations are seen in the MLR and CBP-MLR weights associated with different input forecasts 

across the 7-day forecast horizon and across different forecast points. The above suggests that 

selecting a single “best” forecast system for the forecast point of interest or a single “best” forecast 

for the day or event at hand is likely a difficult proposition. The distinguishing value of CB-aware 

MLR is that it produces predictions that are generally superior to the best input forecast both in 

the conditional sense and in the unconditional sense under wide-ranging conditions of 

predictability and predictive skill.  

The main conclusions from Element 3 (see Ch 4) are as follows. BMA based on the Bayesian 

normal conjugate linear model (Walter et al. 2009) with Zellner's g-prior (Zellner 1984) generally 

improves over input forecasts. As with MLR, the improvement is larger and more consistent for 

downstream forecast points for which predictability is larger. Forecast point-specific validation 

results indicate that a combination of skewness and homoscedasticity is a good indicator of how 

effective BMA may be for multimodel streamflow prediction. It is seen that the smaller the 
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skewness and heteroscedasticity of streamflow is at the forecast point, the more effective BMA is 

for multimodel streamflow prediction. To assess the impact of modeling priors, limited 

comparative evaluation was carried out using the posterior model probability obtained from 

forecast group-wide training of BMA as the prior inclusion probabilities (PIP) vs. assuming 

uniform model prior (i.e., all input forecasts are equally likely to be included). The results indicate 

that the PIP prior does not consistently improve over the uniform model prior. Given that 

streamflow response is generally highly flow-dependent and location-specific, it is very likely that 

a rather sophisticated strategy is necessary to specify the spatiotemporal domain over which the 

prior is to be inferred, and the likelihood function is to be constructed (Krzysztofowicz 1999). 

CBP-BMA generally improves over BMA for high flows (i.e., in the conditional sense) but at the 

expense of some deterioration in the unconditional sense (i.e., CBP-BMA performs slightly poorly 

vs. BMA for all flows). In this work, 𝛼 = 1 was used in CBP-BMA without explicit optimization 

as was done in CompMLR. Whereas optimizing 𝛼 may be expected to improve conditional 

performance, it is unlikely to improve unconditional performance due to the fact that CBP-BMA 

is based on linear regression (Shen et al., 2019). Limited comparative evaluation indicates that 

CompMLR and CBP-BMA perform comparably. The above suggests that the nonlinear regression 

made of two linear regressions in CompMLR is comparable to weight-averaging of multiple 

Bayesian linear regressions of different combinations of input forecasts in CBP-BMA. An 

extensive sample evaluation is necessary, however, to assess the relative performance in different 

hydroclimatological regimes. The results presented in this work for Elements 2 and 3 are based on 

a period of record of less than two years. Systematic assessment of data requirements vs. 

performance, particularly for forecasting extreme floods, is necessary and that of potential benefits 

of regionalization for space-for-time trade-off.  
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