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ABSTRACT 

Digital Twin Enabled Winter Operations Management Through the Integration of Artificial 

Intelligence, Sensory Level Data, and Publicly Available Data 

Pooya Darghiasi 

The University of Texas at Arlington, 2023 

 

Supervising Professor: Dr. Mohsen Shahandashti 

 

Monitoring real-time information on road conditions, especially during winter storms, is crucial 

to establishing winter maintenance strategies by the State Departments of Transportation (State 

DOTs) in the United States. States and local highway agencies allocate substantial resources each 

year for winter operations to improve road safety during winter storms. However, most weather-

related vehicle accidents happen on snowy, slushy, or icy surfaces, leading to a significant number 

of fatalities and injuries annually. Traditionally, transportation agencies rely on the information 

provided by Road Weather Information Systems for monitoring road conditions along roadways. 

However, these systems are costly and only provide estimates at specific locations, resulting in 

distant areas being underrepresented. Additionally, the data acquisition systems integrated into 

snowplows, which offer real-time road condition images, comprise several components and are 

not extensively employed in states that encounter infrequent snowstorms. This is primarily due to 

the high costs associated with installation and maintenance. The main objective of this study is to 

develop a cost-effective system that enables the monitoring of road conditions by providing real-

time road condition images and estimating road surface temperatures. The approach developed to 

collect and transfer real-time road conditions images proved advantageous as it eliminated the need 
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for complex and expensive multi-component systems, while also reducing the training 

requirements for users. Furthermore, a methodology was developed to leverage publicly accessible 

weather forecasts provided by the National Weather Service for estimating road surface 

temperatures on roadways (excluding bridges). This innovative approach enabled the estimation 

of road surface temperature without depending on expensive road weather information systems, 

which may not be accessible in many locations.  In particular, statistical models were developed 

to establish relationships between road surface temperature and the weather forecasts that were 

publicly available in high resolution. The findings of the study indicated that linear statistical 

models, like multiple linear regression, could achieve an acceptable level of accuracy for 

estimating road surface temperature. However, it was observed that nonlinear models, such as 

Random Forest, could enhance accuracy by capturing the intricate and nonlinear interactions 

among the explanatory variables. Lastly, a data visualization platform (i.e., digital twin system) 

was created to display the real-time road conditions by combining the functionalities of mobile 

devices and capabilities of the ArcGIS application programming interface 

The findings of this study emphasize the practicality of utilizing gridded weather forecasts, 

supplied by the National Weather Services, to estimate the temperature of road surface as well as 

utilizing the functionalities of mobile devices to communicate road conditions information. The 

proposed methodology can be integrated into a winter operation decision-making system to 

visualize the road conditions images and map the estimated road surface temperature on roadways 

without the need for road weather information systems. The estimated road surface temperatures 

on roadways assists highway agencies to plan winter maintenance strategies more efficiently by 

taking proactive measures in areas where low surface temperatures are estimated.  



 vi 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ...................................................................................................... iii 

ABSTRACT .............................................................................................................................. iv 

TABLE OF CONTENTS .......................................................................................................... vi 

LIST OF TABLES .................................................................................................................... ix 

LIST OF FIGURES ................................................................................................................. xii 

CHAPTER 1 INTRODUCTION ............................................................................................... 1 

CHAPTER 2 BACKGROUND ................................................................................................. 3 

2.1. Road Condition Images........................................................................................... 4 

2.2. Weather Information ............................................................................................... 7 

2.2.1. Current Weather Information ........................................................................ 7 

2.2.2. Graphical Forecast Maps .............................................................................. 8 

2.3. Road Surface Temperature ................................................................................... 11 

2.4. Gaps in Knowledge ............................................................................................... 13 

2.5. Research Objective ............................................................................................... 14 

CHAPTER 3 DEVELOPING A MULTI-PURPOSE, ALL-IN-ONE MOBILE DATA 

COLLECTION SYSTEM FOR WINTER OPERATIONS MANAGEMENT............................ 15 

 Automatic Data Collection System for Road Conditions Images ........................ 15 

3.1.1. Methodology ..................................................................................................... 18 

 On-Demand Data Collection System for Road Conditions Images...................... 24 

3.2.1. Methodology ..................................................................................................... 25 

 Results ................................................................................................................... 28 

CHAPTER 4 Estimation of Road Surface Temperature Using NOAA Gridded Forecast 

Weather Data ................................................................................................................................ 33 

4.1. Methodology ......................................................................................................... 34 

4.1.1. Data collection ............................................................................................ 35 



 vii 

4.1.2. Developing Statistical Models .................................................................... 40 

4.1.3. Multiple Linear Regression ......................................................................... 41 

4.1.4. Leverage Gridded Forecast Weather Data to Visualize Estimated Road 

Surface Temperatures on a Map-based Interface.......................................................... 45 

4.2. Results and Discussions ........................................................................................ 48 

4.3. Summary ............................................................................................................... 55 

CHAPTER 5 Developing a Digital Twin System for Visualizing Road Conditions Information

....................................................................................................................................................... 57 

5.1. Introduction ........................................................................................................... 57 

5.2. Spatial Data Collection and Processing ................................................................ 61 

5.2.1. Road Condition Images ............................................................................... 61 

5.2.2. Related Weather Information ...................................................................... 64 

5.2.3. Road Surface Temperatures ........................................................................ 67 

5.2.4. Data Model Development for Snowplow Operations Management System ..  

  ..................................................................................................................... 68 

5.3. Digital Twin Interface Development .................................................................... 80 

5.3.1. Use Cases .................................................................................................... 82 

5.4. Summary ............................................................................................................... 86 

CHAPTER 6 Improved Road Surface Temperature Prediction Using Random Forest Machine 

Learning Algorithm Based on Weather Forecasts ........................................................................ 88 

6.1. Introduction ........................................................................................................... 88 

6.2. Methodology ......................................................................................................... 90 

6.2.1. Data collection ............................................................................................ 92 

6.2.2. Random Forest model development ........................................................... 93 

6.3. Results and Discussions ........................................................................................ 97 

6.3.1. Descriptive Statistics ................................................................................... 97 

6.3.2. Random Forest Hyperparameter Optimization ........................................... 99 

6.3.3. Feature Importance.................................................................................... 101 



 viii 

6.3.4. Comparison between RF, DL, KNN, MLR, M5P Decision Tree, and SVR ..  

  ................................................................................................................... 102 

6.4. Summary ............................................................................................................. 105 

CHAPTER 7 CONCLUSION AND FUTURE WORK ........................................................ 108 

REFERENCES ....................................................................................................................... 111 

 

  



 ix 

 

LIST OF TABLES 

Table 2-1 Weather impacts on roads, traffic, and operational decisions (FHWA, 2020)............... 3 

Table 2-2 Data collection system’s components, installed on snowplow fleet, to collect road 

condition images ............................................................................................................................. 6 

Table 2-3 State of practice for visualizing road condition information during winter storms; 

retrieved from state travelers’ road information websites (FHWA, 2021) ................................... 10 

Table 2-4 Examples of linear regression models to estimate the pavement temperature ............. 13 

Table 3-1- Technical specifications of the tablet used to test the custom Android application 

(Source: Samsung website) ........................................................................................................... 17 

Table 3-2 Example metadata for a captured image by the custom application ............................ 22 

Table 3-3- Use Case for the developed Android application to provide on-demand road conditions 

images ........................................................................................................................................... 27 

Table 4-1 Technical specifications of the RoadWatch® temperature sensor used to collect actual 

road surface temperature data (RoadWatch® manual, 2020) ....................................................... 37 

Table 4-2 Explanatory variables used in the statistical analysis to estimate road surface temperature

....................................................................................................................................................... 38 

Table 4-3 Light and dark hours in North Texas during data collection months ........................... 43 

Table 4-4 Data ranges for the statistically significant continuous attributes ................................ 43 

Table 4-5 Data range for the statistically significant binary attribute .......................................... 43 

Table 4-6 MLR analysis results for dark group ............................................................................ 50 

Table 4-7- MLR analysis results for light group .......................................................................... 51 

Table 4-8 Summary of statistical models developed to estimate the road surface temperature ... 52 



 x 

Table 4-9 Summary of the accuracy metrics for previous road surface temperature prediction 

models ........................................................................................................................................... 53 

Table 5-1 Maximum number of snowplows that the existing system can handle from the cloud 

storage space aspect. ..................................................................................................................... 63 

Table 5-2 Maximum number of snowplows that the system can handle from the computational 

performance of the server— images will remain posted on the map-based interface for one hour.

....................................................................................................................................................... 64 

Table 5-3- Conceptual data model terms description ................................................................... 69 

Table 5-4 Description of the Snowplow Operations Management System’s data entities ........... 71 

Table 5-5 Description of widgets in the map-based Interface ...................................................... 81 

Table 5-6 UC1: Login ................................................................................................................... 83 

Table 5-7 UC2: Sign up ................................................................................................................ 84 

Table 5-8 UC3: Search.................................................................................................................. 84 

Table 5-9 UC4: Return to initial map view extent ........................................................................ 84 

Table 5-10 UC5: Zoom-in and zoom-out of the map view .......................................................... 84 

Table 5-11 UC6: Find the user location ........................................................................................ 85 

Table 5-12 UC7: Change base map .............................................................................................. 85 

Table 5-13 UC8: Display data entity ............................................................................................ 85 

Table 5-14 UC9: Display the legend of the data entity ................................................................ 86 

Table 5-15 UC10: Display road condition data ............................................................................ 86 

Table 5-16 UC11: Logout ............................................................................................................. 86 

Table 6-1 Summary of the variables used for developing the predictive models ......................... 92 

Table 6-2- Random Forest model hyperparameters...................................................................... 95 



 xi 

Table 6-3 Point Biserial Correlation between the categorical variables and RST ........................ 97 

Table 6-4 Thresholds for interpretation of Spearman correlation coefficients (Dancey and Reidy, 

2007) ............................................................................................................................................. 99 

Table 6-5 Hyperparameters for the default and optimized Random Forest models ................... 100 

Table 6-6- Optimized hyperparameters of selected data-driven prediction models ................... 103 

 

  



 xii 

LIST OF FIGURES 

Figure 2-1 U.S. states using GPS/AVL systems along with dash cameras in their snowplow fleet 

(Potter et al., 2016; Refai et al., 2018) ............................................................................................ 5 

Figure 2-2- Mobile data collection system; (a) communication unit, (b) GPS antenna, (c) mobile 

data computer unit (Schneider et al., 2017) .................................................................................... 6 

Figure 2-3 A typical environmental weather station (Source: The Federal Highway 

Administration) ............................................................................................................................... 8 

Figure 3-1 (a) Wichita Falls’ snowplow, (b) Mounted tablet in the snowplow ............................ 16 

Figure 3-2 Samsung Galaxy Tab A 8-inch tablet ......................................................................... 16 

Figure 3-3 Data flow from the tablet to a map-based interface .................................................... 18 

Figure 3-4- Function Modeling Methodology for the custom Android application in Java language

....................................................................................................................................................... 19 

Figure 3-5 Uploading Image Metadata to Cloud Space ................................................................ 23 

Figure 3-6 The user interface of the custom Android application ................................................ 24 

Figure 3-7 Data flow from the Android application to the ArcGIS map-based application ......... 25 

Figure 3-8 Function modeling methodology to develop the Android application to collect on-

demand images.............................................................................................................................. 26 

Figure 3-9 The user interface of the Android application to collect on-demand road conditions 

images ........................................................................................................................................... 27 

Figure 3-10 (a) Tablet mounted on the front windshield using a suction-cup mount, and (b) USB 

cable and power outlet used to provide power for the tablets ....................................................... 29 

Figure 3-11 Examples of collected road condition images in the 2020-21 winter season (automatic)

....................................................................................................................................................... 30 



 xiii 

Figure 3-12 Examples of road conditions images in the 2020-21 winter season (on-demand) .... 31 

Figure 4-1 Overview of the methodology from data collection to the estimation of road surface 

temperatures along with the locations of snowplows ................................................................... 35 

Figure 4-2 Data collection: location and road functions ............................................................... 36 

Figure 4-3 Temperature sensor used to collect road surface temperature data; (a) RoadWatch® 

sensor kit; (b) mounted sensor on vehicle’s side mirror ............................................................... 37 

Figure 4-4 Total sample size required for the statistical analysis ................................................. 39 

Figure 4-5 Frequency distribution of the collected data ............................................................... 40 

Figure 4-6 IDEF0 diagram for converting GRIB2 file downloaded from the NDFD to ASCII 

comma-separated .......................................................................................................................... 46 

Figure 4-7 Overview of methodology to map the estimated road surface temperature onto the road 

segments ........................................................................................................................................ 47 

Figure 4-8 Flowchart for estimation of road surface temperature using forecast weather data from 

the NDFD ...................................................................................................................................... 48 

Figure 4-9 Pearson’s correlation coefficient between all variables in the dataset ........................ 49 

Figure 4-10 Sample screenshot of the map-based interface showing estimated minimum road 

surface temperatures for the next day in TxDOT on-system roadways in North Texas (February 

15, 2022). ...................................................................................................................................... 54 

Figure 5-1 Representation of the physical world based on the level of data integration .............. 57 

Figure 5-2 Digital twin technologies ............................................................................................ 59 

Figure 5-3 Digital Twin System for Winter Operations Management ......................................... 60 

Figure 5-4- Flowchart to visualize the road condition images in the map-based interface .......... 62 



 xiv 

Figure 5-5- Road condition images data entity; displaying road condition images collected by 

operating snowplows (February 14, 2021, at 5:37 PM)................................................................ 62 

Figure 5-6 Overview of collecting and displaying weather information that facilitates winter 

operations decisions. ..................................................................................................................... 65 

Figure 5-7- Graphical Forecast Maps retrieved from National Weather Service: (a) Snowfall 

forecast by the National Weather Service (Texas, January 8, 2021, 4:15 PM), (b) Snowfall forecast 

by the National Weather Service (TxDOT Wichita Falls district, January 8, 2021, 4:23 PM), and 

(c) Precipitation forecast by the National Weather Service (TxDOT Wichita Falls district, January 

8, 2021, 4:37 PM) ......................................................................................................................... 66 

Figure 5-8- Examples of watches, warnings, and advisories issued by the National Weather Service 

(a) Advisory from the National Weather Service during a winter storm in Texas (January 8, 2021, 

1:31 PM), and (b) Warning from the National Weather Service during in TxDOT Wichita Falls 

district (January 8, 2021, 1:50 PM) .............................................................................................. 66 

Figure 5-9 IDEF0 diagram from downloading the data to visualizing the road surface temperatures 

on the map-based interface. .......................................................................................................... 67 

Figure 5-10- Road surface temperatures estimations along with snowplow locations in the Wichita 

Falls district ................................................................................................................................... 68 

Figure 5-11- Conceptual Data Model ........................................................................................... 69 

Figure 5-12- The Winter Operations Management System’s data entities ................................... 70 

Figure 5-13 Sign-in webpage to access the map-based interface ................................................. 80 

Figure 5-14 Map-based interface for Winter Operations Management System ........................... 81 

Figure 5-15 Use case diagram....................................................................................................... 83 

Figure 6-1 Overview of the proposed methodology framework .................................................. 91 



 xv 

Figure 6-2 Structure of Random Forest models (adapted from Gitconnected.com) ..................... 93 

Figure 6-3 Overview of cross-validation in hyperparameter optimization of Random Forest model

....................................................................................................................................................... 96 

Figure 6-4 Spearman Correlation between the publicly available weather data and RST ........... 98 

Figure 6-5 Mean absolute error of Random Forest model based on the number of trees and 

maximum number of features for splitting a node ...................................................................... 100 

Figure 6-6 RMSE, MAE, and R-squared of optimized and default Random Forest models ..... 101 

Figure 6-7 The relative importance of predictive features for the Random Forest Model ......... 102 

Figure 6-8 Coefficients of determination for the testing datasets of developed DL, MLR, M5P 

decision tree, SVR, RF, and SVR ............................................................................................... 104 

Figure 6-9 Accuracy metrics as well as the time taken to build the models ............................... 105 



 1 

CHAPTER 1  

INTRODUCTION 

Winter road maintenance accounts for approximately 20 percent of state departments of 

transportation’s maintenance budgets; states and local highway agencies spend an average of $2.3 

billion on winter operations every year (FHWA, 2020). Nevertheless, over 5 million vehicle 

crashes occur in the U.S. each year, and approximately 21% of these crashes happen in the 

presence of adverse weather (i.e., sleet, snow, etc.) (FHWA, 2020). According to National 

Highway Traffic Safety Administration (NHTSA), about 5,000 people are killed, and over 418,000 

are injured in weather-related crashes each year (FHWA, 2020). These crashes also contribute to 

approximately $70.7 billion in property damages, including damages to the road infrastructure 

(Miller and Zaloshnja, 2009). Real-time road conditions information, especially road conditions 

images and road weather information, provide valuable information to transportation operations 

managers to enhance their winter operations practices and improve the safety of the roads (Ameen 

et al., 2022; Shahandashti et al., 2019). 

The primary objectives of this research are to: (1) develop a cost-effective approach to collect 

and transfer a live feed of road conditions images from mobile devices mounted on snowplows, 

(2) develop predictive models to estimate road surface temperatures (excluding bridges) using the 

publicly available weather data from the National Weather Service, and (3) and develop a digital 

twin system to visualize the real-time road conditions information, including the road conditions 

images, weather information from the National Weather Service, and estimated road surface 

temperatures using capabilities of ArcGIS application programming interface.  

This research helps communicate adverse road conditions, improve snowplow operational 

decisions, and consequently decrease weather-related crashes. Real-time images of road conditions 
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help transportation operations managers visually monitor road conditions and make well-informed 

decisions during snowstorms. In addition, access to certain weather information that facilitates 

snowplow operations decisions, as well as information about road surface temperatures provide 

essential information to operations managers about possible locations of low road surface 

temperatures and potential ice and snow hazards on roads. This information could improve 

decision-making for deploying snowplows to administer anti-icing and snow-removal measures 

on roads during winter operations. 

Chapter 2 provides a comprehensive review of the literature on the use of road conditions 

information to enhance winter operations practices in the U.S. Chapter 3 explains developing a 

multi-purpose, all-in-one data collection system for collecting and transferring road conditions 

images. Chapter 4 explains developing an approach to estimate road surface temperatures based 

on publicly available weather data using multiple linear regression models. Chapter 5 explains 

developing a 2D digital twin system to visualize the collected road conditions information. Chapter 

6 explains developing nonlinear statistical models to improve the accuracy of the prediction 

models to estimate the road surface temperature by considering the nonlinear and complex 

interaction between the influencing variables. Chapter 7 provides a summary of this research and 

suggests future research directions. 
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CHAPTER 2  

BACKGROUND 

Winter road maintenance accounts for approximately 20 percent of State Departments of 

Transportation’s (State DOTs) maintenance budgets; states and local agencies spend over $2.3 

billion on winter operations annually (FHWA, 2020). Adverse weather will act through low 

visibility, precipitation, high winds, and extreme temperature to affect driver capabilities and 

vehicle performance (FHWA, 2020). Table 2-1 summarizes the impacts of various weather events 

on roadways, traffic flow, and operational decisions. 

Table 2-1 Weather impacts on roads, traffic, and operational decisions (FHWA, 2020) 

Road Weather 

Variables 
Impacts on Roadway  

Impacts on Traffic 

Flow  
Operational Impacts 

Air temperature 

and humidity 
N/A N/A 

▪ Road treatment strategy (e.g., snow 

and ice control) 

▪ Construction planning 

(e.g., paving and striping) 

Wind speed 

▪ Visibility distance (due 

to blowing snow and 

dust) 

▪ Lane obstruction 

(due to wind-blown 

snow and debris) 

▪ Traffic speed 

▪ Travel time delay 

▪ Crash risk 

▪ Vehicle performance (e.g., stability) 

▪ Access control (e.g., restrict vehicle 

type, close road) 

▪ Evacuation decision support 

Precipitation 

(type, rate, start/end 

times) 

▪ Visibility distance 

▪ Pavement friction 

▪ Lane obstruction 

▪ Roadway capacity 

▪ Traffic speed 

▪ Travel time delay 

▪ Crash risk 

▪ Vehicle performance (e.g., traction) 

▪ Driver capabilities/behavior 

▪ Road treatment strategy 

▪ Traffic signal timing 

▪ Speed limit control 

▪ Evacuation decision support 

▪ Institutional coordination 

Fog ▪ Visibility distance 

▪ Traffic speed 

▪ Speed variance 

▪ Travel time delay 

▪ Crash risk 

▪ Driver capabilities/behavior 

▪ Road treatment strategy 

▪ Access control 

▪ Speed limit control 
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Road Weather 

Variables 
Impacts on Roadway  

Impacts on Traffic 

Flow  
Operational Impacts 

Pavement 

temperature 
▪ Infrastructure damage N/A ▪ Road treatment strategy 

Pavement 

condition 

▪ Pavement friction 

▪ Infrastructure damage 

▪ Roadway capacity 

▪ Traffic speed 

▪ Travel time delay 

▪ Crash risk 

▪ Vehicle performance 

▪ Driver capabilities/behavior (e.g., 

route choice) 

▪ Road treatment strategy 

▪ Traffic signal timing 

▪ Speed limit control 

Water level ▪ Lane submersion 

▪ Traffic speed 

▪ Travel time delay 

▪ Crash risk 

▪ Access control 

▪ Evacuation decision support 

▪ Institutional coordination 

 

Information on real-time road conditions, including road conditions images, weather 

information, and road surface temperature, can assist transportation operations managers in 

improving their winter operations practices. The following subsections synthesize the state of 

practice in providing real-time road conditions information in the U.S. 

2.1. Road Condition Images 

Road condition images can provide valuable information for transportation operation managers 

to enhance their winter operation practices (Shahandashti et al., 2019). Also, real-time road 

condition images could alert the traveling public about a potential safety hazard on the roads during 

inclement weather to help them make well-informed decisions (Hirt and Peterson, 2017). In recent 

years, various agencies across the U.S. have adopted the use of a GPS-based Automatic Vehicle 

Location (GPS/AVL) system along with cameras for their snowplow fleet to collect and transfer 

snowplow locations as well as road condition images during winter operations (Potter et al., 2016). 

Surveys have shown that integrating such a GPS/AVL system into the snowplow fleet could result 



 5 

in efficiency savings from 5% to 50% due to reduced crashes on roads and more efficient fleet 

management (Meyer and Ahmad, 2003). 

According to a survey in 2016, 26 U.S. states have reported using a GPS/AVL system for their 

winter operation fleet, in which eight State DOTs have integrated dash cameras into their 

GPS/AVL system to communicate road conditions images at predetermined time intervals (Potter 

et al., 2016). In 2018, Oklahoma DOT initiated a project to collect road condition images by 

installing tablets connected to a piece of computing equipment, along with a GPS device to collect 

and transfer road condition images (Refai et al., 2018). Figure 2-1 shows the states that have 

integrated dash cameras to the GPS/AVL system to collect and transfer road condition images 

during winter operations. 

 
Figure 2-1 U.S. states using GPS/AVL systems along with dash cameras in their snowplow 

fleet (Potter et al., 2016; Refai et al., 2018) 

The existing system is consisted of various detached equipment pieces, such as a GPS receiver 

with an antenna, a cellular modem for communication, and mobile data computer (Lee and Nelson, 

2018). Figure 2-2 shows examples of equipment pieces used in the existing GPS/AVL data 

collection systems to communicate road condition data during snowplow operation. The existing 
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GPS/AVL systems could cost as much as $25,000, with a median value of $1,500 for operations 

on the snowplow fleet (Potter et al., 2016). 

 
Figure 2-2- Mobile data collection system; (a) communication unit, (b) GPS antenna, (c) 

mobile data computer unit (Schneider et al., 2017) 

A summary of the installed equipment pieces on the snowplow fleet, which gather and transfer 

road condition data in nine U.S. states, can be found in Table 2-2 (Potter et al., 2016; Refai et al., 

2018).  

Table 2-2 Data collection system’s components, installed on snowplow fleet, to collect road 

condition images 

Department of 

Transportation 

Data Collection System’s Components 

GPS 

device 

Communication 

modem 

Computing 

equipment 

Dash 

camera 
Tablet/phone 

Iowa  ✓ ✓ ✓ ✓ ✘ 

Colorado ✓ ✓ ✓ ✓ ✘ 

Nebraska ✓ ✓ ✓ ✓ ✘ 

Minnesota ✓ ✓ ✓ ✓ ✘ 

Oklahoma ✓ ✓ ✓ ✘ ✓ 

Michigan ✓ ✓ ✓ ✓ ✘ 

Ohio ✓ ✓ ✓ ✓ ✘ 

South Dakota ✓ ✓ ✓ ✓ ✘ 

Montana ✓ ✓ ✓ ✓ ✘ 

 

The collected data are typically transferred via a cellular connection, radio transmission, or 

satellite to a database where it could be further processed and visualized. As the collected data are 

from multiple sources with different data structures, highway agencies mainly use GIS-based tools 

to integrate all the collected data into a single platform to share spatial information through 

interactive maps. 

a b c



 7 

2.2. Weather Information 

Access to weather information from observing systems and forecast providers provides 

essential information to winter operations managers about possible locations of low road surface 

temperatures and potential ice and snow hazards on roads. The following subsections provide 

information on the current and forecast weather information provided by the national weather 

service. 

2.2.1. Current Weather Information 

The current weather information is usually collected from fixed weather stations such as 

Meteorological Aerodrome Reports (METAR) or Road Weather Information Systems (RWIS). 

Typical METAR data contain information about several weather variables for each land-based 

Environmental Sensor Station location (The Federal Aviation Administration, 2017): 

• Air Temperature 

• Dew Point 

• Wind Speed and Direction 

• Relative Humidity 

• Horizontal Visibility 

• Weather Condition 

• Precipitation 

• Sky Condition (Cloud Cover and Heights) 

• Barometric Pressure 

 

Environmental Sensor Stations are utilized across the U.S. to provide weather data for the public 

and government agencies. An Environmental Sensor Station contains various types of 

instrumentation, such as temperature sensors, wind sensors, and barometric pressure sensors, to 

collect meteorological data from the field. The Environmental Sensor Stations are mainly 

https://www.aviationweather.gov/adds/metars/
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administered by external agencies such as the National Weather Service, the Federal Aviation 

Administration, the US Geological Survey, the Department of Transportation, the Forest Service, 

and the Environmental Protection Agency. Figure 2-3 shows a typical environmental sensor station 

currently used for winter operations practices in the U.S. 

 

Figure 2-3 A typical environmental weather station (Source: The Federal Highway 

Administration) 

2.2.2. Graphical Forecast Maps 

The National Weather Service (NWS) is an agency of the United States federal government 

that provides graphical forecast maps to visualize weather forecasts, warnings of hazardous 

weather, and other weather-related products for organizations and the public to enhance protection, 

safety, and general information. The NWS's National Digital Forecast Database (NDFD) uses data 

from regional NWS Weather Forecast Offices and the National Centers for Environmental 

Prediction. Below are some examples of forecast weather data provided by the NDFD: 

• Precipitation forecast  

• Snowfall forecast  
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• Dew point forecast  

• Ice accumulation forecast  

• Wind speed forecast  

• Relative humidity forecast 

The graphical forecast maps include incremental and cumulative data for snowfall, 

precipitation, and ice accumulation in 6-hour intervals. The incremental and cumulative data 

facilitate determining the intensity and average of forecasted weather data, such as snowfall over 

a specific period of time.  

1.1.1. Warnings, Watches, and Advisories 

The National Weather Service uses weather data, radar, and satellite analysis to alert the public 

and related agencies to a potentially threatening weather event. Warnings, watches, and advisories 

are mainly issued for events such as winter storms, blizzards, ice storms, frost, and wind chill 

during wintertime. The issued warnings, watches, and advisories by National Weather Service can 

help transportation managers have their resources ready for winter operations ahead of time and 

deploy them to locations where the watches, warnings, and advisories are issued for. Below is a 

description of the terminologies used by the National Weather Service for warnings, watches, and 

advisories (NOAA, 2021). 

• Warning: A warning is issued by National Weather Service when hazardous weather or 

hydrologic event is likely or imminent to occur. A warning means weather conditions pose 

a threat to life or property. People in the path of the storm need to take protective action. 

• Watch: A watch is issued by National Weather Service when the risk of hazardous weather 

or hydrologic event has increased significantly, but its occurrence, location, or timing is 
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still uncertain. It is intended to provide enough lead time so that the public or officials will 

be able to set preparation plans ahead of the adverse weather condition. 

• Advisory: An advisory is issued by National Weather Service when hazardous weather or 

hydrologic event is likely or imminent to occur. Advisories are for less severe conditions 

than warnings that cause significant inconvenience and, if caution is not exercised, could 

lead to situations that may threaten life or property. 

Weather information from national services has been used by multiple U.S. highway agencies 

for winter operations decision-making in recent years. Examples of the road condition’s geospatial 

weather data used in multiple state DOTs are summarized in Table 2-3. 

 

Table 2-3 State of practice for visualizing road condition information during winter storms; 

retrieved from state travelers’ road information websites (FHWA, 2021) 

 

Department of 

Transportation 

Related weather data entities 

Fixed 

Weather 

Stations 

Weather 

radar and 

Warnings 

(NWS) 

Snowfall 

Forecast (NWS) 

Ice 

Forecast 

(NWS) 

Wind 

Forecast 

(NWS) 

Precipitation 

Forecast (NWS) 

Iowa ✓ ✓ ✘ ✘ ✘ ✘ 

Colorado ✓ ✘ ✘ ✘ ✘ ✘ 

Arizona ✓ ✓ ✘ ✘ ✘ ✘ 

Pennsylvania ✓ ✓ ✘ ✘ ✘ ✘ 

Minnesota ✓ ✓ ✘ ✘ ✘ ✘ 

Alaska ✓ ✓ ✘ ✘ ✘ ✘ 

New York ✓ ✓ ✘ ✘ ✘ ✘ 

North Dakota ✓ ✓ ✘ ✘ ✘ ✘ 
Ohio ✓ ✘ ✘ ✘ ✘ ✘ 
Delaware ✓ ✓ ✓ ✘ ✘ ✘ 
Oregon ✓ ✓ ✓ ✘ ✘ ✘ 

Montana ✓ ✓ ✓ ✓ ✓ ✓ 
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2.3. Road Surface Temperature 

To ensure the safety of roads during the winter season, transportation agencies treat the roads 

by spreading anti-icing salts (Ameen et al., 2022; Shahandashti et al., 2019; Kimura et al., 2006). 

While excessive salting might result in increased cost and environmental damages (Yang et al., 

2012), delayed road treatment or insufficient salting may threaten the safety of roads due to icy 

conditions (Hoffmann et al., 2012). Information about estimated road surface temperatures is 

crucial to determine the locations as well as the appropriate timing for treating the roads (Yun et 

al., 2018; Yang et al., 2012). In practice, transportation agencies use the data acquired from Road 

Weather Information Systems (RWIS) to know about road conditions information such as road 

surface temperatures along roads (Darghiasi et al., 2023c; Darghiasi et al., 2022; Sato et al., 2004). 

In recent years, several prediction models have been developed to predict road surface 

temperatures using data provided by RWIS stations. However, these models differ significantly in 

model assumptions, application areas, and solution methods. There have been two main categories 

of RST prediction models described in the literature: (1) numerical models and (2) statistical 

models. 

Numerical models were developed based on the surface energy balance method. These models 

numerically solve the energy transfer equation through road pavement materials to calculate the 

temperature profile through pavement depths (Feng and Feng, 2012). Crevier and Delage (2001) 

developed a numerical model, METRo, to forecast 24-h road temperature using meteorological 

data (e.g., air temperature, humidity, wind, solar radiation) and RWIS observations (e.g., past 

pavement temperature profile). Feng and Feng (2012) established a numerical method based on 

the energy conservation method to predict the 24-h road surface temperature using solar short-

wave radiation, long-wave radiation, and heat fluxes. Qin (2016) also explored developing a 
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numerical model to predict the maximum and minimum temperature in a concrete slab using air 

temperature, relative humidity, wind speed, and solar radiation in summer. Despite the benefits of 

numerical methods in providing an accurate solution, they are more computationally expensive 

than statistical models (Barnett, 1997). They also require detailed information about the thermal 

properties of pavement material (e.g., density, conductivity, and specific heat capacity) as well as 

the pavement configuration (i.e., pavement layer thicknesses) (Qin, 2016). Moreover, since the 

physical processes describing the interaction of local road features are too complex to be correctly 

measured, it sometimes results in significant errors in simulations (Yin et al., 2019). 

On the other hand, statistical models establish simplified relationships between the available 

influencing parameters and target values rather than solving complex partial differential equations 

(Zamanian et al., 2022; Shahandashti et al., 2021; Chen et al., 2019). Since the statistical models 

can estimate road surface temperature without numerical calculations, they have been widely used 

in practice (Chen et al., 2019). Among the statistical models, regression models have been widely 

used to estimate road pavement temperatures based on various explanatory variables for different 

applications (Zamanian et al., 2024; Kršmanc et al., 2013). Islam et al. (2015) developed sets of 

statistical regression models to estimate the pavement temperature at various depths in asphalt 

pavements using air temperature and solar radiation data collected from a road weather station in 

New Mexico, USA. In another study, Asefzadeh et al. (2017) used stepwise regression analysis to 

determine the pavement temperature at various depths in hot mix asphalt based on air temperature 

and solar radiation data collected from a road weather station in Alberta, Canada. Hosseini et al. 

(2017) also explored estimating the surface temperature of parking lots and sidewalks where road 

weather stations are not available. They developed regression models based on data collected from 

one parking lot at the University of Waterloo, Canada, and estimated the pavement surface 
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temperature using standard meteorological variables (e.g., air temperature, precipitation, previous 

hour air temperature, solar radiation, etc.). Table 2-4 shows examples of statistical models 

developed to estimate pavement temperature for different applications. 

Table 2-4 Examples of linear regression models to estimate the pavement temperature  

Objective Explanatory variables Data collection Researcher(s) 

Determine the pavement 

surface temperature in cold 

climates  

Air temperature, Relative 

humidity, wind speed during 

rainfall, and snowfall 

Data were collected based on the 

meteorological data of icy pavement in 

Jinhua from December 2010 to January 

2016  

Qiu Xin et al., 

2018 

Determine road surface 

temperature along a test road 

concerning weather data and 

pavement depth 

Air temperature, solar 

radiation, depth of pavement 

Data were collected from several sensors 

along a 500 m road segment in Edmonton, 

Alberta, Canada, from Sep 2014 to Sep 2014 

Asefzadeh et al., 

2017 

Determine the pavement 

surface temperature in a low-

speed low, traffic parking lot  

Pavement surface temperature, 

air temperature, previous hour 

air temperature, sky condition, 

wind speed 

Tests were conducted in parking lot C at the 

University of Waterloo, Ontario, Canada, in 

the winter season of 2012-2013 

Hosseini et al., 

2015 

Determine pavement 

temperature for concrete and 

asphalt pavement 

Ambient temperature 
Data were collected from 32 environmental 

sensor stations in Utah during 2009 

Guthrie et al., 

2014 

Determine the pavement 

surface temperature in cold 

climates 

Air temperature, dew point, 

lag-dependent variable (the 

surface temperature at earlier 

times) 

Data were collected every 10 minutes from 

nine stations in Ottawa for the winter season 

of 2001-2002. 

Sherif et al., 2011 

Determine pavement 

temperature at different 

depths considering weather 

data 

Air temperature, solar 

radiation, thermal history 

Data were collected from two test sections 

on an hourly basis in Wisconsin at different 

pavement depths.  

Bosscher et al., 

1998 

 

2.4. Gaps in Knowledge 

Despite the value of existing studies in providing road conditions information to improve winter 

operations management, there are still significant gaps in knowledge related to the approach used 

to collect road conditions information for improving winter operations practices. The following 

gaps were identified from the literature.  
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(1) The existing approach for the acquiring information about road surface temperatures relies on 

fixed sensors along roads; these fixed sensors (e.g., road weather information systems) may 

not be available in many locations due to their high cost and maintenance requirements. 

(2) Existing camera-based GPS/AVL systems consist of different pieces of equipment, which 

makes them challenging and costly to use— especially for states such as Texas, which 

experience less frequent snowstorms. 

(3) The automatic data collection of the road condition images at predetermined intervals may 

result in missing specific road issues if it is not at the time when the system captures data. 

(4) There is a lack of a user-friendly interactive platform to visualize the real-time road conditions 

information which is helpful in managing winter operations, including road surface 

temperatures, road conditions images, and related weather forecasts. 

2.5. Research Objective 

The objectives of this research are to: 

(1) Develop an approach to estimate road surface temperatures using publicly available gridded 

weather forecasts from the National Weather Service. 

(2) Develop an all-in-one multipurpose data collection system to collect and transfer road 

conditions images— both automatically and on-demand— using the capabilities of mobile 

devices.  

(3) Develop a 2D digital twin interface to visualize the collected real-time road conditions images, 

weather information from the national weather service, and road surface temperatures using 

capabilities of ArcGIS Application Programming Interface, 
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CHAPTER 3  

DEVELOPING A MULTI-PURPOSE, ALL-IN-ONE MOBILE DATA 

COLLECTION SYSTEM FOR WINTER OPERATIONS MANAGEMENT  

Mobile devices (e.g., tablets and smartphones) have become increasingly popular because of 

their low prices, increasing functionality, and computing power. These devices have made it 

possible to collect and process data for various purposes without the need for complicated systems, 

which are costly and require operator training. In recent years, several State Departments of 

Transportation (State DOTs) have equipped snowplow fleets with different systems to 

communicate road conditions images to assist winter operations supervisors in making operational 

decisions during winter storms. Mainly, the existing systems consist of different pieces of 

equipment and automatically transmit the road condition images. The currently available data 

collection systems are not widely used in States which do not experience frequent snowstorms 

because of the high installation cost and maintenance requirements. In addition, on-demand data 

collection systems are not widely used by operators in field because of the system’s complexity 

and lack of training. This study proposes a cost-effective and easy-to-use mobile-based system to 

collect road conditions images from field— both automatically and on-demand— using the 

capabilities of mobile devices.  

 Automatic Data Collection System for Road Conditions Images 

This section explains how mobile devices (i.e., tablets or smartphones) could be turned into 

snowplow operations management devices to provide real-time images of road conditions. For this 

purpose, A custom Android application is developed to collect and transfer geotagged images as a 

snowplow moves over five (5) mph; these images are further processed to be visualized on a map-

based interface. To test the performance of the system, a pilot test was set up in the TxDOT Wichita 
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Falls district during the 2020-21 and 2021-22 winter seasons. Figure 3-1 shows a TxDOT 

snowplow in the Wichita Falls district and a programmed tablet mounted on the snowplow’s 

windshield to collect real-time road conditions images. 

 

Figure 3-1 (a) Wichita Falls’ snowplow, (b) Mounted tablet in the snowplow 

The developed application was tested and debugged using a Samsung Galaxy tablet, shown in 

Figure 3-2. The technical specifications of the tablet used in this study are summarized in Table 

3-1.  

 

Figure 3-2 Samsung Galaxy Tab A 8-inch tablet 
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Table 3-1- Technical specifications of the tablet used to test the custom Android application 

(Source: Samsung website) 

Element Description 

Processor 
CPU Speed 2GHz 

CPU Type Quad-Core 

Display 

Size (Main Display) 8.0" (203.1mm)  

Resolution (Main Display) 1280 x 800 (WXGA) 

Technology (Main Display) TFT 

Color Depth (Main Display) 16M 

Camera 

Main Camera - Resolution 8.0 MP 

Main Camera - Auto Focus Yes 

Front Camera - Resolution 2.0 MP 

Main Camera - Flash No 

Video Recording Resolution FHD (1920 x 1080) @30fps 

Memory 

RAM Size  2 GB 

ROM Size  32 GB 

Available Memory  21.3 GB 

External Memory Support MicroSD (Up to 512GB) 

Network / 

Bearer 

2G GSM GSM850, GSM900, DCS1800, PCS1900 

3G UMTS 
B1(2100), B2(1900), B4(AWS), B5(850), 

B8(900) 

4G FDD LTE 

B1(2100), B2(1900), B3(1800), B4(AWS), 

B5(850), B7(2600), B8(900), B12(700), B17(700), 

B20(800), B28(700) 

4G TDD LTE  B38(2600), B40(2300), B41(2500) 

Connectivity 

USB Version USB 2.0 

Location Technology GPS, Glonass, Beidou, Galileo 

Ear jack 3.5mm Stereo 

Wi-Fi  802.11 a/b/g/n 2.4+5GHz 

Wi-Fi Direct Yes 

Bluetooth Version Bluetooth v4.2 

NFC No 

Bluetooth Profiles 
A2DP, AVRCP, DI, HID, HOGP, HSP, OPP, 

PAN 

Operating 

System 
Android Version Android 9.0 Pie 

Sensors 
Motion  Accelerometer 

Environment Light 

Physical 

specification 

Dimension (H x W x D, inch) 8.27×4.9×0.31  

Weight (oz) 12.24 

Battery 
Battery Capacity  5100 mAh 

Removable No 

Audio and 

Video 

Video Playing Format 

 

MP4, M4V, 3GP, 3G2, WMV, ASF, AVI, FLV, 

MKV, WEBM 

Video Playing Resolution 

  

FHD (1920 x 1080) @30fps 

 

Audio Playing Format 

MP3, M4A, 3GA, AAC, OGG, OGA, WAV, 

WMA, AMR, AWB, FLAC, MID, MIDI, XMF, 

MXMF, IMY, RTTTL, RTX, OTA 
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A custom Android application is developed to facilitate collecting geotagged images using 

mounted tablets on snowplows. The custom application is designed to collect and transfer 

geotagged images of road conditions at automatically predetermined time intervals (i.e., every 10 

minutes) when a snowplow operates at a speed of 5 mph or more. Figure 3-3 shows the data flow 

from a tablet device to the map-based interface.  

 

Figure 3-3 Data flow from the tablet to a map-based interface 

The custom Android application is developed using Java, the official language for Android 

development. To develop the custom application, the different application programming interfaces 

(APIs), Java classes, and object methods are used to execute various tasks, such as retrieving the 

vehicle speed, capturing the images, determining the vehicle location, constructing metadata, and 

uploading the data to cloud space. Figure 3-4 shows the function modeling methodology used to 

develop the custom Android application, which runs on Android tablets. 
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Figure 3-4- Function Modeling Methodology for the custom Android application in Java 

language 

The following subsections provide more details about each task of the custom Android 

application. 

Vehicle Speed 

Tablets come with built-in location sensors that determine the device's location, elevation, and 

speed. The developed application, running on tablets, utilizes the “Location Manager” class in 

Android development to retrieve the device’s speed. The speed is calculated by dividing the 

distance the device travels by the total time it takes to travel that distance. To retrieve the speed, 

first, the Android “Location Manager” class obtains periodic updates of the tablet’s geographical 

location at specific time intervals and provides access to the device's system location services 

(Android developers, 2020a). Then, the “LocationListener,” another Java class, receives 

notifications from the LocationManager when the location of the device changes. The 
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LocationListener gets notified based on the specified distance intervals or the number of seconds. 

By having location updates, a Java location object method, “getSpeed,” returns the device's speed 

in metric units (Android developers, 2020a). Furthermore, appropriate conversion factor converts 

the metric unit (km/h) to the imperial unit (mph) within the application. The required permissions, 

including access to “Fine Location,” “Coarse Location,” and “Internet,” are granted in the Android 

manifest file to access the location services of the device to retrieve the speed. 

Capture Image 

The built-in camera in the tablet is used to capture the images. The “android.hardware.camera2” 

package uses the tablet’s camera device as a pipeline, which takes input requests for capturing a 

single frame in order to output one capture result as a metadata packet (Android developers, 

2020b). The developed application uses the “android.hardware.camera2” package to create a 

“camera capture session” with a set of output surfaces within the camera device. First, the 

application constructs a CaptureRequest, which defines all the camera device's capture parameters 

to capture a single image (Android developers, 2020b). Once the request is set up, it is handed to 

the active capture session. After processing the request, the camera device produces 

a TotalCaptureResult object, which contains information about the state of the camera device at 

the time of capture, and the final settings used (Android developers, 2020b). Lastly, the captured 

image is sent to the TextureView target surface to preview (Android developers, 2020b). 

Appropriate permissions, including “access to the camera” and “write to external storage,” were 

granted in the Android manifest file to access the camera device to capture and save the images to 

the storage space. 

Vehicle Location 

https://developer.android.com/reference/android/hardware/camera2/CameraCaptureSession
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Most Android devices take advantage of the signals provided by multiple sensors to determine 

the location. However, choosing the right combination of signals for a specific task in different 

conditions remains essential (Android developers, 2020c). Finding a battery-efficient solution is 

also critical. This custom Android application uses the “Fused Location Provider;” a Google Play 

Service that combines different signals (i.e., GPS and cell tower) to determine the location 

information of the tablet at predetermined time intervals. First, a Location Service client is created 

to retrieve the device location within the application. Once the Location Service client is created, 

the application can determine the last known location of the tablet by the “getLastLocation” Java 

object method. This method returns the current latitude and longitude of the device location 

(Android developers, 2020c). Appropriate permissions, including access to “fine location” and 

“coarse location,” were granted in the Android manifest file to provide access to the location 

services of the tablet. 

Construct Image Metadata 

Metadata describes data about data. Specifically, image metadata is the information embedded 

into an image that includes details about the image itself and information about its creation. The 

image metadata allows information to be transferred together with an image in a way that can be 

understood by software, hardware, and humans, regardless of the format. While the tablet 

generates default (i.e., time, camera model, focal length, etc.) metadata during the capturing 

process, other required metadata (i.e., location information) should be added. To integrate the 

required location data (longitude and latitude coordinates) into the image metadata, the Android 

“ExifInterface” class was used to geotag the captured images and add the location information to 

the image metadata. This class facilitated reading and writing Exchangeable Image File 

(EXIF) tags into a JPEG file or a RAW image file (Android developers, 2020d). 
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The standard form of GPS coordinates for the image EXIF file is in “Degree, Minutes and 

Seconds (DMS)” format; however, the latitude and longitude coordinates that the Fused Location 

Provider class provides are in decimal. Therefore, a local Java method was implemented in the 

application to convert the decimal coordinates to DMS format. Lastly, an ExifInterface object 

method known as “setAttribute” added the current latitude and longitude coordinates to the image 

file at the time when the image was captured. Table 3-2 shows examples of metadata created by 

the custom Android application for a captured image. 

Table 3-2 Example metadata for a captured image by the custom application 

Property Value 

Camera Make Samsung 

Camera Model SM-T295 

Exposure 1/33 

Focal Length 3.8 mm 

ISO Speed 176 

Flash Off 

Image Width 1920 

Image Height 1080 

Orientation Rotate 90 CW 

Date and Time 
2020:06:10 

15:52:21 

GPS Latitude 32.732814 

GPSLatitudeRef North 

GPSLongitude 97.113237 

GPSLongitudeRef West 

 

Upload Image Metadata to Cloud Space 

The developed application uses the “File Transfer Protocol (FTP)” method to upload the image 

metadata to cloud space. FTP is a secure network protocol to transfer data between a host device 
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(i.e., tablet) and a remote server (i.e., cloud space). Through the FTP connection between the 

application and the server, the application can upload, download, or delete files from the cloud 

space. To establish an FTP connection, the application implements the “Apache Commons Net” 

library. The Apache Commons Net library contains a collection of network utilities and protocol 

implementations, including FTP, to set up the connection between the host device and server 

(Apache Software Foundation, 2020). In this application, the host device is the tablet, and the 

server is the University of Texas at Arlington (UTA) cloud space, which temporarily stores the 

images to be further processed and displayed on the map-based interface. 

Every FTP client needs information about the server, including “Host Address,” “Port,” 

“Username,” and “Password” to establish the connection. This information was extracted from the 

UTA cloud account and implemented in the application development. To prevent images from 

backlogging in the cloud, this connection was designed to delete images older than an hour in the 

cloud. The appropriate permissions, including access to “network state” and “internet,” were 

granted in the Android manifest file to set up the FTP connection.  

 

Figure 3-5 Uploading Image Metadata to Cloud Space 
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Custom Android Application’s User Interface 

Collecting data using the custom application is relatively self-sufficient with minimum 

distraction for the snowplow operators. Figure 3-5 shows the user interface of the developed 

application. The user starts the data collection by pressing the “Run” button. As the button is 

pressed, the application begins to collect geotagged images and upload them to the cloud space if 

the snowplow operates at a speed of 5 mph or more. The process described in Figure 3-4 would be 

repeated every 10 minutes unless the user presses the “Stop” button.  

 

 

Figure 3-6 The user interface of the custom Android application  

 

 On-Demand Data Collection System for Road Conditions Images 

The automatic data collection system collects and transfers road conditions images at 

predetermined time intervals (e.g., 10 minutes) without any interaction from the user— which may 

result in missing out specific road conditions issues if they are not at the exact time when the 

application records data. Since some of the particular road conditions issues (e.g., abandoned 

traffic control devices, damaged traffic signs, dead animals on the road, etc.) may not be at the 

time intervals when the system automatically collects road conditions images, it is of interest to 
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develop a feature in the system that facilitates providing on-demand images of road conditions 

upon request from users when needed for analysis in real-time. 

This section explains the methodology of developing an on-demand road conditions system that 

enables the operations and maintenance staff to collect road conditions images when needed for 

analysis in real time. The collected images will be further processed and visualized on an ArcGIS 

map-based interface. These new functionalities enable maintenance and operations staff to collect 

on-demand images of road conditions. 

3.2.1.  Methodology 

This Section explains how a custom Android application was developed to facilitate capturing 

and transferring road conditions images, associated with users’ comments, upon user request. 

Figure 3-7 shows the data flow from the developed Android application, running on a mobile 

device, to a map-based interface.  

 

Figure 3-7 Data flow from the Android application to the ArcGIS map-based application 

To develop the Android application, the capabilities of Java Application Programming 

Interfaces (APIs) are utilized to execute various tasks, such as capturing images, determining 

locations, adding users' comments, constructing metadata files, and uploading the file to cloud 
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space. Figure 3-8 illustrates the function modeling methodology used to develop the application, 

which runs on Android tablets. 

 
Figure 3-8 Function modeling methodology to develop the Android application to collect on-

demand images 

The image capturing, getting device location, geotagging images, and uploading the images to 

cloud space are the same as described in the previous Section. For adding the user comment, the 

application allows the user to comment on the captured image using the "AlertDialog" feature in 

Android development. The user can also skip this step and upload the image without any 

comments. If the user opts to add a comment about the image, an "EditText" pop-up window 

accepts the comment from the user. "EditText" is a user interface element in Android development 

that allows entering and modifying texts and numbers to the application as input (Android 

developers, 2020e). By having all the required information about the image (e.g., device's location, 

time, and user's comment), the application combines all the data into one image metadata file to 

be transferred to the cloud space to be further processed and visualized on the map-based interface. 

The User Interface of the On-demand Image Collection Application 



 27 

Data collection using the developed application is simple for the field staff. The user could 

capture an image by pressing the "Capture" button at the bottom of the tablet screen. When the 

button is pressed, the application captures the image, and a preview of the captured image will be 

displayed to be confirmed. Upon confirming the image preview, the user will be asked to add a 

comment to the image using a pop-up EditText window. The user can also skip adding a comment 

to the image. Lastly, by pressing the "Done" button, the image metadata file is constructed and 

uploaded to the cloud space, where it can be further processed and visualized on the map-based 

interface. Figure 3-9 illustrates the user interface of the developed Android application. 

 

Figure 3-9 The user interface of the Android application to collect on-demand road conditions 

images 

Use Cases 

A use case is a set of possible sequences of interactions between a user and a system and 

indicates the system's action in response to a user's action. Table 3-3 presents the use case for the 

developed Android application to collect road conditions images upon users' demand. 

Table 3-3- Use Case for the developed Android application to provide on-demand road 

conditions images 

Actor: User System: On-Demand Image Collection Application 
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0.    The tablet's main screen displays a list of the 

       installed applications on the tablet. 

1. The user presses the "on-demand image 

collection application" icon available on the 

main screen of the tablet 

2. The tablet launches the application and displays the 

camera view for the user. 

3. The user presses the "Capture" button. 
4. The application captures the image and displays a 

preview of the image for the user's confirmation. 

5. The user presses the "Done" button 6. The image metadata is constructed. 

7. The user presses the "Skip" button 
8. The image metadata is sent to the cloud space without 

any comments from the user 

9. The user types the comment in the text bar and 

presses "Done." 

10. The user's comment will be added to the 

constructed image metadata, and the updated file will 

be uploaded to the cloud space. 

 

 Results 

With the help of TxDOT, a pilot test was set up for the developed system in the TxDOT Wichita 

Falls district as a proof of concept and provided road conditions images to the district’s 

transportation managers during the 2020-21 and 2021-22 winter seasons. The tablets were 

mounted on the front windshield of the snowplows using suction-cup mounts in a location with no 

distraction for the drivers. The tablets were powered using a USB power outlet in the snowplows. 

Figure 3-10 shows a mounted tablet on a TxDOT snowplow and the snowplow's power outlet, 

which powered the tablets during the operations time using a USB cable. 
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Figure 3-10 (a) Tablet mounted on the front windshield using a suction-cup mount, and (b) 

USB cable and power outlet used to provide power for the tablets 

Each tablet used a data plan to transfer data to the developed snowplow operations management 

system for displaying the road condition images on the map-based ArcGIS interface. Figure 3-11 

and Figure 3-12 show examples of collected road condition images, both automatic and on-

demand, during the pilot test in the 2020-21 and 2021-22 winter seasons in the Wichita Falls 

district. 

a b
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Figure 3-11 Examples of collected road condition images in the 2020-21 winter season 

(automatic) 
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(a) Wichita County, 1/1/2021, 7:36 AM, (b) Young County, 1/1/2021, 8:53 AM, 

(c) Wichita County, 1/1/2021, 7:06 AM, (d) Wilbarger County, 1/1/2021, 1:38 PM, 

(e) Wilbarger County. 12/31/2020, 3:57 PM, (f) Wichita County, 1/1/2021, 7:46 AM, 

 
Figure 3-12 Examples of road conditions images in the 2020-21 winter season (on-demand) 

(a) Throckmorton County, 11/05/2021, 1:53 PM, (b) Throckmorton County, 11/05/2021, 1:51 PM 

(c) Wichita County, 11/05/2021, 12:52 PM, (d) Wichita County, 11/05/2021, 12:47 PM 

The visualized road condition information, including the geotagged images and related weather 

information, helps transportation operation managers to actively monitor the real-time road 
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condition and make well-informed decisions during winter operations. The new data collection 

system is expected to facilitate equipping the snowplow fleet with a mobile multi-purpose data 

collection system to communicate adverse road conditions during winter storms, improve 

snowplow operational decisions, and consequently decrease weather-related crashes on roadways.  
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CHAPTER 4  

Estimation of Road Surface Temperature Using NOAA Gridded Forecast Weather 

Data 

Monitoring road surface temperature is crucial to establishing winter maintenance strategies by 

the State Departments of Transportation (State DOTs) in the United States. Traditionally, 

transportation agencies rely on the information provided by Road Weather Information Systems 

for road surface temperatures along roadways. However, these systems are costly and only provide 

estimates at specific locations, resulting in distant areas being underrepresented. In recent years, 

some interpolation techniques have been considered to address this gap by estimating the road 

surface temperatures between the RWIS stations (Wu et al., 2022). Nevertheless, these techniques 

are only valid when the RWIS data are available. This study aims to estimate the road surface 

temperatures using forecast weather data which are available at high spatial resolution in the 

National Weather Service Database maintained by the National Oceanic and Atmospheric 

Administration (NOAA). To this end, road surface temperature data were collected from roadways 

using a vehicle-mounted infrared temperature sensor. Furthermore, the associated forecast weather 

parameters from the National Weather Service database were used to develop relationships 

between the publicly available weather forecast data and the actual road surface temperatures using 

multiple linear regression. Two estimation models were developed for dark and light groups and 

the gridded forecast weather data from the national weather service database were leveraged to 

estimate road surface temperatures along roadways using a GIS data integration approach. The 

results showed that the ambient temperature, relative humidity, wind speed, average temperature 

of the previous day, and road surface conditions (wet/dry) are statistically significant in estimating 

the road surface temperatures using gridded forecast weather data. The performance of the models 
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was validated, and satisfactory accuracy metrics (i.e., mean absolute error) of approximately 1 ºC 

and 2 ºC were achieved for the dark and light groups, respectively. The proposed method was 

implemented in the TxDOT Wichita Falls district as a part of the Snowplow Operations 

Management System to provide information about the estimated road surface temperatures to 

transportation managers for the 2021-22 winter season. This information facilitates establishing 

proactive anti-icing measures in locations where possible low surface temperatures are expected. 

The findings of this research contribute to a better understanding of the influence of publicly 

available weather forecast parameters on road surface temperatures. 

4.1. Methodology 

The methodology of this research is outlined in the following steps: 

• Creating a dataset of actual road surface temperatures and associated weather forecasts 

from the NOAA’s National Digital Forecast Database. 

• Developing relationships between actual road surface temperatures and associated weather 

forecasts, using the Multiple Linear Regression method. 

• Leveraging the gridded forecast weather data from the National Digital Forecast Database 

to create a geospatial database in the ArcGIS tool and estimate the daily maximum and 

minimum road surface temperatures along road segments using the developed models. 

Figure 4-1 illustrates an overview of the methodology used in this research to estimate the road 

surface temperatures and display them on a map-based interface. 
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Figure 4-1 Overview of the methodology from data collection to the estimation of road 

surface temperatures along with the locations of snowplows 

4.1.1. Data collection 

A vehicle-mounted temperature sensor kit— RoadWatch® temperature sensor kit— was 

employed on personal vehicles to randomly collect actual road surface temperature from urban 

collectors, urban arterials, and interstate highways within the City of Arlington, North Texas, 

during the winter season of 2021-22 (Figure 4-2). 
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Figure 4-2 Data collection: location and road functions 

 The RoadWatch® sensor utilizes infrared measuring to capture the road surface temperatures. 

This sensor can detect a one-degree change in road surface temperature in one-tenth of a second 

(RoadWatch manual, 2020). According to the temperature sensor manual, the accuracy of the 

temperature measurements is within ± 2°F (± 1°C) when the ambient air temperature is between 

23°F and 41°F (-5°C to +5°C) (RoadWatch manual, 2020). The RoadWatch® sensor was mounted 

to the vehicle side mirror during data collection. Figure 4-3 shows the RoadWatch® sensor kit 

used to collect actual road surface temperature data. Table 4-1 summarizes the technical 

specifications of the RoadWatch® sensor kit that was employed to collect actual road surface 

temperature data. 
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Figure 4-3 Temperature sensor used to collect road surface temperature data; (a) 

RoadWatch® sensor kit; (b) mounted sensor on vehicle’s side mirror 

Table 4-1 Technical specifications of the RoadWatch® temperature sensor used to collect 

actual road surface temperature data (RoadWatch® manual, 2020) 

Properties Description 

Road surface temperature accuracy 

±1 °C (-5 °C to 5 °C ambient temperature) 

± 3 °C (-40 °C to -5 °C ambient temperature) 

Operating voltage 12 VDC (vehicle power) 

Current requirement 0.05 Amp 

System operating temperature range -40 °C to 66 °C (-40°F to +150 °F) 

Sensor sample rate  Ten (10) samples per second 

Sensor weight 11 oz 

Vibration Four (4) g’s two axis 

Source: Data from RoadWatch®, (2020). 

 

The associated weather data (e.g., ambient temperature, wind speed, relative humidity, and dew 

point) were downloaded from the National Weather Service’s grid weather database for the 

locations and the time that the actual road surface temperatures were measured. A summary of the 

explanatory variables collected from the National Weather Service’s grid weather database is 

shown in Figure 4-2. 
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Table 4-2 Explanatory variables used in the statistical analysis to estimate road surface 

temperature 

Parameter Abbreviation 

Ambient temperature (°C) Tcurrent  

Relative humidity (%) Rh 

Dew point temperature (°C) Tdewpoint 

Wind speed (m/s) Wsp 

Wind gust (m/s) Wgs 

Road Surface Condition (wet/dry) RSC 

6-hr precipitation (mm) PPT6 

Pressure (Kpa) P 

Maximum temperature of the previous day (° C)  Tmax24 

Minimum temperature of the previous day (° C) Tmin24 

Average temperature of the previous day (° C) Tavg24 

 

The collected weather data were chosen based on the frequency of their applications in the 

previous models for estimating pavement temperature and their availability in the National 

Weather Service’s grid weather database. 

To ensure that the database has enough samples to demonstrate meaningful interoperations, the 

Cohen Statistical Power Analysis was conducted in this study. Cohen's (2013) statistical power 

analysis uses different methods such as a priori, compromise, criterion, posthoc, and sensitivity 

power analysis to calculate the sample size (Kang, 2021). This study used the priori power analysis 

method to calculate the sample size, as suggested by Kang (2021). The priori power analysis 

method calculates the sample size, which is required to detect a meaningful effect with a desired 

power level. For the power analysis, the probability of making Type  error (alpha) is assumed to 
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be 0.05 as Green (1991) suggested, and the Type  error probability (power) and effect size are 

assumed to be 0.8 and 0.15, respectively, as Cohen (2013) suggested. Also, the number of 

predictors is assumed to be the total number of collected weather parameters in the dataset. To 

calculate the total number of required samples, the G*Power tool was used. Figure 4-4 shows the 

total required sample size, which should be included in the model to demonstrate meaningful 

interoperations based on assumptions in the power analysis. According to the power analysis, at 

least 123 samples are required for this study based on the assumptions for alpha, power, and effect 

size. This study meets this minimum requirement for the number of samples used in developing 

the statistical models. Data frequency distributions in Figure 4-5 illustrate the range and frequency 

of collected data. 

 

Figure 4-4 Total sample size required for the statistical analysis 
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Figure 4-5 Frequency distribution of the collected data 

 

4.1.2. Developing Statistical Models  

The previous statistical prediction models are either developed for applications other than 

winter operations (e.g., pavement mechanical performance) or require data from RWIS stations 

that may not be available in the NDFD gridded forecast weather data. This research focused on 
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developing statistical models to estimate the road surface temperature using the available gridded 

forecast weather data from the NDFD, with particular emphasis on the winter season. For this 

purpose, the statistical models were developed based on data collected during the winter season in 

North Texas. The following subsections elaborate on how the statistical prediction models were 

developed using the Multiple Linear Regression method. 

4.1.3. Multiple Linear Regression 

Multiple Linear Regression (MLR) is popularly used as a statistical prediction model with a 

linear combination of several explanatory variables (Wilks, 2011). The general formula for MLR 

can be described as follows (Wilks, 2011): 

�̂� =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝐾
𝑖=1 + 𝜀         (4-1)  

where K is the number of explanatory variables, 𝑥𝑖 is the explanatory variable, 𝛽𝑖 is the 

coefficient of the explanatory variable, 𝛽0 is intercept constant, 𝜀 is the model’s residual, and �̂� is 

the response variable.   

Statistical analyses were performed initially on the dataset to determine which variables were 

statistically significant for estimating the road surface temperature. For this purpose, the M5 

Regression Tree’s attribute selection method was applied to the dataset. M5 Regression Tree’s 

attribute selection method selects the best subset of variables that most improve the Akaike 

information criterion (AIC) (Massana et al., 2015). In M5 Regression Tree attribute selection, the 

feature selection starts with the full set of features. The model uses a multivariate linear model at 

the last node of the tree, and predictors with the smallest normalized coefficient are eliminated 

iteratively until the AIC cannot be further improved (Quinlan, 1992). The M5 algorithm performs 
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fast during training and is a promising approach in dealing with many attributes. It is also robust 

in handling missing values and enumerated attributes (Witten and Frank, 2002).  

Since the road surface temperature fluctuates more during daytime compared to nighttime— 

due to the absorbance of energy from the sun— the accuracy of prediction models for nighttime 

data is expected to be higher than for daytime (Kwon et al., 2013). An accurate estimation of the 

road surface temperature, especially the minimum temperature which usually occurs overnight, 

facilitates the optimization of route salting strategies (Chapman and Thornes, 2006). The effect of 

time in pavement temperature estimation models is an important factor in improving the accuracy 

of models (Guthrie et al., 2014). When the data are separated into different groups based on the 

time of day, the fluctuations in the road surface temperature within these smaller groups are less 

as compared to when they are not grouped. For example, the road surface temperatures fluctuate 

more during daytime due to variations in the solar energy that is absorbed by the pavement 

compared to night when no solar energy is absorbed. Therefore, developing models to estimate the 

road surface temperature using these grouped data will result in higher accuracy, especially during 

the night when road surface temperatures are less fluctuating. As the dark times and light times 

vary during different months and seasons, the times suggested by Guthrie et al. (2014) were 

considered to separate the data into dark and light groups. As Guthrie et al. (2014) suggested, dark 

starts two hours after sunset and ends one hour after sunrise, and light starts one hour after sunrise 

and ends two hours after sunset. These cutoff points are chosen based on the corresponding times 

that pavements start to heat up and stop to cool down. Table 4-3 shows the dark and light hours in 

North Texas based on the sunrise and sunset time during the months of data collection. 
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Table 4-3 Light and dark hours in North Texas during data collection months 

Month Light Dark 

January 9 AM to 8 PM 8 PM to 9 AM 

February 8 AM to 8 PM 8 PM to 8 AM 

March 9 AM to 10 PM 10 PM to 9 AM 

November 8 AM to 8 PM 8 PM to 8 AM 

December 9 AM to 7 PM 7 PM to 8 AM 

 

Data range for the continuous and binary attributes used for the model development are shown 

in Table 4-4 and Table 4-5, respectively. The data were collected from the city of Arlington 

roadways in North Texas between November 2021 and March 2022. 

Table 4-4 Data ranges for the statistically significant continuous attributes 

Continuous 

Variable 
Description 

Light (462 samples) Dark (218 samples) 

Max Min 
Standard 

deviation 
Max Min 

Standard 

deviation 

RST 
Road Surface 

Temperature (°C) 
27 -2 6.4 17 -1 4.2 

Tcurrent  
Ambient Temperature 

(°C)  
21 -2 4.9 15 -2 4.1 

Rh Relative Humidity (%)  100 15 20 100 24 16.5 

Tavg24 
Average Ambient 

Temperature of Past 

Day (°C) 

22 0 5 22 -1 4.8 

Wsd Wind Speed (m/s) 11 0 2.3 0 26 5.6 

 

Table 4-5 Data range for the statistically significant binary attribute 

Binary Variable Description 
Light Dark 

Wet Dry Wet Dry 

RSC Road Surface Condition 158 304 70 148 

 

Lastly, two MLR analyses were conducted on the collected data for light and dark groups to 

develop the statistical models that estimate the road surface temperature. In order to evaluate the 

performance of the model, a 10-fold cross-validation method was used. In 10-fold cross-validation, 
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the data set is randomly split into ten groups for ten different runs. During each run, the model is 

fit to a data set consisting of nine of the original groups (90% of the dataset). The remaining group 

is then used for validation (10% of the dataset). This process is repeated ten times, and accuracy 

metrics for the out-of-sample error are calculated as the average of the accuracy metrics over the 

ten validation runs. 

Model Performance and Validation 

The performance of the models was measured using three accuracy metrics: adjusted R-

Squared, mean absolute error (MAE), and root mean square error (RMSE). The adjusted R-

Squared calculates how much of the target value's variance can be explained by predictors, 

considering the number of predictors in the model. RMSE measures the standard deviation of the 

residuals in the database, and MAE measures the average of the residuals in the database. 

Equations 4-2, 4-3, and 4-4 show the formulas for calculating MAE and RMSE. 

Adjusted R2 = 1 −
(1−R2)(N−1)

(N−p−1)
        (4-2) 

MAE =
∑ |ypredicted−yactual|N

i

N
        (4-3) 

RMSE = √∑ (ypredicted−yactual)
2N

i

N
        (4-4) 

Where N is the number of samples, R2 is the sample R-Squared, p is the number of predictors, 

and  ypredicted and yactual are the predicted and actual target values, respectively. 
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4.1.4. Leverage Gridded Forecast Weather Data to Visualize Estimated Road Surface 

Temperatures on a Map-based Interface 

Although the developed statistical regression models facilitate estimating the road surface 

temperatures using publicly available weather data, still, estimating the road surface temperatures 

and mapping them onto road segments is challenging when using the live weather forecast from 

National Weather Service. The National Weather Service provides weather forecasts in GRIB2 

format and updates them periodically via the National Digital Forecast Database (NDFD) 

(National Weather Service, 2019). The NDFD forecast weather data is a binary encoded format 

that is commonly used to store historical and forecast weather data. Since this data is originally 

encoded and is not compatible to be directly processed using the developed statistical models, it is 

of interest to develop an approach to convert these data into an appropriate format, feed them into 

the road surface temperature statistical models, and map the estimated road surface temperatures 

onto the road segment using a geospatial software. The NDFD data are based on 2.5 km grid cells 

that cover the Continental U.S., as well as separate grids that cover Hawaii, Alaska, the U.S. Virgin 

Islands, and Puerto Rico. Each grid cell has information to generate a point-specific forecast for 

any cell-based geographic coordinate location (National Weather Service, 2021). These forecast 

gridded data contain meteorological information that can be used to estimate the road surface 

temperature for any geographic coordinate location available in the database using appropriate 

correlations. As the data in the NDFD periodically updates, it is important to automatically 

download the data from NDFD to update the road surface temperatures. To this end, Python scripts 

were developed and implemented to download and store the most recent forecast from NDFD 

every 24 hour for the next five days. Figure 4-6 illustrates the methodology used to download and 

convert the forecast data into the appropriate format. The developed script in Python facilitates 
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connecting to the NDFD server and downloading the gridded weather forecast database for the 

desired parameters, such as ambient temperature, wind speed, and relative humidity, at 

predetermined time intervals (i.e., every 24 hours). The weather parameters are downloaded in 

GRIB2 format by sending HTTP requests to the national weather service database and converted 

to ASCII comma-separated format (CSV) using NOAA’s DeGRIB tool. The NOAA’s DeGRIB 

tool converts the downloaded data into an appropriate format that is compatible to be processed 

with the ArcGIS geospatial software.  

 

Figure 4-6 IDEF0 diagram for converting GRIB2 file downloaded from the NDFD to ASCII 

comma-separated 

The converted data, which contains information about each weather parameter, time of the 

forecast, and geographical coordinates of the forecast, is imported into ArcGIS software using the 

ArcPy package in Python. ArcPy facilitates the conversion of data, the management of data, and 

the analysis of spatial data in ArcGIS software with Python (Baral et al., 2021). The geographical 

locations of the road segments’ centerlines can be used to obtain the associated weather parameters 

from the downloaded weather database in order to estimate the road surface temperatures using 
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developed estimation models. Figure 4-7 shows the overview of the approach for mapping the 

estimated road surface temperature (RST) onto road segments. The developed statistical models 

are used to combine the downloaded influencing weather parameters for the location of each road 

segment’s centerline available in the road inventory database. The estimated RST for all road 

segments’ centerlines is prepared in CSV format that contains the road segment’s geographical 

locations as well as the associated RST estimates. This CSV file is then overwritten on the GIS 

shapefile of road inventory using the ArcGIS software capabilities to map the estimated RST onto 

the road segments. In addition, the flowchart in Figure 4-8 shows the process used in calculating 

road surface temperatures on the road segments. 

 

Figure 4-7 Overview of methodology to map the estimated road surface temperature onto the 

road segments 



 48 

 

Figure 4-8 Flowchart for estimation of road surface temperature using forecast weather data 

from the NDFD  

4.2. Results and Discussions 

The MLR statistical models were constructed using the attributes selected by the M5 regression 

tree method. To avoid selecting highly correlated attributes, first, the Pearson correlation matrix 

for the whole dataset was calculated, and the highly correlated attributes, except one of them, were 

removed from the dataset.  
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Figure 4-9 Pearson’s correlation coefficient between all variables in the dataset 

As shown in Figure 4-9, the maximum temperature of the previous day, the minimum 

temperature of the previous day, and the average temperature of the previous day are highly 

correlated based on the |R| > 0.7 thresholds suggested by Dormann et al. (2013). Therefore, only 

the average temperature of the previous day was kept in the database, and the maximum and 

minimum temperatures of the previous day were excluded. According to the M5 regression tree 

method, a final selection of five attributes was chosen for the MLR analysis. These attributes 

included: ambient temperature, relative humidity, road surface condition, wind speed, and average 

ambient temperature of the previous day.  The results obtained from MLR analysis for the RST 

estimations models for dark and light groups are summarized in Table 4-6 and Table 4-7. 
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Table 4-6 MLR analysis results for dark group 

 Degree of freedom Sum of Squares Mean of Squares F statistics Significance F 

Regression 5 3627.33 725.467 687.536 0.0000 

Residual 211 222.64 1.055    

Total 216 3849.97     

 

Coefficient Standard Error t-statistics P-value 
Lower 
95% 

Upper 
95% 

VIF 

Intercept 0.5057 0.4285 1.1803 0.2392 -0.3389 1.3503 - 

Ambient 

Temperature 

(°C) 

0.9538 0.0176 54.3048 0.0000 0.9192 0.9885 1.07 

Relative 

Humidity (%) 
0.0134 0.0046 2.9014 0.0041 0.0043 0.0225 1.19 

Road Surface 

Conditions 
-0.6686 0.1614 -4.1418 0.0000 -0.9868 -0.3504 1.17 

Wind Speed 

(m/s) 
-0.0324 0.0129 -2.5056 0.0130 -0.0579 -0.0069 1.09 

Average 

Temperature of 

Past Day (°C) 

0.1344 0.0153 8.7958 0.0000 0.1043 0.1645 1.08 
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Table 4-7- MLR analysis results for light group  

 Degree of 
freedom 

Sum of Squares Mean of Squares F statistics Significance F 

Regression 5 16224.06 3244.81 528.33 0.00 

Residual 456 2800.61 6.14    

Total 461 19024.67     

 

Coefficient 
Standard 

Error 
t-statistics P-value Lower 95% 

Upper 
95% 

VIF 

Intercept 5.726 0.659 8.692 0.000 4.431 7.020 - 

Ambient 

Temperature (°C) 
1.005 0.030 34.000 0.000 0.947 1.063 1.57 

Relative Humidity 

(%) 
-0.062 0.008 -8.132 0.000 -0.077 -0.047 1.74 

Road Surface 

Conditions 
-0.374 0.260 -2.436 0.035 -0.885 0.138 1.15 

Wind Speed (m/s) 0.139 0.056 2.481 0.013 0.029 0.248 1.2 

Average 
Temperature of 

Past Day (°C) 
0.176 0.025 6.916 0.000 0.126 0.226 1.2 

 

According to the results, the very low significance for the F value indicates that both models 

have strong explanatory power for the regression analysis— the maximum acceptable Significance 

F at a 95% confidence level should be 0.05. The ANOVA test also indicates that all selected 

explanatory variables by the M5 attribute selection method are statistically significant (at the 5% 

significance level) for estimating the road surface temperature by having p-values less than 0.05. 

Among the selected attributes, ambient temperature, relative humidity, and average temperature 

of the previous day for the dark group are statistically meaningful at the 1% level of significance. 

According to the low variance inflation factors (VIF), shown in Table 4-6 and Table 4-7 for both 

dark and light groups, the explanatory variables in the model are not highly correlated, so there is 

no multicollinearity in the model— the VIF of less than 3 is considered as the multicollinearity 
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threshold (Imdadullah et al., 2016). The results show that the ambient temperature has the highest 

positive regression coefficient, and the road surface conditions has the highest negative coefficient 

for both light and dark groups. For example, a unit increase in the ambient temperature will result 

in a 0.95 and 1.01 increase in the road surface temperature for dark and light groups, respectively— 

assuming other independent variables are constant. Moreover, if all independent variables remain 

constant, changing the state of the road from wet to dry will increase road surface temperature by 

0.67 ºC and 0.37 ºC for dark and light groups, respectively. 

Furthermore, the performance of the models was evaluated using 10-fold cross-validation on 

the dataset used in model development. The accuracy metrics of the models were measured using 

R2, RMSE, and MAE. Table 4-8 summarizes the calculated accuracy metrics for both dark and 

light models. 

Table 4-8 Summary of statistical models developed to estimate the road surface temperature 

Model 
Accuracy metrics using 10-fold cross validation 

RMSE MAE R2 

Dark 1.1 0.88 0.92 

Light 2.5 1.96 0.85 

 

The performance of the models developed in this study was compared with other pavement 

temperature prediction models published in the literature. The results indicate that the developed 

models in this study, especially the dark model, fall well within the level of acceptance in literature. 

By dividing the data into dark and light groups, the correlation coefficient (adjusted R2) increased 

from 0.86 (all data) to 0.92 (dark group), Root Mean Squared Error (RMSE) decreased from 2.3 

(all data) to 1.1 (dark group) and Mean Absolute Error (MAE) decreased from 1.7 (all data) to 
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0.88 (dark group). This improvement in accuracy allows the dark model to fall into the ideal level 

of accuracy by having the mean absolute error of approximately 1ºC, as suggested by Chapman 

and Thornes (2006). The result of the light model is also more accurate or at least consistent with 

previous studies in the literature, as shown in Table 4-9. 

Table 4-9 Summary of the accuracy metrics for previous road surface temperature prediction 

models 

RMSE MAE Researcher (s) 

< 4.4 ºC < 3 ºC Nowrin and Kwon, (2022) 

N/A < 2.9 ºC Toivonen et al., (2019) 

N/A < 3 ºC Ruts and Gibson, (2013) 

3.84 ºC 3.1 ºC Liu et al. (2018) 

N/A < 2 ºC Yang et al. (2012) 

 

The innovation of the models in this study lies in the use of forecast weather variables, which 

are available at high spatial resolutions from national weather forecasts, as the explanatory 

variables for the model. This will allow estimating the road surface temperatures without requiring 

explanatory variables from the costly fixed-station sensors. 

To map the estimated road surface temperatures on roads, the grid weather data from NDFD, 

was leveraged along TxDOT on-system roadways in North Texas. The TxDOT on-system 

roadways are the routes that TxDOT maintains. These routes include interstate highways, U.S. 

highways, state highways, farm and ranch roads, park roads, and recreational roads (TxDOT, 

2021). The TxDOT on-system route inventory is downloaded from the TxDOT open data portal 

as a GIS shapefile containing line data. After obtaining the on-system road inventory, HTTP 

requests are sent to the NDFD server to obtain a 5-days daily forecast of influencing weather data 

for the center points of each road segment in the route inventory database. The 5-day weather 
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forecast data downloaded from the NDFD includes daily forecasts on minimum overnight 

temperature, maximum daytime temperature, relative humidity, wind speed, and precipitation. The 

average temperature for the previous day is taken as the average of the maximum and minimum 

temperatures of the past day. The binary variable RSC is considered wet when precipitation is 

forecasted; otherwise, it is considered dry.  

The downloaded weather data are combined using the MLR estimation models to predict the 

daily maximum and minimum road surface temperature for the next five days. Figure 4-10 shows 

the map-based interface displaying the estimated minimum road surface temperatures on TxDOT 

on-system roadways in North Texas for the next day. 

 

Figure 4-10 Sample screenshot of the map-based interface showing estimated minimum road 

surface temperatures for the next day in TxDOT on-system roadways in North Texas (February 

15, 2022). 
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4.3. Summary 

Monitoring road surface temperature is crucial to establishing winter maintenance strategies. 

The National Weather Service, administered by NOAA, provides forecasts for a variety of weather 

parameters, such as ambient temperature, relative humidity, wind speed, and precipitation, with an 

accuracy of approximately 90% for up to 5 days. However, it does not provide road surface 

temperature forecasts. This study aimed to develop statistical models to estimate road surface 

temperatures using weather forecast data available in the NOAA’s National Digital Forecast 

Database (NDFD). Based on statistical analyses of actual road surface temperatures and associated 

weather data collected during the winter season in North Texas, it is concluded that ambient 

temperature, relative humidity, wind speed, the average temperature of the previous day, and road 

surface condition (wet/dry) are statistically significant factors affecting road surface temperature 

at 5% level of significance for both dark and light groups. At the 1% significance level, ambient 

temperature, relative humidity, and the average temperature of the previous day were statistically 

significant for estimating road surface temperature. The results also indicated that the ambient 

temperature has the highest positive regression coefficient, and the road surface conditions have 

the highest negative coefficient in both light and dark groups. It means that one unit of change in 

these variables will result in higher variation in the road surface temperature compared to other 

attributes. The MLR models developed to estimate the road surface temperature are validated by 

a 10-fold cross-validation method on the original dataset collected in the 2021-22 winter season. 

According to the results, the models have an MAE of approximately 1ºC for the dark group and 

an MAE of approximately 2 ºC for light group, which is acceptable compared to previous studies. 

By separating the dark group from the whole dataset, the MAE accuracy metric of the model 

improved by approximately 48% and fell into the ideal range of accuracy at approximately 1°C.  

However, the accuracy of the models totally depends on the accuracy of forecast weather 
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parameters provided by the National Weather Service. It should be noted that the models 

developed in this study are only valid within the data range of input weather parameters collected 

in this study. It is of interest to validate and calibrate these models for locations with weather 

parameters beyond the range of this study. Furthermore, the existing models only consider two 

periods of time for the dataset as light or dark. This period of time can be expanded to include 

more groups, such as early morning, late morning, early afternoon, and late afternoon, to better 

reflect the effect of time in the model.  

Furthermore, this study leveraged forecast weather data from the NDFD to estimate the road 

surface temperature for each TxDOT on-system road segment using the estimation models. These 

findings demonstrate that the publicly available grid weather data could be used to estimate the 

road surface temperature along roads without requiring costly fixed-stations sensors. This method 

was implemented as a part of a Snowplow Operations Management System in the TxDOT Wichita 

Falls district during the 2021-22 winter season to provide information to winter operations 

supervisors for estimating road surface temperatures. Using this information, transportation 

operations managers can better plan their winter operations by sending snowplows to places where 

possible low surface temperatures are expected. Future research could evaluate if the approach in 

this study for the estimation of road surface temperatures can be integrated into a winter 

maintenance optimization framework to optimize the anti-icing material use or plowing routes. It 

is also of interest to expand the data collection to other regions and states in the U.S. to enhance 

the performance of the models and reduce overfitting.  
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CHAPTER 5  

Developing a Digital Twin System for Visualizing Road Conditions Information  

5.1. Introduction 

One of the essential components of the Winter Operations Management Systems is the inclusion 

of a digital twin system as an interactive data visualization platform to provide real-time road 

conditions for transportation operations managers. This system enables operations managers to 

monitor road conditions and supervise winter operations in real time without the need to be present 

on roads. The concept of the digital twin refers to virtual representations of physical objects 

throughout their lifecycle, which can be interacted with and analyzed using real-time data or 

simulation models (Bolton et al., 2015). The digital twin exists simultaneously with the physical 

object and utilizes big data technology to improve its intelligence and applicability, particularly 

for identifying and evaluating the actual conditions of the physical object. Digital twins can be 

defined based on the level of data integration as described in Figure 5-1 (Kritzinger et al. 2018). 

 

Figure 5-1 Representation of the physical world based on the level of data integration 
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A digital model refers to a virtual representation of a physical object or system. It is created 

using 2D of 3D CAD programs, allowing for the evaluation of specifications and design options 

in a simulated environment. The digital model aims to mimic the behavior and parameters of the 

real object, enabling manipulations and operations on the virtual object to produce similar results 

as if they were performed on the physical object. In a digital shadow, the data flow is one-way, 

specifically from the real object to the digital model. It involves the automatic collection and 

transmission of data from sensors or other sources attached to the physical object to the associated 

digital model. In contrast, a digital twin involves bidirectional data flow between the digital and 

physical objects, and it is interactive. This means that the digital twin can actively respond, adjust, 

and interact with the physical object in real-time based on the data it receives. 

Digital Twins encompass three core elements: data acquisition, data modeling, and data 

visualization (Lv and Xie, 2022). Digital twins rely on some key technologies to gather real-time 

data, extract valuable insights, and create digital replicas of physical objects as illustrated in Figure 

5-2. These technologies include the Internet of Things (IoT), Artificial Intelligence (AI), and Cloud 

computing. IoT serves as the foundation, using sensors to collect data from real-world objects and 

create digital duplicates that can be analyzed and optimized. Cloud computing provides storage 

and access to large volumes of data, while AI offers advanced analytics for automatic analysis and 

valuable predictions. Together, these technologies empower Digital Twins to bridge the physical 

and digital realms effectively. 
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Figure 5-2 Digital twin technologies 

 

Digital twins can be represented in both 2D and 3D formats, each offering unique advantages and 

applications. A 2D digital twin typically consists of graphical representations, diagrams, or 

schematic drawings that depict the virtual version of a physical object, system, or process. These 

representations are useful for capturing essential properties and analyzing specific aspects of the 

real-world entity, such system schematics. The advantage of a 2D digital twin lies in its simplicity 

and ease of interpretation. It provides a clear and concise visual representation that is easier to 

understand and communicate, especially for systems or processes that do not require a full 3D 

representation. Furthermore, 2D digital twins can be created and analyzed with less computational 

resources compared to their 3D counterparts, making them more accessible and cost-effective for 

certain applications. 
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This Chapter aims to develop a digital twin system using ArcGIS Programming Interface (API) 

to visualize (1) live feed of road conditions images collected from mounted tablets on snowplows, 

(2) related weather information provided by national weather services (i.e., NOAA and NWS), (3) 

estimated road surface temperatures along roadways. The developed system is interactive and 

enables users to obtain information about the current locations of snowplows and the 

corresponding images of road conditions at any desired time upon their need. Figure 5-3 shows an 

overview of the digital twin system developed for winter operations management. The system 

enables operations managers to remotely monitor road conditions using computer systems, 

eliminating the need for physical travel and manual patrolling on roads. 

 
Figure 5-3 Digital Twin System for Winter Operations Management 
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5.2. Spatial Data Collection and Processing 

The digital-twin-enabled Winter Operations Management uses the collected spatial data from 

sensors mounted on snowplows and the national weather service to visualize real-time road 

conditions information using the ArcGIS application programming interface. Spatial data 

collection and processing for visualization, data cleaning, and data organization are explained in 

this Chapter.  

5.2.1. Road Condition Images 

A geo-referenced database is developed to facilitate the real-time visualization of road condition 

images on a map-based interface during snowplow operations. The map-based interface uses the 

capabilities of the ArcGIS Application Programming Interface (API) for JavaScript and ArcGIS 

online. A spatial data entity representing snowplows as point features was hosted in the ArcGIS 

online and included in the map-based interface. The spatial data entity will be updated as the road 

condition images are received from operating snowplows in the field and are processed using the 

Exchangeable Image File (EXIF) information associated with the geotagged images. The map-

based interface displays the snowplows' updated location and road condition images associated 

with the snowplows. The map-based application runs in a web browser and can be accessed from 

desktops, smartphones, and tablets, which use windows, macOS, Android, iOS, and Linux 

operating systems. Figure 5-4 shows the flowchart used to process the collected road condition 

images to visualize them in the map-based interface. An example screenshot of the map-based 

interface displaying the road conditions images is shown in Figure 5-5.  
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Figure 5-4- Flowchart to visualize the road condition images in the map-based interface 

 

 

Figure 5-5- Road condition images data entity; displaying road condition images collected by 

operating snowplows (February 14, 2021, at 5:37 PM). 
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 System Capacity 

The current system infrastructure has been developed to handle the data received from 

approximately ten (10) snowplows. In this study, the UTA cloud space is utilized to store the data 

received from snowplows, and a desktop computer (Intel® Xeon® Processor E3-1240, 3.5GHz, 

and 16 GB RAM) as a server to process the data. To measure the system's capacity, load testing 

was conducted on the system to find the maximum number of snowplows that the system, under 

different assumptions, can handle. The conducted load testing was evaluated from two aspects:  

1. Cloud storage space 

2. Computational performance of the server 

In the following paragraphs, the load testing results are presented. 

Cloud Storage Space Aspect 

For this research, the UTA cloud storage with approximately 400 M.B. free space is used to 

store the data received from snowplows in field. Table 5-1 shows the load testing results under 

different assumptions, including the timespan that images will remain posted on the map-based 

interface and the time intervals between capturing images by the tablets in snowplows. 

Table 5-1 Maximum number of snowplows that the existing system can handle from the cloud 

storage space aspect. 

The time interval 

between capturing 

images by tablet 

The timespan that images will remain posted on the map-based interface 

The past one-hour The past two-hour The past four-hour 

Every 5 minutes 30 snowplows 15 snowplows 7 snowplows 

Every 10 minutes 65 snowplows 32 snowplows 15 snowplows 

Every 15 minutes 100 snowplows 50 snowplows 25 snowplows 

Note: Currently, the past one-hour images, captured every 10 minutes, are displayed on the map-based interface. 

 

Computational Performance of the Server Aspect 
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The developed Python scripts, running on the server stationed at the University of Texas at 

Arlington, processes the collected data stored in the cloud space at predetermined time intervals to 

feed ArcGIS online map-based interface. Table 5-2 shows the results of load testing under different 

assumptions, including the time intervals that the server processes collected data in the cloud space 

and the time intervals between capturing the images by the tablets in snowplows. The timespan 

that the images will remain posted on the map-based interface is assumed to be one hour. 

Table 5-2 Maximum number of snowplows that the system can handle from the 

computational performance of the server— images will remain posted on the map-based 

interface for one hour.  

Time intervals for data 

processing in the server 

Time intervals between capturing images 

     5 minutes 10 minutes 15 minutes 

2 minutes 5 snowplows 10 snowplows 15 snowplows 

5 minutes 13 snowplows 25 snowplows 38 snowplows 

10 minutes 25 snowplows 50 snowplows 75 snowplows 

15 minutes 38 snowplows 75 snowplows 100 snowplows 

Note: Currently, the time interval between both data processing on the server and image capturing from tablets is 

10 minutes. 

The results of the load testing show that with the current system setting (displaying the last one-

hour images received every 10 minutes from snowplows, with data processing time interval of 10 

minutes), the computational performance of the server controls the system capacity and is 

responsive to handle the data received from approximately 50 snowplows. 

5.2.2. Related Weather Information 

In order to integrate the related weather information that facilitates winter operations into the 

system, Esri's map services were utilized. Esri’s map services use the National Digital Forecast 

Database (NDFD), National Data Buoy Center, National Weather Service RSS-CAP Warnings 

and Advisories, and National Weather Service Boundary Overlays, all maintained by NOAA, to 

create data entities that contain information about current and forecast weather information. Esri’s 
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map services download the source data and parse them using Aggregated Live Feeds methodology 

to return information that can be served through the ArcGIS server as a map service.  

The official Esri map services were used to import the related weather information into the geo-

referenced database in the Winter Operations Management System. 

Based on the frequency and application of the related weather data entities used in other state 

DOTs, the most practical weather information for road weather information were shortlisted as 

follows: (1) Ambient Temperatures from NOAA (Esri 2021a), (2) Warnings, Watches, and 

Advisories from NWS (Esri 2021b), (3) Snowfall Forecast-Cumulative Total from NWS (Esri 

2021c), and (4) Ice Forecast-Cumulative Total from NWS (Esri 2021d). Figure 5-6 shows the 

overview of the approach used to integrate the related weather information that facilitates winter 

operations practices to the map-based interface. 

 

Figure 5-6 Overview of collecting and displaying weather information that facilitates winter 

operations decisions. 



 66 

Figure 5-7 and Figure 5-8 show examples of weather-related information integrated into the 

map-based interface from national weather services. 

 
Figure 5-7- Graphical Forecast Maps retrieved from National Weather Service: (a) Snowfall 

forecast by the National Weather Service (Texas, January 8, 2021, 4:15 PM), (b) Snowfall 

forecast by the National Weather Service (TxDOT Wichita Falls district, January 8, 2021, 4:23 

PM), and (c) Precipitation forecast by the National Weather Service (TxDOT Wichita Falls 

district, January 8, 2021, 4:37 PM) 

 
Figure 5-8- Examples of watches, warnings, and advisories issued by the National Weather 

Service (a) Advisory from the National Weather Service during a winter storm in Texas (January 
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8, 2021, 1:31 PM), and (b) Warning from the National Weather Service during in TxDOT 

Wichita Falls district (January 8, 2021, 1:50 PM) 

5.2.3. Road Surface Temperatures 

The road surface temperatures were estimated using the downloaded influencing weather 

parameters from the National Digital Forecast Database (NDFD)— These weather data are 

required for feeding the statistical predictive models. The data, downloaded in GRIB 2 format, are 

converted to ASCII comma-separated format (CSV) to be compatible with the ArcGIS data 

processing requirements. This research proposed an approach to download and store the data in 

the server stationed at UTA and process them to visualize the estimated maximum and minimum 

road surface temperatures on the map-based interface for up to 5 days. Figure 5-9 shows the 

Function Modeling illustration (IDEF0 figure) of the methodology from downloading the data to 

visualizing the road surface temperatures on an ArcGIS map-based interface. 

 

 

Figure 5-9 IDEF0 diagram from downloading the data to visualizing the road surface 

temperatures on the map-based interface. 
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Figure 5-10 shows the digital twin displaying the estimated road surface temperatures along 

with snowplow locations. 

 

Figure 5-10- Road surface temperatures estimations along with snowplow locations in the 

Wichita Falls district 

5.2.4.  Data Model Development for Snowplow Operations Management System 

The development of a prototype data model for the Snowplow Operations Management System 

(SOMS) has been summarized in this section. TxDOT Data Architecture was used to create a 

logical data model based on the collected data. This section includes two sub-sections: (1) a 

conceptual data model, which represents the general idea of the SOMS, and (2) a logical data 

model, which provides detailed information about entities and attributes used in the SOMS. 

1. Conceptual Data Model 

Figure 5-11 shows the conceptual data model of the system. All the data entities are imported 

to the system geo-referenced database and are spatially matched. Data could be imported into the 

geo-referenced database and exported out of the geo-referenced database. Verified users can access 
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and use spatial data through a map-based interface (created and designed to be used in the system) 

using computers and phones. An administrator is needed to manage and verify data for the users.  

 
Figure 5-11- Conceptual Data Model 

Data Dictionary 

Conceptual data model terms are described in Table 5-3. 

Table 5-3- Conceptual data model terms description 

Term Description 

Entity 
Definition: an entity is the detailed representation of an object of 

interest (e.g., road condition images).  

Winter Operations 

Management System Geo-

Reference Database 

Definition: A Winter Operations Management System is a 

georeferenced database created using ESRI ArcGIS Online to store 

and organize GIS-based entities. Geo-referenced databases use an 

efficient data structure optimized for performance and storage. 

Winter Operations 

Management System 

Model 

Definition: A Winter Operations Management System model is a 

model that uses data such as road condition image metadata and 

influencing weather parameters as the inputs, processes the input 

data, and represents the desired output in the map-based interface.  

The system map-based 

interface 

Definition: The system map-based interface is a map-based interface 

that is based on ESRI ArcGIS online that obtains data from a geo-

referenced database  

User 
Definition: a user is a TxDOT employee granted the authority to 

interact with the system map-based interface. 

Users Map-based

Interface

Geo-referenced

Database
Entities

Administrator
Snowplow Operations

Management System

Model
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Term Description 

Administrator 

Definition: an administrator is a TxDOT employee, or a person 

authorized by TxDOT who has knowledge about Winter Operations 

Management System and oversees managing and organizing the 

system as well as updating data and verifying data and users.  

 

2. Logical Data Model 

Collected spatial data were used to develop entities for the data model based on TxDOT Data 

Architecture (TxDOT, 2010). Figure 5-12 illustrates the different data entities developed for the 

Winter Operations Management System. The definitions of entities and their associated attributes 

are provided in the following subsection. 

 

Figure 5-12- The Winter Operations Management System’s data entities 

Data Dictionary 

The entities in the logical data model for the SOMS are described in Table 5-4. 
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Table 5-4 Description of the Snowplow Operations Management System’s data entities 

Entity Attribute Description 

ROAD CONDITION IMAGES LATITUDE 

Definition: LATITUDE is a float number that 

defines the angular distance of the image location 

from north/south of the Equator. 

Purpose: LATITUDE coordinate provides an 

accurate locational relay from north/south of the 

Equator using the Global Position System (GPS) 

Example: 37.73 

Valid values: -90 to +90 

Format: number 

ROAD CONDITION IMAGES LONGITUDE 

Definition: LONGITUDE is a float number that 

defines the angular distance of the image location 

from the East/West of the meridian at Greenwich, 

England. 

Purpose: Longitude coordinate provides an 

accurate locational relay from East/West of the 

meridian at Greenwich, England, using the 

Global Position System (GPS) 

Example: 96.7 

Valid Values: -180 to +180 

Format: number 

ROAD CONDITION IMAGES DATE AND TIME 

Definition: DATE AND TIME provides 

information about the time in which the image 

has been captured. 

Purpose: DATE AND TIME identifies the exact 

time the image has been captured. 

Example: 2021/02/28 1:28 PM 

Valid Values: N/A  

Format: string 

ROAD CONDITION IMAGES COMMENT 

Definition: COMMENT is a combination of 

words that express the written remark of the user. 

Purpose: COMMENT expresses the user's 

opinion or reaction to a condition in the road 

captured in the image. 

Example: “Ice observed on the road” 

Valid Values: N/A 

Format: string 

AMBIENT TEMPERATURES STATION NAME 
Definition: STATION NAME is a word that 

defines the name of the weather station. 
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Entity Attribute Description 

Purpose: STATION NAME identifies the 

weather station by its name. 

Example: Wichita Falls 

Valid Values: N/A 

Format: string 

AMBIENT TEMPERATURES DATE AND TIME 

Definition: DATE AND TIME provides 

information about the observation time of the 

weather information. 

Purpose: DATE AND TIME identifies the exact 

time that weather information (e.g., ambient 

temperature) has been observed. 

Example: 10/3/2021, 5:51 PM 

Valid Values: N/A 

Format: string 

AMBIENT TEMPERATURES 
AIR 

TEMPERATURE (ºF) 

Definition: AIR TEMPERATURE is a number 

that defines the temperature of the air 

surrounding an individual, typically measured in 

degrees Fahrenheit (ºF). 

Purpose: AIR TEMPERATURE is to measure 

how cold/hot the weather is. 

Example: 86 (ºF). 

Valid Values: N/A 

Format: number 

AMBIENT TEMPERATURES SKY CONDITION 

Definition: SKY CONDITION is a combination 

of words describing the predominant or average 
sky cover based on the percent of the sky covered 

by opaque (not transparent) clouds. 

Purpose: SKY CONDITION could be used as an 

indicator of precipitation occurrence in the near 

future.  

Example: Cloudy 

Valid Values: N/A 

Format: string 

AMBIENT TEMPERATURES 
WEATHER 

CONDITION 

Definition: WEATHER CONDITION is a 

combination of words describing the atmosphere. 

Purpose: WEATHER CONDITION provides 

the state of current atmospheric condition. 

Example: Light Rain 

Valid Values: N/A 
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Entity Attribute Description 

Format: string 

WARNINGS, WATCHES, AND 

ADVISORIES, NATIONAL 

WEATHER SERVICES 

TYPE 

Definition: TYPE is a combination of words that 

identifies the type of the issued warnings, 

watches, and advisories. 

Purpose: TYPE describes the class of the issued 

warnings, watches, and advisories defined by 

National Weather Services. 

Example: Winter Storm Watch 

Valid Values: N/A 

Format: string 

WARNINGS, WATCHES, AND 

ADVISORIES, NATIONAL 

WEATHER SERVICES 

SEVERITY 

Definition: SEVERITY is a combination of 

words that identifies the severity of the issued 

warnings, watches, and advisories from National 

Weather Services. 

Purpose: SEVERITY describes how extreme the 

forecast event is expected to be. 

Example: Mild 

Valid Values: N/A 

Format: string 

WARNINGS, WATCHES, AND 

ADVISORIES, NATIONAL 

WEATHER SERVICES 

SUMMARY 

Definition: SUMMARY is a combination of 

words giving information about the issued 

warnings, watches, and advisories. 

Purpose: SUMMARY shows what should be 

expected during the event that the warnings, 

watches, or advisory is issued for. 

Example: N/A 

Valid Values: N/A 

Format: string 

WARNINGS, WATCHES, AND 

ADVISORIES, NATIONAL 

WEATHER SERVICES 

DETAILS 

Definition: DETAILS is a web address (URL) to 

the source of the issued warning, watches, or 

advisories.  

Purpose: DETAILS redirect the user to the 

source of the issued warnings, watches, or 

advisory on the web to provide more detailed 

information about the event. 

Example: N/A 

Valid Values: N/A 

Format: string 
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Entity Attribute Description 

WARNINGS, WATCHES, AND 

ADVISORIES, NATIONAL 

WEATHER SERVICES 

UPDATED (STORED 

IN UTC) 

Definition: UPDATED is the last time that the 

issued warnings, watches, or advisory has been 

updated, and is reported in Coordinated Universal 

Time UTC). 

Purpose: UPDATED shows how recent the 

issued warnings, watches, or advisory is. 

Example: 10/3/2021, 10:18 AM 

Valid Values: N/A 

Format: string 

WARNINGS, WATCHES, AND 

ADVISORIES, NATIONAL 

WEATHER SERVICES 

EFFECTIVE 

(STORED IN UTC) 

Definition: EFFECTIVE is the date and time that 

the issued warnings, watches, or advisories take 

into effect.  

Purpose: EXPIRATION shows the date and time 

that the issued alert is expected to take effect. 

Example: 10/3/2021, 10:18 AM 

Valid Values: N/A 

Format: string 

WARNINGS, WATCHES, AND 

ADVISORIES, NATIONAL 

WEATHER SERVICES 

EXPIRATION 

(STORED IN UTC) 

Definition: EXPIRATION is the date and time 

that the issued warnings, watches, or advisory 

expires. 

Purpose: EXPIRATION shows the date and time 

that the issued alert is expected to expire. 

Example: 10/5/2021, 10:18 AM 

Valid Values: N/A 

Format: string 

WARNINGS, WATCHES, AND 

ADVISORIES, NATIONAL 

WEATHER SERVICES 

AREAS AFFECTED 

Definition: AREAS AFFECTED is a list of 

affected areas in the issued warnings, watches, or 

advisory. 

Purpose: AREAS AFFECTED shows which 

areas are expected to be affected by the issued 

alert. 

Example: Wichita Falls; Olney. 

Valid Values: N/A 

Format: string 

SNOWFALL 

FORECAST_CUMULATIVE 

TOTAL, NATIONAL WEATHER 

SERVICES 

FROM DATE 

Definition: FROM DATE is the starting date and 

time of the snowfall precipitation forecast. 

Purpose: FROM DATE shows the date and time 

that the forecast snowfall precipitation is 

expected to start. 
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Entity Attribute Description 

Example: 10/5/2021, 10:18 AM 

Valid Values: N/A 

Format: string 

SNOWFALL 

FORECAST_CUMULATIVE 

TOTAL, NATIONAL WEATHER 

SERVICES 

TO DATE 

Definition: TO DATE is the ending date and 

time of the forecast snowfall precipitation. 

Purpose: TO DATE shows the date and time that 

the forecast snowfall precipitation is expected to 

end. 

Example: 10/8/2021, 11:28 AM 

Valid Values: N/A 

Format: string  

SNOWFALL 

FORECAST_CUMULATIVE 

TOTAL, NATIONAL WEATHER 

SERVICES 

DESCRIPTION 

Definition: DESCRIPTION is a combination of 

words describing the amount of total cumulative 

snowfall between the FROM DATE and TO 

DATE. 

Purpose: DESCRIPTION provides information 

on how much total snow is expected to 

accumulate on the surface between the FROM 

DATE and TO DATE. 

Example: Up to 1 inch of snowfall is expected  

Valid Values: N/A 

Format: string 

ICE FORECAST_CUMULATIVE 
TOTAL, NATIONAL WEATHER 

SERVICES 
FROM DATE 

Definition: FROM DATE is the starting date and 

time of the ice accumulation.  

Purpose: FROM DATE shows the date and time 
that the forecast ice accumulation is expected to 

start. 

Example: N/A 

Valid Values: N/A 

Format: string  

ICE FORECAST_CUMULATIVE 

TOTAL, NATIONAL WEATHER 

SERVICES 

TO DATE 

Definition: TO DATE is the ending date and 

time of the ice accumulation. 

Purpose: TO DATE shows the date and time that 

the forecast ice accumulation is expected to end. 

Example: N/A 

Valid Values: N/A 

Format: string  
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Entity Attribute Description 

ICE FORECAST_CUMULATIVE 

TOTAL, NATIONAL WEATHER 

SERVICES 

DESCRIPTION 

Definition: DESCRIPTION is a combination of 

words describing the amount of total ice 

accumulation (inches) between the FROM 

DATE and TO DATE. 

Purpose: DESCRIPTION provides information 

on how much total ice (inches) is expected to 

accumulate on the surface between the FROM 

DATE and TO DATE. 

Example: Up to 1 inch of snowfall is expected  

Valid Values: N/A 

Format: string 

ROAD SURFACE 

TEMPERATURE 
ROUTE NAME 

Definition: a ROUTE NAME is a word that 

defines the name of the route based on the 

TxDOT road naming convention. 

Purpose: ROUTE NAME identifies road by a 

unique designated name. 

Example: FM-2224 

Valid Values: N/A 

Format: string 

ROAD SURFACE 

TEMPERATURE 

MAX TEMP Day1 

(ºF) 

Definition: MAX TEMP Day 1 is a number 

which is an estimation of the maximum road 

surface temperature for the next day; estimated in 

degrees Fahrenheit (ºF). 

Purpose: MAX TEMP Day 1 shows the 

estimated maximum road surface temperature for 

the following day. 

Example: 67 (ºF) 

Valid Values: N/A 

Format: number 

ROAD SURFACE 

TEMPERATURE 
MIN TEMP Day1 (ºF) 

Definition: MIN TEMP Day 1 is a number which 

is an estimation of the minimum road surface 

temperature for the next day; estimated in degrees 

Fahrenheit (ºF). 

Purpose: MIN TEMP Day 1 shows the estimated 

minimum road surface temperature for the 

following day. 

Example: 45 (ºF) 

Valid Values: N/A 

Format: number 
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Entity Attribute Description 

ROAD SURFACE 

TEMPERATURE 

MAX TEMP Day 2 

(ºF) 

Definition: MAX TEMP Day 2 is a number 

which is an estimation of the maximum road 

surface temperature for the following second day; 

estimated in degrees Fahrenheit (ºF). 

Purpose: MAX TEMP Day 2 shows the 

estimated maximum road surface temperature for 

the following second day. 

Example: 67 (ºF) 

Valid Values: N/A 

Format: number 

ROAD SURFACE 

TEMPERATURE 

MIN TEMP Day 2 

(ºF) 

Definition: MIN TEMP Day 2 is a number which 

is an estimation of the minimum road surface 

temperature for the following second day; 

estimated in degrees Fahrenheit (ºF). 

Purpose: MIN TEMP Day 2 shows the estimated 

minimum road surface temperature for the 

following second day. 

Example: 45 (ºF) 

Valid Values: N/A 

Format: number 

ROAD SURFACE 

TEMPERATURE 

MAX TEMP Day 3 

(ºF) 

Definition: MAX TEMP Day 3 is a number 

which is an estimation of the maximum road 

surface temperature for the following third day; 

estimated in degrees Fahrenheit (ºF). 

Purpose: MAX TEMP Day 3 shows the 
estimated maximum road surface temperature for 

the following third day. 

Example: 67 (ºF) 

Valid Values: N/A 

Format: number 

ROAD SURFACE 

TEMPERATURE 

MIN TEMP Day 3 

(ºF) 

Definition: MIN TEMP Day 3 is a number which 

is an estimation of the minimum road surface 

temperature for the following third day; 

estimated in degrees Fahrenheit (ºF). 

Purpose: MIN TEMP Day 3 shows the estimated 

minimum road surface temperature for the 

following third day. 

Example: 45 (ºF) 

Valid Values: N/A 

Format: number 
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Entity Attribute Description 

ROAD SURFACE 

TEMPERATURE 

MAX TEMP Day 4 

(ºF) 

Definition: MAX TEMP Day 4 is a number 

which is an estimation of the maximum road 

surface temperature for the following fourth day; 

estimated in degrees Fahrenheit (ºF). 

Purpose: MAX TEMP Day 4 shows the 

estimated maximum road surface temperature for 

the following fourth day. 

Example: 67 (ºF) 

Valid Values: N/A 

Format: number 

ROAD SURFACE 

TEMPERATURE 

MIN TEMP Day 4 

(ºF) 

Definition: MIN TEMP Day 4 is a number which 

is an estimation of the minimum road surface 

temperature for the following fourth day; 

estimated in degrees Fahrenheit (ºF). 

Purpose: MIN TEMP Day 4 shows the estimated 

minimum road surface temperature for the 

following fourth day. 

Example: 45 (ºF) 

Valid Values: N/A 

Format: number 

ROAD SURFACE 

TEMPERATURE 

MAX TEMP Day 5 

(ºF) 

Definition: MAX TEMP Day 5 is a number 

which is an estimation of the maximum road 

surface temperature for the following fifth day; 

estimated in degrees Fahrenheit (ºF). 

Purpose: MAX TEMP 5 shows the estimated 
maximum road surface temperature for the 

following fifth day. 

Example: 67 (ºF) 

Valid Values: N/A 

Format: number 

ROAD SURFACE 

TEMPERATURE 

MIN TEMP Day 5 

(ºF) 

Definition: MIN TEMP Day 5 is a number which 

is an estimation of the minimum road surface 

temperature for the following fifth day; estimated 

in degrees Fahrenheit (ºF). 

Purpose: MIN TEMP Day 5 shows the estimated 

minimum road surface temperature for the 

following fifth day. 

Example: 45 (ºF) 

Valid Values: N/A 

Format: number 



 79 

Entity Attribute Description 

SNOWPLOW OPERATIONS 

MANAGEMENT SYSTEM 

INTERFACE USER 

USER FIRST NAME 

Definition: a USER FIRST NAME is a word that 

identifies the first name of a user who signs up 

for the interface 

Purpose: USER FIRST NAME is used to 

identify a user. 

Example: N/A 

Valid Values: N/A 

Format: string 

SNOWPLOW OPERATIONS 

MANAGEMENT SYSTEM 

INTERFACE USER 

USER LAST NAME 

Definition: a USER's LAST NAME is a word 

that identifies the last name of a user who signs 

up for the interface 

Purpose: USER LAST NAME is used to identify 

a user. 

Example: N/A 

Valid Values: N/A 

Format: string 

SNOWPLOW OPERATIONS 

MANAGEMENT SYSTEM 

INTERFACE USER 

USER EMAIL 

Definition: a USER EMAIL is a word that 

defines the email address of a user, and must be 

used by a user to gain access to the map-based 

interface 

Purpose: USER EMAIL is used as contact 

information as well as sign up and sign into the 

map-based interface.  

Example: John@txdot.com 

Valid Values: N/A 

Format: string 

SNOWPLOW OPERATIONS 

MANAGEMENT SYSTEM 

INTERFACE USER 

USER PASSWORD 

Definition: a USER PASSWORD is a word that 

must be used by a user to gain access to the map-

based interface 

Purpose: USER PASSWORD is used to sign up 

and sign into the map-based interface. 

Example: a-32B_74r 

Valid Values: N/A 

Format: string 
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5.3. Digital Twin Interface Development 

This section explains developing a digital twin interface for visualizing the road condition 

images collected from snowplows, road surface temperatures, and related weather information 

provided by national weather services through interactive maps hosted in ArcGIS online. This 

system is accessible through a password-protected web page. Figure 5-13 shows the sign-in web 

page to access the interface. Moreover, Figure 5-14 illustrates the developed Winter Operations 

Management System interface. 

 
Figure 5-13 Sign-in webpage to access the map-based interface 
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Figure 5-14 Map-based interface for Winter Operations Management System 

Descriptions of the widgets in the map-based interface are shown in Table 5-5. The entity 

widget helps the user control the required entity's display in the interface, i.e., the entity containing 

the information on road condition images can be turned on or off using the entity widget. By 

clicking on the displayed data on the map-based interface, the users can see information about the 

data (i.e., road condition images or related weather information).  

The legend widget displays the legend of the entities, which are turned on in the map-based 

interface. The base map in the map-based interface can be changed using the base map widget. 

The widgets on the top-left of the interface, such as the zoom widget, home, and locator widgets, 

help the user navigate the interface. Table 5-5 describes the functionality of the widgets available 

in the map-based interface. 

Table 5-5 Description of widgets in the map-based Interface 

Widget Name Description 

Search  This widget helps to find a specific location in the map-based interface. 

Search

Zoom In

Zoom Out

Zoom Home

Locator

Legend

Base map

Entity

Logout
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Widget Name Description 

Zoom In  This widget helps zoom in on the map view in the map-based interface. 

Zoom Out  This widget helps to zoom out of the current map view in the map-based interface. 

Home  This widget brings the map view to the initial view extent. 

Locator  This widget helps to find the location of the user. 

Base map  
This widget allows the user to select the base map to be displayed in the map view of 

the map-based interface. 

Entity 
This widget displays the list of spatial data entities that can be visualized in the map-

based interface. 

Legend  
This widget displays the legends of the spatial data entities displayed in the map-based 

interface. 

 

5.3.1.  Use Cases 

A use case is a set of possible sequences of interactions between a user and a system and 

indicates the system's action in response to a user’s action. The use case diagram is a graphical 

table of contents for individual use cases and defines a system boundary. Figure 5-15 represents 

the use case diagram for the snowplow operations management system. Use cases for the map-

based application are detailed in Table 5-6 to Table 5-16. 
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Figure 5-15 Use case diagram 

Table 5-6 UC1: Login 

Actor: User 
System: Snowplow operations management 

system 

 0. The browser displays a web page. 

1. The user enters the web address in the address bar 

and press enter. 

URL: 

https://pxd4179.uta.cloud/SOMSNOV/login.php 

2. The system displays the login page, which prompts 

the user to log in using a username and password. 

3. The user enters the username and password, then 

clicks the login button. 

 

4. The system displays  

a. The map-based interface if the username and 

password are entered correctly. 

b. A message requesting to recheck inputs if the 

username or password is incorrect. 

5. The user sees the map-based interface, or a login 

error is displayed. 
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Table 5-7 UC2: Sign up 

Actor: User System: Snowplow operations management system 

 0. The browser displays a web page. 

1. The user enters the web address in the address 

bar and presses enter. 

2. The system displays the login page, which 

prompts the user to log in using a username and 

password, along with the option to sign up for a new 

account. 

3. The user clicks on the signup button. 4. The system prompts the user to sign up page. 

5. The user fills in the information (First Name, 

Last Name, Email address, Password) requested on 

the sign-up page and clicks the signup button to 

complete the process. 

6. The system sends an email to the user's email 

address to activate the account. 

 

7. The user opens the email and clicks the 

activation link to activate the account. 

8. The system registers the user and displays the 

confirmation of registration. 

 

 

Table 5-8 UC3: Search 

Actor: User 
System: Snowplow operations management 

system 

 0. The system displays the map-based interface. 

1. The user enters the location on the search bar. 

   

2. The system displays the searched location. 

Table 5-9 UC4: Return to initial map view extent 

Actor: User 
System: Snowplow operations management 

system 

 0. The system displays the map-based interface. 

1. The user clicks the home button. 2. The system returns to the initial map view extent. 

 

Table 5-10 UC5: Zoom-in and zoom-out of the map view 

Actor: User 
System: Snowplow operations management 

system 

 0. The system displays the map-based interface. 

1. The user clicks the zoom button. 2. The system zooms in or zooms out in the map view 

of the map-based interface. 
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Table 5-11 UC6: Find the user location 

Actor: User System: SRMMS 

 0. The system displays the map-based interface. 

1. The user clicks the locator widget.      

              

2. The system displays the location of the user in the 

map-based interface. 

 

Table 5-12 UC7: Change base map 

Actor: User 
System: Snowplow operations management 

system 

 0. The system displays the map-based interface. 

1. The user clicks the base map widget.  2. The system displays the available base maps from 

which the user can select. 

3. The user clicks on the desired base map. 4. The system changes the existing base map to the 

base map selected by the user. 

5. The user clicks on the base map widget. 6. The system closes the expanded base map widget. 

 

 

Table 5-13 UC8: Display data entity 

Actor: User 
System: Snowplow operations management 

system 

 0. The system displays the map-based interface. 

1. The user clicks the entity widget. 

  

 

2. The system expands the entity widget and displays 

the data entities, including the road condition 

images, related weather information, and estimated 

road surface temperature entities.  

3. The user clicks on the entity to turn it on and off. 4. The system displays or removes the entity from the 

map view. 

5. The user clicks on the entity widget. 6. The system closes the expanded entity widget. 
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Table 5-14 UC9: Display the legend of the data entity 

Actor: User 
System: Snowplow operations management 

system 

 0. The system displays the map-based interface. 

1. The user clicks the legend widget.  2. The system displays the legend of the entity 

displayed in the map-based interface. 

 

Table 5-15 UC10: Display road condition data 

Actor: User 
System: Snowplow operations management 

system 

 0. The system displays the map-based interface. 

1. The user clicks the entity widget. 

 

 

2. The system expands the entity widget and displays 

the data entities, including road condition images, 

related weather information, and estimated road 

surface temperature entities. 

3. The user turns on the data entities to ensure required 

entities are displayed on the map. 

4. The system displays the snowplows in the map-

based interface. 

5. The user clicks on the data in the map-based 

interface. 

6. The system displays a pop-up window containing 

related information about the data. 

7. The user clicks on the close button of the pop-up. 8. The system closes the pop-up window. 

 

Table 5-16 UC11: Logout 

Actor: User 
System: Snowplow operations management 

system 

 0. The system displays the map-based interface. 

1. The user clicks the logout button located on the top-

right of the application. 

2. The system exits the application. 

 

5.4. Summary 

As the collected data are from multiple sources with different data structures, it is important to 

integrate all the collected data into a system and share spatial information through a virtual model 
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designed to reflect the physical object. In this study, a digital twin system is developed to facilitate 

the real-time visualization of the spatial data during snowplow operations using ArcGIS 

Programming Interface. The spatial data are shared through interactive maps hosted in ArcGIS 

Online for real-time visualization of: (1) road condition images and snowplow location, (2) related 

weather information from national weather services, (3) and road surface temperatures on 

roadways. The digital twin system runs in a web browser and can be accessed from desktops, 

smartphones, and tablets, which use Windows, macOS, Android, iOS, and Linux operating 

systems. The developed digital twin facilitates sharing and matching spatial data through 

interactive maps allowing transportation operations managers to monitor road condition 

information graphically and facilitate decision-making on snowplow deployments during winter 

operations. 
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CHAPTER 6  

Improved Road Surface Temperature Prediction Using Random Forest Machine 

Learning Algorithm Based on Weather Forecasts 

 

6.1. Introduction 

Insufficient and inaccurate information about road surface temperature can result in suboptimal 

winter maintenance decisions, leading to traffic accidents and congestion during the winter season 

(Chen et al., 2019). In order to enhance road safety during the winter season, states and local 

highway agencies allocate significant resources annually towards winter operations expenditure 

(FHWA, 2020). Still, most weather-related vehicle crashes occur on snowy, slushy, or icy surfaces, 

resulting in more than 1,300 deaths and more than 116,800 injuries annually (FHWA, 2020). 

Spreading anti-icing salt is one of the proactive activities that transportation agencies carry out 

during the winter season to ensure road safety (Ameen et al., 2022; Ameen et al., 2021; 

Shahandashti et al., 2019). However, spreading the appropriate amount of salt at the right locations 

in the road network is challenging. Oversalting can increase costs and damage the environment 

(Yang et al., 2012), while insufficient salting can pose a safety threat during icy weather 

(Hoffmann et al., 2012). To determine where and when the roads should be treated, it is helpful to 

have accurate information about the temperature of the road surface (Darghiasi et al., 2023a; Yang 

et al., 2012). Typically, transportation agencies rely on fixed sensor stations such as Road Weather 

Information Systems (RWIS) to obtain information about road surface temperatures (RST) 

(Darghiasi et al., 2022; Shahandashti et al., 2022; Sato et al., 2004).  However, these systems are 

costly and are not available in many locations, making it challenging to obtain RST information.  
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Within the continental United States, the NWS provides gridded forecasts for distinct weather 

parameters at intervals of 2.5 kilometers through the National Digital Forecast Database (NDFD) 

with an accuracy of around 90% (NOAA, 2022). Darghiasi et al. (2023a) (Chapter 4) demonstrated 

that these gridded weather forecasts can be utilized to estimate RST on roadways using linear 

regression models. However, the linear regression models used in Chapter 4 may underperform 

due to the existence of numerous influencing parameters in the system and the nonlinearity and 

complexity associated with them. Lately, the use of Artificial Intelligence (AI) has evolved to a 

point where it offers real practical benefits in a wide range of fields (Zamanian et al., 2023; 

Darghiasi et al., 2023b; Darghiasi et al., 2024). In the transportation area, data analytics techniques 

have been used to support decision-making for different applications including infrastructure asset 

management (Baral et al., 2023; Baral et al., 2022; Hatamzad et al., 2022; Liu et al., 2018). For 

example, Qiu et al (2020) used two tree-based machine learning techniques (i.e., gradient boosting, 

Random Forest) and a linear regression model to estimate asphalt pavement temperature based on 

metrological data collected from fixed weather stations in China. Dai et al., (2023) used an 

ensemble deep learning model using a gated recurrent unit (GRU) network and long short-term 

memory (LSTM) to estimate RST based on information obtained from fixed road weather stations 

in China. Hatamzad et al., (2022) used three machine learning models (i.e., support vector 

regression, neural network, and random forest) to estimate RST based on various observations 

collected from three vehicle sensors and one road weather station. Moreover, Milad et al., (2021) 

used Markov chain Monte Carlo and Random Forest to estimate pavement temperature at different 

depths based on air temperature, time of day, and depth obtained from fixed field sensors. In 

another study, Yang et al., (2020) used K-nearest neighbor models to estimate RST based on 

climatological data (i.e., air humidity and temperature) obtained from a probe vehicle in South 
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Korea. Although the previous models have been useful in predicting pavement temperatures, these 

models mainly use explanatory variables obtained from actual sensors on the field (e.g., fixed road 

weather stations or vehicle sensors) which are not available in many locations. 

This Chapter aims to demonstrate the applicability of the Random Forest algorithm to improve 

the accuracy of RST estimates based on gridded weather forecasts which are provided by the NWS. 

Random Forest models, as one of popular tree-based machine learning algorithms, have been 

demonstrated to be useful in estimating RST for different applications (Wang et al., 2022; Takasaki 

et al., 2022; Milad et al., 2021; Qiu et al., 2020). The Random Forest algorithm is highly scalable 

and robust against outliers; it also performs well when dealing with mixed data (e.g., continuous, 

and categorical) (Mantero and Ishwaran, 2020). To evaluate the prediction power of Random 

Forest models, the accuracy metrics of the developed models were compared with support vector 

machine (SVM), multiple linear regression (MLR), deep learning (DL), k-nearest neighbor 

(KNN), and M5P decision tree based on different accuracy metrics including mean absolute error, 

root mean square error, and R-squared. This Chapter demonstrates that the Random Forest model 

can estimate the RST more accurately than other data-driven methods (i.e., MLR, SVM, DL, KNN, 

and M5P decision tree) when using the gridded weather forecast from the NWS. The findings of 

this research contribute to the state of knowledge by providing more accurate estimates of the RST 

based on the gridded weather forecasts which are provided by the NWS through the National 

Digital Forecast Database (NDFD). 

6.2. Methodology 

The following steps outline the methodology for this research: (1) creating a dataset consisting 

of actual RST, measured by a vehicle-mounted temperature sensor, and the associated weather 
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forecasts which are provided by the NWS, (2) developing predictive models using Random Forest 

methodology to estimate the RST based on the associated weather forecast data, and (3) comparing 

the performance the developed model with other common predictive models including multiple 

linear regression (MLR), deep learning (DL), support vector machine (SVM), K-nearest neighbor, 

and M5P decision tree. The overview of the described methodology is shown in Figure 6-1. 

 

Figure 6-1 Overview of the proposed methodology framework 
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6.2.1.  Data collection 

For data collection, a temperature sensor kit, as described in Chapter 4 (Section 4.4.1), was 

utilized to randomly measure road surface temperature (RST) from various roadways in North 

Texas during the winter season of 2021-22. The National Digital Forecast Database (NDFD), 

which is maintained by the NWS, was utilized to obtain the weather forecast data that was 

associated with the collected RST. The corresponding weather forecasts such as air temperature, 

relative humidity, and wind speed were extracted from the NDFD based on the geographical 

coordinates and the time of the measurements for each RST sample. The dataset included eleven 

numerical variables and two categorical variables. The categorical variable of “road conditions” 

was considered “dry” when no precipitation was forecasted, and “wet” when precipitation was 

forecasted. The “sky conditions” categorical variable was classified into four categories as 

suggested by NWS based on the cloud coverage forecast (National Oceanic and Atmospheric 

Administration, n.d.). Table 6-1 summarizes the variables in the dataset that were used for 

developing the predictive models. 

Table 6-1 Summary of the variables used for developing the predictive models 

Type Unit Variable 
Descriptive Statistics 

Max Min Standard Deviation 

Numerical °C Road Surface Temperature 27 -2 6.4 

Numerical n/a Hour 24 0 4.9 

Numerical °C Air Temperature 21 -2 5 

Numerical % Relative Humidity 100 0 22 

Numerical °C Average Air Temperature of Last Day 22 -1 5 

Numerical °C Maximum Air Temperature of Last Day 28 1 6 

Numerical °C Minimum Air Temperature of Last Day 20 -5 5 
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6.2.2. Random Forest model development 

A Random Forest model is an ensemble learning algorithm that combines multiple decision 

trees to make predictions, resulting in improved accuracy and robustness for classification and 

regression tasks (Breiman, 2001). The final prediction of the Random Forest model is determined 

by aggregating the predictions of all the individual trees, typically through majority voting for 

classification or averaging for regression. This ensemble approach helps improve the model's 

accuracy, robustness, and ability to handle complex datasets. Random Forest models are known 

for their effectiveness in handling high-dimensional data, feature selection, and handling missing 

values. Figure 6-2 shows the structure of a typical Random Forest model.  

 
Figure 6-2 Structure of Random Forest models (adapted from Gitconnected.com) 

Input Data

…

Tree 1 Tree 2 Tree M

Prediction 1 Prediction 2 Prediction M

Average of predictions

Final Prediction

Numerical m/s Wind Speed 12 0 2.5 

Numerical m/s Wind Gust 17 0 4.2 

Numerical °C Dew Point 15 -14 5 

Numerical kPa Pressure 102.65 95.28 1.7 

Categorical N/A Sky Conditions 
Clear 

 (336 samples) 

Partly Cloudy 

(80 samples) 

Cloudy 

(124 samples) 

Mostly Cloudy 

(140 samples) 

Categorical N/A Road Conditions Wet (234 samples) Dry (446 samples) 
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The general mathematical form of a Random Forest model is: 

𝑓(𝑋𝑖) =
1

𝑀
∑ 𝑇𝑚(𝑋𝑖; Θ𝑚)𝑀

𝑚=1         (6-1) 

where M is the number of trees, 𝑋𝑖 is a set of features in the dataset, and Θ𝑚is a set of parameters 

that define each tree (Montgomery and Olivella, 2018). The procedure for developing a Random 

Forest regressor can be outlined as follows: 

1. Select random m samples from the training dataset, 

2. Construct a decision tree associated with these m samples, 

3. Choose an arbitrary number of trees and repeat the first two steps, 

4. Predict the target value using individual trees and assign the mean of all predictions as the 

final prediction. 

The advantage of a Random Forest model over other multiple-tree models (e.g., gradient 

boosting machine and Bayesian additive regression) is that the Random Forest model reduces the 

levels of correlation between the trees, which in turn increases the model performance 

(Montgomery and Olivella, 2018). The Random Forest is more robust to changes in the input data 

as well as outliers in predictors compared to individual tree models (Breiman, 2001). The 

generalization error always converges by increasing the number of trees in the model. Since each 

tree is a completely independent random experiment, the risk of overfitting is low in Random 

Forest modeling (Youssef et al., 2016).  

Modeling Approach 

The Random Forest regression model was trained to predict the RST based on the created 

dataset described in the data collection section. The model hyperparameters, shown in Table 6-2, 
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were optimized using the random sampling method and 10-fold cross-validation. The main 

hyperparameters of the Random Forest model that influence the model error are the number of 

trees, the maximum depth of the tree, and the maximum number of features for splitting the node 

(Shreyas et al., 2016). In order to achieve a good balance between performance, memory 

consumption, and processing time, it is recommended to keep the maximum number of trees 

between 100 and 1000 (Callens et al., 2020). The parameter maximum depth of the tree is the 

number of nodes from the furthest leaf node to the tree’s root. Low maximum depth values might 

result in underperformance of the model, while high maximum depth values may lead to overfitting 

(Putrada et al., 2021).  

Table 6-2- Random Forest model hyperparameters 

Row Hyperparameters Values 

1 Number of trees  [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] 

2 Maximum depth of the tree [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, none] 

3 Maximum number of features for splitting a 

node 

[2,4,6,8,10] 

 

The random sampling technique is employed to identify the optimal subset of hyperparameters 

that yield the greatest enhancement in the model's prediction performance. Figure 6-3 shows the 

overview of the modeling approach used in this study. The random sampling algorithm randomly 

takes samples based on the statistical distribution for each hyperparameter, allowing to control the 

number of attempted hyperparameter combinations. To perform the 10-fold cross-validation, the 

dataset is randomly partitioned into ten groups for ten distinct iterations. In each iteration, the 

model is trained using nine groups, which constitute 90% of the dataset, while the remaining group, 

comprising 10% of the dataset, is employed for validation purposes. After repeating this process 
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ten times, the mean square error of the model was calculated using the average value for all 

iterations, and the best combination of hyperparameters was selected based on the hyperparameter 

set that resulted in the lowest error. 

 

Figure 6-3 Overview of cross-validation in hyperparameter optimization of Random Forest 

model 

Performance Metrics 

To evaluate the predictive performance of the models, three metrics were employed: R-squared 

(R2), mean absolute error (MAE), and root mean squared error (RMSE). The R-squared metric 

quantifies the proportion of the dependent variable that can be explained by the independent 

variables, while the Mean Absolute Error calculates the average magnitude of the residuals within 

the dataset. Additionally, Root Mean Square Error quantifies the standard deviation of the 

residuals. 
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6.3. Results and Discussions 

6.3.1. Descriptive Statistics 

This section provides descriptive statistics of the collected data described in the data collection 

section. The dataset includes two categorical variables: “road surface condition”, and “sky 

condition.” The point biserial correlation, a special case of Pearson’s correlation that reflects the 

relationship between categorical and continuous features, was conducted to examine the 

correlation between these categorical variables and the RST. The correlation results, summarized 

in Table 6-3, show that these two categorical features are not highly correlated with the RST. 

However, the “road surface condition” is slightly more correlated with the RST than the “sky 

condition.”  

Table 6-3 Point Biserial Correlation between the categorical variables and RST 

 
Road Surface Temperature 

Correlation p-value 

Road Surface Condition 0.18 1.86e-6 

Sky Condition 0.13 5.7e-3 

To determine the correlation between the continuous variables, the Spearman correlation 

analysis was conducted on the dataset. Figure 6-4 illustrates the Spearman correlation between the 

RST and weather forecast parameters. 
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Figure 6-4 Spearman Correlation between the publicly available weather data and RST 

The results indicate that the correlation between the RST and weather forecast parameters are 

all positive except for the relative humidity. The strongest positive correlation is between the RST 

and ambient temperature. The only negative correlation between the relative humidity and RST 

means that any increase in the relative humidity will reduce the RST. According to the thresholds 

shown in Table 6-4, RST is very weakly correlated with wind speed, wind gust, last day minimum 
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temperature, and time of day (hour); moderately correlated with dew point, last day maximum 

temperature, and air pressure; and weakly correlated with last day average temperature. It should 

be noted that the Spearman correlation only considers the monotonic relationships between the 

predictive features and the target variable. However, the predictive features and the target variable 

may be correlated non-monotonically. 

Table 6-4 Thresholds for interpretation of Spearman correlation coefficients (Dancey and 

Reidy, 2007) 

Spearman Correlation Correlation 

≥ 0.7 Very Strong 

0.4 – 0.69 Strong 

0.3 – 0.39 Moderate 

0.20 – 0.29 Weak 

0.01 – 0.19 Very Weak 

 

6.3.2. Random Forest Hyperparameter Optimization 

The Random Forest model was developed using the 10-fold cross-validation technique based 

on the mean absolute error loss function. The prediction performance of the Random Forest model 

was optimized by selecting the best set of hyperparameters that minimize the model’s error the 

most. Table 6-5 shows the default and optimized values of the model’s hyperparameters. The 

results show that the optimal number of trees was increased from 100 (default) to 400 (optimized), 

whereas other hyperparameters remained the same during the hyperparameter optimization. Figure 

6-5 shows the mean absolute error of the model based on the number of trees and the maximum 
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number of features for splitting a node. The results indicate that the mean absolute error of the 

model varies by approximately 16% for random combinations of the number of trees and the 

maximum number of features for splitting a node. 

Table 6-5 Hyperparameters for the default and optimized Random Forest models 

Hyperparameter Default Optimized 

Number of trees  100 400 

Maximum depth of the tree None None 

Maximum number of features for splitting a node 4 4 

 

 
Figure 6-5 Mean absolute error of Random Forest model based on the number of trees and 

maximum number of features for splitting a node 

Furthermore, the RMSE, MAE, and R-squared were calculated for the default and optimized 

models. The findings, presented in Figure 6-6, indicate that the model with optimized 

hyperparameters achieves approximately 2% improvement in RMSE, MAE, and R-squared. 
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Figure 6-6 RMSE, MAE, and R-squared of optimized and default Random Forest models 

6.3.3. Feature Importance 

In addition to estimating RST estimates, Random Forest methods are capable of providing 

importance scores that indicate the importance of predictors in predicting the target value. By 

determining feature importance scores, predictors can be ranked according to their ability to 

predict a target variable (Abediniangerabi et al., 2021). The importance of a feature can be 

calculated by measuring the increase in the model's prediction error following its permutation. If 

shuffling the value of a feature results in an increase in the model’s error, it is deemed "important". 

In contrast, if changing the feature’s values does not affect the model error, it is considered 

"unimportant" (Fisher et al., 2019; Breiman, 2001). In this study, the importance of independent 

features on RST was evaluated using the permutation feature importance technique. The feature 

importance score is calculated by calculating the average variation reduction over all trees caused 

by selecting each feature for the internal nodes. Figure 6-7 illustrates the relative feature 

importance scores for predicting the RST based on the weather forecast parameters. Among the 

predictors, the ambient temperature, relative humidity, and time of day (hour) have a higher 

0.944

0.946

0.948

0.95

0.952

0.954

0.956

0.958

0.96

0.962

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Optimized Model Default Model

R-
Sq

u
ar

ed

R
M

SE
 /

 M
A

E 
(º

C
)

RMSE MAE R2



 102 

influence on the RST by having relative importance scores of 0.45, 0.18, and 0.13, respectively. 

Although the time of day (hour) was very weakly correlated to RST using the Spearman 

correlation, it is among the most important factors based on the Random Forest feature importance 

score. The reason is that the Spearman method only considers the monotonic relationship between 

the variables. However, the Random Forest feature importance considers arbitrary relationships 

between the features including the non-monotonic relationships. 

 

Figure 6-7 The relative importance of predictive features for the Random Forest Model 

6.3.4. Comparison between RF, DL, KNN, MLR, M5P Decision Tree, and SVR 

The testing accuracies of the Random Forest model were compared with multiple prediction 

models including multiple linear regression (MLR), deep learning (DL), K-nearest neighbor 

(KNN), M5P decision tree, and support vector machines (SVM). The hyperparameters of each 

predictive model were optimized using the random search method. Table 6-6 summarizes the 

selected hyperparameters for each model.  
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Table 6-6- Optimized hyperparameters of selected data-driven prediction models 

Model Optimized Hyperparameters 

K-nearest neighbor 
• Distance: Manhattan 

• Number of neighbors: 5 

Deep Learning 

• Momentum: 0.2 

• Number of Layers: 2 (first layer 4, second layer 

5) 

• Learning rate: 0.3 

Support Vector Machine 

• Kernel: Polynomial (degree 4) 

• C=10 

• Gamma=0.001 

M5P decision tree • Minimum number of instances per leaf:4 

 

The deep learning model trained to predict the RST comprised two fully connected hidden 

layers with 4 and 5 hidden nodes, and one output layer. The network was trained through 100 

iterations with a learning rate of 0.3 and momentum of 0.2. The K-nearest Neighbor model was 

trained using Manhattan distance and five (5) neighbors. The support vector machine was trained 

using a Polynomial kernel (degree of 4), C value of 10 (penalty parameter of the error), and gamma 

value of 0.001. Moreover, the M5P decision tree— a conventional decision tree with the addition 

of a linear regression function at the nodes— was trained using at least 4 instances allowed at each 

node. In addition, a multiple linear regression model was trained using attributes selected by the 

M5 Regression Tree’s attribute selection method. The attribute selection method of the M5 

Regression Tree algorithm identifies the most suitable subset of features that contribute to 

maximizing improvements in the Akaike information criterion (AIC) (Massana et al., 2015). The 

selected attributes for the MLR model included time of day (hour), ambient temperature, dew 

point, relative humidity, air pressure, and the average temperature of the last day. To avoid 

multicollinearity in the model, the Spearman correlation values were used to ensure that highly 
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correlated attributes are not selected— a correlation coefficient of |R| > 0.7 is commonly used as 

the multicollinearity threshold (Dormann et al., 2013). 

Figure 6-8 shows the measured and predicted RST for the testing data using 10-fold cross-

validation. The vertical lines for each data point indicate the relative error per prediction. The 

results indicate that the Random Forest model— with the coefficient of determination (R-squared) 

of 0.96— can explain more variability in the target value, compared to other prediction models 

(i.e., DL, MLR, SVM, KNN, and M5P decision tree). 

 

Figure 6-8 Coefficients of determination for the testing datasets of developed DL, MLR, M5P 

decision tree, SVR, RF, and SVR 
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Furthermore, a comparison of the prediction performance of the models, including root mean 

square error, mean absolute error, R-squared, and model construction time is shown in Figure 6-9. 

According to the results, the Random Forest model trained to predict the RST had the highest 

accuracy metrics among other models with a root mean square error of 1.38 ℃ and mean absolute 

error of 1.03 ℃. Model construction for the SVR model takes about 16 seconds, which is relatively 

long compared to other models. This can be due to the use of a complex kernel and a high C value 

(penalty parameter of the error) for the model. On the other hand, the KNN model is the fastest 

model, taking approximately 0.01 seconds to build, followed by multiple linear regression, M5P 

decision tree, Random Forest, and deep learning. 

 
Figure 6-9 Accuracy metrics as well as the time taken to build the models 

6.4. Summary  

Road surface temperature (RST) monitoring is essential for establishing effective winter 

maintenance plans to enhance road safety and prevent congestion. Road weather information 

systems typically provide actual and estimated road surface temperatures. As road weather 
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information systems (RWIS) are not available in many places, it can be challenging to obtain 

information about RST in areas with no access to RWIS. This study aimed to evaluate the 

applicability of the Random Forest model for predicting the road surface temperature based on the 

weather forecasts from NWS. To develop the Random Forest model, a dataset was compiled, 

incorporating observed RST collected via a vehicle-mounted temperature sensor, along with 

corresponding weather variables extracted from the NDFD. The actual RST was randomly 

measured from road networks in North Texas in the 2021-22 winter season. The corresponding 

weather data for each RST sample were obtained from the national digital forecast database 

(NDFD) for the time and geographical location where the actual RST was collected. The prediction 

performance of the Random Forest model was compared with the prediction performance of 

multiple predictive models including multiple linear regression, deep learning, support vector 

machine, support vector machine, M5P decision tree, and k-nearest neighbor. The results indicated 

that the Random Forest model outperforms other prediction models, indicating the advantage of 

the Random Forest model in estimating the road surface temperature using the weather forecast 

data from the NWS. The feature importance scores of the explanatory variables were also derived 

for the Random Forest model. According to the feature importance scores, the relative humidity, 

ambient temperature, and time of day had a score higher than 0.1, indicating their significant 

influence on the prediction of the RST. 

The findings of this study emphasize the practicality of employing the Random Forest algorithm 

to enhance the precision of RST estimation, utilizing weather forecasts from NWS. The proposed 

methodology can be integrated into a winter operation decision-making system to map the 

estimated RST on roadways without the need for road weather information systems. The estimated 
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RST on roadways assists highway agencies to plan winter maintenance strategies more efficiently 

by taking proactive measures in areas where low surface temperatures are estimated. 

The methodology presented in this study provides a framework that can be extended to include 

additional geospatial data including road vegetation, average daily traffic, latitude, longitude, and 

altitude of roads to increase the accuracy of RST estimates. Furthermore, it would be interesting 

to examine the performance of the prediction models during extreme weather, especially during 

winter storms with data ranges that go beyond those used in this study. Future research may 

investigate whether the proposed methodology can be incorporated into a snowplow operations 

optimization framework to optimize the plowing routes.  
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

Accurate and up-to-date information on road conditions is crucial for transportation supervisors 

in effectively managing winter operations during winter storms. This research developed a cost-

effective system to collect and transfer real-time images of road conditions during winter 

operations using the capabilities of mobile devices. Furthermore, an innovative approach was 

developed to estimate the road surface temperature utilizing the available weather forecasts which 

are provided by the National Weather Service. This innovative method is expected to eliminate the 

necessity for relying on costly fixed sensor stations along roads, such as Road Weather Information 

Systems. Additionally, a 2D digital twin system was developed to facilitate the visualization of the 

collected data including the road conditions images, estimated road surface temperatures, and 

related weather forecasts.  

The developed system was implemented in the TxDOT Wichita Falls district for two winter 

seasons. The findings revealed that the developed system can serve as a cost-effective alternative 

to the expensive GPS-AVL systems that are consisted of multiple pieces of equipment such as 

GPS devices, cellular modem communication, and mobile data computer, which may not be 

justifiable for regions with infrequent winter storms. The system could be easily detached when 

not in use, and users do not require extensive training to operate it. Moreover, the statistical 

prediction models demonstrated effective outcomes in estimating the road surface temperature by 

utilizing the weather forecast provided by the National Weather Service. The linear regression 

models, developed to estimate the road surface temperature for light and dark groups indicated 

that the ambient temperature, relative humidity, wind speed, the average temperature of the 

previous day, and road surface condition (wet/dry) are statistically significant factors affecting 
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road surface temperature at 5% level of significance for both dark and light groups. Based on the 

linear regression findings, the models exhibited a Mean Absolute Error (MAE) of around 1ºC for 

the dark group and approximately 2ºC for the light group. These values are considered acceptable 

when compared to previous studies conducted in this field.  

Additionally, in order to enhance the accuracy of the road surface temperature estimation 

models, nonlinear statistical models, with a particular emphasis on Random Forests, were 

developed. The Random Forest models were employed to estimate the road surface temperature, 

and their performance was compared to that of other widely used models, such as deep learning, 

support vector machine, k-nearest neighbor, and M5P decision tree. The findings demonstrated 

that the Random Forest model exhibited superior performance compared to other prediction 

models, highlighting its advantage in accurately estimating road surface temperature by leveraging 

weather forecast data from the National Weather Service (NWS). According to the random forest 

feature importance scores, relative humidity, ambient temperature, and time of day were identified 

as the top three influential factors in predicting the road surface temperature, with scores higher 

than 0.1.  

This research is expected to contribute towards enhancing the communication of adverse road 

conditions, thereby improving the decision-making process for snowplow operations. Real-time 

road condition images enable transportation operations managers to visually monitor and assess 

road conditions, without the need to travel on roads. Furthermore, access to information about road 

surface temperature along with specific weather information (e.g., snow and ice accumulation 

forecasts), which aids in snowplow operation decisions, provides crucial insights for operations 

managers regarding areas prone to low surface temperatures and potential ice and snow hazards. 

This information significantly improves the decision-making process for deploying snowplows to 
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implement anti-icing and snow removal measures during winter operations without relying on 

information obtained from costly fixed weather stations along roads such as road weather 

information systems. 

Future Works 

In order to expand upon the findings of this research, future work could focus on the following 

ideas: 

• It is recommended to broaden the scope of data collection to encompass a wider range of 

extreme weather conditions, thus extending the validity of statistical models. 

• It is recommended to assess the feasibility of integrating the developed framework, which 

estimates road surface temperature using weather forecasts, into a route optimization 

framework for snowplows. This integration has the potential to optimize plowing routes and 

material spreading operations. 

• It is recommended to explore the inclusion of additional features, such as traffic volume, road 

vegetation, pavement material type (e.g., concrete or asphalt), and road class (urban or rural), 

in the development of estimation models. By assessing the significance and potential impact 

of these features, it is possible to enhance the accuracy of the estimation models. 

• It is recommended to evaluate the performance of additional prediction models, including 

gradient boosting, extreme gradient boosting (XGBoost), and adaptive boosting (AdaBoost), 

for the estimation of road surface temperature. Conducting such assessments will provide 

insights into the effectiveness and suitability of these models in accurately predicting road 

surface temperature. 
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• It is recommended to employ machine learning image classification techniques to create an 

automated approach for categorizing road conditions into different categories, such as snowy, 

icy, and wet. 
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