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Abstract  

Identifying the Optimal Combination of Critical Roadside Slope Segments 

Susceptible to Rainfall-induced Failures for Minimizing Vulnerability of Highway 

Networks 

Anil Baral, PhD 

The University of Texas at Arlington, 2022 

Supervising Professor: Mohsen Shahandashti 

The stability of roadside slopes is vital for the smooth operation of the highway transportation 

system. The failure of slopes adjacent to the highway corridors adversely impacts the network 

users and network operators. The network users are subjected to delays through speed restrictions, 

stoppage, and diversions due to the blockage of a motorway. The network operators face the 

burden of implementation and finance of emergency slope repairs. Proactive rehabilitation of 

slopes helps to reduce roadside slope failures and minimize the disruption of transportation 

networks resulting from rainfall-induced slope failures. However, all the slope segments 

susceptible to rainfall-induced failures cannot be rehabilitated at once due to the limited 

availability of rehabilitation resources in federal and state transportation agencies. This research 

aims to develop an approach to identify the optimal combination of slope segments that should be 

proactively rehabilitated to reduce the vulnerability of transportation networks when only limited 

slope segments can be rehabilitated. To achieve the objective, first, a combination of a physically-

based slope stability model and a hydrological model was used to determine the location of all 

slopes that are susceptible to rainfall-induced slope failures. Then, a stochastic combinatorial 

optimization problem was formulated with an objective function that measured the impact on the 

road users and transportation agencies (i.e., network operators) for different slope failure scenarios. 

The combinatorial optimization problem was solved using the genetic algorithm-based approach 
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to provide the most suitable combination of slope segments that should be proactively rehabilitated 

for minimizing the impacts on the road user and transportation agencies following rainfall-induced 

instabilities. The decision-making approach for slope rehabilitation should also ensure low risk 

associated with the selected rehabilitation strategy. However, current slope-rehabilitation decision 

models do not consider the risk (i.e., distribution of failure cost) associated with the rehabilitation 

strategies in the decision-making process. Therefore, a risk-averse stochastic combinatorial 

optimization problem was further formulated and solved using a simulated annealing technique to 

facilitate the selection of slope rehabilitation strategies, which leads to the least expected cost and 

conditional value at risk (CVaR) for extreme rainfall events.  

The proposed approach to identify the optimal combination of critical slope segments was 

implemented in the transportation network of Lamar County, Texas. The proposed metaheuristic-

based approaches outperformed the commonly used index-based methods in the literature for 

identifying the critical roadside slopes susceptible to rainfall-induced failures. The risk-averse 

simulated annealing approach also provided a range of solutions in the Pareto-efficient frontier 

enabling the transportation agencies to select the rehabilitation combination with different risk 

aversion levels. 

The primary contribution of this research work to the body of knowledge is the development of 

metaheuristic optimization approaches to facilitate the identification of the critical combination of 

slope segments for proactive repair, with consideration of slope failure probabilities, slope failure 

cost, and risk aversion levels in rehabilitation decision-making. More importantly, the proposed 

rehabilitation approaches will aid transportation agencies in making an optimal allocation of the 

limited rehabilitation budget to improve the performance of clayey soil slopes that are susceptible 

to rainfall-induced shallow failures. 
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CHAPTER 1 INTRODUCTION 

Natural disasters occurring due to meteorological events are increasing rapidly with a significant 

impact on the population and infrastructures, hampering the economic progress and well-being of 

the countries. Rainfall-induced slope instabilities occur every year, and globally, 14 % of the total 

economic loss and 0.53 % of total death caused due to natural disasters are attributed to slope 

instabilities (Hidalgo et al., 2018). The United States is experiencing damages of approximately 

$3.5 billion and about 50 deaths annually due to slope failures (Highland, 2004). The rainfall-

induced shallow slope failures are common in cut slopes and embankments, which are the primary 

component of transportation networks (Miller et al. 2012). The failure of slopes adjacent to the 

highway corridors impacts the network users and network operators (Wilks et al., 2015; Mattsson 

and Jenelius, 2015). The network users are subjected to delays through speed restrictions, 

stoppage, and diversions due to the blockage of a motorway. The network operators must face the 

burden of implementation and finance of emergency slope repairs. Highway agencies spend 

millions of dollars for maintaining the highway embankments and cut slopes (FHWA, 2008). 

Walkinshaw (1992) estimated the cost of correction to the damages to the U.S. highways due to 

landslides to be at least $162 million per year. More recently Shahandashti et al. (2019) reported 

a cost of $ 28.5 million in the 2018 fiscal year for the repair of slopes along the Texas highway 

corridors. Due to the significant impact on the transportation agency's state and federal budget, the 

management and maintenance of slopes along highway corridors remain a thorny issue for 

highway agencies (Anderson et al. 2013). 

During prolong and intense rainfall, the shear strength of the soil is reduced due to an increase in 

pore water pressure resulting from rainfall infiltration. This reduction of shear strength makes 

some slopes prone to failure (critical) during rainfall. It is, therefore, necessary that the highway 
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agencies identify the critical segments of the highway slopes and conduct routine maintenance for 

uninterrupted service. Availability of data on spatially varying slope stability variables, such as 

slope geometry, precipitation, soil hydraulic parameters, and soil characteristics helps to make a 

reasonable estimate of the stability of earth slopes along highway corridors and identify the critical 

slope segments susceptible to rainfall-induced failures. However, the publicly available data on 

slope stability variables cannot be readily used for the condition assessment of roadside slopes. 

The publicly available datasets with disparity in the level of detail (granularity), reference 

(coordinate) system, and representation (vector or raster file) should be made compatible with one 

another before using the datasets for assessing the stability of roadside slopes in clayey soils. Also, 

due to agencies' restricted capacity (i.e., budget and manpower), all slope segments that require 

maintenance cannot be rehabilitated within a short period with limited available resources. The 

highway network operators should make a difficult decision of selecting limited critical slope 

segments for remediation works. For example, highway agencies have the budget to repair 200 m 

of slope segments in a network where more than 1000 m lengths of slopes are susceptible to 

failures. The maintenance personnel must identify and maintain 200 m of critical slope length so 

that the serviceability of the network is least compromised in the event (e.g., rainfall, earthquakes) 

triggering slope failures. Hence, identification and prioritization of critical slope segments for 

proactive repair under a constraint budget is of significant value to transportation agencies. Further, 

the roadside slope failures during rainfall are probabilistic. As the failures are probabilistic, the 

generalized cost (i.e., impact on road users and transportation agencies) associated with the 

rainfall-induced failures is also probabilistic. Hence, the proactive decision-making on roadside 

slope rehabilitation should also ensure that the conditional value of risk (CVaR) associated with 

the maintenance decision is low. 
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The ultimate goals of this research are (1) To develop a data integration approach for performing 

slope failure susceptibility analysis to determine the usefulness of publicly available data sources 

for mapping rainfall-induced shallow slope failure susceptibilities in roadside slopes; (2) To 

integrate the slope failure susceptibility analysis with the metaheuristic optimization model to 

determine the most suitable combination of roadside slopes for proactive rehabilitation when 

agencies can only rehabilitate limited slopes due to budget constraint; (3) To incorporate the risk 

associated with the slope rehabilitation decisions into the optimization framework to facilitate the 

selection of rehabilitation strategies at appropriate risk-aversion levels.  

Chapter 2 provides a comprehensive review of the literature on slope susceptibility analysis and 

transportation vulnerability analysis. Chapter 2 also provides the gaps in knowledge and research 

objective. Chapter 3 discusses the methodology of integrating the publicly available data on slope 

stability variables for the assessment of roadside slope stability. Chapter 3 also presents the 

application of the data integration approach along the corridors of the Paris district in Texas. 

Chapter 4 proposes a methodology to determine slope failure probability and identify the optimal 

combination of critical slope segments that should be proactively rehabilitated to reduce the 

vulnerability of transportation networks when transportation agencies’ capacity is restricted to 

rehabilitate limited slope segments due to budget constraints. Chapter 5 presents a risk-averse 

optimization approach to aid transportation agencies in identifying slope rehabilitation strategies 

along the Pareto-efficient frontier. Chapter 6 presents the conclusion.  
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CHAPTER 2 BACKGROUND 

  CAUSATIVE FACTOR FOR SLOPE INSTABILITY 

A list of major causative factors is determined from the literature that would be relevant for 

assessing the stability of roadside earth slopes (Bhattarai et al., 2004; Chau et al., 2004; 

Ramanathan et al., 2012; Mohseni et al., 2018). These causative factors are listed below: 

2.1.1. Slope Angle 

A slope angle is one of the most widely selected factors for slope stability analysis. Slope failure 

can take place gradually or suddenly when the shear strength of the soil cannot resist the 

gravimetrical forces, which increases with the increase in slope angle, moving the soil mass down 

the slope (Hossain et al., 2017). Steeper slopes are more susceptible to failure compared to shallow 

slopes (Nelson, 2013). However, the slope angle alone should not be used to determine the stability 

of slopes. Other factors, such as soil properties, vegetation, and drainage system, which influence 

the stability of slopes, may cause the relatively shallow slope to be prone to failure, while a 

relatively steep slope to be stable (Mohseni et al., 2018). 

2.1.2. Soil Type and Properties 

The stability of slopes is highly dependent on the geotechnical properties (shear strength, 

permeability) of the soil. Clayey soils are susceptible to shallow slope failure during intense and 

prolonged rainfall events (Khan et al., 2017; Baral and Shahandashti, 2022b). The soils with higher 

friction angle and cohesion are less prone to failure (Stark et al., 2005; Nelson, 2013). Physical 

geotechnical models take into consideration the soil type and properties for analyzing the stability 

of slopes. The determination of rainfall intensity and duration that causes the failure of slopes 
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depends on the hydraulic properties (e.g., saturated conductivity, water holding capacity) of soil 

(Iverson, 2000; D'Odorico et al., 2005). 

2.1.3. Precipitation 

The shallow slope failures are typically followed by rainfalls (Hossain, 2013). Empirical equations 

have been formulated to obtain minimum intensity duration relation that can initiate shallow 

landslide and debris flow (Caine, 1980; Innes, 1983; Crosta et al., 2001; Guzzetti et al., 2008). 

Highway slopes with clayey soils are prone to desiccation due to wetting and drying weather 

cycles, which allows greater moisture infiltration into the embankment from precipitation (Jafari 

et al., 2018). This causes an increase in the moisture content of the soils and a reduction in the 

soil's shear strength. 

2.1.4. Vegetation 

Vegetation enhances slope stability by modifying the soil water regime, which results in a change 

in pore water pressure and soil suction, and through root reinforcement (Coppin et al., 1990; Chok 

et al., 2004).  Trees increase the stability of slopes hydrologically by increasing the matric suction 

of soil which leads to an increase in the shear strength (Ali et al., 2012). The root density within 

the soil mass and tensile strength of the roots mechanically increase the soil strength (Greenwood 

et al., 2004). Plant rooting systems in many biotechnical methods provide better reinforcement and 

drainage characteristics than the earthwork associated with mechanical methods such as slope 

repair, retaining walls, and sheet piles (Shahandashti et al., 2019).  One of the studies in Maryland 

revealed that 56% of the total number of slope failures occurred in the area with medium to low 

grass density (Ramanathan et al., 2014). Vegetation also aids in the stability of slopes by reducing 

the infiltration and providing erosion protection for the top layer of the soil (Zuazo et al., 2009). 



 

6 
 

2.1.5. Drainage System  

Water drainage systems are essential to the durability and performance of embankment slopes. 

Many slope failures are caused due to the absence of a surface and subsurface drainage system 

(Shahandashti et al., 2019). The surface drainage system must be used to reduce infiltration and a 

subsurface drainage system must be used to control groundwater. Effective water drainage 

decreases driving forces for slope instability and increases soil shear strength (Lohnes et al. 2001). 

 SLOPE SUSCEPTIBILITY ANALYSIS  

Many studies have been performed to assess the slope failure susceptibility of hill slopes and to 

map slope failure hazards (Caine, 1980; Guzzetti et al., 1999; Crosta and Frattini, 2001; Huabin et 

al., 2005; Carrara et al., 1999; Clerici et al., 2002; Bhattarai et al., 2004; Guzzetti et al., 2008; He 

and Beighley, 2008; Jaiswal et al., 2010; Ramanathan, 2012; Pellicani et al., 2017; Zhang et al., 

2018). Slope failure susceptibility analysis methods have been classified into qualitative and 

quantitative methods (Mohseni et al., 2018). Qualitative methods include geomorphological 

mapping (Seeley and West, 1990; Zimmerman et al., 1986; Lee, 2001; Whitworth et al., 2011) 

landslide inventory mapping (Guzzetti et al., 1999; Chau et al., 2004; Guzzetti et al., 2012), and 

heuristic or index-based approaches (Singh et al., 2008; Ramanathan, 2012).  Geomorphological 

mapping is used to depict surface topography and features in the landform. Geomorphological 

maps are widely used tools for land development planning and geological risk management (Otto 

and Smith, 2013). Landslide inventory maps are the simplest form of slope susceptibility maps 

that delineate the size and location of past landslides. Heuristic or index-based approaches include 

methods, such as the analytical hierarchy process (AHP) and weighted overlay methods (Achour 

et al., 2017; Shano et al., 2020). The AHP method involves determining the relative weight and 

priority of the causative factors and subfactors for slope susceptibility mapping (Kayastha et al., 



 

7 
 

2013). In weighted overlay models, a common measurement scale is applied for different causative 

factors for performing integrated analysis to assess slope stability (Ramanathan et al., 2015). 

Heuristic or index-based approaches are subjective as the approach depends on expert opinions 

and past experiences to estimate the slope failure hazard (Fall et al., 2006). 

Quantitative methods can be categorized into statistical models (Carrara, 1983; Baeza and 

Corominas, 2001; Santacana et al., 2003; Nandi et al., 2010; Shahabi et al., 2013; Shahandashti et 

al. 2022), Artificial Intelligence (AI) models (Nhu et al., 2020), and physically-based models 

(Iverson, 2000; Bhattarai et al., 2004; D'Odorico et al., 2005; Berti and Simoni, 2010; Mohseni et 

al., 2018; Zhang et al., 2018; Hidalgo et al., 2018). Statistical methods, such as bivariate and 

multivariate analysis tools, are used to establish a relationship between the causative factors and 

failure at a site (Carrara, 1983; Baeza and Corominas, 2001; Shahabi et al., 2013). AI-based 

methods are more suitable for slope susceptibility mapping when a direct relationship between 

causative factors and failure is difficult to establish (Shano et al., 2020). However, both statistical 

and AI-based methods require large datasets on historical slope failures and factors affecting slope 

stability over large areas. These methods do not provide reliable results if the information on 

historical slope failures is sparsely available. Physically-based models (Iverson, 2000; Bhattarai et 

al., 2004; D'Odorico et al., 2005; Berti and Simoni, 2010; Mohseni et al., 2018; Zhang et al., 2018; 

Hidalgo et al., 2018) use a combination of geotechnical and hydrological models to determine 

slope stability. The infinite slope stability theory coupled with the hydrological model is a 

commonly used approach for the assessment of rainfall-induced slope instability (Montgomery 

and Dietrich, 1994; Iverson, 2000; D'Odorico et al., 2005). The physically-based models can 

provide acceptable results only when factors affecting slope stability are available with reasonable 

accuracy (Van Westen et al., 1997). The main advantage of physically-based models in slope 
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failure susceptibility mapping is that the models do not require data on past slope failures, and the 

slope stability can be quantified by a factor of safety (FOS). 

Several physically-based models have been used in the slope susceptibility mapping of hillslopes. 

Shallow landslide stability model (SHALSTAB; Montgomery and Dietrich, 1994), Stability Index 

Mapping (SINMAP; Pack et al., 1998), and Transient Rainfall Infiltration and Grid-based Regional 

Slope Stability (TRIGRS; Iverson, 2000 and Baum et al., 2008) are physically-based methods used 

for predicting rainfall-induced slope instability on a regional scale. The stability of slopes in a 

regional context was assessed in discrete landscape cells, and values of the parameters used in 

stability analysis were assigned to each discrete cell. SHALSTAB combines the steady-state 

hydrological model (Beven and Kirkby,1979; O’Loughlin, 1986) and the infinite slope stability 

method (Skempton and DeLory, 1957) to determine the minimum amount of steady-state rainfall 

required to trigger the shallow slope instabilities. SINMAP is a model similar to SHALSTAB but 

classifies the slope stability based on stability index (SI). Unlike SHALSTAB, SINMAP does not 

use zero value for soil cohesion. Instead, SINMAP incorporates uncertain parameters (e.g., 

cohesion, friction angle) using lower and upper bounds assuming a uniform probability 

distribution. These methods assume that slope instability due to rainfall results from the change in 

steady or quasi-steady water table height and groundwater flow parallel to the slope surface. These 

methods do not account for the change in slope-normal redistributions of groundwater pressures 

in response to rainfall infiltration. Iverson (2000) developed a model that considers the slope-

normal redistribution of groundwater pressure associated with the transient infiltration of rain. 

TRIGRS is based on the method outlined by Iverson (2000) for computing pore pressure change 

and an attendant change in a factor of safety due to rainfall infiltration. The TRIGRS model applies 

to areas that are prone to shallow slope failures and satisfy the model assumptions reasonably well 

https://link.springer.com/article/10.1007/s00254-008-1435-5#CR33
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(Baum et al., 2002). The assumptions include relative isotropic and homogeneous soil properties, 

steady background flux, and a well-documented water table. Miller et al. (2012) developed a data 

integration approach for deriving slope stability variables using remotely sensed data to 

parameterize the physically-based model for mapping the slope failure hazard along the corridor.  

Raia et al. (2014) modified the TRIGRS model and presented a probabilistic approach to assess 

the change in the factor of safety of slope due to rainfall infiltration. Zhang et al. (2018) argued 

that landslide forecasting based on the factor of safety calculated using a physically-based model 

is highly uncertain due to the use of cohesion and internal angle of friction, which has a high degree 

of uncertainty on a regional scale. They considered the uncertainties in soil mechanical parameters 

in a physically-based model for forecasting rainfall-induced shallow slope instabilities. Strauch et 

al. (2019) proposed a new approach for mapping shallow land sliding by combining probabilities 

of landslide impact derived from a physically-based model and statistical approach. 

The use of the physically-based models for slope failure susceptibility analysis can provide 

unreliable results due to improper quantification of cohesion and shear strength in clayey soils. 

The clayey soils are predominantly used in the construction of roadside embankment slopes in 

areas that are primarily plain landforms as in Texas. The development of fissures and repeated 

cycles of drying and weathering lead to the softening of clayey soils (Skempton, 1970; Kayyal and 

Wright, 1991; Saleh and Wright, 1997; Castellanos et al., 2016). Softening of overconsolidated 

clayey soils reduces the cohesion component of the Mohr-Column shear strength parameters, and 

the shear strength is reduced to fully softened strength (Skempton, 1977; Stark and Eid, 1997; 

Mesri and Shahien, 2003; USACE, 2003; Wright et al., 2007; Gamez and Stark, 2014). The shear 

strength is further reduced due to the infiltration of rainwater. The moisture variation due to rainfall 

infiltration in clayey slopes usually occurs up to the depth of 2 m from the ground surface (Hossain, 
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2013; Castellanos et al., 2016). The infiltration of water decreases the intergranular or effective 

stress in the soil. The increase in moisture content will also cause the Diffuse Double Layer (DDL) 

of clay particles to expand contributing to the softening of the soil (Khan et al., 2017). While the 

addition of rainfall infiltration increases the driving force, the shear stress of soil decreases due to 

an increase in pore water pressure. This leads to the failure of clayey slopes at shallow depths. The 

failure surface of these shallow slope failures is usually restricted to the slope face and has been 

recorded even in the small embankment with a height of 10 feet (Stauffer and Wright, 1984). 

Kayyal and Wright (1991) examined two failed embankments constructed of clays in the Texas 

Paris and Beaumont districts. The examination of the failed slopes showed that the strength 

mobilized during the failure was equal to the fully softened strength. Kayyal and Wright (1991) 

also back-calculated the pore water pressure for 34 slope failures in clayey soils of Texas. Sixteen 

slope failures occurred in embankments constructed of Paris clay; eighteen slope failures occurred 

in slopes constructed of Beaumont clay. They noticed that mobilization of fully softened strength 

alone was not enough to explain the failure of these slopes. They concluded that significant pore 

water pressure due to rainfall infiltration and softening of the soil caused the failure of roadside 

embankment slopes constructed of Paris and Beaumont clays. Therefore, it is necessary to consider 

both the reduced soil strength and pore water pressure distribution due to rainfall infiltration in 

mapping the shallow slope instability of the roadside slopes in clayey soils. However, significant 

information on spatially varying slope stability variables, such as specific gravity of soil, soil 

classification, hydraulic conductivity, slope geometry, and rainfall intensity-distribution-

frequency are required to assess the effect of rainfall infiltration and fully softened strength on 

slope stability. 
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Publicly available spatially varying data on slope stability variables and increasing ability to collect 

data from different sensing and field data collection technologies provide an unprecedented 

opportunity in assessing the stability of roadside slopes (Taneja et al. 2011; Shahandashti et al. 

2021; Zamanian et al. 2022). However, these publicly available data cannot be readily used for the 

condition assessment of highway slopes. The data on slope stability variables available in various 

sources have different levels of detail (granularity), representations (vector or raster data), and 

reference (coordinate) systems (Shahandashti et al., 2011). The level of detail of a data source can 

be described in terms of geometric or temporal granularities. For example, the data on precipitation 

intensity obtained from the US National Oceanic and Atmospheric Administration (NOAA) are 

available in the geometric granularity of nearly 900 m, whereas 50 cm point cloud LiDAR is 

available for determining ground elevation. Also, data on spatially variable soil properties are 

stored as a polygon layer of different sizes with no defined granularity. The data sources with 

different representations and reference systems pose additional difficulty in slope stability 

assessment. The representation is the way data is stored in a data source. The reference system can 

be defined as a coordinate system or projection system of data in a data source (Pradhan et al., 

2011). The publicly available dataset with different levels of detail, representation, and reference 

system should be made compatible with each other before they can be used for slope failure 

susceptibility analysis of roadside slopes.  

 TRANSPORTATION VULNERABILITY ANALYSIS 

Transportation vulnerability analysis considers the network topology, and in some cases disaster 

as well as traffic flow to identify critical links and nodes of a transportation network (Myung and 

Kim, 2004; Matisziw et al., 2007; Taylor and D’Este, 2007; Wilson, 2007). The transportation 

vulnerability analysis is categorized into four main groups: inventory-based risk assessment, 



 

12 
 

topologically based methods, serviceability-based methods, and accessibility-based methods 

(Taylor, 2017). In inventory-based risk assessment, first, the vulnerable assets in the networks are 

identified, following which, the likelihood of a disruptive event that renders the asset vulnerable 

and potential consequences are determined. If there is a higher likelihood of the disruptive event 

and severe consequences on network performance due to damage to assets, those assets should be 

prioritized for rehabilitation works. Scott and Dunn (2015) defined a vulnerability (Va) of network 

link ‘a’ as a product of exposure index (Ea), which accounts for potential hazard in a link, and 

consequence index (Da), which accounts for consequences resulting from rerouting of link closure. 

Topological vulnerability analysis has its roots in graph theory. In the topologically based method, 

the network structure and topographic properties, especially the connection between nodes, are 

considered in the vulnerability analysis of networks (Demšar et al., 2008; Duan and Lu, 2014). 

The topologically based method is concerned with the identification of the most vulnerable 

location (typically nodes), the disruption of which will severely impact the functioning of the 

network. Demšar et al. (2008) used a graph theory and network topology to determine the most 

critical link in a street network in the Helsinki Metropolitan Area of Finland. The authors reported 

two graph theoretical measures, betweenness and cut vertices, to be crucial in the determination of 

critical location in a network. Betweenness measures how the shortest routes in the network are 

affected due to the closure of the links (Demšar et al., 2008). Cut vertices, when removed, can 

separate the network into two independent parts (Sullivan et al., 2009; Ray, 2013). The 

topologically based method helps to understand and assess the importance of each node and link 

in the connectivity of the network; however, it largely ignores the physical nature of the network 

and the susceptibility of different network components to various disruptive events (e.g., natural 

or manmade hazards) (Taylor, 2017). The accessibility-based methods consider the accessibility 
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between different locations in a network for the vulnerability analysis of a transportation network. 

Accessibility is the ease with which a location of service is reached from a different location using 

the transport system (Taylor and D’Este, 2007). The Hansen integral index (Hansen, 1959) is a 

commonly used accessibility index to measure the accessibility of one location point to a set of 

other destinations in a network (Taylor and D’Este, 2003; Murray and Grubesic, 2007). 

Serviceability-based methods assess the ability of the network to fulfill its intended function during 

a disruptive event that leads to the degradation of some components in the transportation system 

(Mattsson and Jenelius, 2015). The serviceability-based methods for vulnerability analysis use 

sophisticated models to represent the demand and supply of transportation systems and travelers’ 

responses to disruptive events (Cascetta, 2009). This approach requires extensive data on the 

demand and supply aspects of the transportation network for simulating the effect of disruptive 

events. A simple form of serviceability approach is the determination of an increase in travel cost 

(e.g., travel time or travel distance) due to the blockage of the road from a disruptive event (D’Este 

and Taylor, 2003 All the methods of vulnerability analysis help in the identification of critical 

links and nodes due to any disruptive event like slope failure, routine lane closure, or accidents.  

 PROBLEM STATEMENT 

Transportation planners or maintenance workers may not always want to identify the critical links 

as identified from the transportation vulnerability assessment, instead, they may need to identify 

the segments of slope or a combination of critical slope segments that could be rehabilitated with 

limited resources to minimize the overall vulnerability of transportation network. For example, the 

network in Figure 2.1 has three critical slope segments [S1, S2, S3] that are susceptible to rainfall-

induced failure and the slope failure probability of these roadside slope segments is [0.7,0.3, 0.9]. 

If the link LBC is identified as the most critical link from the transportation vulnerability analysis, 



 

14 
 

then the direct message to the network operator is to repair all the slope segments in the LBC, 

irrespective of the slope segment's failure probability. Repairing all the slope segments in a link 

LBC, even the slope segments (S2) with a failure probability lower than the slope segment (S1), may 

not be an economic decision when there is a constraint on the annual maintenance budget or limited 

human resources. Therefore, an approach for determining the optimal slope rehabilitation strategy 

with limited resources should consider the failure probability of slopes and its impact on the 

network's users and transportation agency during different slope failure scenarios. 

 

Figure 2.1 A simplified network showing three critical slope segments. 

Further, the generalized cost (i.e., the combined cost of users and transportation agencies) 

associated with any rehabilitation strategy is probabilistic due to the probabilistic nature of the 

rainfall-induced slope failures. Hence, the proactive decision-making on roadside slope 

rehabilitation should also ensure that the conditional value of risk (CVaR) associated with the 

proactive rehabilitation decision is low (Baral and Shahandashti, 2022c). 

 GAPS IN KNOWLEDGE 

Although the existing studies provide valuable insight for the assessment of slope stability, the 

proactive rehabilitation decision-making for roadside slopes under a limited budget has been 

highly elusive. Following gaps were identified from the literature.  
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(1) Existing literature lack studies assessing the usefulness of the publicly available 

heterogeneous data on slope stability variables for determining the stability of roadside 

slopes in clayey soils. 

(2)  Existing literature does not integrate the slope failure susceptibility analysis with the meta-

heuristic optimization model to support proactive rehabilitation decisions of roadside 

slopes that are susceptible to rainfall-induced geohazards. 

(3) Existing literature lacks studies evaluating the risk associated with the proactive slope 

rehabilitation decisions arising due to the probabilistic nature of slope failures. 

 RESEARCH OBJECTIVE 

The objectives of this research are: 

 (1) To develop a data integration approach for performing slope failure susceptibility analysis to 

determine the usefulness of publicly available data sources for mapping rainfall-induced shallow 

slope failure susceptibilities in roadside slopes;  

 (2) To integrate the slope failure susceptibility analysis with the metaheuristic optimization model 

to determine the most suitable combination of roadside slopes for proactive rehabilitation when 

agencies can only rehabilitate limited slopes due to budget constraints; 

(3) To incorporate the risk associated with the slope rehabilitation decisions into the optimization 

framework to facilitate the selection of rehabilitation strategies at appropriate risk-aversion levels.  

The works performed to achieve the goals of the research are outlined in the following chapters. 
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CHAPTER 3 SLOPE FAILURE SUSCEPTIBILITY ANALYSIS USING 

PUBLICLY AVAILABLE DATA SOURCE  

The data on slope stability variables available in publicly available sources have different levels 

of detail (granularity), representations (vector or raster data), and reference (coordinate) systems. 

The data on slope stability variables obtained from multiple sources should be made compatible 

with each other before the data can be fused to obtain meaningful information on the stability of 

roadside slopes. The objective of this chapter is to develop a data integration approach for 

performing slope failure susceptibility analysis using publicly available data and investigate the 

usefulness of publicly available data for mapping rainfall-induced shallow slope failure 

susceptibilities in roadside slopes. 

 METHODOLOGY 

The methodology is comprised of two stages:  

(1) Extracting the publicly available data on slope stability variables and transforming the 

heterogeneous data to a similar level of detail (granularity), representation (vector or raster data), 

and reference (coordinate) system to create a geo-referenced dataset,  

(2) integrating the geo-referenced dataset with a combination of an infinite slope stability model 

and a hydrological model considering the mobilization of fully softened shear strength to 

determine the minimum duration of rainfall that triggers slope instability in clayey slopes. 

3.1.1. Data Extraction and Transformation 

Soil Survey Geographic (SSURGO) database provides data on the distribution of soil properties 

on the landscape. The SSURGO database is developed by the National Cooperative soil survey, 
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an agency of the United States Department of Agriculture (USDA). This database is the most 

detailed level of soil geographic data. Web Soil Survey (WSS) operated by the Natural Resource 

conservation system makes the SSURGO dataset publicly available. These data provide an 

approximation of soil type and properties. The data are geo-referenced and can be obtained as a 

polygon feature layer. The soil classification is provided based on the unified soil classification 

system (USCS). The soil properties, such as bulk-specific weight, water content (at one-third bar), 

liquid limit, clay fraction, hydraulic conductivity, and soil type can be displayed on a table or as a 

map for most of the United States. The SSURGO dataset provides the soil properties up to a depth 

of 7 feet from the surface. Soil properties for seven different soil depths, each at an interval of 1 

foot along the highway corridor were extracted from the SSURGO datasets. Each soil properties 

polygon feature at seven different soil depths was converted to a raster file and stored in a geo-

referenced integrated database with the granularity and projection system predetermined for slope 

susceptibility mapping. Figure 3.1 shows the IDEF0 diagram showing the steps to transform the 

soil properties obtained from the SSURGO database to rasterized soil properties layers. 
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Figure 3.1  IDEF0 diagram for transforming soil properties feature layers to raster layers  

The slope angle is the major causative factor used in slope stability analysis. The publicly available 

Light Detection and Ranging (LiDAR) dataset was used to obtain slope angles of discrete 

landscape cells. The IDEF0 diagram (Figure 3.2) shows the process for transforming the LiDAR 

dataset into a slope raster. The LiDAR data was first converted to an elevation raster, which was 

further processed to obtain a slope angle raster of the desired granularity and projection system. 
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Figure 3.2 IDEF0 diagram for transforming LiDAR to slope raster layers  

The NOAA’s National Weather Service (NWS) operates the Precipitation Frequency Data Server 

(PFDS). The PDFS provides access to point precipitation frequency estimates. Data consist of the 

depth of precipitation for different durations and varying return periods. NOAA Atlas 14 provides 

precipitation depth (inches) for ten different frequencies (1, 2, 5, 10, 25, 50, 100, 200, 500, 1000 

years) and 19 different durations (5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 45 

minutes, 60 minutes, 2 hours, 3 hours, 6 hours, 12 hours, 24 hours, 48 hours, 3 days, 4 days, 7 

days, 10 days, 20 days, 30 days, 45 days, and 60 days). Raw precipitation data collected from 

NOAA’s Precipitation Frequency Data Server (PFDS) is available in the resolution of 

approximately 900 m. The precipitation data were obtained as ASCII files and were rasterized 

using an automated process shown in Figure 3.3. One hundred ninety precipitation intensity raster 

files (19 durations × 10 frequencies) of different duration and return periods were generated for 

slope failure susceptibility analysis. 
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Figure 3.3 IDEF0 diagram for conversion of point precipitation frequency estimates to raster 

layers  

3.1.2. Slope Failure Susceptibility Analysis 

A combination of an infinite slope stability model and pore pressure response model was integrated 

with the geo-referenced database to determine the minimum duration of rainfall that triggers slope 

instability in slopes along the highway corridors. Infinite slope failure refers to the movement of a 

soil mass approximately parallel to a slope face (Das, 2010). A slope fails when the downslope 

component due to gravitational force on a soil mass exceeds the resisting force due to column 

friction. The factor of safety (FOS) for slope at depth z (Figure 3.4) is given by Equation (3.1). 
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Figure 3.4 Slope failure parallel to surface showing the model parameters 

𝑭𝑶𝑺 =
𝐭𝐚𝐧𝛟

 𝐭𝐚𝐧𝜶
 +

𝐂

𝛄𝐬 𝐳 𝐬𝐢𝐧𝜶.𝐜𝐨𝐬𝜶
+ −

𝚿(𝛄𝐰)𝐭𝐚𝐧𝛟

𝛄𝐬 𝐳 𝐬𝐢𝐧𝜶.𝐜𝐨𝐬𝜶
           (3.1) 

𝛹 = (𝑧 − dz) cos2  𝛼              (3.2) 

 

where c is the cohesion of soil, z is the depth of failure, γs is the unit weight of soil, γw is the unit 

weight of water, ϕ  is drained fully softened internal angle of friction, 𝛼 is the slope angle, Ψ is 

the soil water pressure at depth z. 

Maximum plausible depth of thickness must be specified in the analysis of slopes using an infinite 

slope stability model. Without the specification, no bound exists for landslide thickness (Iverson, 

2000). The constant soil thickness to develop a slope susceptibility map has been previously used 

by Montgomery and Dietrich (1994) and Mohseni et al. (2018). Therefore, the depth of failure that 

renders most slopes unstable along the highway corridors was determined to develop a shallow 

slope failure susceptibility map of spatially constant soil thickness. Figure 3.5 shows the method 

for determining the failure depth that triggers most rainfall-induced slope stability in clayey slopes 
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along the highway corridors. Shallow slope failures in clayey soils do not exceed 10 feet and can 

be considered infinite slope failures (Day and Axten 1989; Lohnes et al., 2001; Hossain, 2013; 

Castellanos et al., 2015). The SSURGO database provides the information for the depth up to 7 

feet from the surface. The value of FOS is calculated for different soil depths(z), each at an interval 

of 1 foot, using an infinite slope stability model.  The water table was assumed to coincide with 

the slope surface (i.e., Ψ = z cos2 θ). The varying fully softened frictional angle, which changes 

with change in normal stress, was considered in the FOS calculation at various depths. The value 

of the fully softened frictional angle was determined at each depth based on the empirical 

correlations defined by Stark et al. (2013) and Gamez and Stark (2014). The empirical correlations 

used the value of liquid limit, clay-size fraction, and effective stress at each depth to obtain fully 

softened frictional angles. The cohesion was assigned a value of zero for clayey soils with high 

swelling and shrinkage potential following the recommendation of Stark et al. (2005). Based on 

FOS obtained at different depths, the soil thickness that causes most slope failure along highway 

corridors was selected for developing a slope susceptibility map. The slopes with FOS > 1 are 

considered unconditionally stable (i.e., rainfall cannot trigger instability in these slopes). Slopes 

having FOS<1 are unstable and are further analyzed to determine the duration of rainfall that 

triggers the slope instability.  
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Figure 3.5 Identification of unstable slopes and soil depth that triggers most slope instability in 

highway embankments  

For the unstable slopes with the factor of safety (FOS) < 1, the ratio of soil water pressure (Ψ)  to 

the depth of failure (z), Ψ*crit, which would initiate the failure (i.e., FOS =1), should be obtained. 

Ψ*crit, also termed dimensionless critical soil water pressure, was found using Equation (3.3): 
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𝝍 *crit = 
𝚿

𝒛
=

𝛄𝒔

 𝛄𝒘
(𝟏 −

𝒕𝒂𝒏𝜶

 𝒕𝒂𝒏𝝓
) 𝐜𝐨𝐬𝟐 𝜶 +  

𝑪

𝛄𝒘 𝒛𝒕𝒂𝒏𝝓
         (3.3) 

Iverson's (2000) pore pressure response model was then used to determine the minimum duration 

of rainfall causing pore water pressure equivalent to Ψ*crit.  Iverson (2000) obtained time-varying 

dimensionless soil water pressure, Ψ*(t*), due to rainfall rate, Iz, by solving linearized Richards 

equation with suitable initial and boundary conditions driving Equation (3.4):  

Ψ*(t*) = 
𝚿(𝐭∗)

𝒛
 =  (𝟏 −

ⅆ𝐰

𝐳
) 𝐜𝐨𝐬𝟐 𝜶 +

𝑰𝒛[𝑹(𝒕∗)]

𝒌𝒛
                     0≤t*≤T* (3.4a) 

Ψ*(t*) = 
𝚿(𝐭∗)

𝒛
 = (𝟏 −

ⅆ𝐰

𝐳
) 𝐜𝐨𝐬𝟐 𝜶 +

𝑰𝒛[𝑹(𝒕∗)−𝑹(𝒕∗−𝑻∗)]

𝒌𝒛
        t*≥T* (3.4b) 

Ψ(𝑡∗) is the pore water pressure at time t*, dw is the depth of the initial groundwater table (Figure 

3.4), and 𝑘𝑧 is the hydraulic conductivity. T* is non-dimensional rainfall duration, and t* is 

nondimensional time given by: 

𝑻∗ =
𝟒𝑫𝟎 𝒄𝒐𝒔𝟐 𝜶

𝒛𝟐 𝑻                    𝒕∗ =
𝟒𝑫𝟎 𝒄𝒐𝒔𝟐 𝜶

𝒛𝟐 𝒕                (3.5) 

In Equation (5), T is the rainfall duration, and t is the time at which soil water pressure should be 

determined where 𝐷𝑜 = 𝑘𝑠𝑎𝑡 ∕ 𝐶0. 𝐶0 is the minimum value of 𝐶(𝛹). 𝐶(𝜓) = ⅆ𝜃/ ⅆ𝜓 presents 

the change in volumetric water content per unit change in pressure head.  The value of 𝐶0  is 

assigned based on soil type (Mohseni et al., 2018).  R(t*) is a response function given by: 

 R(t*) = √
𝒕∗

П
 𝐞𝐱𝐩(−

𝟏

𝒕∗
)-𝒆𝒓𝒇𝒄(√

𝟏

𝒕∗
 )                                           (3.6) 

Where erfc is the complementary error function. 

To determine the rainfall duration triggering shallow slope failure, it is necessary to determine the 

peak value of the pressure head due to rainfall infiltration. The peak value of the pressure head can 
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occur during or after the rainfall. Therefore, it is crucial to determine the time, tp*, at which the 

peak value of pressure head occurs for the rainfall duration of T*.  The peak time, tp*, was 

determined by solving the condition ⅆ𝜓∗(𝑡∗) ⅆ(𝑡∗)⁄ = 0 for Equation (4) (D'Odorico et al., 2005): 

𝑰𝒛

𝒌𝒛

ⅆ𝑹(𝒕∗)

ⅆ𝒕∗ =
𝑰𝒛

𝒌𝒛
𝒓(𝒕∗) = 𝟎                                           0≤t*≤T*       (3.7a) 

𝑰𝒛

𝒌𝒛

ⅆ𝑹(𝒕∗)

ⅆ𝒕∗
=

𝑰𝒛

𝒌𝒛
 (𝒓(𝒕∗) − 𝒓(𝒕∗ − 𝑻∗)) = 0            t*≥T*      (3.7b) 

where, 

𝒓(𝒕∗) =
ⅆ𝑹(𝒕∗)

ⅆ(𝒕∗)
=

𝟏

𝟐√𝝅𝒕∗ 𝒆𝒙𝒑 (−
𝟏

𝒕∗)         (3.7c) 

Equation (7) can be solved, providing the estimate of tp* for different rainfall duration, T*. Figure 

6 [modified from Iverson (2000)] shows the plot of tp* for the rainfall duration of T*.  For the 

duration of rainfall T*≤ 1, the time to peak is almost constant, tp*~2, and linearly increases with 

T* when T*>1. For longer rainfall durations, peak soil water pressure occurs at the end of rainfall 

duration; tp*~T*. 
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Figure 3.6 Graph of peak response duration, tp*, for a wide range of normalized rainfall duration 

T*  

The US National Oceanic and Atmospheric Administration (NOAA) provides the intensity for 19 

different durations and 10 different return periods. The rainfall intensity (depth) for different 

durations and return periods was converted to a steady-state rainfall rate ( 𝐼𝑧 ) for use in Equation 

(4). For all the 19 rainfall durations corresponding to 10 different return periods, the time tp* that 

causes the peak soil water pressure was determined using Equation (3.7). Then, peak soil water 

pressure Ψp*(t*) at time tp* was determined using Equation (3.4).  Figure 3.7 shows the plot of 

dimensionless peak soil water pressure, Ψp*(t*), due to rainfalls with 19 different durations and 

10 different return periods for a single landscape cell of a roadside slope in clayey soils. The critical 

rainfall duration that triggers slope failure is of duration T*+ (Figure 3.7), which develops a 

dimensionless peak soil water pressure Ψp*(t*) equivalent to the dimensionless critical soil water 
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pressure (Ψ*crit) required to initiate failure in clayey soil slopes. Figure 3.7 shows that the rainfall 

durations of different return periods produce the same peak soil water response for smaller values 

of T*. This is because the maximum value for the ratio of rainfall rate (𝐼𝑧) to the infiltration rate 

(𝑘𝑧) is limited to 1 in Equation (3.4). If the rainfall rate is higher than the infiltration rate (𝐼𝑧/𝑘𝑧> 

1), the surplus rainfall, which is higher than the infiltration rate runs off as Horton overland flow. 

Hence, if the steady-state rainfall rates across different rainfall durations and return periods are 

higher than the rainfall infiltration rate, the curve (Figure 3.7) showing the increase in peak soil 

water pressure with rainfall duration will overlap for different return periods. This is supported by 

a stability analysis of clayey slopes in Texas, where FOS was found to decrease with increasing 

rainfall duration, but the decrease in FOS was similar for rainfall of different return periods 

(Hossain, 2013). In clayey soils, the infiltration capacity is usually lower compared to the rainfall 

rate (𝑖. 𝑒. , 𝐼𝑧/𝑘𝑧 >  1) due to which the rainfall greater than the infiltration rate will overflow over 

the slope surface. Hence, for slopes constructed of clayey soils, it is more convenient and practical 

to categorize the slope failure susceptibility based on the rainfall duration. Figure 3.8 shows the 

overall process to determine the minimum duration of rainfall, triggering shallow slope instability 

for the clayey slopes. 
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Figure 3.7 Graphs of pressure head Ψp*(t*) versus normalized rainfall duration T* for different 

return periods 
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Figure 3.8 Determination of critical rainfall duration for unstable slopes  

 APPLICATION 

The proposed geo-referenced data integration approach was applied to a total of 498 kilometers 

(309.433 miles) of highway corridors in the TxDOT Paris district. These include sections of 

US0082, US0075 US0069, IH0030, and US0380 highways. The embankments in these corridors 

were determined by the district engineers as being prone to shallow slope failures. Slope failure 

susceptibility analysis was performed to cover 300 ft width on either side from the centerline of 

the corridor.  LiDAR data obtained from the Texas Natural Resource Information System (TNRIS) 
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are available for this length of corridors (Figure 3.9). The district has a warm, moist, humid, and 

subtropical climate characterized by heavy rains (Ressel, 1979). The mean annual average 

precipitation in Paris is 45.32 inches. The vegetation of the TxDOT Paris district is representative 

of those found around Northern Texas (McMahan et al., 1984; Ludeke et al., 2009); grass, shrubs, 

and small trees act as the primary cover for the embankments. 

 

Figure 3.9 Corridors selected for slope susceptibility analysis 
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Clayey soils are predominant along the corridors selected for slope susceptibility analysis 

(Zamanian and Shahandashti, 2021). Table 3.1 shows the distribution of the soil types based on 

the unified soil classification system (USCS) for the corridor embankments. More than 70% of the 

embankment slopes are constructed in clayey soils with high swelling and shrinkage potential. 

Data on soil type, liquid limit, clay size fraction, saturated hydraulic conductivity, water content 

at field capacity, and unit weight up to a depth of 7 feet were obtained from the Soil Survey 

Geographic (SSURGO) database. The accuracy of the SSURGO database was investigated by 

comparing the soil properties obtained from the SSURGO database with the laboratory-measured 

soil properties at the most recent slope failure locations. Table 3.2 shows the soil properties 

obtained from the SSURGO database and a recent geotechnical study (Jafari and Puppala 2018) 

for three past slope failures in the TxDOT Paris district highway embankments. The comparison 

of the data shows that the SSURGO database provides a reasonable approximation of soil 

properties at recent slope failure sites.  The data on rainfall intensity, duration, and return period 

were acquired from NOAA’s National Weather Service (NWS). The publicly available data 

extracted from the various heterogeneous sources were transformed to a similar level of detail 

(granularity), representation (raster layer), and reference (coordinate) system to create an 

integrated geo-referenced dataset for slope susceptibility analysis. The geo-referenced dataset 

contains data on soil properties, slope angle, and rainfall intensities of different duration and return 

periods for each landscape cell with a granularity of 3 m. Figure 3.10 shows slope angles, soil type, 

unit weight, liquid limit, saturated hydraulic conductivity, and fully softened frictional angle for a 

1500 m stretch of the corridor along US0075.  
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Table 3.1 Soil types along the corridors 

Unified soil classification system 

(USCS) 

No. of Grid (size: 3 

m) 

Percentage area (%) 

CH 2773974 28.87% 

CL 3457504 35.99% 

CL-ML 272493 2.84% 

GC 13032 0.14% 

SC-SM 552546 5.75% 

SM 272306 2.83% 

ML 197244 2.05% 

SC 24245 0.25% 

Others  2044540 21.28% 

 

Table 3.2 Soil properties for three different locations in embankments of the TxDOT Paris 

district 

Location Source Soil 

type 

Liquid 

Limit 

Clay size 

fraction 

Bulk Specific 

gravity 

U.S. 75 at Randell Lake Rd 

Intersection, Grayson Co., Paris district 

USDA CH 58 48 1.42 

Jafari and Puppala, 2019 CH 59 55 1.6 

U.S. 82 at FM 79 Intersection, Lamar 

Co., Paris district 

USDA CL 59 43 1.46 

Jafari and Puppala, 2019 CH 61 47 1.53 

U.S. 82 nearby N Main Street, Lamar 

Co., Paris district 

USDA CL 59 43 1.46 

Jafari and Puppala, 2019 CL 47 33 1.64 
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Figure 3.10 (a) Slope angles in degree (b), Soil classification (USCS), (c) Unit weight of soil 

(KN/m3), (d) Liquid limit, (e) Saturated hydraulic conductivity, (f) Fully softened frictional angle 
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After the development of the integrated geo-referenced dataset, the fully softened frictional angles 

were obtained for the seven different soil layers at one-foot intervals using the empirical correlation 

developed by Stark et al. (2013) and Gamez and Stark (2014). This empirical correlation was 

validated for obtaining the fully softened frictional angle for clayey soil in Texas (Jafari and 

Pappula, 2019). Infinite slope analysis was used to determine the FOS at each landscape cell at 

various soil layers assuming the water table to coincide with the slope surface. Table 3.3 shows 

the number of unstable and stable landscape cells (3 m dimensions) for 498 kilometers (309.433 

miles) of highway corridors in the TxDOT Paris district. 3.8% of the landscape cells were found 

to be unstable due to rainfall infiltration. The critical dimensionless soil water pressure (Ψ*crit) 

(Equation 3.4) that initiates the slope instability was determined for all the unstable slopes. The 

time-varying peak dimensionless soil water pressure (Ψp*(t*)) due to the rainfall of varying 

duration was determined and compared with critical dimensional soil water pressure (Ψ*crit) to 

obtain the minimum rainfall duration required to trigger the slope instability. The slopes along 

highway corridors were classified in accordance with the rainfall duration that triggers the slope 

instability:  

Highly Critical: slopes that are susceptible to failure due to the rainfall duration of fewer 

than 3 days. 

Critical: slopes that are susceptible to failure due to the rainfall duration between 3- 10 

days. 

Moderately Critical: slopes that are susceptible to failure due to the rainfall duration 

between 10 -45 days. 

Non-Critical: slopes that are susceptible to failure due to the rainfall duration of more 

than 45 days. 
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Color-coded maps were created to display the rainfall-induced slope failure susceptibilities along 

the highway corridors. Figure 3.11 shows the slope susceptibility map for a 1500 m stretch of 

highway corridor at US 75 and Randall Lake Rd intersection in the TxDOT Paris district. The 

rainfall durations triggering the slope instability in unstable landscape cells are shown in Table 

3.4.  The result of the slope susceptibility mapping shows that 17.71%, 27.33 %, and 11.24 % of 

unstable slopes are susceptible to failure due to rainfall duration of fewer than 3 days, 10 days, and 

45 days, respectively.  

Table 3.3 Number of stable and unstable slopes along highway corridors  

Slope classification based on stability Number of cells Area (%) 

Unstable slopes 365665 3.8% 

Unconditionally stable slopes 9242219 96.2% 

 

 

Table 3.4 Duration of rainfall that triggers slope failure in unstable slopes 

Susceptibility 

indicator scheme 

Rainfall Duration 

for slope instability 

Number of 

cells 

Area (%) 

Highly Critical < 3 days 64750 17.71% 

Critical  3-10 days 99938 27.33% 

Moderately critical  10-45 days 41114 11.24% 

Non-critical >45 days 159863 43.72% 
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Figure 3.11 Slope failure susceptibility map at US 75 and Randall Lake Rd intersection in 

TxDOT Paris District 
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 VALIDATION 

The slope failure susceptibility maps generated for the TxDOT Paris district slopes were validated 

using recent slope failures along highway corridors. Data on recent slope failures in the study area 

were obtained from the Texas Department of Transportation (TxDOT). Ten recent slope failures 

were reported by TxDOT, where slope failure susceptibility analysis was performed. Figure 12 

shows the critical segments of highway embankments identified using the geo-referenced data 

integration approach and the slope failure locations in the TxDOT Paris district. Nine slope failures 

lie in highly critical regions, which require a rainfall duration of fewer than 3 days to trigger slope 

instability, and one slope failure lies in the critical region, which requires less than 7 days of rainfall 

to trigger slope instability. The results demonstrate that the publicly available data with the 

proposed approach are capable of identifying the critical slope segments along the highway 

corridors. 
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Figure 3.12 Critical slope identified by the geo-referenced data integration approach and past 

slope failures along the corridors of the TxDOT Paris district 
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CHAPTER 4 IDENTIFYING THE OPTIMAL COMBINATION OF CRITICAL 

SLOPE SEGMENTS FOR PROACTIVE REHABILITATION  

Proactive rehabilitation of slopes can help to reduce roadside slope failures and minimize the 

disruption of transportation networks resulting from rainfall-induced slope failures. However, all 

the slope segments that are susceptible to rainfall-induced failures cannot be rehabilitated within a 

small timeframe due to the limited availability of maintenance budget and manpower in federal 

and state transportation agencies. This chapter proposes an approach to identify the optimal 

combination of critical slope segments that should be proactively rehabilitated to reduce the 

vulnerability of transportation networks when transportation agencies’ capacity is restricted to 

rehabilitate a limited length of slope segments. 

 METHODOLOGY 

The methodology of this research is divided into the following steps: 

➢ A stochastic combinatorial optimization problem is formulated to determine a 

rehabilitation strategy that minimizes the combined user and agency cost aftermath of 

rainfall-induced failures in a network for which a constraint imposed on highway agencies 

is to rehabilitate a limited number of slope segments due to budget restrictions. 

➢ The stochastic combinatorial optimization is solved by integrating a genetic algorithm with 

a generalized cost estimation model, which provides combined user and agency costs 

associated with slope failures, to determine the optimal combination of slope segments for 

proactive rehabilitation. 
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4.1.1. Formulating Optimization Problem 

The problem is defined as the minimization of the generalized cost, which is the cost of travel (user 

cost) and slope restoration (agency cost) following rainfall-induced slope failures. Let V be the 

generalized cost (overall user and agency cost) of the network due to the disruption caused by 

slope failure. Then, the objective function is given by: 

 𝒎𝒊𝒏𝒑∈𝐏 𝑬( 𝑽𝑵
𝒑

) 

Where P signifies the set of all the rehabilitation policies (p) for maintenance of critical slope 

segments. The rehabilitation policy p is generated by considering two possible outcomes: 

“rehabilitation” or “no rehabilitation” for each roadside slope segment that is identified as critical 

from slope failure susceptibility analysis. For example, consider a road network as shown in Figure 

4.1 where only three slope segments are susceptible to slope failures. The rehabilitation policy can 

be represented by {r1, r2, r3}, where rk=1 represents k𝑡ℎ slope segment is rehabilitated and rk= 0 

means k𝑡ℎ slope segment is not rehabilitated. Based on this, for network in Figure 4.1, all the 

possible slope rehabilitation policy would be P = {{0,0,0}, {0,1,0}, {1,0,0}, {1,1,0}, {0,0,1}, 

{0,1,1}, {1,0,1}, {1,1,1}}. Without feasible constraint, P ∈ X2Ns×Ns is the total combinatorial 

decisions space for a network with Ns number of critical slopes. However, the size of P is limited 

by the constraint that any rehabilitation policy (p∈P) cannot recommend rehabilitation of slope 

segments whose sum exceeds the available budget (B𝑟𝑒ℎ𝑎𝑏). For demonstrating the application of 

the proposed approach, the rehabilitation budget was used as the feasibility constraint.  

The calculation of the increase in generalized cost (V) requires (a) solving physically-based 

equations and knowledge of soil mechanical properties to evaluate the failure probability of 

roadside slopes; (b) data on traffic flow in the networks; and (c) cost estimates of slope repair. 
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Considering the uncertainty in the cohesion and internal angle of friction of soil, the result of the 

stability assessment can be presented as slope failure probability (Zhang et al., 2018). As the 

rainfall-induced slope failures are probabilistic, the generalized cost (V) resulting from rainfall-

induced damages in the network is also probabilistic. Thus, identifying the rehabilitation policy 

with minimum generalized cost (V) from a set of all possible rehabilitation policies, considering 

the probabilistic rainfall-induced slope failure, leads to the formulation of stochastic combinatorial 

optimization. 

 

Figure 4.1 A simplified network showing three critical slope segments. 

4.1.2. Solving stochastic combinatorial optimization 

Combinatorial optimization is difficult to solve using conventional algorithms due to the 

nonconvex and noncontinuous nature of the objective function, which lacks closed-loop 

representation (Pudasaini and Shahandashti, 2018). Hence, a genetic algorithm with tournament 

selection (Pudasaini et al. 2017) was combined with the generalized cost estimation model to 

identify the optimal combination of critical slope segments, which should be rehabilitated to 

minimize the generalized cost in events of network disruption caused by rainfall-induced slope 
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failures. The minimization is constrained by highway agencies' inability to proactively maintain 

all the slope segments in a network. Figure 4.2 shows the integration of the genetic algorithm and 

the generalized cost estimation model to identify the optimal combination of slopes for proactive 

rehabilitation. 

 

 

Figure 4.2 Genetic algorithm integration with vulnerability assessment of transportation network.  
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For the generation of random rehabilitation policies for slope maintenance, first, all the critical 

segments along the highway corridors will be identified. A probabilistic slope failure susceptibility 

map of roadside slopes shall be developed using a combination of the pore pressure response model 

(Iverson, 200) and the infinite slope stability model (Skempton and DeLory, 1957). A rainfall 

event of a 10-year return period will be considered for developing a rainfall-induced probabilistic 

slope failure susceptibility map (GEO, 1984). Iverson's (2000) pore pressure response model will 

be used to determine the slope-normal redistribution of groundwater pressure associated with 

rainfall infiltration. Then, the infinite slope stability model will be used to determine the FOS of 

each pixel in the landscape. The FOS shall be obtained using Equation 4.1. 

𝐹𝑂𝑆 =
tanϕ

 tan𝛼
 +

C

γs z sin𝛼.cos𝛼
−

Ψ(γw)tanϕ

γs z sin𝛼.cos𝛼
       (4.1) 

where c is the cohesion of soil, z is the depth of failure, γs is the unit weight of soil, γw is the unit 

weight of water, ϕ  is drained fully softened internal angle of friction, 𝛼 is the slope angle, Ψ is 

the soil water pressure at depth z. 

The cohesion and internal angle of friction for the soils at each pixel in a landscape cannot be 

determined with certainty. The accuracy of the soil mechanical parameter, such as cohesion and 

internal angle of friction of soil has a significant effect on the value of FOS of the pixels in the 

landscape (Raia et al., 2014; Zhang et al., 2018). In the calculation of FOS at the pixel level for a 

large area, the seemingly deterministic soil mechanical parameters have a different amount of 

uncertainty, which in turn leads to an uncertain forecast of slope stability (Zhang et al., 2018). The 

uncertainty of soil mechanical parameters will be described using probability density function, 

e.g., uniform distribution and normal distribution (Zhang et al., 2018). For describing the soil 

mechanical parameter with a normal distribution density function, expressed as ϕ=N(μϕ, σϕ
2) and 

https://link.springer.com/article/10.1007/s00254-008-1435-5#CR33
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C=N(μc, σc
2), the mean and the standard deviation should be defined for each pixel in the 

landscape. To determine the value of mean and standard deviation for each pixel, numerous 

samples must be taken, and experimental works must be carried out. This is unrealistic for a large 

region. It is, therefore, desirable to use uniform distribution in an area where information on geo-

hydrological parameters is limited and the values of soil mechanical parameters are within the 

appropriate variation range (Raia et al., 2014; Zhang et al., 2018). In this study, the uncertainties 

in soil cohesion and frictional angle will be defined by uniform probability distributions in the 

range of: 

 

 c = U (cmin, cmax) and           (4.2) 

 ϕ = U (ϕmin, ϕmax)  

The Monte Carlo method will then be used to obtain cohesion and internal angle of friction n times 

for calculating the factor of safety (FOS) at a specified depth of each pixel. 

The values of cohesion ci and internal friction angle ϕi shall be determined using Equation 4.3. 

ci= kic (cmax- cmin) + cmin         (4.3) 

ϕi= kiϕ (ϕmax- ϕmin) + ϕmin     

kic = U (0,1) and kiϕ = U (0,1);          

Where cmax and ϕmax represent the maximum value of cohesion and frictional angle of the ith pixel 

in the landscape, and cmin and ϕmin are the minimum values. For each pixel in the landscape, a 
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matrix Li will be created after random extraction of cohesion and internal angle of friction as shown 

in Equation 4.4. 

 

         (4.4) 

 

For each set of parameters (i.e., cohesion and internal angle of friction) in Li, FSi= [FS1, FS2, 

FS3…...FSn] will be generated using Equation 4.1. The FSi states the n different possible stability 

state for the ith pixel in the landscape under different possible values of internal angle of friction 

and cohesion. The failure probability Pf ∈ [0,1] of a pixel shall be quantified by identifying the 

number of FS < 1 for n possible values of soil mechanical parameters (Equation 4.5). 

Pi =
 No.of FSk<1

 n
  , where k= 1 to n         (4.5) 

The process to develop a probabilistic slope failure map for the roadside slopes along the highway 

corridors is shown in Figure 4.3. 
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Figure 4.3 Calculation for obtaining the probability of slope failure 

Following the identification of critical slopes that are susceptible to rainfall-induced failures, an 

initial population of rehabilitation policies was generated. The rehabilitation policies (P) for slope 

segments were denoted by binary vectors. The binary digit in the vector represents a rehabilitation 

decision for a slope segment (0 indicates no rehabilitation and 1 indicates slope rehabilitation). 

The binary digit act as a chromosome for a genetic algorithm. For instance, consider a 

transportation network with six critical slope segments. A policy of rehabilitating the second and 

fifth slope segments would then be represented by the binary vector [010010]. These binary vectors 

are denoted as solution vectors in this paper. 
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While creating solution vectors (i.e., rehabilitation policies), the following feasibility constraint 

(Equation 4.6) was employed to reject unreasonable solutions: 

∑ 𝑛𝑘𝐶𝑘
𝑁𝑠
𝑘=1 ≤ 𝐶𝑟𝑒ℎ𝑎𝑏          (4.6) 

Where 𝑛𝑘 is 1 if the slope segment k is rehabilitated, 𝑛𝑘 is 0 if the slope segment is not 

rehabilitated, 𝑁𝑠 is the number of critical slope segments considered in the decision process, 𝐶𝑘 is 

the rehabilitation cost of slope segment k, and 𝐶𝑟𝑒ℎ𝑎𝑏 is the total budget available for proactive 

rehabilitation. 

The genetic algorithm to identify the rehabilitation policy with minimum generalized cost begins 

with the generation of the initial population, which comprises the formation of five arbitrary 

solution vectors that denote five arbitrary policies for rehabilitating critical slope segments. At the 

beginning of the genetic algorithm, this initial population of five rehabilitation policies is the 

current generation. For each rehabilitation policy 𝑝 ∈ 𝑃, the expected generalized cost is obtained 

using Equation 4.7. 

𝑬(𝑽𝑵
𝒑∈𝑷

) =
∑ (∑ ∑ ⅆ𝒊𝒋

𝒕  [∆𝑳𝒊𝒋
𝒑,𝒓

𝒋 𝑪𝒐𝒑+∆𝑻𝒊𝒋
𝒑,𝒓

𝑪ⅆ]+𝑪𝒔𝒓
𝒑,𝒓

)𝒊
𝑵𝑴𝑪𝑺
𝒓=𝟏

𝑵𝑴𝑪𝑹
     (4.7) 

Where 𝑉𝑁
𝑝∈𝑃

 represents the global measure of the consequence of network disruption (i.e., 

generalized cost of network) when only slopes segments represented by policy p are rehabilitated; 

ⅆ𝑖𝑗
𝑡 is the demand of movement from i to j during disruption duration t; ∆𝐿𝑖𝑗

𝑝,𝑟
 represents the change 

in travel length from origin i to destination j during rth damage simulation in a network whose 

rehabilitation policy is represented by p, ∆𝑇𝑖𝑗
𝑝,𝑟

 represents the change in travel time from origin i 

to destination j during rth damage simulation in a network whose rehabilitation policy is 
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represented by p; 𝐶𝑜𝑝 is the per mileage cost associated with the operation and maintenance of 

vehicles and 𝐶𝑑  is the cost associated with delay time; 𝐶𝑠𝑟
𝑝,𝑟

 is the cost associated with the slope 

repair for rth damage simulation in a network whose rehabilitation policy is represented by p. The 

cost of owning and operating (𝐶𝑜𝑝 )  a passenger vehicle is 67 cents per mileage (Bureau of 

Transportation Statistics 2021) and the cost associated with delay is 30.12 dollars per hour 

(TxDOT 2022). The user cost is calculated considering 6 hours of traffic disruptions as this should 

be sufficient to remove the debris from shallow slope failure. The cost of slope restoration (𝐶𝑠𝑟
𝑝,𝑟

) 

is calculated based on the rebuilding and compaction method incorporating the cost of slope 

flattening (4H:1V) when applicable (Shahandashti et al. 2022). 

Figure 4.4 shows the process to calculate the expected generalized cost for one rehabilitation 

policy. For a rehabilitation policy p ∈ P, every single run of Monte Carlo simulation starts by 

generating the slope failures in a transportation network. For each slope segment that is not 

rehabilitated as per policy p, a random number (Rn ∈ [0,1]) is generated and compared with the 

failure probability of the slope segments. If the random number exceeds the failure probability, the 

link adjacent to the slope segment is blocked. After creating the blockages of the link for the current 

Monte Carlo run, the traffic simulation is performed in the network. The vehicles that were 

supposed to pass through the blocked lane are rerouted using the next shortest route. Then for all 

rerouted vehicles in the current Monte Carlo run change in travel cost is calculated. The change in 

travel cost is noted for a predefined number of Monte Carlo runs (NMCR) for each rehabilitation 

policy. The expected overall increase in generalized cost is then calculated using Equation 4.7. 

The process was repeated to determine the expected generalized cost of all the policies in the initial 

generation (i.e., five initially generated policies) of the genetic algorithm. After acquiring the 

expected generalized costs (V) of the initial generations, the next generation of policies of the 
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genetic algorithm is obtained based on the genetic operation proposed in Chen and Shahandashti 

(2009). First, all initial policies are ranked based on the expected generalized cost (V). Then, a 

two-point crossover of the two policies with the least expected generalized cost is performed to 

generate the new offspring policy. The crossover and mutation are performed on the new offspring 

till the cumulative slope rehabilitation budget of new offspring is less than or equal to the constraint 

imposed on the rehabilitation budget, i.e., Crehab. Calculating the expected generalized cost for new 

offspring is repeated until a predefined number of generations is reached. The rehabilitation policy 

with the least expected generalized cost in the last generation is the most critical slope to be 

rehabilitated for minimizing the network's vulnerability to rainfall-induced failures. 
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Figure 4.4 Calculation of generalized cost for a slope rehabilitation policy 

 

 APPLICATION 

The proposed approach was applied to a road network (Loop 286) in Paris city of Lamar County, 

Texas. Figure  4.5 shows the network selected for demonstrating the application of the proposed 

approach. 
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Figure 4.5 Loop 286 in the Paris district of Texas 

 

First, a probabilistic slope failure susceptibility analysis of the roadside slopes was performed to 

determine the failure probability of slopes. The rainfall intensity corresponding to a 3-day 10-year 

return period is considered as a scenario rainfall in assessing the failure probability of roadside 

slopes (GCO, 1984). A previous study in the Paris district area showed that significant roadside 

slopes were highly susceptible to failure due to rainfall intensity corresponding to a 10-year return 

period and 3 days duration (Baral et al. 2021). The data on rainfall was obtained from Precipitation 

Frequency Data Server (PFDS) operated by NOAA’s National Weather Service (NWS). The PDFS 

provides access to point precipitation frequency estimates (NOAA, 2018). The rainfall distribution 

function (Equation 4.8) is used to define the rainfall intensity distribution corresponding to 3-day 

10-year return period rainfall for the study region. The mean intensity of a 3-day 10-year rainfall 

event is 7.21 inches with a 90 percent confidence interval in the range of 5.88 to 8.80 inches 

(NOAA 2021).  

Texas
Loop 286 in TxDOT Paris District
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f(x) =
1

0.125𝑥√2𝜋
exp (−

(𝑙𝑛𝑥−ln (7.21))2

0.03125
)       (4.8) 

Data on soil properties were obtained from Soil Survey Geographic (SSURGO) database (Soil 

Survey Staff, 2019).  The Natural Resource Conservation System (NRCS) makes the SSURGO 

dataset available for public use. The slope angle was obtained using the publicly available Light 

Detection and Ranging (LiDAR) dataset (TNRIS, 2019). All the data were processed to create a 

raster of 3 m granularity in ArcGIS. Roadside slopes in the Paris district are mostly clayey soils 

with high swelling and shrinkage potential. Therefore, a fully softened frictional angle was 

assumed to be mobilized during slope failures (Castellanos et al., 2015; Khan et al., 2016; 

Shahandashti et al., 2019; Baral et al. 2021). The mean value of the fully softened frictional angle 

was assessed in each pixel using the empirical correlations defined by Stark et al. (2005) and 

Gamez and Stark (2014). The empirical correlations used the value of liquid limit (LL), clay-size 

fraction (CF), and effective stress at failure depth. The values of spatially distributed soil liquid 

limit and clay-size fraction are obtained from the SSURGO dataset (Soil Survey Staff, 2019). The 

effective stress at any soil depth is calculated using the information on the spatial distribution of 

soil’s unit weight from the SSURGO dataset. The SSURGO database provides a reasonable 

estimate of soil properties in the study area (Baral et al. 2021). Also, the variability in soil texture 

reported in the SSURGO database is consistent with the variability reported from field-based 

measurements (Cole 2017). The cohesion of fully softened soil at failure was assigned a value of 

50 psf based on the past slope failure studies in Lamar County, Texas (Stauffer and Wright, 1984; 

Kayyal and Wright, 1991; Jafari and Puppala, 2019). Once the average value of the internal angle 

of friction and cohesion were determined, the lower and upper bound of fully softened frictional 

angle and cohesion of each pixel is assumed to be within 50% of the mean value (Equation 4.9). 
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Similar assumptions were made by Raia et al. (2014) and Zang et al. (2018) to develop probabilistic 

slope failure susceptibility maps.  

crandom ∈ [0.5×cmean ,1.5×cmean]        (4.9) 

 ϕrandom ∈ [0.5×ϕmean ,1.5×ϕmean] 

The slope failure susceptibility map was created using the step outlined in Figure 4.3. The 

probabilistic slope failure susceptibility map was used to identify the location and failure 

probability of roadside slope segments. The slopes with a failure probability higher than 0.1 were 

considered susceptible to failure by Park et al (2013). The failure probability of 0.2 was considered as a 

threshold for unstable slopes by Ko Ko et al. (2004). In this study, we considered roadside slope segments 

with a failure probability higher than 0.15 for the demonstration of the approach proposed to determine 

optimal slope rehabilitation policies. Thirty-three critical slope segments were identified in the 

highway network. The locations of these 33 critical slope segments are shown in Figure 4.6. The 

area of susceptible slopes and the probability of failure of each segment are shown in Table 4.1. 

The cost of restoration of slopes after failure is also shown in Table 4.1. From these 33 critical 

slope segments, an optimal combination of slope segments should be determined for proactive 

rehabilitation so that generalized cost is minimized during the network disruption caused by 

rainfall-induced failures.  

The restoration costs after slope failures vary based on the type of repair methods, the selection of 

which in turn depends on the criteria, such as desired service life, availability of special equipment, 

availability of skilled workers, available emergency funds, etc (Adhikari et al. 2021). Hence, for 

simplicity, the cost of slope restoration in this study is calculated based on the rebuilding and 

compaction method incorporating the cost of slope flattening (4H:1V) when required. The 
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selection of an appropriate slope repair technique however will require a detailed cost-benefit 

analysis (Zahed et al. 2018). The life cycle costs of slopes should also be incorporated into the 

cost-benefit analysis (Janbaz et al. 2017; Zahed et al. 2019).   

 
 

 
 

 
Figure 4.6 Critical slopes along the highway corridors 
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Table 4.1 Failure probability and rehabilitation cost of critical slope segments 

 
S.N. Segment  Latitude Longitude Failure 

Probability 

(Pf) 

Cost of Rebuilding 

and Compaction 

(USD) 

1 S1 33.650795 -95.59738 0.16 67251 

2 S2 33.644777 -95.59103 0.15 188333 

3 S3 33.645141 -95.59056 0.16 226252 

4 S4 33.640225 -95.58627 0.19 26890 

5 S5 33.640892 -95.58549 0.17 25274 

6 S6 33.631041 -95.55988 0.42 75574 

7 S7 33.631421 -95.5598 0.33 50542 

8 S8 33.631145 -95.54185 0.19 150104 

9 S9 33.631389 -95.54122 0.16 123781 

10 S10 33.631286 -95.52739 0.16 73088 

11 S11 33.631521 -95.52754 0.17 77651 

12 S12 33.631362 -95.51996 0.16 55622 

13 S13 33.646242 -95.50286 0.28 53022 

14 S14 33.646162 -95.50248 0.31 74904 

15 S15 33.646415 -95.50187 0.33 32054 

16 S16 33.646768 -95.50176 0.41 26132 

17 S17 33.647445 -95.50374 0.16 94818 

18 S18 33.647626 -95.50324 0.32 88389 

19 S19 33.648061 -95.50331 0.34 32889 

20 S20 33.649207 -95.50568 0.33 103890 

21 S21 33.649117 -95.50482 0.47 83582 

22 S22 33.648972 -95.50401 0.35 96023 

23 S23 33.650401 -95.50611 0.27 26142 

24 S24 33.650558 -95.50581 0.24 58700 

25 S25 33.65027 -95.50708 0.21 19023 

26 S26 33.660763 -95.50983 0.16 30067 

27 S27 33.660955 -95.5094 0.14 18318 

28 S28 33.662315 -95.51022 0.21 25721 

29 S29 33.662481 -95.50978 0.17 29743 

30 S30 33.665119 -95.51106 0.79 18953 

31 S31 33.665211 -95.51082 0.68 21151 

32 S32 33.667181 -95.51173 0.81 23787 

33 S33 33.667214 -95.51146 0.84 23517 
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The traffic simulation was performed in Simulation of Urban Mobility (SUMO), an open-source 

traffic simulation package (Lopez et al., 2018). The map of the study area was extracted from 

OpenStreetMap (OSM). The extracted map was converted to the SUMO network (Figure 4.7) 

using the NETCONVERT, which imports the digital road network from different sources and 

generates a road network compatible with SUMO to run the traffic simulation (German Aerospace 

Center (DLR), 2021a). The network generated using the NETCONVERT needed manual 

refinement or additional traffic infrastructure. NETEDIT, a visual network editor, was used to edit 

the network (German Aerospace Center (DLR), 2021b). The detector count from 98 different 

network locations, obtained from the Texas Department of Transportation (TxDOT) traffic count 

database system (TxDOT, 2021), was used to generate the traffic flow in the network. The detector 

count data for traffic flow at peak hours were considered for simulating the network traffic. A 

‘routeSampler’ tool in SUMO was used to heuristically sample the routes so that the resulting 

routes fulfill the detector count at different locations (German Aerospace Center (DLR), 2021c). 

 

Figure 4.7 Network generated in Simulation of Urban Mobility (SUMO) 
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After probabilistic slope failure analysis and generation of the network’s traffic, the algorithm 

detailed in Figure 4.2 was used to determine the best policy for rehabilitating critical slope 

segments under different budget constraints imposed on slope rehabilitation, i.e., when 

transportation agencies only have 10 %, 20%, 30%, 40%, and 50%  of the total failure restoration 

budget for the proactive slope rehabilitation. The parameter used for the genetic algorithm is shown 

in Table 4.2.  

Table 4.2 Parameters of Genetic Algorithm 

Parameter Value 

Initial Population 5 

Maximum number of generation 30 

Initial mutation rate 0.9 

Decrease of mutation rate 5% every generation 

Cross over type 2-point cross over 

Mutation of bits 20% (7 bits) 

Maximum Monte Carlo Runs 300 

 

A convergence study was carried out to identify the adequate number of Monte Carlo runs for 

determining the expected generalized cost (Figure 4.8). No rehabilitation of slopes was considered 

in the convergence study as a network with no rehabilitation policy has the highest uncertainty 

compared to a network with any rehabilitation policy (Shahandashti and Pudasaini, 2019). The 

user cost was calculated considering six hours of disruption and the agency cost of slope restoration 

were calculated based on the compaction and rebuilding method. The number of Monte Carlo runs 

leading to the convergence of an unrehabilitated network would also be adequate for any 

rehabilitated network. From the convergence study, it was concluded that 300 Monte Carlo runs 
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are adequate to measure the performance of the network due to disruptions caused by rainfall-

induced failures.  

 

Figure 4.8 Convergence study to identify the adequate number of Monte Carlo runs 

 

Table 4.3 shows the combination of slopes that should be proactively rehabilitated when 

transportation agencies are constrained to rehabilitate only a limited slope segment due to the 

constraint on the rehabilitation budget. The slope segments recommended for repair by the 

proposed approach are represented by 1, whereas zero otherwise. The expected generalized cost 

for different rehabilitation constraints is shown in Table 4. The actual rehabilitation percent in 

Table 4 represents the percentage of total rehabilitation cost that was recommended by the 

proposed approach for proactive rehabilitation under different budget constraints. The proposed 

methodology helps in determining proactive slope rehabilitation strategies that will lead to the 

least generalized cost when agencies are constrained to repair only a certain portion of the total 

critical slope segment due to budget constraints. The 10%, 20%, 30%, 40%, and 50% policies are 

shown to demonstrate the proposed approach of finding the rehabilitation policies under different 
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rehabilitation budget constraints. The slope rehabilitation policies determined under 10%, 20%, 

30%, 40%, and 50% are independent of each other. 

Table 4.3 Policies identified for different constraints on rehabilitation budget constraints  

S.N. Slope 

Segment  

Rehabilitation policy for different repair 

percentages 

10% 20% 30% 40% 50% 

1 S1 0 0 0 1 0 

2 S2 0 0 0 0 0 

3 S3 0 0 0 0 0 

4 S4 0 0 1 1 1 

5 S5 1 1 1 1 1 

6 S6 0 1 1 0 1 

7 S7 0 1 0 1 1 

8 S8 0 0 0 0 1 

9 S9 0 0 0 0 0 

10 S10 0 0 0 0 0 

11 S11 0 0 0 0 0 

12 S12 0 0 0 1 0 

13 S13 0 1 0 1 1 

14 S14 0 0 0 0 1 

15 S15 0 0 1 1 1 

16 S16 1 1 1 1 1 

17 S17 0 0 0 0 0 

18 S18 0 0 0 0 1 

19 S19 0 0 1 1 1 

20 S20 0 0 1 1 1 

21 S21 0 0 1 1 0 

22 S22 0 0 0 0 1 

23 S23 1 0 1 1 1 

24 S24 0 0 0 1 0 

25 S25 1 1 1 1 1 

26 S26 0 1 1 1 1 

27 S27 0 0 0 0 0 

28 S28 1 1 1 1 1 

29 S29 0 1 1 1 1 

30 S30 1 1 1 1 1 

31 S31 1 1 1 1 1 

32 S32 1 1 1 1 1 

33 S33 1 1 1 1 1 
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Table 4.4 Results of prioritizing slope rehabilitation based on the proposed approach (considering 

the flow of traffic) 

 

Percentage of total rehabilitation 
budget demand 

 
Expected Generalized 

Cost ($) 

Available for rehabilitation (%) Actual rehabilitation (%) 

Not more than 10 9.88% 484186 

Not more than 20 19.81% 416657 

Not more than 30 29.43% 336995 

Not more than 40 39.31% 266973 

Not more than 50 41.67% 202393 

 

The slope rehabilitation policies under different rehabilitation constraints are not incremental. This 

is primarily because of the combinatorial nature of the slope rehabilitation decision problem. There 

are 2n ways (i.e., policies) for rehabilitating n critical slope segments in a network if no constraints 

are applied for slope rehabilitation. As the range of policy increase exponentially with the number 

of slope segments, multiple rehabilitation policies can provide similar solutions under any 

rehabilitation budget constraint. Hence, due to the combinatorial nature of the slope rehabilitation 

decision problem and large solution space, all the slopes rehabilitated under the 10 percent 

rehabilitation budget constraint may not be necessarily present in the 20 percent budget constraint. 

 VALIDATION 

The proposed approach to identify the critical combination of slope segments was compared with 

the commonly used index-based method for identifying critical slope segments in transportation 

corridors. The index-based approach used by Wachal and Hudak (2000) was followed to determine 
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the failure index of 33 slope segments that were identified as critical by probabilistic slope failure 

susceptibility analysis. Based on the failure index, a rehabilitation scheme was developed for 

different budget constraints imposed on slope rehabilitation: only 10 %, 20 %, 30 %, 40 %, and 50 

% of the total required rehabilitation budget are available for slope rehabilitation. The slope with 

a higher failure index was identified as the most critical slope and was prioritized for rehabilitation. 

The expected generalized cost for rehabilitation policies obtained from the index-based approach 

is shown in Table 4.5. The expected generalized cost for policies determined from the index-based 

method was evaluated using the steps outlined in Figure 4.4.  

Table 4.5 Results of prioritizing slope rehabilitation based on the index-based approach 

 

Percentage of total 
rehabilitation budget demand 

 
Expected Generalized 

Cost ($) 

Available for rehabilitation (%) Actual rehabilitation (%) 

Not more than 10 9.96% 
516589 

Not more than 20 19.85% 
445372 

Not more than 30 29.55% 
360145 

Not more than 40 39.87% 
287044 

Not more than 50 49.78% 
217520 

 

The expected generalized cost obtained for different budget constraints from the index-based 

method is higher than the expected generalized cost obtained from the approach proposed in this 

study (Figure 4.9). 
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Figure 4.9 Comparison of generalized cost obtained from proposed approach and index-based 

method 

 

The proposed approach is effective in identifying the critical combination of slope segments 

compared to the commonly used index-based method for identifying and prioritizing the critical 

slope segments. However, the devised approach has some limitations. In this study, the 

probabilistic slope failure analysis is performed to assess the shallow slope failure susceptibility 

of roadside slopes, which usually occur at fully softened strength in clayey soils of Texas. The 

proposed approach is, however, flexible to incorporate other modes of slope failures. Future 

research should consider various slope failure modes and infiltration mechanisms in slope 

susceptibility assessment. The optimization constraint applied in this research is a knapsack 

constraint, which is based on the availability of budgets for the rehabilitation of slope segments. 

Nonetheless, the proposed approach is flexible to incorporate any other feasibility constraints like 

prioritizing slope segments for different rehabilitation length constraints.  
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CHAPTER 5 RISK-AVERSE REHABILITATION DECISION FRAMEWORK 

FOR ROADSIDE SLOPES 

The decision-making approach for slope rehabilitation should ensure that low risk is associated 

with the selected rehabilitation policy. Current slope-rehabilitation decision models do not 

consider the risk associated with the rehabilitation policies in the decision-making process. This 

chapter discusses a risk-averse stochastic combinatorial optimization to facilitate the selection of 

slope rehabilitation strategies, which leads to the least expected cost and conditional value at risk 

(CVaR) for extreme rainfall events. The simulated annealing approach is used to solve the risk-

averse combinatorial optimization rehabilitation problem with the objective function that measures 

the total cost of traffic disruption and slope restoration post-failures. The approach is demonstrated 

using a transportation network in Lamar County, Texas. 

 METHODOLOGY 

This section outlines the methodology used for risk-averse simulated annealing to determine the 

critical combination of slopes for proactive rehabilitation. The proposed risk-averse simulated 

annealing approach incorporates the Conditional Value at Risk (CVaR) associated with 

rehabilitation policy for determining the most suitable combination of slopes to be proactively 

rehabilitated under budget constraints. Determining the critical combination of roadside slopes for 

proactive rehabilitation involves  

(1) formulating a risk-averse stochastic combinatorial optimization problem, and  

(2) using a simulated annealing-based approach to determine the optimal slope rehabilitation 

strategy for roadside slopes. 
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5.1.1. Formulation of Risk-averse Combinatorial Optimization Problem 

The optimization problem of minimizing expected generalized cost (V) in a transportation network 

is defined as: 

 𝑚𝑖𝑛𝑝∈𝑃 𝐸(𝑉𝑝)                                           (5.1) 

Subjected to 

∑ 𝑛𝑘𝐶𝑘

𝑁𝑠

𝑘=1

≤ 𝐶𝑟𝑒ℎ𝑎𝑏 

CVaRα ≤ 𝑇𝑐𝑜𝑠𝑡 

 

Where P represents possible combinatorial space of rehabilitation policies (p) for proactive 

maintenance of roadside slopes. Two possible outcomes can be defined for a slope in the 

generation of a rehabilitation policy, i.e., either slope can be rehabilitated or left unrehabilitated. 

For example, consider three slope segments in a road network that are susceptible to rainfall-

induced failures. The rehabilitation policy can be represented as {rh1, rh2, rh3}, where rhi=0 

represents no rehabilitation, and rhi= 1 represents the rehabilitation of the ith slope segment. Based 

on this, the possible rehabilitation strategies for network in with three critical slope segments are 

are P = {{1,1,1}, {1,0,1}, {0,1,1}, {0,0,1}, {1,1,0}, {1,0,0}, {0,1,0}, {0,0,0}}. In the absence of 

constraints, the combinatorial decision space for a transportation network with N number of slope 

segments requiring repair would be 𝑃 ∈ X2N×N. However, the combinatorial decision space is 

reduced by the optimization constraint that no rehabilitation policy (p∈P) can result in a 

rehabilitation cost that exceeds the available rehabilitation budget (C𝑟𝑒ℎ𝑎𝑏). The feasible 

rehabilitation policy should also have the conditional value at risk less than a specified tolerance 

cost (𝑇𝑐𝑜𝑠𝑡). 
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For the generalized cost (V), which can be represented as a continuous distribution 

function (𝐹𝑋(𝑣)), 𝐶𝑉𝑎𝑅𝛼( 𝑉) is the conditional expectation of V subjected to  V ≥  𝑉𝑎𝑅𝛼( 𝑉) 

(Sharveen et al. 2022). Figure 5.1 shows the distribution of generalized costs for a rehabilitation 

policy of roadside slopes. 

 

Figure 5.1 Generalized cost distribution under a rehabilitation strategy 

 𝑉𝑎𝑅𝛼( 𝑉) represents the value at 𝛼-percentile of the random variable V.  𝐶𝑉𝑎𝑅𝛼( 𝑉) can be 

determined using Equation 5.2. 

 𝐶𝑉𝑎𝑅𝛼( 𝑉) = ∫ 𝑣 ⅆ𝐹𝑋
𝛼(𝑣)

∞

−∞
                                                   (5.2) 

Where 

𝐹𝑥
𝛼(𝑣) = {

0,                   𝑤ℎ𝑒𝑛 𝑣 <    𝑉𝑎𝑅𝛼( 𝑉) 
𝐹𝑋(𝑣)−𝛼

1−𝛼
, 𝑤ℎ𝑒𝑛 𝑣 >    𝑉𝑎𝑅𝛼( 𝑉)

       (5.3) 

The distribution parameter N (μv, σv) of generalized cost (V) for a rehabilitation policy (p) is 

determined using the Monte Carlo simulations.  
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5.1.2. Solving Optimization Problem 

Figure 5.2 outlines the process used for solving the risk-averse optimization problem. Solving the 

optimization problem starts with determining slope failure probabilities of roadside slopes along 

the highway corridors. The slope failure probability of roadside slope is assessed using a 

combination of physics-based hydrological and geotechnical models incorporating the uncertainty 

associated with soil cohesion, internal angle of friction, and rainfall intensity (Baral and 

Shahandashti, 2022). First, the increase in soil water pressure due to rainfall infiltration is 

determined using the pore pressure response model (Iverson, 2000). Then, the decrease in factor 

of safety (FOS) due to increased soil water pressure is determined using the infinite slope stability 

model (Skempton and DeLory, 1957). The FOS is determined for n Monte Carlo runs for n 

different generations of frictional angle, cohesion, and rainfall intensity from a predefined 

probability distribution function. The probability of slope failure is defined as the ratio of times 

the FOS is less than 1 to the total number of Monte Carlo runs (Ria et al. 2014). 

https://link.springer.com/article/10.1007/s00254-008-1435-5#CR33
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Figure 5.2 Steps in the risk-averse simulated annealing process 

 

Following the determination of slope failure probabilities of roadside slopes, an initial 

rehabilitation policy satisfying the cost constraint is generated. For the initial rehabilitation policy, 

expected cost and conditional value at risk are determined using the process outlined in Figure 5.3. 
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Figure 5.3 Calculation of expected cost and conditional value at risk 

 

 First, a random number is generated (Rn ∈ [0,1]) and compared with the slope failure probability 

in a transportation network. If the slope is not repaired based on the current rehabilitation policy 

and the failure probability is less than the randomly generated number, disruption is created in the 

network by blocking the adjacent link. Then, a traffic simulation is performed for the disrupted 

network, and an increase in user cost due to rerouting is calculated. The user cost includes both 

the cost associated with delays and additional costs for the operation of vehicles. The agency cost 

for restoring the failed slopes is also calculated. The generalized cost (i.e., combined user and 

agency cost) for a rehabilitation strategy 𝑝 ∈ 𝑃,  is obtained using Equation 5.4. 

𝑉 = ∑ ∑ ⅆ𝑖𝑗
𝑡  [∆𝑇𝑖𝑗

𝑝𝐶𝑑 + ∆𝐿𝑖𝑗
𝑝

𝑗 𝐶𝑜𝑝] + 𝐶𝑠𝑟
𝑝 )𝑖                                                                            (5.4) 

where V represents combined user and agency cost for a single run of Monte Carlo simulation 

when slopes are rehabilitated using a policy p, ⅆ𝑖𝑗
𝑡 is the travel demand from node i to node j for 
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the duration of disruption (t), ∆𝑇𝑖𝑗
𝑟  is the increase in time traveling from node i to node j and ∆𝐿𝑖𝑗

𝑟  

is the increase in travel distance from node i to node j, 𝐶𝑑  is the cost due to delay and 𝐶𝑜𝑝 is the 

per mileage cost of maintaining and operating a motor vehicle, and 𝐶𝑠𝑟
𝑝

 is the cost of restoring 

failed slopes after an extreme rainfall event. The delay cost (𝐶𝑑)  due to traffic disruption is 

assumed at 30.12 dollars per hour (TxDOT, 2022), and the cost of operating (𝐶𝑜𝑝 )  a passenger 

vehicle per mileage is assumed at 67 cents (BTS, 2021). The traffic disruption is considered one-

quarter of a day as this duration was assumed to be adequate to remove the debris caused by 

shallow slides triggered by rainfalls. The slope restoration cost (𝐶𝑠𝑟
𝑝 ) is estimated based on the 

rebuilding and compaction method (Shahandashti et al., 2022a). 

After completing N Monte Carlo runs for a rehabilitation strategy r, the list of generalized costs is 

obtained: Vi = [ V1, V2, V3,………..VN]. The Vi represents N different possible values of 

generalized cost under a rehabilitation strategy.  This distribution of Vi is used to determine the 

expected value of generalized cost (E(Vp)) and the conditional value of risk  𝐶𝑉𝑎𝑅𝛼( 𝑉𝑝) for the 

rehabilitation strategy p.  

The approach outlined in Figure 5.2 for calculating expected generalized cost and conditional 

value at risk is integrated into a risk-averse simulated annealing algorithm to determine the 

rehabilitation strategy that would lead to the least expected cost while also reducing the conditional 

value at risk. Due to the lack of a closed form solution to the objective function represented by 

Equation 5.1 and the stochastic combinatorial nature of the problem, risk-averse simulated 

annealing has been used to determine the rehabilitation strategy that would lead to the least 

expected cost while also reducing the conditional value at risk (CVaR) associated with the 

rehabilitation strategy. The simulated annealing mimics a solid annealing process, where the state 
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of the solid resembles the possible solutions, energy resembles the objective function of an 

optimization problem, and the cooling rate of the solid is analogous to a finite sequence of 

temperature in simulated annealing (Kirkpatrick et al. 1983). The metropolis criterion is used to 

determine the acceptance or rejection of a new solution at different temperatures during the 

progression of simulated annealing (Metropolis et al. 1953). At each temperature, mutation of the 

existing rehabilitation strategy is performed to generate new solutions. At the initial stage of the 

simulated annealing process, the temperature is set high, thereby increasing the probability of 

accepting the inferior solutions (Chen and Shahandashti, 2007). With the decrease in temperature, 

the probability of accepting an inferior solution is decreased and fine-tuning of the optimal solution 

takes place in the most promising decision space. The time required for converging to an optimal 

solution is dependent upon the cooling rate and initial temperature. Typically, the initial 

temperature, cooling rate, and stopping criteria is determined using sensitivity analysis (Pudasaini 

and Shahandashti, 2019). 

Following the determination of expected cost (E(Vp)) and conditional value of risk (𝐶𝑉𝑎𝑅𝛼( 𝑉𝑝)) of 

a randomly generated initial rehabilitation policy (Figure 5.2), a new rehabilitation policy is 

generated by randomly mutating the twenty-five percent of the binary strings of the old 

rehabilitation policy. The initial temperature is set to the generalized cost of failure when no 

rehabilitation is performed in a network. The fitness of the new rehabilitation policy is evaluated 

based on E(Vp) and  𝐶𝑉𝑎𝑅𝛼( 𝑉𝑝)  of new and existing rehabilitation policies in each generation of 

simulated annealing, until the final temperature is reached. The decision of adopting a new 

rehabilitation strategy compared to the existing rehabilitation strategy (i.e., the old strategy) is 

based on the following conditions:  
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Case 1: 𝑬(𝑽)𝒏𝒆𝒘 ≤ 𝑬(𝑽)𝒐𝒍ⅆ  

Subcase 1a: If the CVaR of the new rehabilitation policy is less than the old policy, and the CVaR 

of the new policy is also less than the tolerance cost, then the new policy replaces the old policy 

in the next generation of simulated annealing.  

Subcase 1b: If the CVaR of the new policy is more than the previous policy, then the metropolis 

function is used to select the rehabilitation policy for the next generation. A random number ( λ ∈ 

[0,1]) is generated and compared with the state of energy Δ given by Equation 5.5. 

                                                              (5.5) 

 

Where ‘Temp’ is the temperature at the current simulated annealing run. The old strategy is 

replaced by the new when λ < Δ. Otherwise, the old rehabilitation strategy is carried to the next 

generation. 

Case 2: 𝑬(𝑽)𝒏𝒆𝒘 > 𝑬(𝑽)𝒐𝒍ⅆ  

Subcase 2a: If the generalized cost of the new policy is greater than the old policy, but the CVaR 

of the new strategy is less than the tolerance cost, the state of energy (D) given by Equation 6 is 

checked with the randomly generated number ( 𝛽 ∈ [0,1]). 

𝐷 = exp (
−(E(𝑉𝑜𝑙𝑑))−(E(𝑉𝑛𝑒𝑤))

Temp
)                                                                                                                  (5.6) 

 

Where ‘Temp’ is the temperature at the current simulated annealing run. The old policy is replaced 

by new when 𝛽 < 𝐷, otherwise old policy is carried to the next generation. 

∆= exp (
−(CvaR95(old))−(CvaR95(new))

Temp
)                                  
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Subcase 2b: If the generalized cost of the new policy is greater than the old policy and the CVaR 

of the new policy is also greater than the previous policy, the state of energy Δ and D are 

determined as per Equations 5 and 6. The old policy is replaced by new when λ < Δ and 𝛽 < 𝐷, 

otherwise the old policy is carried to the next generation. 

 APPLICATION  

The proposed risk-averse optimization approach is used to identify the most suitable slope 

combination for proactive repair in Loop 286 in Lamar County, Texas. The Loop 286 selected to 

demonstrate the proposed risk-averse optimization approach is shown in Figure 5.4.  

 

Figure 5.4 Loop 286 in the TxDOT Paris district 

 

First, the slope failure probabilities of slopes along the highway corridors were determined using 

a combination of the infinite slope stability model (Skempton and DeLory, 1957) and the rainfall 

infiltration model (Iverson, 2000). This study considered a rainfall of 3-day and a 10-year return 
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period to assess the failure probability of the roadside slopes along the highway corridors (GCO, 

1984). The data on rainfall for the study area is obtained from the Precipitation Frequency Data 

Server (PDFS), which is operated and maintained National Weather Service (NWS) (NOAA, 

2018). A rainfall distribution function for a 3-day duration and 10-year return period in the study 

region is given by Equation 5.7, where g(r) represents the probability of rainfall intensity r.  The 

mean rainfall intensity in the study area is 7.21 inches. 

g(r) =
1

0.125𝑥√2𝜋
exp (−

(ln (𝑟/7.21))2

0.03125
)       (5.7) 

 

The infinite slope stability and rainfall infiltration models require slope angles and soil properties 

to determine the slope failure probabilities along the highway corridors. The LiDAR (Light 

Detection and Ranging) data was used to determine the slope angles of the landscape. The LiDAR 

dataset is publicly available by Texas Natural Resource Information System (TNRIS, 2019). The 

LiDAR data was processed in GIS to obtain a slope angle raster with a cell size of 3m.  The soil 

properties for slopes were obtained from the Soil Survey Geographic (SSURGO) database (Soil 

Survey Staff, 2020). The SSURGO database is publicly available by Natural Resource 

Conservation System (NRCS). Slopes in Lamar County are primarily clayey soils with high 

shrinkage and swelling potential (Shahandashti et al. 2021), and slope failures usually occur at 

fully softened strength (Kayyal and Wright, 1991; Castellanos, 2014). At fully softened strength, 

the shear strength of soil is considerably reduced, and the cohesion of soil is negligible (Jafari and 

Puppala, 2019). Hence, based on past slope failure literature, the cohesion of 50 psf was assumed 

for calculating slope failure probability (Stauffer and Wright, 1984; Kayyal and Wright, 1991; 

Wright et al., 2007). The mean frictional angle for each landscape cell was obtained using the 

empirical correlation that establishes the relation of frictional angle with Liquid Limit (LL) for 
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different clay fractions and effective stress (Stark et al., 2005; Gamez and Stark, 2014).  After 

defining the mean cohesion and fully softened frictional angle for each landscape cell, the lower 

and upper limit of cohesion and friction angle were assumed to lie within 50% of the mean value 

for developing a probabilistic slope failure map (Ria et al., 2014; Baral and Shahandashti, 2022b). 

The cohesion for each pixel was assumed to be in the range of [0.5×cmean ,1.5×cmean], and the 

internal angle of friction was assumed to be in the range of [0.5×ϕmean ,1.5×ϕmean]. After 

determining the range of values for frictional angle and cohesion, the slope failure probability was 

determined using a combination of the infinite slope stability model and hydrological model (Baral 

and Shahandashti, 2022b). From the probabilistic slope failure analysis, twenty-one slope 

segments along the highway corridors were found to have a failure probability greater than 0.2. 

Park et al. (2013) and Ko et al. (2004) considered slope failure probability greater than 0.1 and 0.2, 

respectively, susceptible to slope failures. This study used a failure probability of 0.2 as a cut-off 

value for narrowing the number of slope segments to be incorporated into the rehabilitation 

decision framework. Figure 5.5 shows the twenty-one slope segments considered in the proactive 

slope rehabilitation framework to demonstrate the risk-averse optimization approach proposed in 

this study. 
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Figure 5.5 Slopes with high failure susceptibility in Loop 286 of Paris district, Texas 

 

For all the 21 slope segments identified to have high failure susceptibility, the slope rehabilitation 

cost was estimated using the rebuilding and compaction method (Shahandashti et al., 2022). For 

this study, the cost of restoring the slope after failure is assumed to be the same as the cost of 

proactively rehabilitating the slope segments. The cost of proactively rehabilitating the slope 

segments is shown in Table 5.1. 
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Table 5.1 Cost for rehabilitation/restoration of different slope segments 

No. Segment  Failure 

Probability 

(Pf) 

Longitude Latitude Cost of Slope 

Rehabilitation (USD) 

1 S1 0.20 -95.58627 33.640225 26890 

2 S2 0.42 -95.55988 33.631041 75574 

3 S3 0.33 -95.5598 33.631421 50542 

4 S4 0.20 -95.54185 33.631145 150104 

5 S5 0.28 -95.50286 33.646242 53022 

6 S6 0.31 -95.50248 33.646162 74904 

7 S7 0.33 -95.50187 33.646415 32054 

8 S8 0.41 -95.50176 33.646768 26132 

9 S9 0.32 -95.50324 33.647626 88389 

10 S10 0.34 -95.50331 33.648061 32889 

11 S11 0.33 -95.50568 33.649207 103890 

12 S12 0.47 -95.50482 33.649117 83582 

13 S13 0.35 -95.50401 33.648972 96023 

14 S14 0.27 -95.50611 33.650401 26142 

15 S15 0.24 -95.50581 33.650558 58700 

16 S16 0.21 -95.50708 33.65027 19023 

17 S17 0.21 -95.51022 33.662315 25721 

18 S18 0.79 -95.51106 33.665119 18953 

19 S19 0.68 -95.51082 33.665211 21151 

20 S20 0.81 -95.51173 33.667181 23787 

21 S21 0.84 -95.51146 33.667214 23517 

Total Budget Required for Proactive Rehabilitation 1110989 

 

The traffic count data in 98 different locations of the network was obtained from the traffic count 

database (TxDOT, 2021). The open-source simulation package SUMO (Simulation of Urban 

Mobility) was used to develop the traffic simulation in the network. The OpenStreetMap (OSM) 

was used to extract the map of the study area, and a network compatible for running traffic 
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simulation was obtained using the NETCONVERT tool in SUMO (DLR, 2021a). A NETEDIT 

tool in SUMO was used to manually modify the network (DLR, 2021b). The NETEDIT enables 

the addition of missing edges, links, connections, and traffic lights in the SUMO network. After 

the generation of the network, the ‘routeSampler’ tool was used to heuristically sample routes that 

matched the traffic count data obtained from the detectors at different locations of the network 

(DLR, 2021c). 

After determining all critical slope segments and generation of network traffic, a convergence 

study was conducted to determine the average number of runs required for convergence of 

expected cost in each rehabilitation strategy. Figure 5.6 shows the average generalized cost for 

different Monte Carlo runs when no slopes in the network are rehabilitated. The convergence study 

considered no rehabilitation because the uncertainty is highest in the unrehabilitated network 

compared to a rehabilitated network. 

 

Figure 5.6 Convergence study to determine Monte Carlo runs 

 

After determining the required number of Monte Carlo runs from the convergence study, a risk-

averse simulated annealing approach was used to determine the best slope rehabilitation policy 
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such that no rehabilitation strategy exceeds 25 percent of the total rehabilitation budget obtained 

in Table 1. Also, no rehabilitation strategy can have a conditional value at risk greater than 0.5 

million USD. Parameters for risk-averse simulated annealing are shown in Table 5.2. 

Table 5.2 Parameters for risk-averse simulated annealing 

Parameter  Value 

Initial Temperature Expected cost when no slope is rehabilitated 

Cooling factor 
1.5

-1

 

Final Temperature 
Initial Temperature*1.5

-30

 

Iteration per temperature 10 

Monte Carlo runs for Convergence 250 

Total iteration for Simulated 

Annealing 

300 

 

The initial temperature in the first run of simulated annealing was set to the expected cost of slope 

failure considering no rehabilitation of roadside slopes (Figure 5.6). Ten iterations were conducted 

on each temperature. The cooling factor (Table 5.2) was used to lower the existing temperature 

after ten iterations of risk-averse simulated annealing. The expected cost and conditional value at 

risk obtained for different rehabilitation policies during the progression of risk-averse simulated 

annealing are shown in Figure 5.7. Five rehabilitation policies (RP1, RP2, RP3, RP4, and RP5) 

shown in Figure 5.7 represent the set of non-dominated solutions. A non-dominated solution set 

in a multi-objective optimization problem is the list of solutions in which one objective cannot be 

improved without compromising the other objective (Hwang and Masud, 2012). The five 

rehabilitation policies are shown in Figure 8 had either expected cost or conditional value at risk 

lower than the other policies. The rehabilitation policies represented by RP1, RP2, RP3, RP4, and 

RP5 are shown in Table 5.3. The rehabilitation policies RP1, RP2, RP3, RP4, and RP5 
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recommended the strategies for which the rehabilitation cost was 23.40, 24.24, 24.71, 23.26, and 

23.86 percent of the rehabilitation budget obtained in Table 5.1. The non-dominated solutions 

obtained from the proposed risk-averse simulated annealing help transportation agencies select the 

optimum rehabilitation policies with different risk-aversion levels. 

 

 
 

Figure 5.7 Expected cost and Conditional Value at Risk for different rehabilitation policies obtained 

during the progression of simulated annealing 
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Table 5.3 Slopes rehabilitated under rehabilitation policies RP1, RP2, RP3, RP4, and RP5 

S.N. Segment  
Rehabilitation Strategy 

RP1 RP2 RP3 RP4 RP5 

1 S1 0 0 0 0 0 

2 S2 0 0 0 0 1 

3 S3 0 0 0 0 0 

4 S4 0 0 0 0 0 

5 S5 0 0 0 1 0 

6 S6 1 0 0 0 0 

7 S7 0 0 1 1 0 

8 S8 1 1 1 1 0 

9 S9 0 0 0 0 0 

10 S10 1 0 1 0 0 

11 S11 0 0 0 0 0 

12 S12 1 1 0 1 1 

13 S13 0 1 1 0 0 

14 S14 0 0 0 0 0 

15 S15 0 0 0 0 1 

16 S16 0 0 0 0 0 

17 S17 0 0 0 0 0 

18 S18 1 1 1 1 0 

19 S19 0 1 1 1 0 

20 S20 0 0 1 0 1 

21 S21 1 1 1 1 1 
Note: 1 represents rehabilitation and 0 represents no rehabilitation of the slope segment 

 

 VALIDATION 

The proposed risk-averse optimization approach was compared with the genetic algorithm-based 

optimization approach to identify the critical combination of roadside slopes for proactive 

rehabilitation (Baral and Shahandashti, 2022a). This genetic algorithm-based approach for 

identifying the slope rehabilitation strategy was shown to outperform the existing index-based 

approach for prioritizing slope rehabilitation works (Baral and Shahandashti, 2022a). As the 

genetic algorithm-based optimization approach ignored the conditional value at risk associated 
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with rehabilitation strategy in the decision-making process, the importance of considering the risk-

aversion in the optimization framework could be easily illustrated when the genetic algorithm-

based approach was compared with the risk-averse simulated annealing approach proposed in this 

study. Initially, five random policies were generated such that no rehabilitation policy exceeded 

25 percent of the total rehabilitation budget obtained in Table 5.1. The expected costs of the 

randomly generated five policies were determined and a two-point cross-over was performed on 

the rehabilitation policies with the least expected cost during each progression of genetic 

algorithms. The genetic algorithm was performed for 100 generations. The mutation was 

performed for 20 percent of the bits in the rehabilitation policy. The initial mutation rate was 90 

percent and was gradually decreased by 5 percent in each generation of the genetic algorithm.  

Figure 5.8 shows the expected cost and CVaR of rehabilitation policies obtained from the risk-

averse simulated annealing and the genetic algorithm-based rehabilitation optimization approach 

that neglects the consideration of risk aversion in the optimization process. The genetic algorithm-

based approach recommended the rehabilitation of slope segments S2, S3, S12, S18, S19, and S21. 

The genetic algorithm-based approach provides a single solution in the Pareto efficient frontier 

(Figure 5.8) limiting the choice of slope rehabilitation for the decision-makers. On the other hand, 

the proposed risk-averse simulated annealing approach provide decision-makers a range of 

solution in the risk-return space with different expected cost and CVaR. Compared to the CVaR 

of rehabilitation policy GA-RS obtained from the genetic algorithm-based approach (Figure 5.8), 

the CVaR of the rehabilitation strategy RP4 identified by the proposed risk-averse simulated 

annealing approach is lower by 2 percent. On the other hand, the expected cost of rehabilitation 

policy RP4 is only higher by 0.8 percent compared to the expected cost of rehabilitation policy 

GA-RS (Figure 5.8). Hence, the proposed risk-averse simulated annealing approach helps in the 
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selection of rehabilitation strategy of slope considering the suitable tradeoff between expected cost 

and CVaR. 

 

Figure 5.8 Comparison of rehabilitation optimization results with and without the risk-averse 

condition 

 

The approach to slope management in transportation agencies has so far been reactive. i.e., the 

slopes are only repaired after rainfall-induced failures disrupt the transportation network. This 

study provides transportation agencies with a tool to facilitate proactive decision-making. The risk-

averse slope rehabilitation decision approach proposed in this study enables the identification of 

the most promising combination of slopes that should be proactively rehabilitated with a limited 

budget to minimize the impacts of rainfall-induced geohazard on highway networks. The 

optimization approach proposed in this study incorporates the expected cost (V) and Conditional 

Value at Risk (CVaR) associated with the rehabilitation policy to facilitate proactive rehabilitation 

decisions. At present the objective function is able to capture the impact of slope failure scenarios 
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on road users and agencies under different rehabilitation policies, but not over a planning time 

horizon or with consideration of longevity of repair methods adopted for proactive rehabilitation. 

The proposed risk-averse optimization approach can be further extended in future studies to 

consider the time horizon of maintenance planning and the longevity of the repair methods used 

in proactive rehabilitation. 
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CHAPTER 6 CONCLUSION 

The maintenance and management of roadside slopes is crucial for the smooth operation of the 

transportation system. The transportation agencies however are not able to proactively maintain or 

rehabilitate all the slopes due to competing maintenance needs between different transportation 

assets. Therefore, the transportation agencies must make a difficult decision to identify and 

rehabilitate the slope with a limited available budget. Current models to support the rehabilitation 

decision of roadside slopes do not consider budget constraints and risk associated with 

rehabilitation decisions in prioritizing slope rehabilitation works. Also, it is difficult to determine 

the condition (i.e., stability) of spatially distributed roadside slopes at a regional scale. Hence this 

study was conducted to attain three objectives: 1) to develop a data integration approach for 

performing slope failure susceptibility analysis to determine the usefulness of publicly available 

data sources for mapping rainfall-induced shallow slope failure susceptibilities in roadside slopes; 

(2) to integrate the slope failure susceptibility analysis with the metaheuristic optimization model 

to determine the most suitable combination of roadside slopes for proactive rehabilitation when 

agencies can only rehabilitate limited slopes due to budget constraint; (3) to incorporate the risk 

associated with the slope rehabilitation decisions into the optimization framework to facilitate the 

selection of rehabilitation strategies at appropriate risk-aversion levels.  

A GIS-based data integration approach was developed to map the rainfall-induced shallow slope 

failure susceptibilities in clayey soils with high shrinkage and swelling potential. The publicly 

available data on slope stability variables, which have different levels of detail (granularity), 

representation (vector or raster data), and reference (coordinate) system, were made compatible 

with each other and stored in a geodatabase format. The dataset was then integrated with a 

combination of geotechnical and hydrological models considering the mobilization of fully 
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softened shear strength to determine the minimum duration of 10-year return period rainfall 

triggering slope instability in clayey slopes. The approach was implemented along 496 kilometers 

of highway corridors in the TxDOT Paris district. The geo-hazard potential of slopes along the 

highway corridors was classified based on the minimum duration of 10-year return period rainfall 

triggering shallow slope instability in roadside slopes. The result was delineated over the landscape 

cells in the study area with colors representing different susceptibility levels based on rainfall 

duration triggering slope instability. The slope failure susceptibility maps developed using the 

proposed approach were validated using a dataset of past slope failures. Nine out of ten recent 

slope failures recorded in the TxDOT Paris district occurred on the slopes that the proposed 

approach classified as highly critical regions, which require rainfall duration of fewer than 3 days 

of 10-year return period rainfall to trigger slope instability. The result demonstrated that the 

proposed GIS-based data integration approach could be an efficient tool to create shallow slope 

failure susceptibility maps through the use of publicly available data on slope stability variables. 

The proposed approach for developing slope susceptibility maps in clayey soil slopes can have a 

significant value in slope management of highway corridors for transportation agencies. The 

proposed data integration approach can also be useful in developing an early geo-hazard warning 

system based on rainfall forecasting.   

In addition to the data integration approach, an approach to identify a proactive rehabilitation 

strategy for roadside slopes to minimize the impact of rainfall-induced slope failures on 

transportation networks was obtained by integrating the genetic algorithm with the generalized 

cost estimation model, which measures the combined user and agency cost associated with slope 

failure. The proposed approach helps identify the critical combination of slope segments to be 

proactively rehabilitated when the transportation agencies can only rehabilitate limited slope 
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segments due to constraints on the rehabilitation budget. The application of the proposed approach 

was demonstrated through a network in the highway network of North Texas, where rainfall-

induced shallow slope failure frequently occurs in roadside slopes made of highly plastic clayey 

soils. The proposed approach was compared with the commonly used index-based method for 

identifying the critical slope segments for proactive rehabilitation. The results suggest that the 

proposed genetic algorithm-based approach is suitable for identifying the critical combination 

slope segments for proactive rehabilitation when the impact on network users and transportation 

agencies is to be minimized after the rainfall-induced slope failure. The genetic algorithm-based 

approach presented in this research highly benefits from publicly available data on slope stability 

variables. The developed genetic algorithm-based approach contributes to the existing body of 

knowledge a new and robust method for network-level distribution of limited resources to facilitate 

proactive slope rehabilitation decisions of roadside slopes.  

Lastly, a risk-averse combinatorial optimization problem was devised to identify the critical 

combination of slopes that must be rehabilitated to minimize the impact of rainfall-induced slope 

failures on the highway networks. The combinatorial optimization problem was solved using a 

simulated annealing approach. The objective of the combinatorial optimization problem was to 

determine a rehabilitation policy that minimizes the user and agency costs during the extreme 

rainfall events triggering slope failure. The rehabilitation was constrained by the agency's 

limitation to rehabilitate only a limited length of slope segment due to budget constraints and with 

the risk aversion level such that the conditional value at risk does not exceed the tolerance cost. 

The application of the proposed risk-averse optimization approach was demonstrated using a 

highway network in the Paris district, Texas. The rehabilitation was constrained so that no policy 

can recommend rehabilitation exceeding 25 percent of the total budget required for proactive 
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maintenance. A set of non-dominated solutions (i.e., rehabilitation policies) on the Pareto front 

were obtained at the end of the simulated annealing process. The results were compared with the 

latest methodology in literature for determining the proactive rehabilitation strategy for roadside 

slopes. The comparison showed that the proposed risk-averse simulated annealing was able to 

identify the list of solutions with different risk-aversion levels, thereby diversifying the selection 

of rehabilitation strategies for the roadside slopes. The proposed risk-averse simulated annealing 

approach will help transportation agencies to identify the most suitable combination of slopes for 

rehabilitation within acceptable risk tolerance levels under a constrained rehabilitation budget.  

The metaheuristic approaches developed in this research for proactive rehabilitation decision-

making enable the network operators to prudently manage the geohazard risk associated with 

roadside slopes. The proposed approaches are demonstrated on the roadside slopes which are made 

up of clayey soil; these optimization approaches should be investigated on other soil types. It would 

further be helpful to incorporate the uncertainties associated with soils and traffic into the 

optimization framework as network uncertainties can have a significant impact on the post-disaster 

serviceability of spatially distributed infrastructures (Pudasaini and Shahandashti, 2021; Roy et al. 

2021).  The optimization approaches presented in this research have prohibitive runtimes due to 

repeated traffic simulation for assessing the cost of slope failures. Future work might explore the 

computationally efficient surrogate models (Pudasaini and Shahandashti, 2020), stochastic 

programming approaches (Boskabadi et al. 2020), and different topological connectivity metrics 

to support the proactive rehabilitation of roadside slopes along highway corridors.  

 

 



 

88 
 

REFERENCES 

Achour, Y., Boumezbeur, A., Hadji, R., Chouabbi, A., Cavaleiro, V., & Bendaoud, E. A. (2017). 

Landslide susceptibility mapping using analytic hierarchy process and information value 

methods along a highway road section in Constantine, Algeria. Arabian Journal of 

Geosciences, 10(8), 1-16. 

Adhikari, I., Baral, A., Zahed, E., Abediniangerabi, B., & Shahandashti, M. (2021). Early stage 

Multi-criteria Decision Support System for Recommending Slope Repair Methods. Civil 

Engineering and Environmental Systems, 38(2), 127-144. 

Anderson, S. A., & Rivers, B. S. (2013). Corridor management: A means to elevate understanding 

of geotechnical impacts on system performance. Transportation research record, 2349(1), 9-

15. 

Baeza, C., & Corominas, J. (2001). Assessment of shallow landslide susceptibility by means of 

multivariate statistical techniques. Earth Surface Processes and Landforms: The Journal of 

the British Geomorphological Research Group, 26(12), 1251-1263. 

Baral, A., & Shahandashti, S. M. (2022a). Identifying critical combination of roadside slopes 

susceptible to rainfall-induced failures. Natural Hazards. Springer Nature. 1-22.  

Baral, A., & Shahandashti, S. M. (2022b). A Data Integration Approach for Assessment of 

Rainfall-Induced Slope Failure Susceptibility. In Construction Research Congress 2022 (pp. 

480-489). 



 

89 
 

Baral, A., & Shahandashti, M. (2022c). Risk-Averse Rehabilitation Decision Framework for 

Roadside Slopes Vulnerable to Rainfall-induced Geohazards. Journal of Infrastructure 

Preservation and Resilience. 

Baral, A., Poumand, P., Adhikari, I., Abediniangerabi, B., & Shahandashti, M. (2021). GIS-Based 

Data Integration Approach for Rainfall-Induced Slope Failure Susceptibility Mapping in 

Clayey Soils. Natural Hazards Review, 22(3), 04021026. 

Baum, R. L., Savage, W. Z., & Godt, J. W. (2002). TRIGRS—a Fortran program for transient 

rainfall infiltration and grid-based regional slope-stability analysis. US geological survey 

open-file report, 424, 38. 

Baum, R. L., Savage, W. Z., & Godt, J. W. (2008). TRIGRS-A Fortran program for transient 

rainfall infiltration and grid-based regional slope-stability analysis, version 2.0 (No. 2008-

1159). US Geological Survey. 

Berti, M., & Simoni, A. (2010). Field evidence of pore pressure diffusion in clayey soils prone to 

landsliding. Journal of Geophysical Research: Earth Surface, 115(F3). 

Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin 

hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin 

versant. Hydrological Sciences Journal, 24(1), 43-69.  

Bhattarai, P., Tiwari, B., Marui, H., & Aoyama, K. (2004). Quantitative slope stability mapping 

with ArcGIS: prioritize highway maintenance. In Proceedings of ESRI's 24th Annual 

International User's Conference, San Diego. ESRI. 



 

90 
 

Boskabadi, A., Rosenberger, J. M., & Shahandashti, M. (2020, January). A two-stage stochastic 

programming approach for enhancing seismic resilience of water pipe networks. 

In Proceedings of the 2020 IISE Annual Conference. 

BTS (Bureau of Transportation Statistics) (2021). Average Cost of Owning and Operating an 

Automobile. Available at https://www.bts.dot.gov/content/mile-costs-owning-and-

operating-automobile   Accessed March 20 2022 

Caine, N. (1980). The rainfall intensity-duration control of shallow landslides and debris 

flows. Geografiska annaler: series A, physical geography, 62(1-2), 23-27. 

Carrara, A. (1983). Multivariate models for landslide hazard evaluation. Journal of the 

International Association for Mathematical Geology, 15(3), 403-426. 

Carrara, A., Guzzetti, F., Cardinali, M., & Reichenbach, P. (1999). Use of GIS technology in the 

prediction and monitoring of landslide hazard. Natural hazards, 20(2-3), 117-135. 

Cascetta, E. (2009). Transportation systems analysis: models and applications (Vol. 29). Springer 

Science & Business Media. 

Castellanos, B. A., Brandon, T. L., & VandenBerge, D. R. (2016). Use of fully softened shear 

strength in slope stability analysis. Landslides, 13(4), 697-709. 

Chau, K. T., Sze, Y. L., Fung, M. K., Wong, W. Y., Fong, E. L., & Chan, L. C. P. (2004). Landslide 

hazard analysis for Hong Kong using landslide inventory and GIS. Computers & 

Geosciences, 30(4), 429-443. 

Chen, P. H., & Shahandashti, S. M. (2007, September). Simulated annealing algorithm for 

optimizing multi-project linear scheduling with multiple resource constraints. In Proceedings 

https://www.bts.dot.gov/content/mile-costs-owning-and-operating-automobile
https://www.bts.dot.gov/content/mile-costs-owning-and-operating-automobile
https://www.bts.dot.gov/content/mile-costs-owning-and-operating-automobile%20%20Accessed%20January%2015%202022


 

91 
 

of the 24th International Symposium on Automation and Robotics in Construction, ISARC 

2007 (No. 2005, pp. 429-434). 

Chen, P. H., & Shahandashti, S. M. (2009). Hybrid of genetic algorithm and simulated annealing 

for multiple project scheduling with multiple resource constraints. Automation in 

Construction, 18(4), 434-443. 

Clerici, A., Perego, S., Tellini, C., & Vescovi, P. (2002). A procedure for landslide susceptibility 

zonation by the conditional analysis method. Geomorphology, 48(4), 349-364. 

Crosta, G. B., & Frattini, P. (2001, October). Rainfall thresholds for triggering soil slips and debris 

flow. In Proceedings of the 2nd EGS Plinius Conference on Mediterranean Storms, edited 

by: Mugnai, A., Guzzetti, F., and Roth, G., Siena, Italy (pp. 463-487). 

Das, B. M. (2010). Geotechnical engineering handbook. J. Ross Publishing. 

Day, R. W., & Axten, G. W. (1989). Surficial stability of compacted clay slopes. Journal of 

Geotechnical Engineering, 115(4), 577-580. 

Demšar, U., Špatenková, O., & Virrantaus, K. (2008). Identifying critical locations in a spatial 

network with graph theory. Transactions in GIS, 12(1), 61-82. 

DLR German Aerospace Center (2021a). netconvert - SUMO Documentation. SUMO. 

https://sumo.dlr.de/docs/netconvert.html (Accessed 8 March 2022) 

DLR. German Aerospace Center. (2021b). netedit - SUMO Documentation. SUMO. 

https://sumo.dlr.de/docs/netedit.html (Accessed 8 March 2022) 

https://sumo.dlr.de/docs/netconvert.html
https://sumo.dlr.de/docs/netedit.html


 

92 
 

DLR. German Aerospace Center. (2021c). routesamplerpy - SUMO Documentation. SUMO. 

https://sumo.dlr.de/docs/Tools/Turns.html#routesamplerpy  (Accessed 8 March 2022) 

D'Odorico, P., Fagherazzi, S., & Rigon, R. (2005). Potential for landsliding: dependence on 

hyetograph characteristics. Journal of Geophysical Research: Earth Surface, 110(F1). 

Duan, Y., & Lu, F. (2014). Robustness of city road networks at different granularities. Physica A: 

Statistical Mechanics and its Applications, 411, 21-34. 

Fall, M., Azzam, R., & Noubactep, C. (2006). A multi-method approach to study the stability of 

natural slopes and landslide susceptibility mapping. Engineering Geology, 82(4), 241-263. 

Gamez, J. A., & Stark, T. D. (2014). Fully softened shear strength at low stresses for levee and 

embankment design. Journal of Geotechnical and Geoenvironmental Engineering, 140(9), 

06014010. 

Geotechnical Control Office Engineering Development Department Hong Kong. 

(1984). Geotechnical manual for slopes. Geotechnical Control Office, Public Works 

Department. 

Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: a 

review of current techniques and their application in a multi-scale study, Central 

Italy. Geomorphology, 31(1-4), 181-216. 

Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). 

Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1-2), 

42-66. 

https://sumo.dlr.de/docs/Tools/Turns.html#routesamplerpy


 

93 
 

Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity–duration 

control of shallow landslides and debris flows: an update. Landslides, 5(1), 3-17. 

He, Y., & Beighley, R. E. (2008). GIS‐based regional landslide susceptibility mapping: a case 

study in southern California. Earth Surface Processes and Landforms, 33(3), 380-393. 

Hidalgo, C. A., Vega, J. A., & Obando, M. P. (2018). Effect of the Rainfall Infiltration Processes 

on the Landslide Hazard Assessment of Unsaturated Soils in Tropical Mountainous 

Regions. Engineering and Mathematical Topics in Rainfall, 163. 

Highland, L. (2004). Landslide types and processes (No. 2004-3072). 

Holmstadt, J., Bradley, N., & Muehlbach, P. (2019). MnDOT Slope Vulnerability 

Assessments (No. MN/RC 2019-12). 

Hossain, J. (2013). Geohazard potential of rainfall induced slope failure on expansive clay. 

Huabin, W., Gangjun, L., Weiya, X., & Gonghui, W. (2005). GIS-based landslide hazard 

assessment: an overview. Progress in Physical Geography, 29(4), 548-567. 

Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water resources research, 36(7), 

1897-1910. 

Jafari, N., & Puppala, A. (2019). Prediction and Rehabilitation of Highway Embankment Slope 

Failures in Changing Climate. 

Jaiswal, P., van Westen, C. J., & Jetten, V. (2010). Quantitative landslide hazard assessment along 

a transportation corridor in southern India. Engineering geology, 116(3-4), 236-250. 

Janbaz, S., Shahandashti, M., & Najafi, M. (2017). Life cycle cost analysis of an underground 

freight transportation (UFT) system in Texas. In Pipelines 2017 (pp. 134-143). 



 

94 
 

Kayastha, P., Dhital, M. R., & De Smedt, F. (2013). Application of the analytical hierarchy process 

(AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west 

Nepal. Computers & Geosciences, 52, 398-408. 

Kayyal, M. K., & Wright, S. G. (1991). Investigation of Long-Term Strength Properties of Paris 

and Beaumont Clays in Earth Embankments. Final Report (No. FHWA/TX-92+ 1195-2F). 

Khademi, N., Balaei, B., Shahri, M., Mirzaei, M., Sarrafi, B., Zahabiun, M., & Mohaymany, A. S. 

(2015). Transportation network vulnerability analysis for the case of a catastrophic 

earthquake. International journal of disaster risk reduction, 12, 234-254. 

Khan, M. S., Hossain, S., & Kibria, G. (2016). Slope stabilization using recycled plastic 

pins. Journal of Performance of Constructed Facilities, 30(3), 04015054. 

Khan, M. S., Hossain, S., Ahmed, A., & Faysal, M. (2017). Investigation of a shallow slope failure 

on expansive clay in Texas. Engineering geology, 219, 118-129. 

Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated 

annealing. science, 220(4598), 671-680. 

Ko Ko, C., Flentje, P., & Chowdhury, R. (2004). Landslides qualitative hazard and risk assessment 

method and its reliability. Bulletin of Engineering Geology and the Environment, 63(2), 149-

165. 

Lee, E. M. (2001). Geomorphological mapping. Geological Society, London, Engineering 

Geology Special Publications, 18(1), 53-56. 

Lohnes, R. A., Kjartanson, B. H., & Barnes, A. (2001). Regional approach to landslide 

interpretation and repair (No. TR-430,). 



 

95 
 

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y. P., Hilbrich, R., ... & 

WieBner, E. (2018, November). Microscopic traffic simulation using sumo. In 2018 21st 

International Conference on Intelligent Transportation Systems (ITSC) (pp. 2575-2582). 

IEEE. 

Lords Hansard. 2010. Roads: Motorway lane closures. Lord Bassam of Brighton in answer to a 

question posed by Earl Attlee. 21 Nov 2007Q Column WA86. [online]  

Ludeke, K., German, D., & Scott, J. (2009). Texas vegetation classification project: interpretive 

booklet for phase II. Texas Parks and Wildlife Department and Texas Natural Resources 

Information System, Austin, USA. 

Matisziw, T. C, A. T Murray, T. H. Grubesic (2007). “Bounding Network Interdiction 

Vulnerability Through Cutset Identification.” Critical Infrastructure, 243-256. Advances in 

Spatial Science, Springer. 

Matisziw, T. C. (2007). “Evaluating Vulnerability and Risk in Interstate Highway Operation.” 

Transportation Research Board (TRB) 86th Annual Meeting, Washington, DC. 

Mattsson, L. G., & Jenelius, E. (2015). Vulnerability and resilience of transport systems–A 

discussion of recent research. Transportation Research Part A: Policy and Practice, 81, 16-

34. 

McMahan, C. A., Frye, R. G., & Brown, K. L. (1984). The vegetation types of Texas. Texas Parks 

and Wildlife Department, Austin, Texas, USA. 

Mesri, G., & Shahien, M. (2003). Residual shear strength mobilized in first-time slope 

failures. Journal of geotechnical and geoenvironmental engineering, 129(1), 12-31. 



 

96 
 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation 

of state calculations by fast computing machines. The journal of chemical physics, 21(6), 

1087-1092. 

Miller, P. E., Mills, J. P., Barr, S. L., & Birkinshaw, S. J. (2012). Geospatial Data Integration for 

Assessing Landslide Hazard on Engineered Slopes. International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, 39, B5. 

Mohseni, O., Anderson, C., Strong, M., Conway, R., Hathaway, C., Grosser, A., & Mielke, A. 

(2018). Storm-Induced Slope Failure Susceptibility Mapping (No. MN/RC 2018-05). 

Minnesota. Dept. of Transportation. 

Montgomery, D. R., & Dietrich, W. E. (1994). A physically based model for the topographic 

control on shallow landsliding. Water resources research, 30(4), 1153-1171. 

Murray, A. T., & Grubesic, T. (Eds.). (2007). Critical infrastructure: Reliability and vulnerability. 

Springer Science & Business Media. 

Myung, Y.S. and H.J. Kim (2004). “A Cutting Plane Algorithm for Computing K-Edge 

Survivability of a Network.” European Journal of Operational Research 156(3), 579-589. 

Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate 

and multivariate statistical analyses. Engineering Geology, 110(1-2), 11-20. 

Nhu, V. H., Shirzadi, A., Shahabi, H., Singh, S. K., Al-Ansari, N., Clague, J. J., ... & Luu, C. 

(2020). Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model 

Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector 

Machine Algorithms. International Journal of Environmental Research and Public 

Health, 17(8), 2749. 



 

97 
 

NOAA (National Oceanic and Atmospheric Administration). NWS/Office of Water Prediction, 

Hydrometeorological Design Studies Center (September 26, 2018). Precipitation Frequency 

for Texas, USA – NOAA Atlas 14 Volume 11, Retrieved on June 22, 2019, Available at: 

https://hdsc.nws.noaa.gov/hdsc/pfds/ 

O'loughlin, E. M. (1986). Prediction of surface saturation zones in natural catchments by 

topographic analysis. Water Resources Research, 22(5), 794-804. 

Otto, J. C., & Smith, M. J. (2013). Geomorphological map-ping. In Chap. 2, Sec. 6. L. Clarke, y 

J. Nield (Eds.), Geomorphological Techniques (pp.  1–10).  London: British Society for 

Geomorphology. ISSN: 2047-0371.  

Pack, R. T., Tarboton, D. G., & Goodwin, C. N. (1998, September). The SINMAP approach to 

terrain stability mapping. In 8th congress of the international association of engineering 

geology, Vancouver, British Columbia, Canada (Vol. 21, p. 25). 

Pellicani, R., Argentiero, I., & Spilotro, G. (2017). GIS-based predictive models for regional-scale 

landslide susceptibility assessment and risk mapping along road corridors. Geomatics, 

Natural Hazards and Risk, 8(2), 1012-1033. 

Poorzahedy, H., & Bushehri, S. N. S. (2005). Network performance improvement under stochastic 

events with long-term effects. Transportation, 32(1), 65-85. 

Pradhan, A., Akinci, B., & Haas, C. T. (2011). Formalisms for query capture and data source 

identification to support data fusion for construction productivity monitoring. Automation in 

Construction, 20(4), 389-398. 

https://hdsc.nws.noaa.gov/hdsc/pfds/


 

98 
 

Pudasaini, B., & Shahandashti, M. (2020). Topological surrogates for computationally efficient 

seismic robustness optimization of water pipe networks. Computer‐Aided Civil and 

Infrastructure Engineering, 35(10), 1101-1114. 

Pudasaini, B., & Shahandashti, S. M. (2018). Identification of critical pipes for proactive resource-

constrained seismic rehabilitation of water pipe networks. Journal of Infrastructure 

Systems, 24(4), 04018024. 

Pudasaini, B., Shahandashti, S. M., & Razavi, M. (2017). Identifying critical links in water supply 

systems subject to various earthquakes to support inspection and renewal decision 

making. Computing in civil engineering, 2017, 231-238. 

Pudasaini, B., & Shahandashti, M. (2021). Seismic Rehabilitation Optimization of Water Pipe 

Networks Considering Spatial Variabilities of Demand Criticalities and Seismic Ground 

Motion Intensities. Journal of Infrastructure Systems, 27(4), 04021028. 

Raia, S., Alvioli, M., Rossi, M., Baum, R. L., Godt, J. W., & Guzzetti, F. (2014). Improving 

predictive power of physically based rainfall-induced shallow landslide models: a 

probabilistic approach. Geoscientific Model Development, 7(2), 495-514. 

Ramanathan, R. S. (2012). Soil Slope Failure Investigation Management Systems (Doctoral 

dissertation). 

Ramanathan, R., Aydilek, A. H., & Tanyu, B. F. (2015). Development of a GIS-based failure 

investigation system for highway soil slopes. Frontiers of Earth Science, 9(2), 165-178. 

Ray, S. S. (2013). Cut Sets and Cut Vertices. In Graph Theory with Algorithms and its 

Applications (pp. 115-124). Springer, India. 



 

99 
 

Ressel, D. (1979). Soil survey of Lamar and Delta counties, Texas. 

Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss 

distributions. Journal of banking & finance, 26(7), 1443-1471. 

Roy, A., Pudasaini, B., & Shahandashti, M. (2021). Seismic Vulnerability Assessment of Water 

Pipe Networks under Network Uncertainties. In Pipelines 2021 (pp. 171-179). 

Saleh, A. A., & Wright, S. G. (1997). Shear strength correlations and remedial measure guidelines 

for long-term stability of slopes constructed of highly plastic clay soils (No. FHWA/TX-

98/1435-2F). 

Santacana, N., Baeza, B., Corominas, J., De Paz, A., & Marturiá, J. (2003). A GIS-based 

multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de 

Lillet area (Eastern Pyrenees, Spain). Natural hazards, 30(3), 281-295. 

Sarykalin, S., Serraino, G., & Uryasev, S. (2008). Value-at-risk vs. conditional value-at-risk in risk 

management and optimization. In State-of-the-art decision-making tools in the information-

intensive age (pp. 270-294). Informs. 

Seeley, M. W., & West, D. O. (1990). Approach to geologic hazard zoning for regional planning, 

Inyo National Forest, California and Nevada. Bulletin of the Association of Engineering 

Geologists, 27(1), 23-35. 

Shahabi, H., Ahmad, B. B., & Khezri, S. (2013). Evaluation and comparison of bivariate and 

multivariate statistical methods for landslide susceptibility mapping (case study: Zab 

basin). Arabian journal of geosciences, 6(10), 3885-3907. 



 

100 
 

Shahandashti, M., Hossain, S., Baral, A., Adhikari, I., Pourmand, P., & Abediniangerabi, B. 

(2022). Slope repair and maintenance management system (No. FHWA/TX-20/5-6957-01-1). 

Texas Department of Transportation. 

Shahandashti, M., Hossain, S., Khankarli, G., Zahedzahedani, S. E., Abediniangerabi, B., & 

Nabaei, M. (2019). Synthesis on Rapid Repair Methods for Embankment Slope Failure (No. 

FHWA/TX-18/0-6957-1). 

Shahandashti, M., Hossain, S., Zamanian, M., & Akhtar, M. A. (2021). Advanced Geophysical 

Tools for Geotechnical Analysis. 

Shahandashti, S. M., & Pudasaini, B. (2019). Proactive seismic rehabilitation decision-making for 

water pipe networks using simulated annealing. Natural Hazards Review, 20(2), 04019003. 

Shahandashti, S. M., Razavi, S. N., Soibelman, L., Berges, M., Caldas, C. H., Brilakis, I., ... & 

Akinci, B. (2011). Data-fusion approaches and applications for construction engineering. 

Journal of construction engineering and management, 137(10), 863-869. 

Shano, L., Raghuvanshi, T. K., & Meten, M. (2020). Landslide susceptibility evaluation and 

hazard zonation techniques–a review. Geoenvironmental Disasters, 7(1), 1-19. 

Sharveen, S., Roy, A., & Shahandashti, M. Risk-Averse Proactive Seismic Rehabilitation 

Decision-Making for Water Distribution Systems. In Pipelines 2022 (pp. 81-90). 

Singh, H., Huat, B. B., & Jamaludin, S. (2008). Slope assessment systems: A review and evaluation 

of current techniques used for cut slopes in the mountainous terrain of West 

Malaysia. Electronic Journal of Geotechnical Engineering, 13, 1-24. 



 

101 
 

Skempton, A. W. (1970). First-time slides in overconsolidated clays. Geotechnique, 20(3), 320-

324. 

Skempton, A. W. (1977). “Slope Stability of cuttings in brown London clay.” Proc., 9th Int. Conf. 

of Soil Mechanics and Foundations, Vol. 3, Springer, New York, 261–270. 

Skempton, A. W., & Delory, I. A. (1957). “Stability of Natural slope in clayey soil.” 4th 

International Conference on Soil Mechanics and Foundation Engineering. 

Soil Survey Staff, Natural Resources ConservationService, United States Department of 

Agriculture. Soil Survey Geographic (SSURGO) Database. Retrieved on June 22, 2019, 

Available online at: https://sdmdataaccess.sc.egov.usda.gov 

Stark, T. D., & Eid, H. T. (1997). Slope stability analyses in stiff fissured clays. Journal of 

Geotechnical and Geoenvironmental Engineering, 123(4), 335-343. 

Stark, T. D., & Hussain, M. (2013). Empirical correlations: drained shear strength for slope 

stability analyses. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 853-

862. 

Stark, T. D., Choi, H., & McCone, S. (2005). Drained shear strength parameters for analysis of 

landslides. Journal of Geotechnical and Geoenvironmental Engineering, 131(5), 575-588. 

Strauch, R., Istanbulluoglu, E., & Riedel, J. (2019). A new approach to mapping landslide hazards: 

a probabilistic integration of empirical and physically based models in the North Cascades 

of Washington, USA. Natural Hazards & Earth System Sciences, 19(11). 

https://sdmdataaccess.sc.egov.usda.gov/?referrer=Citation.htm-SSURGOLink


 

102 
 

Sullivan, J., Aultman-Hall, L., & Novak, D. (2009). A review of current practice in network 

disruption analysis and an assessment of the ability to account for isolating links in 

transportation networks. Transportation Letters, 1(4), 271-280. 

Taneja, S., Akinci, B., Garrett, J. H., Soibelman, L., Ergen, E., Pradhan, A., ... & Anil, E. B. (2011). 

Sensing and field data capture for construction and facility operations. Journal of 

construction engineering and management, 137(10), 870-881. 

Taylor, M. (2017). Vulnerability analysis for transportation networks. Elsevier. 

Taylor, M. A., & D’este, G. M. (2003, October). Concepts of network vulnerability and 

applications to the identification of critical elements of transport infrastructure. Wellington, 

New Zealand: New Zealand Transport Research Forum. 

Taylor, M. A., & D’Este, G. M. (2007). Transport network vulnerability: a method for diagnosis 

of critical locations in transport infrastructure systems. In Critical infrastructure (pp. 9-30). 

Springer, Berlin, Heidelberg. 

Taylor, M. A., Sekhar, S. V., & D'Este, G. M. (2006). Application of accessibility based methods 

for vulnerability analysis of strategic road networks. Networks and Spatial Economics, 6(3-

4), 267-291. 

TNRIS (Texas Natural Resource Information Center). (2019) . Elevation-LiDAR. Retrieved on 

March 5, 2019. Available at: https://tnris.org/stratmap/elevation-lidar/ 

TxDOT, Statewide Connectivity Corridors (2018). Texas Department of Transportation.  

Retrieved on June 20, 2019, Available at: http://gis-txdot.opendata.arcgis.com 

http://gis-txdot.opendata.arcgis.com/


 

103 
 

TxDOT.(2021). Traffic Count Database System (TCDS). Texas Department of Transportation. 

https://txdot.ms2soft.com/tcds/tsearch.asp?loc=Txdot&mod=TCDS 

USACE (US Army Corps of Engineers). (2003). Engineering and design: slope stability, 

engineering manual EM 1110-2-1902. 

Van Westen, C. J., Rengers, N., Terlien, M. T. J., & Soeters, R. (1997). Prediction of the 

occurrence of slope instability phenomenal through GIS-based hazard zonation. Geologische 

Rundschau, 86(2), 404-414. 

Wachal, D. J., & Hudak, P. F. (2000). Mapping landslide susceptibility in Travis County, Texas, 

USA. GeoJournal, 51(3), 245-253. 

Walkinshaw, J. (1992). Landslide correction costs on US state highway systems. Transportation 

Research Record, 36-36. https://www.americangeosciences.org/critical-issues/faq/how-

much-do-landslides-cost-terms-monetary-losses 

Whitworth, M., Anderson, I., & Hunter, G. (2011). Geomorphological assessment of complex 

landslide systems using field reconnaissance and terrestrial laser scanning. In Developments 

in Earth Surface Processes (Vol. 15, pp. 459-474). Elsevier. 

Wilks, J. H. (2015). Transport infrastructure slope failures in a changing climate (Doctoral 

dissertation, Loughborough University). 

Wilson, M. C. (2007). The impact of transportation disruptions on supply chain 

performance. Transportation Research Part E: Logistics and Transportation Review, 43(4), 

295-320. 

https://www.americangeosciences.org/critical-issues/faq/how-much-do-landslides-cost-terms-monetary-losses
https://www.americangeosciences.org/critical-issues/faq/how-much-do-landslides-cost-terms-monetary-losses


 

104 
 

Winter, M. G. (2019). Landslide hazards and risks to road users, road infrastructure and socio-

economic activity. Geotechnical Engineering, Foundation of the Future. Icelandic 

Geotechnical Society, Reykjavik, 196-228. 

Wright, S. G., Zornberg, J. G., & Aguettant, J. E. (2007). The fully softened shear strength of high 

plasticity clays (No. FHWA/TX-07/0-5202-3). 

Zahed, S. E., Shahandashti, S. M., & Najafi, M. (2018). Lifecycle benefit-cost analysis of 

underground freight transportation systems. Journal of Pipeline Systems Engineering and 

Practice, 9(2), 04018003. 

Zahed, S. E., Shahooei, S., Farooghi, F., Shahandashti, M., & Ardekani, S. (2019). Life-cycle cost 

analysis of a short-haul underground freight transportation system for the DFW Airport. Built 

Environment Project and Asset Management, 9(3), 440-456.  

Zamanian, M., Akhtar, A., Shahandashti, M., & Hossain S. (2022) Empirical Investigation of 

Spatial Association Between Electrical Resistivity Values and Geotechnical Properties of 

Clayey Soils. 

Zamanian, M., & Shahandashti, M. Investigation of Relationship between Geotechnical 

Parameters and Electrical Resistivity of Sandy Soils. In Construction Research Congress 

2022 (pp. 686-695). 

Zhang, S., Zhao, L., Delgado-Tellez, R., & Bao, H. (2018). A physics-based probabilistic 

forecasting model for rainfall-induced shallow landslides at regional scale. Natural Hazards 

and Earth System Sciences, 18(3), 969-982. 



 

105 
 

Zimmermann, M., Bichsel, M., & Kienholz, H. (1986). Mountain hazards mapping in the Khumbu 

Himal, Nepal. Mountain Research and Development, 29-4 

 

 


	Identifying the Optimal Combination of Critical Roadside Slope Segments Susceptible to Rainfall-induced Failures for Minimizing Vulnerability of Highway Networks
	Recommended Citation

	tmp.1725379204.pdf.GWRd5

