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ABSTRACT

LEARNING AND CONTROL FOR COMPLEX MULTIAGENT

SYSTEMS

VRUSHABH S. DONGE, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Ali Davoudi, Frank L. Lewis

Complex multiagent systems (MASs) are pervasive in various fields, from power

system networks, and autonomous robotics to traffic management, where groups of agents

interact to achieve collective objectives. Effective coordination and control of such systems

pose significant challenges due to their inherent complexity and the need for adaptive, ef-

ficient strategies. This dissertation explores combining data-driven approaches, reinforce-

ment learning (RL), and control theory to address these challenges. We present novel

methodologies for learning and controlling complex MASs, emphasizing the development

of adaptive algorithms that can autonomously adapt to dynamic environments, collaborate

with other agents, and optimize system-wide performance. Our findings offer promising

insights into creating intelligent MASs that can operate efficiently and effectively in diverse

applications.

This thesis navigates the intricate realm of large-scale systems, focusing on MAS

and complex nonlinear structures. It introduces innovative methodologies rooted in inverse

RL to tackle challenges ranging from uncovering unknown cost functions to enabling data-

efficient optimal control within MAS frameworks.

xii



The research begins by unveiling an inverse RL algorithm designed for graphical ap-

prentice games in MAS. This algorithm employs an inner-loop optimal control update and

an outer-loop inverse optimal control (IOC) update as subproblems, where reward func-

tions that the learner MAS finds are proven to be both stabilizing and non-unique. A sim-

ulation study of DC microgrid validates the effectiveness of this approach. Expanding the

scope, the thesis explores the application of decomposition principles to discrete-time RL

for optimal control in networked subsystems. Here, a model-free algorithm based on on-

line behaviors is enhanced by employing dynamic mode decomposition (DMD) to handle

larger networks, validated through consensus and power system networks.

Additionally, the work advances a data-efficient model-free RL algorithm using Koop-

man operators for complex nonlinear systems. This methodology lifts the nonlinear sys-

tem into a linear model, deriving an off-policy Bellman equation that reduces data re-

quirements for optimal control learning. Validation within power system excitation control

demonstrates its efficacy. Furthermore, the thesis addresses reward-shaping challenges in

large-scale MAS using inverse RL, proposing a scalable model-free algorithm. Leveraging

DMD, this approach significantly diminishes data requirements while ensuring algorithm

convergence, stability, and the non-uniqueness of state-reward weights. Validation in a

large-scale consensus network confirms the method’s efficacy through comparisons of data

sizes and computational time for reward shaping.

Through these diverse methodologies and validations across various complex sys-

tems, this thesis not only contributes theoretical advancements but also offers practical

solutions for managing, controlling, and shaping behaviors within intricate large-scale net-

worked systems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

For decades, control theorists have been drawn to studying large-scale, complex dy-

namic systems [94]. These systems are abundant in nature and span engineering and phys-

ical realms, encompassing a wide array of examples, including computer networks, robotic

networks, sensor networks, electric power systems, social networks, transportation net-

works, and more.

With tremendous advancements in sensing technology, engineers are now more in-

clined to adopt data-driven control methods [132]. These approaches involve algorithms

that combine adaptive control and optimal control, allowing control actions to be learned

online. Traditionally, adaptive control and optimal control have been regarded as distinct

design tools [98]. However, recent findings suggest that these two methodologies can be

integrated using a machine-learning technique called reinforcement learning (RL) [130].

The necessity of defining the performance index in advance limits the scope of RL tools.

In contrast, inverse optimal control (IOC) reconstructs the performance index based on

an agent’s demonstration [45]. Similarly, inverse RL [3] establishes an unknown optimal

performance index using the agent’s demonstration without requiring an understanding of

system dynamics.

These RL algorithms are primarily constrained by the size of the systems. Typically,

these designs rely on state trajectories and their combinations to acquire knowledge for

optimal feedback controllers [59,118,119]. The quantity of states and control inputs influ-

ences the amount of data samples required to be stored during the exploration phase of the

1



Figure 1.1. Research outline.

design process. Consequently, employing the complete-scale learning algorithms directly

on physical systems with numerous states and control locations would result in prolonged

exploration periods, alongside feedback control gains of higher dimensions. In this work,

we introduce a scalable learning framework that integrates the concept of dimensionality

reduction alongside the learning algorithms.

1.2 Research Outline

Figure 1.1 illustrates the research outline of the thesis. In an era where advancements

in complex systems such as DC Microgrids, consensus Networks, and multi-area power

systems are ever-increasing, the need for effective synchronization and control mechanisms

becomes paramount. These systems, while integral to our modern infrastructure, pose

intricate challenges due to their scale, interconnectivity, and nonlinear behavior. This thesis

embarks on a journey into the heart of these complexities, aiming to unravel the intricacies

inherent in large-scale networked systems. At its core lies the fusion of optimal control

2



theory with advanced computational methodologies. Techniques such as dynamic mode

decomposition (DMD), Koopman theory, and lossless dimensionality reduction are brought

together to offer novel solutions tailored to address the unique demands of these systems

[111, 125]. Reward-shaping and optimal control take center stage, serving as the focal

points of exploration.

Through the lens of decomposition techniques and inverse reinforcement learning,

this thesis seeks to redefine how we approach the management of complex systems. These

methodologies, though sophisticated, aim to provide not just theoretical frameworks but

tangible, implementable solutions. Moreover, the research delves into the realm of data-

efficient RL, a crucial frontier in addressing the challenges posed by complex nonlinear sys-

tems. The objective is clear to devise scalable, data-efficient strategies capable of handling

the intricacies of multi-agent systems. Accelerated learning via DMD [34] and scalable

reward-shaping strategies stand as promising avenues within this exploration.

1.3 Contributions

1. Chapter 2 introduces pivotal contributions focused on inverse RL algorithms within

the realm of linear multi-agent graphical games featuring continuous-time differ-

ential system dynamics. Unlike prior works concentrated on single or multi-agent

systems defined by Markov Decision Processes (MDPs), this work pioneers inverse

RL for multi-agent graphical games. The model-based inverse RL algorithm delves

into learning unknown reward functions by resolving both RL and IOC as subprob-

lems. We achieve this by facilitating the estimation of expert reward weights, seeking

Nash equilibrium, and continuously updating reward weight estimations based on

expert trajectories. This lays the foundation for a model-free inverse RL algorithm

designed to solve Graphical Apprentice Games without necessitating knowledge of

3



MAS dynamics, thus utilizing behavioral trajectory data for online implementation.

The chapter culminates in a comprehensive analysis, delving into the stability, con-

vergence, and quantification of non-uniqueness regarding state reward weights within

the proposed inverse RL algorithms.

2. Chapter 3 is motivated by the integration of dynamic decomposition and RL to

present a computationally feasible optimal control scheme tailored for large-scale

networks. The chapter’s standout contributions are outlined as follows: Firstly, it

formulates the discrete-time LQR graphical problem for large-scale systems com-

prising linear subsystems, accommodating both coupled and decoupled dynamics

and delineating stabilizing controllers. Secondly, it sheds light on the limitations of

scaling associated with the model-free discrete-time RL algorithm when addressing

large-scale LQR graphical problems. Subsequently, it introduces a computationally

efficient discrete-time RL algorithm hinged on DMD. This novel approach dimin-

ishes data dimensions required for optimal control learning while conserving the

original system’s dynamic information. Lastly, the chapter substantiates the efficacy

of the proposed algorithm through comprehensive theoretical and numerical analy-

ses, underlining its computational efficiency and suitability for large-scale systems.

3. Chapter 4 introduces significant contributions aimed at easing the burdensome pro-

cess of system modeling for complex nonlinear systems. The chapter unfolds as

follows: Firstly, it pioneers an entirely data-driven model-based RL algorithm em-

ploying Koopman operators. This approach sidesteps the necessity for an exact

model, setting it apart from existing RL methods [2, 55, 88, 155]. This character-

istic renders it a more pragmatic choice for control tasks within intricate and un-

certain environments. Secondly, leveraging Koopman eigenfunctions, the chapter

develops a data-efficient model-free RL algorithm. This innovation truncates ex-

tensive datasets, enhancing data efficiency for optimal control learning in unknown

4



complex systems, a key advancement addressing longer learning times in previous

works [22, 81, 85, 89, 99, 157]. Lastly, the chapter includes convergence analysis

for the proposed data-efficient model-free algorithm and substantiates its efficacy

through validation on a complex nonlinear power system.

4. Chapter 5 progresses through distinct stages and delivers notable contributions as

follows: Initially, it formulates a reward-shaping problem within dynamically decou-

pled linear agents, aiming for the MAS under LQR control to replicate the behavior

of the target MAS. Secondly, it harnesses DMD to achieve lossless dimensionality

reduction, extracting dynamic modes from state measurements and constructing a

projection matrix crucial for preserving essential dynamics. Subsequently, the chap-

ter introduces a scalable model-free inverse RL algorithm, designed to mold an un-

known reward function by solving optimal control and IOC as interconnected sub-

tasks. Lastly, the proposed algorithm undergoes comprehensive analysis for stability

and convergence, alongside quantifying the non-uniqueness of state reward weights,

solidifying its theoretical foundations and applicability.

Ultimately, this research endeavors to contribute not only to academic discourse but

to the practical realm, offering insights and tools that can potentially revolutionize how

we manage and interact with intricate interconnected systems. The applications of these

methodologies hold promise in reshaping the landscape of large-scale networked systems,

potentially paving the way for more efficient, resilient, and adaptable infrastructures in the

future. The publications stemming from this dissertation are listed below:

1. V. S. Donge, B. Lian, F. L. Lewis and A. Davoudi, ”Multiagent Graphical Games

With Inverse Reinforcement Learning,” in IEEE Trans. Control Netw. Syst., vol. 10,

no. 2, pp. 841-852, June 2023, doi:10.1109/TCNS.2022.3210856.
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2. V. S. Donge, B. Lian, F. L. Lewis and A. Davoudi, ”Accelerated Reinforcement

Learning Via Dynamic Mode Decomposition,” in IEEE Trans. Control Netw. Syst.,

doi:10.1109/TCNS.2023.3259060.

3. V. S. Donge, B. Lian, F. L. Lewis and A. Davoudi, ”Data-Efficient Reinforcement

Learning for Complex Nonlinear Systems,” in IEEE Trans. Cybern., doi:10.1109/

TCYB.2023.3324601.

4. V. S. Donge, B. Lian, F. L. Lewis, and A. Davoudi, “Efficient Reward Shaping for

Multiagent Systems,” submitted to IEEE Trans. Control Netw. Syst., 2023.
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Chapter 2

Multiagent Graphical Games with

Inverse Reinforcement Learning *

*This chapter, titled ’Multiagent Graphical Games with Inverse Reinforcement Learning,’ was originally
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CHAPTER 2

Multi-agent Graphical Games with Inverse Reinforcement Learning

2.1 Introduction

Optimal control techniques can be designed to achieve synchronization among

agents of a multi-agent system (MAS) [98]. Conventional optimal control [15] assumes

the knowledge of system dynamics, whereas reinforcement learning (RL) [130] provides

optimal solutions using behavior data without knowing system dynamics. However, the

requirement to predefine the performance index restricts the applicability of optimal control

and RL tools. Alternatively, inverse optimal control (IOC) uses an agent’s demonstration to

rebuild the performance index [45]. Likewise, inverse RL [3] builds an unknown optimal

performance index given the agent’s demonstration without perceiving system dynamics.

Observing expert demonstrations to emulate an agent to the expert’s preferences is

known as imitation learning. Slight changes in the learning area might lead to useless

learned policies, but they generally would not affect the learned reward functions. This

makes the reward function naturally more transferable [104]. Inverse RL is essentially one

approach to implementing imitation learning. In inverse RL, the learner agent, or the ap-

prentice, discovers the unknown reward function by observing the expert’s demonstration

generated by an optimal policy and conforming to common trajectories [3, 4, 12, 19, 28,

53, 113, 126, 131]. Similarities between inverse RL and imitation learning are discussed

in [108]. [104] and [108] obtain a reward function from observed optimal behavior using

inverse RL for Markov decision processes (MDP). [150] presents inverse RL to acquire

an unknown reward function for tracking control with the support of IOC. The inverse RL-

based actor-critic framework in [83] addresses adversarial attacks in a single-agent environ-
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ment. The inverse RL technique remains largely unexplored in the optimal synchronization

of multi-agent graphical games.

For all agents to agree on a certain quantity of interest, [27, 98] use optimal control

with distributed dynamics produced by a single reward function in terms of the local syn-

chronization error. In [95,112], off-policy RL algorithms solve the synchronization issue of

MAS using graphical games. Defining the cooperative reward function over iterative learn-

ings for the RL becomes problematic. RL techniques assume that the performance indices

of agents are known upfront. In the apprentice learning task, the performance indices of the

expert MAS could be hidden from the learner [3,4,113,131]. Herein, we employ graphical

games [98] that blend agent dynamics via a communication network for synchronization,

and integrate it with apprentice learning to obtain unknown cooperative reward functions of

the learner MAS using inverse RL. This apprentice learning synchronizes the learner MAS

with the expert MAS.

The majority of existing work on inverse RL does not have to acknowledge the strict

stability of learner or expert system dynamics. Learner stability must be assured during the

retrieval of expert performance indices. Given the system dynamics and demonstrations,

agents can generate a reward function using the IOC approach [45], which also ensures

their stability by choosing the correct policy for a stabilizing reward. [60] and [106] gener-

ate a state reward function for deterministic continuous-time nonlinear systems. [37] uses

IOC to recover unique value functions, cost functions, and control policies of the expert

within the formulation of linearly solvable MDPs. [121, 139] provide a unique IOC tech-

nique for discrete-time nonlinear system stabilization and path tracking which eliminates

the need to evaluate the Hamilton-Jacobi-Bellman (HJB) equation in uncertain complex

networks. Bayes learning [162] is similar to IOC in the sense that it also finds uncertain

performance indices of an agent using probability sampling methods [20]. Since IOC em-
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ploys deterministic models, it does not need to compute the expectation over trajectories as

Bayes learning would require.

This paper defines a Graphical Apprentice Games for continuous-time linear MAS.

To solve these games online, the inverse RL algorithm infers the unknown reward func-

tions of the learner based on an expert’s behavioral trajectory. Figure 2.1 illustrates the

proposed method for achieving optimal apprentice synchronization using inverse RL with

optimal control to extract optimal policy and IOC to revise state reward weight. Salient

contributions of this paper are:

1. We explore inverse RL algorithms for linear multi-agent graphical games with continuous-

time differential system dynamics. This is in contrast to the inverse RL work in

[47, 102, 104, 108], where single- or multi-agent systems are defined by MDPs. To

the best of our knowledge, inverse RL has not been studied for multi-agent graphical

games.

2. The model-based inverse RL algorithm learns an unknown reward function for our

Graphical Apprentice Games by solving both RL and IOC as subproblems. First, the

learner MAS finds the corresponding Nash equilibrium given the current estimation

of the expert’s reward weight. Then, the learner MAS updates its current estimated

reward weight by monitoring the expert’s trajectories. Moreover, this algorithm en-

ables model-free formulation for IOC to reconstruct the reward function.

3. We further propose a model-free inverse RL algorithm to solve the Graphical Ap-

prentice Games without using knowledge of MAS dynamics. This algorithm is then

implemented online using behavioral trajectory data.

4. Stability and convergence of proposed approaches are analyzed. Furthermore, the

non-uniqueness of state reward weights is quantified in our inverse RL algorithm.

This paper is compiled as follows: Section II introduces the Graphical Apprentice

Games followed by formulations of learner and expert MAS dynamics. Section III gives a
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model-based inverse RL algorithm. Section IV presents a model-free inverse RL algorithm

with online implementation. Section V presents simulation studies. Section VI concludes

this work.

Notations: Rn is the n-dimensional Euclidean space. ⊗ stands for the Kronecker

product. In indicates the n-dimensional identity matrix. ∥·∥ defines the 2-norm of a vector

or a matrix. For matrix Pi ∼= [P1,P2, . . . ,Pn] ∈ Rn×n,

vec(P) = [P11 P12 . . . P1n P22 . . . P(n−1)n Pnn]
T . (2.1)

For a vector x = [x1, x2, . . . , xn]
T ∈ Rn, vecv(x⊗ x) denotes the vector [x2

1, 2x1x2, . . .,

2x1xn, x2
2, 2x2x3, . . ., 2xn−1xn, x2

n]
T .

2.2 Problem Formulation

This section defines Graphical Apprentice Games, and formulates expert and learner

MAS.

2.2.1 Graphical Apprentice Games

This paper proposes a framework for inverse RL of cooperative graphical games

where the learner MAS aims to attain optimal synchronization by imitating the demon-

strated behavior of the expert MAS. The graphical games centered on apprentice learning

are called Graphical Apprentice Games. Therein, the learner seeks to imitate expert behav-

ioral trajectories without accessing optimal policies. It infers unknown reward functions of

expert MAS and obtains the same optimal control policies.

Graph topology for Graphical Apprentice Game: Consider a set of agents N ∼=

(1,2, . . . ,N) in the communication graph G = (V ,E ). The graph is identical between the

expert MAS and the learner MAS. The vertex of an individual agent is vi ∈ V , ∀i ∈N .

There are edges E ⊆ V ×V between the two vertices with the connectivity weight ei j > 0
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EXPERT MAS

GRAPHICAL GAME

EXPERT 
DEMONSTRATED 

POLICY

INVERSE OPTIMAL 
CONTROL

UPDATING STATE 
REWARD WEIGHT Q

LEARNER MAS

GRAPHICAL GAME

REVISED Q

GENERATED 
POLICY

̇    

Optimal 
control 
learning 
by RL 

 
̇    

Optimal 
control 
learning 
by RL 

Figure 2.1. Inverse RL framework for solving Graphical Apprentice Game between expert and
learner MAS: 1) Expert has optimal synchronization trajectories for states and control inputs by
optimal control and, 2) Given expert’s demonstrated trajectories, the learner MAS finds its unknown
cost functions using an inner-loop optimal control update and an outer-loop IOC update..

if (v j,vi) ∈ E ; Otherwise, ei j = 0. The set of vertex vi neighbors is Ni ∼= {v j : ei j > 0}.

Assuming no self-loops in the graph, i.e., eii = 0. The graph adjacency matrix is specified as

A = [ei j]. The graph degree matrix is D = diagi{di}, where weighted in-degree of vertex i

is di =∑
N
j=1 ei j. Laplacian matrix L is defined as (D−A ) [146]. The progression of edges

E through vertices (vis−1 ,vis) ∈ E for s ∈ (2, . . . , j) constitutes a directed path originating
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from vi1 to vi j . The graph is considered to be strongly connected if there is a directed path

between every pair of vertices vi and v j.

2.2.1.1 Expert MAS

Consider an expert MAS with linear dynamics of each agent i, i ∈N as

ẋie = Axie +Buie, (2.2)

where xie ∈Rn and uie ∈Rp denote state and control input of the expert agent i, respectively.

The expert MAS has identical system matrices A ∈ Rn×n and B ∈ Rn×p. The pair (A,B)

is assumed stabilizable. The local synchronization error of each agent i is defined as δie =

∑ j∈Ni ei j(xie− x je), and its error dynamics is given by

δ̇ie = ∑
j∈Ni

ei j(ẋie− ẋ je)

= Aδie +diBuie− ∑
j∈Ni

ei jBu je. (2.3)

Define the cooperative cost function of each expert agent i as

Vie
(
δie(t0),uie,u−ie

)
=
∫

∞

t0

(
δ

T
ieQieδie +uT

ieRieuie
)
dt, (2.4)

where Qie = QT
ie ∈ Rn×n ≥ 0 and Rie = RT

ie ∈ Rp×p > 0 are the state reward weight and

control input weight, respectively. u−ie ∼= {u je| j ∈Ni} is the set of control inputs for the

neighbors of the expert agent i.

Definition 1. Nash equilibrium: Expert MAS has an N -tuple policy {u∗1e,u
∗
2e, . . . ,u

∗
Ne}

promising a global Nash equilibrium solution, in the sense that

V ∗ie ∼=Vie
(
δie(t0),u∗ie,u

∗
−ie
)
≤Vie

(
δie(t0),uie,u∗−ie

)
. (2.5)

The optimal value function of each expert agent i has the quadratic form

V ∗ie
(
δie(t)

)
= min

uie

∫
∞

t

(
δ

T
ieQieδie +uT

ieRieuie
)
dτ

= δ
T
iePieδie, (2.6)
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where Pie =PT
ie ∈Rn×n > 0. Given the value function V ∗ie(δie), and using the optimal control

of cooperative multi-agent systems [98], the expert MAS has the optimal input u∗ie as

u∗ie =−diR−1
ie BTPieδie =−Kieδie, (2.7)

where Kie ∼= diR−1
ie BTPie, and Pie satisfies the coupled HJB equation of the expert MAS as

0 =δ
T
ieQieδie +d2

i δ
T
iePieBR−1

ie BTPieδie +2δ
T
iePieAδie

+2diδ
T
iePie ∑

j∈Ni

ei jBR−1
je BTPjeδ je. (2.8)

2.2.1.2 Learner MAS

Consider the learner MAS with each agent dynamics are

ẋi = Axi +Bui, (2.9)

where xi(t) ∈ Rn and ui ∈ Rp denote states and control inputs of each learner agent i,

respectively. Note that the system dynamics A and B are the same as in (1).

The local synchronization error of each agent i is δi = ∑ j∈Ni ei j(xi− x j). The error

dynamics for learner MAS is

δ̇i = Aδi +diBui− ∑
j∈Ni

ei jBu j. (2.10)

The cooperative cost function of each learner agent i is

Vi
(
δi(t0),ui,u−i

)
=
∫

∞

t0

(
δ

T
i Qiδi +uT

i Riui
)
dt, (2.11)

where Qi = QT
i ∈ Rn×n ≥ 0, Ri = RT

i ∈ Rp×p > 0, and u−i = {u j| j ∈Ni}.

Definition 2. (Equivalent state reward weight) Given system dynamics A and B, the

weights Qie and Rie in (2.8), define u∗ie in (2.7). Arbitrarily selecting Ri > 0, one can find a

Q̄i, ∀i ∈N in learner HJB equation, such that there are N -tuple V ∞
i in the learner MAS

that solve ui = u∗ie. Then, one has Q̄i is equivalent to Qie.
14



Assumption 1. Communication graphs in both learner MAS and expert MAS are strongly

connected.

Assumption 2. The learner MAS knows its own state reward weight and control weight,

Qi and Ri, ∀i ∈N , but does not know the expert’s Qie and Rie. Also, Ri can differ from

Rie.

Assumption 3. Each learner agent i can observe expert agent i’s trajectories of u∗ie, where

i ∈ N . Notice that expert and learner MASs have separate graphical games, and their

agents are not neighbors on the same graph.

Graphical Apprentice Game Problem: Consider Assumptions 1, 2, and 3. Pro-

vided the expert MAS optimal control input u∗ie, each learner agent i seeks to learn an

equivalent state reward weight Q̄i to Qie that satisfies (2.8), such that it presents the ex-

pert’s behavior, i.e., (xi,u∗i ) = (xie,u∗ie) with the expert agent i’s feedback control gain Kie.

Remark 1. Note that we analyze local synchronization error dynamics in (2.3) and (2.10)

for the synchronization problem of MAS instead of (2.2) and (2.9). It is evident from (2.3)

and (2.10) that the local synchronization error of each agent i is driven by the control input

of agent i and its neighboring agents. The cooperative cost function in (2.4) and (2.11) is

considered for optimal synchronization. In addition, inverse RL is developed for (2.3) and

(2.10) such that (δi = δie)→ 0, i.e., xi→ xie.

2.3 Model-based Inverse RL Algorithm

This section builds a model-based inverse RL algorithm to solve the Graphical Ap-

prentice Game Problem. The inverse RL algorithm is a two-loop iterative process. In the

inner loop, given the current estimation Qi of the expert’s reward weight Qie in (2.8), the

learner MAS finds the corresponding Nash equilibrium using RL-based optimal control

learning. In the outer loop, the learner MAS updates the current Qi towards the equiva-
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lent weight Qie by monitoring the expert MAS behavioral trajectories u∗ie using IOC. The

learner MAS ultimately finds the expert’s feedback control gain Kie and the expert’s behav-

ior (xie,u∗ie) as both inner and outer loops are repeated.

2.3.1 Optimal Control Learning by the Learner MAS

To find the optimal value function V ∗i (δi)

V ∗i
(
δi(t)

)
= min

ui

∫
∞

t

(
δ

T
i Qiδi +uT

i Riui
)
dτ

= δ
T
i Piδi, (2.12)

where Pi = PT
i ∈ Rn×n > 0, one refers to the optimal control technique in [15, 95], and has

the optimal control input of learner agent i as

u∗i =−diR−1
i BTPiδi =−Kiδi, (2.13)

where Ki ∼= diR−1
i BTPi, and Pi satisfies the coupled HJB equation of the learner MAS

0 =δ
T
i Qiδi +di

2
δ

T
i PiBR−1

i BTPiδi

+2δ
T
i PiAδi +2diδ

T
i Pi ∑

j∈Ni

ei jBR−1
j BTPjδ j. (2.14)

The learner MAS solves (2.13) and (2.14) for each learner agent i using RL-based

optimal control learning to obtain a converged optimal solution set (V ∗i ,u
∗
i ), given a current

estimate Qi of Qie. The policy iteration in [16] can solve this optimal control learning

problem as will be presented with (2.16) and (2.17) in Algorithm 1.

Remark 2. In some cases, experts might not be able to send their rewards directly to learn-

ers since: 1) experts might be unaware of learners’ presence, 2) there could be competition

amongst groups, and 3) experts could be even unaware of their own quantitative rewards.
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2.3.2 Inverse Optimal Control to Learn the Reward Weight

Learner state reward weights are revised using IOC given the demonstration of expert

u∗ie. The learner MAS tries to infer Q̄i satisfying (2.14) such that it defines the expert’s

behavior. That is, (xi,u∗i ) = (xie,u∗ie). Based on IOC [45], the state reward weight Q̄i is

revised towards Q∞
i by

δ
T
i Q̄iδi = u∗Tie Riu∗ie−2u∗Tie Riu∗i

−2δ
T
i Pi

(
Aδi +diBu∗i − ∑

j∈Ni

ei jBu∗j

)
. (2.15)

Repeat these loops iteratively until Qi converges to Q̄i. Consequently, (2.14) defines

the same behavioral trajectories as (2.8), i.e., (xie,u∗ie). In Algorithm 1, the iterative form

of (2.15) is presented as (2.18). The model-based inverse RL Algorithm 1 for the graphical

apprentice game can now be presented.

Remark 3. Note that Algorithm 1 is developed for homogeneous MAS graphical games

similar to the works in [98, 112]. In a heterogeneous case, where A and B are not identical

for each agent i, Algorithm 1 may not apply. Experts’ error dynamics in (2.3) becomes a

function of δie and x je. Similarly, (2.10) becomes a function of δi and x j for the learner.

This indicates that the distributed control uie and ui in (2.7), (2.13) should be derived based

on (δie,x je) and (δi,x j), respectively, instead of just δie and δi.

Assumption 4. The value of ei in the Algorithm 1 is sufficiently small so as not to affect the

execution of outer loops [150]. Based on [141], we select the lower bound ei > 0 satisfying

ei ≤ βT ∏
n
i=1 |λi|, where β > 0 is an scaling factor, T is the sampling time, and λi denotes

eigenvalues of the closed-loop dynamics of (2.9).

Remark 4. The contributions of Algorithm 1 are three-folds. First, it solves homogeneous

Graphical Apprentice Games defined by differential dynamic equations in contrast to the

multi-agent inverse RL for MDPs. Second, Algorithm 1 illustrates that optimal control

and IOC must be solved as subproblems in our inverse RL. Third, in contrast with IOC
17



Algorithm 1 Model-based inverse RL Algorithm for Graphical Apprentice Game
1 Initialization: For each learner agent i∈N , select initial Q0

i ≥ 0, Ri > 0, and stabilizing

control input u00
i . Set h = 0 and small thresholds ei and εi.

2 Outer h iteration loop using IOC

3 Inner k iteration loop using optimal control: Given

h, set k = 0;

4 Policy evaluation for solving Phk
i

0 =δi
TQh

i δi +(uhk
i )TRiuhk

i

+2δ
T
i Phk

i

(
Aδi +diBuhk

i − ∑
j∈Ni

ei jBuhk
j

)
; (2.16)

5 Policy improvement for solving uh(k+1)
i

uh(k+1)
i =−diRi

−1BTPhk
i δi; (2.17)

6 Stop if ∥Phk
i −Ph(k−1)

i ∥ ≤ ei, then set Ph
i = Phk

i , uh
i =

uhk
i , and go to step 7, if not, set k← k+1 and go to

step 4;

7 Outer h iteration loop using IOC: Qh+1
i update using expert optimal control inputs u∗ie

δi
T Qh+1

i δi =u∗Tie Riu∗ie−2u∗Tie Riuh
i

−2δ
T
i Ph

i

(
Aδi +diBuh

i − ∑
j∈Ni

ei jBuh
j

)
; (2.18)

8 Stop if ∥Qh+1
i −Qh

i ∥ ≤ εi. Otherwise, set u(h+1)0
i = uh

i , h← h+1, and go to Step 3.
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studies [45] that had required system dynamics, we can produce a model-free algorithm to

estimate reward function towards expert MAS.

2.3.3 Convergence and Stability Analysis

Herein, we show the convergence of the proposed Algorithm 1 and the stability of

the learner MAS.

Theorem 1. (Convergence of Algorithm 1) Given Assumptions 1, 2, and 3, consider the

Algorithm 1 for solving the Graphical Apprentice Game Problem. Select initial Q0
i ≥ 0 and

Ri > 0. Then, the learner agent i converges in a finite number of iterations h, i.e., (xi,uh
i )→

(xie,u∗ie), where uh
i and u∗ie are given by (2.17) and (2.7), respectively. Furthermore, Qh

i

converges to Q̄i, where Q̄i is equivalent to Q∗ie.

Proof. We analyze the convergence for two loops in Algorithm 1. First, we show the

convergence of inner iteration loops, the policy iteration learning, which includes steps 4

and 5 of Algorithm 1. As exhibited in [95, 109], for a fixed outer iteration h, if Qh
i ≥ 0

and initial stabilizing control inputs uh0
i for each learner agent i, i ∈N , the inner iteration

loop gives the converging solution set (uh
i ,V

h
i ) as k→∞ where V h

i is optimal. Note that the

stabilizing control input uh0
i can be obtained from step 8.

Second, we prove the convergence of outer loops for a finite number of outer itera-

tions h based on the convergence of inner loops. When inner iteration loops converge given

the current Qh
i , ∀i ∈N , step 4 gives

0 =δ
T
i Qh

i δi +(uh
i )

TRiuh
i

+2δ
T
i Ph

i

(
Aδi +diBuh

i − ∑
j∈Ni

ei jBuh
j

)
. (2.19)
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The state reward weight Qh+1
i of each learner agent i becomes

δi
TQh+1

i δi =u∗Tie Riu∗ie−2u∗Tie Riuh
i

−2δ
T
i Ph

i

(
Aδi +diBuh

i − ∑
j∈Ni

ei jBuh
j

)
, (2.20)

which, combined with (2.19), yields

δi
T Qh+1

i δi =u∗Tie Riu∗ie−2u∗Tie Riuh
i +δ

T
i Qh

i δi +(uh
i )

TRiuh
i

=(u∗ie−uh
i )

T
Ri(u∗ie−uh

i )+δ
T
i Qh

i δi. (2.21)

Given initial Q0
i ≥ 0, one obtains 0 ≤ Q0

i ≤ Q1
i ≤ ·· · ≤ Qh

i ≤ Qh+1
i , and

∥∥Qh
i

∥∥ in-

creases for each outer iteration loop h = 1,2 . . . of each learner agent i, i ∈N .

Let Θh
i (δ )

∼= (u∗ie−uh
i )

TRi(u∗ie−uh
i ). It can be inferred from (2.21) that

δi
T Qh

i δi = Θ
h−1
i (δ )+ · · ·+Θ

0
i (δ )+δ

T
i Q0

i δi. (2.22)

Assume that there are infinitely many solutions of Q̄i, ∀i ∈N , this is proved in Theorem

2. It is well-known that, given a Qh
i , uh

i is uniquely defined. Therefore, there exists, at a

minimum, one Q̄i such that Q0
i ≤ Q̄i is satisfied, and Qh

i can approach Q̄i. If Qh
i reaches Q̄i,

then uh
i approaches u∗ie and

∥∥Θh
i

∥∥ is decreasing, i.e.,
∥∥Θh

i

∥∥≥ ∥∥∥Θ
h+1
i

∥∥∥. If Qh
i → Q̄i such that

∥Qh
i − Q̄i∥ ≤ εi, i.e., there exists a small threshold εi. Then, uh

i → u∗ie, with small threshold

αi such that
∥∥u∗ie−uh

i

∥∥≤ αi. The threshold εi is used to terminate Algorithm 1 at h. Thus,

Algorithm 1 is stopped at h. It follows from (2.21) and (2.22) that one has∥∥∥δi
T Q̄iδi

∥∥∥=∥∥∥Θ
h
i (δ )+Θ

h−1
i (δ )+ · · ·+Θ

0
i (δ )+δ

T
i Q0

i δi

∥∥∥
≥(h+1)α2

i Λmin(Ri)−
∥∥δ

2
i
∥∥∥∥Q0

i
∥∥ . (2.23)

This yields

h̄≈
∥∥δ 2

i

∥∥∥∥Q̄i
∥∥+∥∥δ 2

i

∥∥∥∥Q0
i

∥∥
α2

i Λmin(Ri)
≥ h. (2.24)
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Thus, Algorithm 1 converges after a finite number of h̄ outer iteration loops.

Since the control input uh
i converges to u∗ie, and the system dynamics of both learner

and expert are the same, one can conclude that xi = xie using the converged policy uh
i .

Therefore, the converging behavior (xi,u∗i )= (xie,u∗ie) and (Qh
1,Q

h
2 . . . ,Q

h
N)→ (Q̄1, Q̄2 . . . , Q̄N)

can be achieved simultaneously. The learner’s HJB equation can be written as

0 =δ
T
ieQ̄iδie +di

2
δ

T
ieP∞

i BR−1
i BTP∞

i δie

+2δ
T
ieP∞

i Aδie +2diδ
T
ieP∞

i ∑
j∈Ni

ei jBR−1
j BTP∞

j δ je. (2.25)

This gives V ∞
i (δie) related to Q̄i, ∀i ∈N , where u∗i is

u∗i =−diR−1
ie BTP∞

ie δie,∀i ∈N . (2.26)

It is seen from (2.26) that the feedback control gain K∞
i are the same as Kie. One cannot

guarantee Q̄i is the same as Qie, ∀i ∈N . However, if (xi,u∗i ) = (xie,u∗ie) holds, then, there

exists V ∞
i =V ∗ie, ∀i ∈N according to Definition 2 of equivalent state reward weight. This

finishes the proof.

Theorem 2. (Non-uniqueness analysis) Suppose that using Algorithm 1, one has Ph
i → P∞

i

and Qh
i → Q̄i. Then, Q̄i satisfies

δ
T
ie (Q̄i−Qie)δie (2.27)

= d2
i B(R−1

i −R−1
ie )BTP∞

i δi(P∞
i δi)

T +2(P∗ieδie−P∞
i δi)

×
(

Aδie−di ∑
j∈Ni

ei j
(
BR−1

je BTPjeδ je−BR j
−1BTP∞

j δ j
))

,

with P∗ie uniquely solved by (2.8), and P∞
i satisfying

BTP∞
i δ

∞
i = RiR−1

ie BTP∗ieδie, (2.28)

which implies that Q̄i might not be unique.
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Proof. The learner agent i achieves the convergence (xi,u∗i )= (xie,u∗ie) and (Qh
1,Q

h
2 . . . ,Q

h
N)→

(Q̄1, Q̄2 . . . , Q̄N) as shown in Theorem 1. At the same time, one has Pie associated with Q̄i.

Then,

BTP∞
i = RiR−1

ie BTPie. (2.29)

Then, subtracting (A.6) from (2.8) yields

δ
T
ie (Q̄i−Qie)δie (2.30)

= d2
i B(R−1

i −R−1
ie )BTP∞

i δi(P∞
i δi)

T +2(P∗ieδie−P∞
i δi)

×
(

Aδie−di ∑
j∈Ni

ei j
(
BR−1

je BTPjeδ je−BR−1
j BTP∞

j δ j
))

.

Note that (2.29) is consistent and has a unique solution only when rank(B) = n. But

one cannot assure this. There are an infinite number of solutions for P∞
i in (2.29) when

rank(B)< n. Moreover, Ri can be different from Rie. Thus, Q̄i−Qie will be non-zero, and

there will be an infinite number of solutions of Q̄i given an infinite number of solutions for

P∞
i in (2.29).

This finishes the proof.

Theorem 3. (Stability analysis) Given Assumptions 1, 2, and 3, select initial Q0
i ≥ 0 and

Ri > 0, ∀i ∈N . Use Algorithm 1 to solve the Graphical Apprentice Game Problem. Then,

each learner agent i is asymptotically stable in the learning process.

Proof. We prove the stability of the learner MAS at each iteration of both inner and outer

iteration loops in Algorithm 1 as the outer loops decide whether inner loops are stable or

not. Consider the cost function (2.11) as the Lyapunov function for the learner agent i. The

learner agent i will be asymptotically stable [45, 68], if one proves V h
i (δi)≥ 0, V̇ h

i (δi)≤ 0,

and V h
i (δi) = V̇ h

i (δi) = 0 hold only when δi = 0.

First, it is seen from (2.13) that uh
i is affine in the δi. Hence, when δi = 0, then

V h
i (0) = 0. Second, the convergence proof of Algorithm 1’s inner loop in Theorem 1 shows
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that (2.19) holds. Theorem 1 implies that Qh
i > 0 for any iteration h. Then, from (2.12),

one can deduce V h
i (δi)> 0, for δi ̸= 0, ∀i ∈N .

Third, to prove V̇ h
i (δi)≤ 0,δi ̸= 0, for the outer iteration loop h, h = 0,1, . . . ,∞, one

has

dV h
i

dt
= ∇(V h

i )
T
δ̇i

= 2δ
T
i Ph

i

(
Aδi +diBuh

i − ∑
j∈Ni

ei jBuh
j

)
. (2.31)

One can rewrite the HJB equation for each learner agent i at iteration h from (2.14) and

(2.31) as

0 =δi
TQh

i δi +di
2
δ

T
i Ph

i BR−1
i BTPh

i δi

+2δ
T
i Ph

i Aδi +2diδ
T
i Ph

i ∑
j∈Ni

ei jBR−1
j BTPh

j δ j

=δ
T
i Q(h−1)

i δi +
(
u∗ie−u(h−1)

i
)T

Ri
(
u∗ie−u(h−1)

i
)

+di
2
δ

T
i Ph

iBR−1
i BTPh

i δi +V̇ h
i (δi). (2.32)

It is seen in Theorem 1 that Qh
i ≥ 0 for any iteration h and Ri > 0. Therefore, from

(2.32), V̇ h
i (δi)≤ 0 ∀i = 1,2, ..,N .

Hence, the learner (2.10) is asymptotically stable for any iteration of Algorithm 1.

This completes the stability analysis of the learner with optimal synchronization using Al-

gorithm 1. This finishes the stability proof.

Remark 5. Note that, ∀i ∈N , Ri in (2.12) is arbitrarily selected by the learner. Theorems

1 and 2 show that uh
i → u∗ie and Qh

i → Q̄i by learning the equivalent weight to Qie.

Remark 6. It is known that expert MAS has optimal control policy u∗ie, ∀i ∈ N . It is

seen from Theorem 1 that the learner control policy converges to the expert control policy.

Therefore, the learner MAS controller also attains optimality. Each learner agent is asymp-
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totically stable as shown in Theorem 3. If all the agents choose their own optimal policy

(u∗1,u
∗
2, . . . ,u

∗
N), then, with Assumption 1, all learner agents optimally synchronize.

2.4 Model-Free Inverse RL Algorithm

In inverse RL Algorithm 1, the Graphical Apprentice Game problem requires sys-

tem dynamics matrices A and B. Alternatively, this section proposes a model-free inte-

gral inverse RL algorithm to solve the Graphical Apprentice Game problem using expert-

demonstrated data and learner behavioral trajectory data. The online implementation of

this model-free algorithm is then provided with rigorous convergence analysis.

Applying off-policy integral RL [95] to inner iteration loops of Algorithm 1 finds

the model-free form of (2.16) and (2.17). The error dynamics of learner agent i in (2.10)

becomes

δ̇i =Aδi +diBuhk
i − ∑

j∈Ni

ei jBuhk
j

+diB(ui−uhk
i )− ∑

j∈Ni

ei jB(u j−uhk
j ), (2.33)

where control input uhk
i ∈Rp is the update in inner k iteration loop given Qh

i ≥ 0 and Ri > 0.

Taking the derivative of V hk
i with respect to (2.33) yields

V̇ hk
i =(∇V hk

i )T
δ̇i

=2δ
T
i Phk

i

(
Aδi +diBuhk

i − ∑
j∈Ni

ei jBuhk
j

)
+2δ

T
i Phk

i

(
diB(ui−uhk

i )− ∑
j∈Ni

ei jB(u j−uhk
j )

)
. (2.34)

Using (2.16) and (2.17) from Algorithm 1 in (2.34) gives

V̇ hk
i =−δi

T Qh
i δi− (uhk

i )
T
Riuhk

i −2uh(k+1)
i Ri(ui−uhk

i )T

+2d−1
i ∑

j∈Ni

ei ju
h(k+1)
i Ri(u j−uhk

j )
T. (2.35)
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Integrating both sides of (2.35) for interval t to t +T gives the Bellman equation (2.36) to

be presented in Algorithm 2.

Given the prevailing Qh
i , (2.36) satisfies the condition where an N -tuple {u∗1,u∗2, ...,u∗N}

of policy must offer a solution for the learner MAS, in the way that V ∗i ∼=Vi(δi(t0),u∗i ,u
∗
−i)≤

Vi(δi(t0),ui,u∗−i). To find a model-free version for the revision of Qh
i in (2.18), we integrate

both sides of (2.18) from t to t +T , and yield (2.37) to be presented in Algorithm 2. The

learner agent i updates Qh
i in (2.37) towards the equivalent weight Q̄i by using the Nash

solutions V ∗i and u∗i from inner loops and expert agent’s demonstration u∗ie.

Assumption 5. Suppose initial control input u00
i is stabilizing for each learner agent i,

where i ∈N , in Algorithm 2.

Remark 7. Initial stabilizing control input is a standard assumption for model-free policy

iteration of RL, see [15,58,95,112,150]. In practice, it is usually found heuristically, since

there could be infinitely many stabilizing policies.

Assumption 6. Assume that the learner MAS in the Algorithms 2 and 3 are persistently-

excited (PE) by introducing a probing noise in the stabilizing control inputs [22, 58, 107].

The PE condition makes system states persistently present for a sufficient time to retrieve

a unique reward function.

Remark 8. Note that the value of T does not affect the convergence of Algorithm 2, and

is selected based on the excitation condition necessary for the numerical setup of the Batch

Least squares (BLSs) solution. As shown in [141], T satisfies T > αl
∏

n
i=1 |λi| , where α > 0 is

an scaling factor, l > 0 is the lower bound, and λi indicates eigenvalues of the closed-loop

system.

Based on the above analysis, the Algorithm 2 of model-free inverse RL for the graph-

ical apprentice game is now presented.

The following theorem result shows that Algorithm 2 converges to Algorithm 1.
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Algorithm 2 Model-free Inverse RL Algorithm for Graphical Apprentice Game
1 Initialization: For each learner agent i, i ∈ N , select initial Q0

i ≥ 0, Ri > 0 and sta-

bilizing control input u00
i . Set h = 0 and small thresholds ei and εi. Apply stabilizing

u1,u2, . . .uN to (20);

2 Outer h iteration loop using IOC

3 Inner k iteration loop using optimal control: Given

h, set k = 0;

4 Off-policy RL for solving V h
i and uh

i ,

V hk
i
(
δi(t +T )

)
−V hk

i
(
δi(t)

)
=
∫ t+T

t
−
(

δi
TQh

i δi +(uhk
i )TRiuhk

i

)
dτ

−
∫ t+T

t
2uh(k+1)

i Ri(ui−uhk
i )Tdτ

+
∫ t+T

t
2d−1

i ∑
j∈Ni

ei ju
h(k+1)
i Ri(u j−uhk

j )
Tdτ; (2.36)

5 Stop if ∥V hk
i −V h(k−1)

i ∥ ≤ ei, then set V h
i =V hk

i , uh
i =

uhk
i , and go to step 6; Otherwise, set k← k+1 and go

to step 4;

6 Outer h iteration loop using IOC: Qh
i revision using expert MAS optimal control input

u∗ie ∫ t+T

t
δi

TQh+1
i δidτ =

∫ t+T

t
(u∗Tie Riu∗ie−2u∗Tie Riuh

i )dτ

−V h
i (t +T )+V h

i (t); (2.37)

7 Stop if ∥Qh+1
i −Qh

i ∥ ≤ εi; Otherwise, set u(h+1)0
i = uh

i , h← h+1, and go to Step 3.

Theorem 4. (Convergence of Algorithm 2) The Algorithm 2 converges to Algorithm 1,

and each learner agent i ∈N has (xi,uh
i )→ (xie,u∗ie) for finite iterations h.
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Proof. To prove the convergence of Algorithm 2 to Algorithm 1, one can show the conver-

gence of both inner iteration loops and outer iteration loops between two algorithms. First,

the convergence of inner loops between Algorithm 1 and Algorithm 2 is proven by dividing

(2.36) by T and taking limit, i.e.,

lim
T→0

V hk
i (δi(t +T ))−V hk

i (δi(t))
T

+ lim
T→0

∫ t+T
t

(
δi

TQh
i δi +(uhk

i )TRiuhk
i
)
dτ

T

+ lim
T→0

2
∫ t+T

t uh(k+1)
i Ri(ui−uhk

i )Tdτ

T

− lim
T→0

2d−1
i
∫ t+T

t ∑ j∈Ni ei ju
h(k+1)
i Ri(u j−uhk

j )
Tdτ

T

= 0. (2.38)

Using L’Hospital’s rule,

2δ
T
i Pi

(
Aδi +diBuhk

i − ∑
j∈Ni

ei jBuhk
j +diB(ui−uhk

i )

− ∑
j∈Ni

ei jB(u j−uhk
j )

)
+δi

T Qh
i δi +(uhk

i )TRiuhk
i

+2uh(k+1)
i Ri(ui−uhk

i )T−2d−1
i ∑

j∈Ni

ei ju
h(k+1)
i Ri(u j−uhk

j )
T

= 0. (2.39)

Substituting the updated policies uh(k+1)
i from (2.17) into (2.39) gives (2.16). There-

fore, the off-policy RL equation (2.36) defines the same solution as equation (2.16). For

the outer-iteration loop,

lim
T→0

∫ t+T
t δi

TQ(h+1)
i δidτ

T

= lim
T→0

∫ t+T
t

(
u∗Tie Riu∗ie−2u∗Tie Riuh

i
)
dτ

T

− lim
T→0

(
V h

i (t +T )−V h
i (t)

)
T

. (2.40)
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Using L’Hospital’s rule,

δi
T Q(h+1)

i δi =
(
u∗Tie Riu∗ie−2u∗Tie Riuh

i
)

−2δ
T
i Pi

(
Aδi +diBuh

i − ∑
j∈Ni

ei jBuh
j

+diB(ui−uh
i )− ∑

j∈Ni

ei jB(u j−uh
j)

)
. (2.41)

Substituting the updated policies uh(k+1)
i in (2.41) gives (2.18). Therefore, (2.37) defines

the same solution as equation (2.18). This finishes the proof.

2.4.0.1 Data-driven Implementation of Algorithm 2

This implementation of model-free inverse RL consists of two learning units. The

first one is for the inner k iteration loop to compute the learner MAS value function V hk
i .

The second learning unit is in the outer h iteration loop to update Qh
i using the expert MAS

demonstration u∗ie and the converged optimal solutions from inner loops. To implement

steps 4 and 5 of Algorithm 2 in terms of online data using V hk
i = δ T

i Phk
i δi and uhk

i =−Khk
i δi,

(2.36) can be rewritten as

δi(t +T )TPhk
i δi(t +T )−δi(t)

TPhk
i δi(t)

=
∫ t+T

t
−
(
δi

T(Qh
i +
(
Khk

i
)T

RiKhk
i
)
δi
)
dτ

+
∫ t+T

t
2
(
ui +Khk

i δi
)TRi

(
Kh(k+1)

i δi
)
dτ

−
∫ t+T

t
2d−1

i ∑
j∈Ni

ei j
(
u j +Khk

j δi
)TRi

(
Kh(k+1)

i δi
)
dτ. (2.42)
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Next, using the Kronecker product for (2.42), one has(
vecv(δi(t +T )−δi(t))T

)
vec(Phk

i )

=
∫ t+T

t
−
(
δ

T
i ⊗δ

T
i
)
vec
(

Qh
i +
(
Khk

i
)T

RiKhk
i

)
dτ

+
∫ t+T

t
2
[(

δ
T
i ⊗uT

i
)(

In⊗Ri
)

+
(
δ

T
i ⊗δ

T
i
)(

In⊗Khk
i Ri

)]
vec
(
Kh(k+1)

i
)
dτ

−
∫ t+T

t
2d−1

i ∑
j∈Ni

ei j

[(
δ

T
i ⊗uT

j
)(

In⊗Ri
)

+
(
δ

T
i ⊗δ

T
i
)(

In⊗Khk
j Ri

)]
vec
(
Kh(k+1)

i
)
dτ. (2.43)

The following operators are defined to compute unknown vec(Phk
i ) and vec(Kh(k+1)

i )

in (2.43) using BLSs.

σδiδi =

[(
vecv(δi(t +T )−δi(t))

)
, . . . ,

(
vecv(δi(t +ζ T )

−δi(t +(ζ −1)T ))
)]T

, (2.44a)

ρδiδi =

[∫ t+T

t
(δi⊗δi)dτ, . . . ,

∫ t+ζ T

t+(ζ−1)T
(δi⊗δi)dτ

]T

, (2.44b)

ρδiui =

[∫ t+T

t
(δi⊗ui)dτ, . . . ,

∫ t+ζ T

t+(ζ−1)T
(δi⊗ui)dτ

]T

, (2.44c)

ϕ
hk
i =

[
σδiδi,−2ρδiui(In⊗Ri)−2ρδiδi(In⊗Khk

i Ri)

+d−1
i ∑

j∈Ni

−2ρδiui(In⊗Ri)−2ρδiδi(In⊗Khk
j Ri)

]
, (2.44d)

Ω
hk
i =−ρδiδivec

(
Qh

i +(Khk
i )TRiKhk

i
)
, (2.44e)
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ζ ≥ (n+1)n/2+mn, (2.45)

where ζ is the group number of sampling data such that

rank[ϕhk
i Ω

hk
i ] = (n+1)n/2+mn. (2.46)

Then, Phk
i and Kh(k+1)

i can be uniquely solved by Phk
i

vec
(
Kh(k+1)

i
)
=

(
(ϕhk

i )T
ϕ

hk
i
)−1

(ϕhk
i )T

Ω
hk
i . (2.47)

Repeat (2.47) by setting k← k+1 and stop on convergence of Phk
i and Kh(k+1)

i i.e.,

Phk
i → Ph

i and Kh(k+1)
i → Kh

i . This Ph
i and Kh

i are then used to revise Qh
i in outer iteration

loop.

Next, to implement steps 6 and 7 of Algorithm 2 in a data-driven style, (2.37) can be

rewritten as

∫ t+T

t
vecv(δi)

Tvecm(Qh+1
i )dτ = β

h
i (t)+ γ

h
i (t), (2.48)

where
γ

h
i (t) = (vecv(δi(t))T−vecv(δi(t +T ))T)vec(Ph

i ),

β
h
i (t) =

∫ t+T

t

(
u∗Tie Riu∗ie−2u∗Tie Ri(Kh

i δi)
)
dτ.

Similarly, the following operators are defined to compute the state reward weight Qh
i

using BLSs

ηi =

[∫ t+T

t
vecv(δi)

T, . . . ,
∫ t+ιT

t+(ι−1)T
vecv(δi)

T
]
, (2.49a)

Γ
h
i =

[
β

h
i1(t)+ γ

h
i1(t), . . . ,β

h
iι (t)+ γ

h
iι (t)

]
(2.49b)

where
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β
h
iι (t) =

∫ t+(ι−1)T

t+ιT

(
u∗Tie Riu∗ie−2u∗Tie Ri(Kh

i δi)
)
dτ,

γ
h
iι (t) =

(
vecv(δi(t +(ι−1)T ))T−vecv(δi(t + ιT ))T

)
vec(Ph

i ).

The state reward weight Q̂h+1
i has (n+1)n/2 unknown parameters, and is uniquely

solved by constructing ι ≥ (n+1)n/2 equations using BLSs and letting the following rank

condition hold

rank[ηi Γ
h
i ] = (n+1)n/2. (2.50)

Then, Q̂h+1
l is uniquely solved from

vec(Q̂h+1
i ) =

(
η

T
i ηi
)−1

η
T
i Γ

h
i . (2.51)

Repeat (2.51) by setting h← h+1 until the convergence of Qi. Otherwise, u(h+1)0
i =

uh
i , and go to the inner iteration loop. We summarize an online implementation of the

Algorithm 2 in the following Algorithm 3.

Remark 9. While using BLSs to compute unique Phk
i , Kh(k+1)

i , and Qh+1
i , full-rank condi-

tions (2.46) and (2.50) are satisfied in Algorithm 3.

Theorem 5. (Convergence of Algorithm 3) Given Assumptions 1, 2, and 3, and with initial

Q0
i ≥ 0 and Ri > 0, ∀i ∈ N , use Algorithm 3 to solve the Graphical Apprentice Game

problem given rank conditions (2.46) and (2.50). Then, Algorithm 3 converges to Algorithm

1 and (xi,uh
i )→ (xie,u∗ie).

Proof. It is seen from Theorem 1 that one has Qh
i ≥ 0 holding for ∀i ∈N and each outer

iteration h. Note that uh(k+1)
i and Phk

i can be uniquely found using the policy iteration

learning from inner loops in Algorithm 1. When inner loops have converged to uh
i and Ph

i ,

Qh+1
i can be uniquely determined by solving (2.37).

Note that in the data-driven implementation of Algorithm 2, Phk
i and Kh(k+1)

i can be

uniquely solved by BLSs in (2.47) while satisfying the full rank condition (2.46). Then,
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Algorithm 3 Data-driven Implementation of Model-free Inverse RL Algorithm 2
1 Initialization: For each learner agent i, i ∈ N , select initial Q0

i ≥ 0, Ri > 0 and sta-

bilizing control input u00
i . Set h = 0 and small thresholds ei and εi. Apply stabilizing

u1,u2, . . .uN to the learner dynamics;

2 Outer h iteration loop using IOC

3 Inner k iteration loop using optimal control: Given

h, Set k = 0;

4 Off-policy RL: Solves V h
i and uh

i using (2.47);

5 Stop if ∥Ph(k+1)
i −Phk

i ∥ ≤ ei, then set Kh
i = Khk

i , Ph
i =

Phk
i , and go to step 6, if not set k← k+1 and go to

step 4;

6 Outer h iteration loop using IOC: Qh
i revision using expert’s demonstration u∗ie by

(2.51);

7 Stop if ∥Qh+1
i −Qh

i ∥ ≤ εi, if not set u(h+1)0
i = uh

i , h← h+1, and go to Step 3.

(2.47) solves for the converged solution (Ph
i , Kh

i ). Similarly, Qh+1
i is uniquely solved with

BLSs in (2.51) by guaranteeing the full rank condition (2.50).

It is shown that each step of Algorithm 3 is developed from Algorithm 2 and gen-

erates the same unique solution. That is, (2.36) and (2.37) of Algorithm 2 are equiva-

lent to (2.47) and (2.51) for Algorithm 3, respectively. Moreover, Theorem 4 shows the

convergence of Algorithm 2 to Algorithm 1. Therefore, Algorithm 3 converges to Al-

gorithm 1 with the same solutions. That is, Algorithm 3 obtains the converged behav-

ior (xi,u∗i ) = (xie,u∗ie) and the equivalency of Q̄i to Qie, where i ∈N . This finishes the

proof.
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2.5 Simulation Results

We implement the model-free inverse RL in Algorithm 3 for optimal synchronization

control of DC microgrids. The microgrid schematic is modified from [137], and given

in Figure 2.2. The DC/DC notation in Figure 2.2 refers to a DC-DC buck converter and its

augmented LC filter. The physical filter and distribution line parameters, as per [137], are

C = 2.2mF,L = 1.8mH,R = 0.2Ω,Ri j = 0.05Ω, Rl = 4Ω. A strongly connected directed

graph topology, with three agents for either the expert and learner MAS, is considered.

Each edge of the graph is assigned a weight of 1. The system dynamics for the linear

expert and learner MAS are

ẋie = Axie +Buie, (2.52a)

ẋi = Axi +Bui. (2.52b)

Dynamics of each agent i are adopted from [137]

ẋi,1 =
1
C

xi,2−
( 1

RlC
+ ∑

j∈Ni

1
Ri jC

)
xi,1, (2.53a)

ẋi,2 =
1
L

Vin−
1
L

xi,1−
R
L

xi,2, (2.53b)

where xi = [xi,1,xi,2]
T = [V, I]T is the state. Vin is the control input and is considered as the

output voltage of the corresponding DC-DC converter. The state matrices are

A =

−
(

1
RlC

+∑ j∈Ni
1

Ri jC

)
1
C

− 1
L −R

L

 , B =

0

1
L

 . (2.54)
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Figure 2.2. DC microgrid schematic with three distributed DC sources, the communication
graph topology among DC-DC converters, and the graphical representations of the expert
and the learner MAS..

TABLE I shows the parameters of the learner and expert MAS. Small thresholds ei

and εi, used to terminate inner and outer iteration during online data collecting, are 0.0001
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Table 2.1. Simulation Parameter values

Parameter Expert MAS Learner MAS
State reward
Weight

Qie = 10I2 Qi = I2

Control weight Rie = 1 Ri = 1
Initial conditions δ 0

ie = [1, 1]T δ 0
i = [1, 1]T

and 0.03, respectively. A small random probing noise of zi = 0.01× rand(1) is used to

satisfy the PE condition. The sampling time T is chosen as 0.008. The parameter matrix

Pie and the feedback control gain Kie of the target expert MAS computed through optimal

control with state reward weight Qie given in TABLE I are

Pe1 =

0.0355 0.1088

0.1088 0.0428

 , Ke1 =

[
0.16 −0.09

]
.

Pe2 =

0.0331 0.1168

0.1168 0.0475

 , Ke2 =

[
0.17 −0.08

]
.

Pe3 =

0.0357 0.1154

0.1154 0.0476

 , Ke3 =

[
0.14 −0.09

]
.

Figure 2.3 shows the learning of the feedback control gain for learner MAS and notes that

Kh
i converges to K∞

i associated with P∞
i derived from the expert MAS. The number of inner

iteration loops k, to achieve convergence for all agents, is 300. Figure 2.4 demonstrates the

learning of the state reward weight Qh
i .
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Figure 2.3. Convergence of the linear learner MAS feedback gain Ki.
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Figure 2.4. Convergence of the linear learner MAS state reward weight Qh
i .
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Note that the state reward weight Qh
i converges to Q̄i. Ultimately, Qh

i , Ph
i , and Kh

i of

the learner MAS converge to

Q̄1 =

−1.2697 0.5965

0.5965 −0.0317

 , P∞
1 =

0.0384 0.1015

0.1015 0.0405

 .
Q̄2 =

−1.4967 0.2055

0.2055 −1.2834

 , P∞
2 =

0.0312 0.1126

0.1126 0.0428

 .
Q̄3 =

−0.8438 0.1334

0.1334 −0.8763

 , P∞
3 =

0.0328 0.1118

0.1118 0.0431

 .
K∞

1 =

[
0.1504 −0.0911

]
, K∞

2 =

[
0.1721 −0.0949

]
,

K∞
3 =

[
0.1723 −0.0932

]
.

It is seen that Q̄i is not exactly the same as the desired Qie shown in Theorem 1 of

convergence. According to Definition 2, obtained Q̄i is equivalent to Qie and might not be

unique as per Theorem 2. However, as shown in Theorem 2 and the convergence Theorem

1, learner MAS K∞
i converges to K∗ie.

The expert microgrid has the optimal trajectories for state and control given Qie and

Rie. The learner microgrid observes K∗ie of the expert microgrid computed with optimal

control. Using the converged K∞
i of the learner MAS, which starts from the same initial

conditions as expert MAS, we obtain learner behavioral trajectories depicted in Figures 2.5

and 2.6. In Figure 2.5, δi and δei denote the ith global synchronization error of the learner

and the expert MAS, respectively. It is seen from Figures 2.5 and 2.6 that the learner

microgrid exhibits the same behavioral trajectory as the expert (xie,u∗ie).
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Figure 2.5. Evolution of local synchronization error of learner and expert MAS with time.
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Figure 2.6. Evolution of linear MAS inputs for learner and expert with time.
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2.6 Conclusion

This paper proposes an inverse RL paradigm to address the optimal synchronization

of MAS. A model-based inverse RL algorithm and a model-free off-policy inverse RL al-

gorithm solve a graphical apprentice game and attain optimal synchronization of MAS. The

algorithm convergence and learner stability are ensured. The learner obtains the expert’s

unknown reward weights, which are not unique, from the expert’s demonstrations. Po-

tential extensions include heterogeneous nonlinear multi-agent systems, or different graph

topologies for expert and learner MAS.

Future extensions could consider adaptation of the proposed tools to cooperative con-

trol of multiple power microgrids. States of islanded multi-microgrids need to be synchro-

nized before microgrids are reconnected. Given the demonstrated trajectories of “expert”

microgrids, the “learner” microgrids imitate their unknown cost functions with inverse RL

such that learner states are synchronized to the common values set by the expert microgrids.
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CHAPTER 3

Accelerated Reinforcement Learning via Dynamic Mode

Decomposition

3.1 Introduction

Large-scale systems, frequently constructed from lower-dimensional subsys-

tems, are becoming more common [94]. Examples include the air-traffic systems, where

the physical agents are decoupled dynamically but are linked via a mutual performance

function, and power systems, where physical agents are coupled both dynamically and

through a mutual performance function. Conventional optimal control [79] might need the

knowledge of system dynamics, whereas reinforcement learning (RL) [130] could provide

optimal solutions using behavior data without knowing system dynamics. As a system

grows larger, distributed control design via RL is a viable option, but the iterative learning

involved could become computationally expensive. It is desired to seek a low-dimensional

abstraction of the original large-scale system while retaining essential dynamics.

The work in [30,101] study model-based and model-free RL algorithms with reduced-

order optimal control problems by assuming a time lag in system dynamics. [59, 118, 119]

study RL control algorithms for linear multi-agent systems with dimensionality reduction

based on controllability and observability gramians. The majority of existing work on RL

with decomposition do not extract complete dynamic information from the original system.

This information could become crucial in a networked system where the control objective

of each subsystem depends on its states and those of its neighbors. Moreover, the above

studies on RL have been conducted in continuous time, which restricts the use of data-

driven decomposition. Herein, large-scale system dynamics are formulated in discrete-time
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as lumped-state dynamics with a defined global performance function that enables inter-

actions among subsystems. This interdependence characteristic makes the system more

complex and challenging to analyze.

This paper proposes an off-policy RL approach in discrete-time for the large-scale

linear quadratic regulator (LQR) control problem by decomposing it into a lower-dimensional

one. The off-policy approach uses two policies: one is used to generate data, namely the

behavior policy, while the other is used to evaluate and improve the policy [154]. The work

in [21,140] discuss LQR design for a large-scale network of homogeneous dynamical sys-

tems. One could develop a lower-dimensional mapping of the original observations and,

then, study its temporal dynamics. Data obtained over space and time could provide more

relevant dynamic information compared to those obtained using just spatial data.

We use a data-driven strategy to characterize complex system dynamics having high

spatial dimensionality in discrete time. Employing RL could result in limited accuracy due

to potentially near-singular rank matrices and longer run times for high-dimensional sys-

tems. Dynamic mode decomposition (DMD) is a computationally viable structure to ana-

lyze spatial-temporal data that can be depicted as dynamical model realizations [111,125].

This approach does not rely on the system model, making it appropriate for model-free

RL adaptation. When singular values closer to zero are preserved, singular value decom-

position (SVD)-based approaches for order reduction could involve near-singular matri-

ces. [36, 38] show thresholding techniques and [41] shows optimal thresholding. The trun-

cation step in SVD-based DMD selects a relatively small threshold, and sets all eigenvalues

below this threshold to zero.

Furthermore, we show that DMD can extract spatio-temporal coherent patterns from

data. These patterns are called essential modes that oscillate at fixed natural frequen-

cies. Using these modes can help extract exact behaviors of the underlying original high-

dimensional system into lower ones [25]. The discrete-time RL algorithm is then designed
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using this truncated model. This significantly reduces the computational complexity of the

discrete-time RL algorithm for optimal control learning.

The prime motivation of this paper is to illustrate that dynamic decomposition and

RL can be integrated to provide a computationally-tractable optimal control scheme suit-

able for large-scale networks. Salient contributions of this paper are summarized as fol-

lows:

1. For a large-scale system, we formulate the LQR graphical problem in discrete time.

A large-scale system is constructed by assembling linear subsystems, defined for both

coupled and decoupled dynamical systems. The stabilizing controller is specified.

2. We show that the model-free discrete-time RL algorithm scales poorly when solving

large-scale LQR graphical problems.

3. We develop a computationally efficient discrete-time RL algorithm based on DMD.

The algorithm reduces data dimensions needed for optimal control learning while

retaining the dynamic information of the original system.

4. We show the efficiency of the proposed algorithm in both theoretical and numerical

analysis.

This paper is organized as follows: Section II gives preliminaries and notations.

Section III introduces the large-scale LQR graphical problem, and provides a model-free

discrete-time RL algorithm. Section IV presents a model-free discrete-time RL algorithm

with DMD-preconditioning. Section V offers case studies. The conclusion is drawn in

Section VI.

3.2 Notations and Preliminaries

Notations: The n-dimensional Euclidean space is denoted by Rn. ⊗ stands for the

Kronecker product. In indicates the n-dimensional identity matrix. | · | defines the absolute-
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value norm of a vector. ∥·∥F indicates the Frobenius norm of a vector or a matrix. Y ι

stands for the complex conjugate transpose of Y . Y † denotes pseudoinverse of Y matrix.

S(L) = {λ1(L), . . . ,λM(L)} denotes spectrum of matrix L where λi is the i-th eigenvalue.

For vectors a,b and matrix W , aTWb = (bT ⊗ aT )vec(W ). For a matrix L = [li j] ∈ Rn×n,

vec(L) = [l11, l12, . . ., l1n, l21, . . ., l2n, . . ., lnn]
T ∈ Rn2

.

Graph Preliminaries: G =(V ,E ) denotes a graph topology with M ∼=(1,2, . . . ,M)

vertices where vi ∈ V , ∀i ∈M . The edges E ⊆ V ×V are between the two vertices with

the connectivity weight ei j > 0 if (v j,vi) ∈ E ; Otherwise, ei j = 0. The set of neighbors of

vertex vi is Mi ∼= {v j : ei j > 0}. We assume no self-loops in the graph, i.e., eii = 0. The

weighted in-degree of vertex i is di
i = ∑

M
j=1 ei j, and the weighted out-degree of vertex i is

do
i = ∑

M
j=1 e ji. Progression of edges E through vertices (vis−1,vis) ∈ E for s ∈ (2, . . . , j)

constitutes a directed path originating from vi1 to vi j . A graph is considered balanced and

bi-directional where ei j = e ji,di
i = do

i ,∀i, j, i.e., undirected topology where directed path is

present between every pair of vertices vi and v j. Laplacian matrix L is defined as D−A ,

where A = [ei j],A = A T, is the graph adjacency matrix, and D = diag{di} is the graph

degree matrix.

3.3 Large-Scale LQR Graphical Problem

This section introduces a discrete-time LQR graphical problem for a large-scale dy-

namical system as a network of linear subsystems. The formulation of a large-scale system

considers both decoupled and coupled fashions. Then, we propose an off-policy RL algo-

rithm to compute the optimal control solution of large-scale systems.
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3.3.0.1 Decoupled Systems

Consider a network having dynamically decoupled discrete-time linear subsystems

xik+1 = Aixik +Biuik , i ∈M , (3.1)

where xik ∈Rn and uik ∈Rm denote the state and control input of subsystem i, respectively.

Each subsystem has local identical matrices Ai = A1 ∈ Rn×n and Bi = B ∈ Rn×m. (A1,B)

is assumed to be stabilizable. Note that subsystems are dynamically decoupled, but with a

common objective, i.e., coupled through a performance function.

3.3.0.2 Coupled Systems

Consider a network having dynamically coupled discrete-time linear subsystems.

The i-th subsystem dynamics, at the local level, is

xik+1 = Aiixik +Ai j

M

∑
j ̸=i, j=1

ei j(xik− x jk)+Biuik , i ∈M , (3.2)

where xik ∈ Rn and uik ∈ Rm denote subsystems state and control input, respectively. We

assume that the network topology of the coupled system for both physical couplings and

communication between subsystems coincide, and are defined by the same graphical topol-

ogy G =(V ,E ) with the Laplacian matrix L ∈RM×M. The subsystems i∈V relates to the

local state xik , whereas edges (i, j) ∈ E between subsystems relates to the (xik− x jk). Each

subsystem has identical matrices as Aii = A1 ∈Rn×n, Ai j = A2 ∈Rn×n, and Bi = B∈Rn×m.

The pairs (A1,B) and (A1 +MA2,B) are assumed to be stabilizable. Note that we are con-

sidering dynamically coupled M subsystems having a mutual performance function.

Define global states x̃ = (xT
1 , . . . ,x

T
M)T ∈ RnM and ũ = (uT

1 , . . . ,u
T
M)T ∈ RmM. The

global dynamics of (3.2) and (3.1) are

x̃k+1 = Ãx̃k + B̃ũk, (3.3)
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where global state and control matrices are Ã = IM ⊗ A1 ∈ RnM×nM and B̃ = IM ⊗ B ∈

RnM×mM for the decoupled system. Similarly, for the coupled system, the global state and

control matrices are Ã = (IM⊗A1 +L ⊗A2) ∈ RnM×nM and B̃ = IM⊗B ∈ RnM×mM.

3.3.1 Large-scale LQR Problem

The performance function couples the dynamic behavior for the set M of subsystems

as

J
(
ũk, x̃k

)
=

∞

∑
k=0

[ M

∑
i=1

xT
ikQ1xik +uT

ikRiiuik

+
M

∑
i=1

M

∑
j ̸=i

(xik− x jk)
TQ2(xik− x jk)

]
, (3.4)

where Rii = RT
ii = R > 0, Q1 = QT

1 ≥ 0,∀i, and Q2 = QT
2 ≥ 0,∀i ̸= j. The global form of

the performance function, J, which integrates the behavior of all subsystems, is

J
(
ũk, x̃k

)
=

∞

∑
k=0

[
x̃T

k Q̃x̃k + ũT
k R̃ũk

]
. (3.5)

Herein, Q̃ = (IM⊗Q1 +L ⊗Q2) ∈ RnM×nM and R̃ = IM⊗R ∈ RmM×mM, given by

R̃ =


R 0 . . . 0
... . . . ...

...

0 . . . . . . R

 , Q̃ =


Q̃11 Q̃12 . . . Q̃1M

... . . . ...
...

Q̃M1 . . . . . . Q̃MM

 ,
where

Q̃ii = Q1 +(M−1)Q2, i ∈M , (3.6a)

Q̃i j =−Q2, i, j ∈M , i ̸= j. (3.6b)

Remark 10. Here, Q1,Q2 ∈ Rn×n penalize local and relative state difference between ver-

tices i, j ∈ V , respectively, with identical weights. Given (3.6), it is evident that |Q̃ii| >

∑i̸= j |Q̃i j|, ∀i. This makes a matrix Q̃ strictly diagonally-dominant, and given Q1,Q2 ≥ 0,

Q̃≥ 0. Also, R̃ > 0 is a block-diagonal matrix, where R > 0 ∈ Rm×m.
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LQR Graphical Problem: Given Remark 10, find a unique stabilizing control policy

ũk that minimizes the global J(ũk, x̃k) in (3.5) as

J∗(x̃k) = min
ũk

J(ũk, x̃k) = min
ũk

∞

∑
k=0

[
x̃T

k Q̃x̃k + ũT
k R̃ũk

]
= x̃T

k P̃x̃k, (3.7)

where P̃ = P̃T ∈ RnM×nM > 0 is a cost matrix.

The optimal control policy ũ∗k from [79] is given as

ũ*
k =−K̃*x̃k, (3.8)

where K̃ ∈ RmM×nM is

K̃* = (R̃+ B̃TP̃B̃)−1B̃TP̃Ã, (3.9)

and P̃ satisfies the Algebric Riccati Equation (ARE)

P̃ = ÃTP̃Ã− ÃTP̃B̃(R̃+ B̃TP̃B̃)−1B̃TP̃Ã+ Q̃. (3.10)

In the following Theorem 6 and Corollary 1, we prove that P̃ in (3.10) has a certain

structure due to the global formulation of large-scale dynamics and performance function.

This is important for the design of stabilizing distributed controllers. We rewrite (3.10) in

an equivalent form, and set B̃R̃−1B̃T = H for simplification,

Q̃− ÃTP̃HP̃Ã− P̃ = 0. (3.11)

For decoupled and coupled large-scale systems, diagonal blocks of Ã are Ãii = A1 and

Ãii = A1 +(M−1)A2, respectively.

Theorem 6. Consider the discrete-time ARE in (3.10), with a symmetric P̃ for large-scale

system dynamics in (3.3), to solve the LQR graphical problem in (3.7). Then, certain matrix

Wii = ∑
M
h=1 p̃ih = P1, i ∈M , where P1 satisfies

AT
1P1A1−AT

1P1B(R+BTP1B)−1BTP1A1 +Q1−P1 = 0. (3.12)
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Proof. P̃ in (3.10) is symmetric, i.e., P̃i j = P̃ji. Then, let a certain matrix Wii as

Wii = P̃ii +
M

∑
j ̸=i, j=1

P̃i j, i ∈M . (3.13)

For the diagonal blocks of P̃, i.e., P̃ii in (3.10), we have

Q̃ii− ÃT
ii

M

∑
h=1

(P̃ihHiiP̃ih)Ãii− P̃ii = 0. (3.14)

Substitute P̃ii =Wii−∑
M
j ̸=i, j=1 P̃i j in (3.14) to yield

Q̃ii− ÃT
ii

M

∑
h=1,h̸=i

(P̃ihHiiP̃ih)Ãii− ÃT
iiWiiHiiWiiÃii

− ÃT
ii

M

∑
h=1,h̸=i

P̃ihHii

M

∑
l=1,l ̸=i

P̃ilÃii + ÃT
ii

M

∑
h=1,h̸=i

P̃ihHiiWiiÃii

+ ÃT
iiWiiHii

M

∑
h=1,h̸=i

P̃ihÃii−Wii +
M

∑
j=1, j ̸=i

P̃i j = 0. (3.15)

For the off-diagonal blocks of P̃, i.e., P̃i j in (3.10), we have

Q̃i j− ÃT
ii

M

∑
h=1

(P̃ihHiiP̃h j)Ãii− P̃i j = 0. (3.16)

Substituting (3.13) in (3.16) leads to

Q̃i j− ÃT
iiWiiHiiP̃i jÃii + ÃT

ii

( M

∑
h=1,h̸=i

P̃ih

)
HiiP̃i jÃii− ÃT

iiP̃i jHiiWj jÃii

+ ÃT
iiP̃i jHii

( M

∑
h=1,h̸= j

P̃jh

)
Ãii− ÃT

ii

M

∑
h=1,h̸=i, j

(P̃ihHiiP̃h j)Ãii− P̃i j = 0. (3.17)
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For j ̸= i, summing up (3.17) relates to ∑
M
h=1,h̸=i P̃ih, i.e., the summation of the off-diagonal

terms leads to

M

∑
h=1,h̸=i

Q̃ih− ÃT
iiWiiHii

M

∑
h=1,h̸=i

P̃ihÃii + ÃT
ii

M

∑
l=1,l ̸=i

(( M

∑
h=1,h̸=i

P̃ih

)
×HiiP̃il

)
Ãii + ÃT

ii

M

∑
h=1,h̸=i

(
P̃ihH

( M

∑
l=1,l ̸=h

P̃hl

))
Ãii

− ÃT
ii

M

∑
h=1,h̸=i

( M

∑
l,h=1,l ̸=i

(
P̃ihHiiP̃il

))
Ãii

− ÃT
ii

M

∑
h=1,h̸=i

P̃ihHiiWhhÃii−
M

∑
h=1,h̸=i

P̃ih = 0. (3.18)

Note that

ÃT
ii

M

∑
h=1,h̸=i

(
P̃ihHii

( M

∑
l=1,l ̸=h

P̃hl

))
Ãii− ÃT

ii

M

∑
h=1,h̸=i

( M

∑
l,h=1,l ̸=i

(
P̃ih

×HiiP̃il

))
Ãii = ÃT

ii

M

∑
h=1,h̸=i

M

∑
l=1,l ̸=h

P̃ihHiiP̃hlÃii

− ÃT
ii

M

∑
h=1,h̸=i

M

∑
l=1,l ̸=i,h

P̃ihHiiP̃hlÃii = ÃT
ii

M

∑
h=1,h̸=i

P̃ihHiiP̃hiÃii. (3.19)

Substituting (3.19) in (3.18) yields

M

∑
h=1,h̸=i

Q̃ih− ÃT
iiWiiHii

M

∑
h=1,h ̸=i

P̃ihÃii + ÃT
ii

M

∑
l=1,l ̸=i

(( M

∑
h=1,h̸=i

P̃ih

)
×HiiP̃il

)
Ãii + ÃT

ii

M

∑
h=1,h ̸=i

P̃ihHiiP̃hiÃii− ÃT
ii

M

∑
h=1,h̸=i

P̃ihHiiWhhÃii

−
M

∑
h=1,h ̸=i

P̃ih = 0. (3.20)

Adding (3.20) to (3.15) with (3.6) gives

Q1−AT
1WiiHiiWiiA1 +AT

1

M

∑
h=1,h ̸=i

(P̃ihHii(Wii−Whh)A1−Wii = 0. (3.21)

Summing up (3.21) over i ∈M results in

M

∑
i=1

[
Q1−AT

1WiiHiiWiiA1−Wii
]
= 0, (3.22)
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which is equivalent to

M

∑
i=1

[
AT

1WiiA1−AT
1WiiB̃(R̃+ B̃TWiiB̃)−1B̃TWiiA1 +Q1−Wii

]
= 0. (3.23)

Given Ã and B̃ as block diagonal matrices, having identical blocks, implies that dis-

crete ARE in (3.10) is a set of M identical discrete AREs. Every Wii = ∑
M
h=1 p̃ih in (3.13) is

identical, and (3.23) is a set of M identical discrete AREs

M(AT
1WiiA1−AT

1WiiB̃(R̃+ B̃TWiiB̃)−1B̃TWiiA1 +Q1−Wii) = 0. (3.24)

Putting Wii = P1 in (3.24) gives (3.12). This finishes the proof.

Corollary 1. Given Theorem 6, the control policy (3.8) for the solution to (3.7) gives P̃

in (3.10), and can be divided into M2 blocks of Rn×n, denoted by P̃ih. For i, j,h ∈M , the

followings hold

1. Diagonal blocks of P̃, i.e., P̃ii is P1− (M−1)P2, where P1 is solution of (3.12).

2. Off-diagonal blocks of P̃, i.e., P̃i j, i ̸= j, is P2, where P2 is associated with

ĀT(P1−MP2)Ā− ĀT(P1−MP2)B(R+BT(P1−MP2)B)−1

×BT(P1−MP2)Ā+(Q1 +MQ2) = (P1−MP2). (3.25)

Note that for decoupled and coupled large-scale systems, Ā = A1 are Ā = A1 +MA2,

respectively.

3. P̃ > 0 is the solution to discrete ARE in (3.10) such that

x̃T
k P̃x̃k = x̃T

k P1x̃k +
M

∑
i=1

M

∑
j ̸=i

(xik− x jk)
TP2(xik− x jk). (3.26)

Herein, P̃ = (IM⊗P1−L ⊗P2) ∈ RnM×nM is given by

P̃ =


P1− (M−1)P2 P2 . . . P2

... . . . ...
...

P2 . . . . . . P1− (M−1)P2.

 . (3.27)
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Remark 11. Note that the subsystem’s ability to achieve the mutual goal, which is inter-

connected in the network, is generalized in (3.3). Therein, each subsystem has independent

actuation. This formulation is standard for networked control systems [21, 94, 140], where

subsystems are dynamically coupled or decoupled and have mutual performance function.

It yields a more general optimal control framework as in (3.3) and (3.5) for both coupled

and decoupled network systems.

Remark 12. Stabilizing distributed controllers for the global dynamics in (3.3) of (3.1) and

(3.2) are constructed in (3.9), where P̃ in (3.9) and (3.10) has the structure given in (3.27).

In the following subsection, solutions of the LQR graphical problem, i.e., (P̃, K̃*),

are computed using RL.

3.3.2 Off-Policy Discrete-time RL Algorithm

We present the model-free, off-policy discrete-time RL algorithm based on [96,154]

to solve the LQR graphical problem in Algorithm 4. The system (3.3) is rewritten as

x̃k+1 = Ã jx̃k + B̃(K̃ jx̃k + ũk), (3.28)

where Ã j = Ã− B̃K̃ j. The fixed policy ũ j
k =−K̃ jx̃k, learned and updated by policy iteration

[61], is applied to (3.3) to generate the behavioral trajectory data used in learning. The

off-policy Bellman equation can be expressed as

(x̃T
k ⊗ x̃T

k )vec(P̃ j+1)− (x̃T
k+1⊗ x̃T

k+1)vec(P̃ j+1)

+2(x̃T
k ⊗ (ũk + K̃ jx̃k)

T)vec(B̃TP̃ j+1Ã)

− ((K̃ jx̃k− ũk)
T⊗ (ũk + K̃ jx̃k)

T)vec(B̃TP̃ j+1B̃)

= x̃T
k Q̃x̃k + x̃T

k (K̃
j)TR̃K̃ jx̃k. (3.29)

Next, we present a data-driven implementation of model-free RL in Algorithm 4 to solve

(3.29) for (P̃, K̃*).
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Algorithm 4 Data-driven Implementation of the Model-free RL Algorithm for a Large-

scale System
1: Initialization: Given N, set j = 0 and small threshold e. Select stabilizing K̃0 and

control input ũk =−K̃x̃k + εk, where εk is a probing noise.

2: Data Collection: For j = 0,1,2, . . . , N−1, collect x̃k under a given ũk.

3: Compute (ϕ j,ψ j) defined as

ϕ
j =


x̃T

k Q̃x̃k + x̃T
k (K̃

j)TR̃K̃ jx̃k

...

x̃T
k+ζ−1Q̃x̃k+ζ−1 + x̃T

k+ζ−1(K̃
j)TR̃K̃ jx̃k+ζ−1

 , (3.30)

ψ
j =


ρxx1 ρxu1 ρuu1

...
...

...

ρxxζ ρxuζ ρuuζ

 , (3.31)

where s = 1,2, · · · ,ζ , and

ρxxs = (x̃T
k+s−1⊗ x̃T

k+s−1)− (x̃T
k+s⊗ x̃T

k+s), (3.32a)

ρxus = 2(x̃T
k+s−1⊗ (ũk+s−1 + K̃ jx̃k+s−1)

T), (3.32b)

ρuus =−(K̃ jx̃k+s−1− ũk+s−1)
T⊗ (ũk+s−1 + K̃ jx̃k+s−1)

T. (3.32c)

4: Policy Evaluation: Compute P̃ j+1 by

((ψ j)T
ψ

j)−1(ψ j)T
ϕ

j =


vec(P̃ j+1)T

vec(B̃TP̃ j+1Ã)T

vec(B̃TP̃ j+1B̃)T

 . (3.33)
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5: Policy Improvement: Compute K̃ j+1 by

K̃ j+1 =
(
R̃+ B̃TP̃ j+1B̃

)−1B̃TP̃ j+1Ã. (3.34)

6: Stop if ∥K̃ j+1− K̃ j∥ ≤ e; Otherwise, set j = j+1 and go to step 2.

Note that in (3.32), ρxxs ∈ R1×(nM)2
,ρxus ∈ R1×nmM2

, and ρuus ∈ R1×(mM)2
. Thus,

(3.33) has d = (nM)2 +(mM)2 + nmM2 unknown parameters. The least square (LS) so-

lution to (3.33) needs a full rank of ((ψ j)Tψ j) and, at a minimum, needs ζ ≥ d samples

at each iteration. Using solutions from (3.33), the feedback gain K̃ j+1 can be acquired by

(3.34).

Remark 13. The terms containing system dynamics (A,B) are regarded as unknowns and

are solved in (3.33) given measured data in (3.30)-(3.32) by using the LS method. Note

that x̃k in (3.30)-(3.32) is collected given ũk as shown in Step 2 of Algorithm 4. P̃ j+1 is also

solved in (21). K̃ j+1 is then updated using the solution of (21). This makes the approach

model-free.

Remark 14. Given the large-scale networked system in (3.3), consider Algorithm 4 for the

LQR graphical problem (3.7). At each iteration j, collected operators ϕ j and ψ j in (3.30)

and (3.31), where x̃k is collected given ũk, give P̃ j+1 in (3.33). As seen in [69], a unique

solution (P̃ j+1, K̃ j+1) is obtained using an off-policy algorithm when probing noises are

included in the control input for the persistence of excitation. The pair (P̃ j+1, K̃ j+1) can be

uniquely solved by LS while satisfying the full-rank condition of ψ j. Then, Algorithm 4

converges to the optimal solution (3.9).

Remark 15. In Algorithm 4, LS requires (n2+m2+nm)M2 data samples to obtain a unique

solution. This requirement scales by M2 over samples needed for a single subsystem. Thus,

for a large M, RL Algorithm 4 scales poorly when finding optimal control using policy
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Figure 3.1. Dimensionality Reduction.

iteration. The learning time, i.e., the time required to execute steps 3 and 4 of Algorithm 1,

could restrict its use in real-time control.

3.4 DMD-based Off-Policy RL

In this section, we introduce an alternative formulation for the RL algorithm to solve

the problem given in Remark 15. We use the DMD method to reduce the learning time by

formulating a lower-dimensional dynamic model.

Given the state measurement x̃k ∈ RnM, discretized in space and collected in step

2 of Algorithm 4, a lower-dimensional state measurement ξk is acquired by projecting x̃k

through a projection matrix Y

ξk ≈ Y x̃k, (3.35)

where Y ∈ Rr×nM, r << (nM), represented in Figure 3.1.

The following lemma shows that the optimal controller ũ*
k in (3.8) is learned by ξk

rather than x̃k so that the performance function associated with lower-dimensional system

model is near to the global J in (3.5).

Lemma 1. See [136]. Given system dynamics (3.3) and structure of cost matrix in (3.27),

ξk in (3.35) satisfies

ξk+1 = Y ÃY †
ξk +Y B̃ũk, (3.36)
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J̄
(
ũk,ξk

)
=

∞

∑
k=0

[
ξ

T
k Q̃rξk + ũT

k Rũk
]
, (3.37)

where Y ÃY † ∈ Rr×r is Hurwitz,

x̃k ≈ Y †
ξk (3.38)

holds for any ũk, x̃k and Q̃r = (Y †)TQ̃Y † ≥ 0 ∈ Rr×r.

Proof. This Lemma implies that the r-dimensional state ξk retains the behavior of nM-

dimensional state x̃k, if Y satisfies Remark 17. From (3.38) and (3.5), the performance

function with respect to the truncated dimension state ξk becomes (3.37).

Given structure of P̃ > 0 in Corollary 1, the truncated cost matrix P̃r spans analogous

eigenvalues as P̃, i.e., S(P̃r) = S(Y P̃Y †). The spectrum of P̃ [21] is

S(P̃) = S(IM⊗P1−L ⊗P2)

=
⋃

i∈M
S(P1−λi(L )P2), (3.39)

where λi(L ) ∈ S(L ). Then, the optimal control learning for nM-dimensional system in

(3.3), with global performance function J, is analogous to learning for the truncated system

(3.36) with the performance function in (3.46). This finishes the proof.

The balanced truncation [97] can build Y , but it is infeasible for larger systems that

require a solution to high-dimensional Lyapunov equations [135, 136] in the computation

of discrete controllability Gramian Φc = ∑
∞
m=0 ÃmB̃B̃⊤(Ã⊤)m. Balanced proper orthogonal

decomposition (POD) [116] approximates balanced truncation and avoids the computation

of Φc. This makes the computation of a projection matrix Y tractable for larger systems.

Remark 16. Since the system model is unknown for the model-free algorithm, the matrix Y

in (3.35) will only be built using state measurements x̃k. The matrix Y indicates the measure

of insufficiency for the system (3.3) to be controlled and reduces the system dimension.
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Remark 17. If Y in (3.35) satisfies controllability Gramian then (I−Y †Y )x̃k ≈ 0 holds for

any ũk, x̃k [67]. Then, matrix Y can be found from minY∈Rr×nM ∑
N−1
j=0

∥∥(I−Y †Y )x̃k
∥∥2
. This

projection, as shown in [67], makes (3.35) hold, where Y † is specified by the first r columns

of the left-singular matrix.

Eigensystem realization algorithm in [62] is similar to balanced POD [116, 147]

which is suitable for high dimensional systems. The POD and SVD can identify only

the spatial patterns, whereas DMD can identify spatiotemporal patterns in x̃k [76]. Thus,

firstly, DMD can be used for the balanced POD to obtain Y as shown in Remark 17, where

Y † = Ũ . Secondly, DMD enables the extraction of dynamic modes from collected x̃k. These

dynamic modes are used to precondition the data vectors in (3.32) of the underlying large-

scale system (3.3) onto a lower-dimensional space. This retains the complete dynamic

information of (3.3) in lower dimensions.

3.4.1 Build Y in (23) and Extract Dynamic Modes via DMD

This section presents the data-driven approach to build Y in (23) for the system (3.3)

while satisfying Remark 16 and extracting DMD modes. DMD is a data-driven method [76]

that examines the relationship between measurements of a dynamical system correlated by

a linear operator as

x̃k+1 = T x̃k. (3.40)

To obtain the data-driven model of (3.3) which is the same as in (3.40), x̃k is collected given

ũk in step 2 of Algorithm 4, where T = Ã− B̃K̃ and T ∈ RnM×nM. Given x̃k, (X1,X2) ∈

RnM×(p−1) is arranged such that X2 is the time-shifted matrix of X1

X1 =


| | . . . |

x1 x2 . . . xp−1

| | . . . |

 , X2 =


| | . . . |

x2 x3 . . . xp

| | . . . |

 ,
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where p is the complete number of snapshots. The data-driven dynamic model results in

X2 = T X1. (3.41)

The LS solution to (3.41) can be obtained by minimizing the norm of ∥X2−T X1∥F .

This minimization problem can be efficiently solved via (3.42), where the pseudoinverse of

X1 is computed by SVD

T = X2X†
1 . (3.42)

where X1 = USV ι , U ∈ RnM×nM, S ∈ RnM×nM, and V ∈ R(p−1)×nM. At this stage, SVD

eliminates nonessential singular values in S such that S is a square matrix enabling pseu-

doinverse of X1. Note that S is a diagonal matrix holding singular values σi of X1, for

i = 1, . . . ,nM, which represents energy ranking [42, 125]. The thresholding of matrix S

at rank r is used to truncate X1 while retaining a high percentage of energy content. This

truncation to rank r results in X̃1 ≈ Ũ S̃Ṽ ι , where Ũ ∈ RnM×r, S̃ ∈ Rr×r, and Ṽ ∈ R(p−1)×r.

Herein, the projection matrix Y = Ũ ι is obtained. Note that SVD provides the projection

between two different dimensional spaces (RnM→ Rr).

Remark 18. The percentage energy content in each σ is given by Eσi =
σi

∑
nM
i=1 σi

. The r can

be any positive integer between 1 to nM determined by a strict threshold µ . The value of

µ ≥ 0 is chosen for the matrix S such that σi ≥ µ∑
nM
i=1 σi. This thresholding using µ keeps r

leading σ ’s with high energy and eliminates remaining, i.e., r+1 to nM with lower energy.

The approximation of matrix T in (3.42) can be computed as

T ≈ T̃ = X2Ṽ S̃−1Ũ ι , (3.43)

and dynamic model (3.41) results in

X2 ≈ T̃ X1, (3.44)

where T̃ has the same dimension as T . For the large-scale networked system (3.3), (3.5)

defines how one subsystem interacts with others. Eigenvalue analysis is critical to retrieve
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complete dynamic information from state measurement x̃k. It is possible to extract dynamic

modes efficiently from a dynamic model, where x̃k is projected onto a linear subdomain of

dimension r. The lower-dimensional dynamic model becomes

ξk+1 = Y T̃Y †
ξk

= Y X2Ṽ S̃−1
ξk ≜ T̄ ξk, (3.45)

where T̄ ≜ Y X2Ṽ S̃−1 and T̄ ∈ Rr×r. Given Lemma 1, one can find a unique stabilizing

control policy ũk that minimizes the global J(ũk, x̃k) in (3.5) as

J̄∗(x̃k) = min
ũk

J̄(ũk, x̃k) =
∞

∑
k=0

[
ξ

T
k Q̃rξk + ũT

k Rũk
]

= ξ
T
k P̃rξk, (3.46)

where P̃r ∈ Rr×r > 0 is a truncated cost matrix.

Remark 19. Note that state measurement at each snapshot can be viewed as a sample of

a signal. Since these samples are stacked over p snapshots, (X1,X2) forms a time-series

signal. Thus, T in (3.41) provides a temporal mapping of the state measurement signal.

Eigenanalysis of T gives dynamic modes to truncate data vectors in (3.32), so that dynamic

information of (3.3) is preserved [125]. The eigenvalue analysis of T̄ is more feasible

than that of T ≈ T̃ , where r << (nM). This analysis provides projection within the same

dimensional space (Rr→ Rr) as obtained in (3.45).

The next theorem shows the extraction of complete dynamic information via eigen-

value analysis for the system of high dimensions, in contrast to [136]. This information is

then used to truncate data vectors in (3.32) within the RL framework.

Theorem 7. Given the reduced-order dynamic model in (3.45), eigendecomposition of T̄

provides essential dynamic modes to precondition data vectors in (3.32), i.e., to project

ρxxs ∈ R1×(nM)2
,ρxus ∈ R1×nmM2

, and ρuus ∈ R1×(mM)2
onto a r-dimensional space.
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Proof. Let P = ŨŨ ι denote the orthogonal projection onto the space of X̃1, where X̃1 ≈

Ũ S̃Ṽ ι . Ũ ιŨ is the identity matrix. If X2 lies in span of X1, then PT̃ = T̃ .

Ũ ι T̃Ũ = Ũ ιX2Ṽ S̃−1Ũ ιŨ = Ũ ιX2Ṽ S̃−1 = T̄ . (3.47)

Eigendecomposition of T̄ generates eigenvalues λ and eigenvectors v that can examine

essential characteristics of the system (3.3), such as oscillation modes and natural frequen-

cies [117, 136],

T̄ v = λv. (3.48)

It is clear from (3.43) and (3.45) that eigenvalues of T̃ and T̄ are analogous [125], given

Y = Ũ ι .

T̃ v = X2Ṽ S̃−1Ũ ιv = Y X2Ṽ S̃−1v = T̄ v = λv. (3.49)

As shown in Remark 19, analyzing T̄ is computationally tractable. Given the dynamic

model in (3.45) and (3.40), dynamic modes of T ≈ T̃ , i.e., θ , and eigenvectors of T̄ , i.e., v,

are related by a linear transformation,

θ =
1
λ

X2Ṽ S̃−1v. (3.50)

We have

Pθ = ŨŨ ι
θ = ŨŨ ι 1

λ
X2Ṽ S̃−1v = Ũ

1
λ

T̄ v = Ũv = θ . (3.51)

The columns of θ ∈RnM×r are called the DMD modes for linear systems, and are the exact

eigenvectors of T ≈ T̃ ∈ RnM×nM [125, 136],

T̃ θ = PT̃ θ = (ŨŨ ι)(X2Ṽ S̃−1Ũ ι)(
1
λ

X2Ṽ S̃−1v)

= ŨŨ ιX2Ṽ S̃−1v = ŨT̄ v = λθ . (3.52)
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The updated vectors are computed from (3.32) as

ρ̂xx = ρxxs(θ ⊗θ) ∈ R1×r2
, (3.53a)

ρ̂xu = ρxus(ImM⊗θ) ∈ R1×r(mM), (3.53b)

ρ̂uu = ρuus(ImM⊗ ImM) ∈ R1×(mM)2
. (3.53c)

Remark 20. The truncation of data vectors in (3.53) is executed with DMD modes, unlike

to [119] which uses SVD modes. DMD modes differ from individual SVD modes, and they

preserve dynamic information in lower dimensions as given in Remark 19. As shown in

Theorem 7, the dynamic model can be decomposed into dynamic modes, where eigenvalues

characterize the temporal nature of the associated dynamic modes θ . Theorem 7 pertains

to higher dimensional networked systems, in contrast to [136]. Moreover, DMD modes

are extracted within the RL algorithm that iteratively truncates learned datasets to lower

dimensions.

3.4.2 DMD-based Model-free Off-policy RL

This subsection proposes the DMD-preconditioned off-policy discrete-time RL al-

gorithm in Algorithm 5. Unlike Algorithm 4, Algorithm 5 has an additional step of DMD-

preconditioning to project large-scale system data vectors to a truncated order while pre-

serving dynamic information. The policy evaluation and improvement steps are the same

as Algorithm 4 but use a lower-dimensional state ξk.

Note that in (3.55), ρ̂xx ∈ R1×r2
, ρ̂xu ∈ R1×r(mM), and ρ̂uu ∈ R1×(mM)2

. Thus, (3.56)

has d = r2 +(mM)2 + r(mM) unknown parameters. The LS solution to (3.56) needs a full

rank of ((ψ j
r )

Tψ
j

r ) and, at a minimum, needs ζ ≥ d samples at each iteration.

The following theorem proves that Algorithm 4 and Algorithm 5 have the identical

convergence characteristics.
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Algorithm 5 Data-driven Implementation of DMD-based Model-free RL Algorithm for a

Large-scale System
1: Initialization: Given N, set j = 0 and small threshold e. Select stabilizing K̃0

r , K̃0, and

control input ũk =−K̃x̃k + εk, where εk is a probing noise.

2: Data Collection: Same as step 2 in Algorithm 4 and compute (3.32).

3: DMD Preconditioning: Set strict threshold µ . Compute reduced-order data vectors

(ρ̂xx, ρ̂xu, ρ̂uu) in (3.53) and operators (ϕ j
r ,ψ

j
r ) given by

ϕ
j

r =


ξ T

k Q̃rξk +ξ T
k (K̃

j
r )

TR̃K̃ j
r ξk

...

ξ T
k+ζ−1Q̃rξk+ζ−1 +ξ T

k+ζ−1(K̃
j

r )
TR̃K̃ j

r ξk+ζ−1

 , (3.54)

ψ
j

r =

[
ρ̂xx ρ̂xu ρ̂uu

]
. (3.55)

4: Policy Evaluation: Compute P̃ j+1
r by

((ψ j
r )

T
ψ

j
r )
−1(ψ j

r )
T
ϕ

j
r =


vec(P̃r

j+1
)T

vec((Y B̃)TP̃r
j+1Y ÃY †)T

vec((Y B̃)TP̃r
j+1Y B̃)T

 . (3.56)

5: Policy Improvement: Compute K̃ j+1
r by

K̃r
j+1

=
(
R+(Y B̃)TP̃r

j+1Y B̃
)−1

(Y B̃)TP̃r
j+1A. (3.57)

6: Stop if ∥K̃r
j+1− K̃r

j∥ ≤ e; Otherwise, set j = j+1, and go to step 2.

7: Collect: K̃ j+1 = Y K̃r
j+1.
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Theorem 8. (Convergence of Algorithm 5) Given the networked system (3.3), consider

Algorithm 5 for the LQR graphical problem (3.7). Then, Algorithm 5 converges to the

optimal solution (3.9), and P satisfies discrete-time ARE (3.10), i.e, Algorithm 5 converges

to Algorithm 4.

Proof. It is seen from Lemma 1 that, given the large-scale networked system in (3.3),

ξk satisfies (3.36), i.e., x̃k ≈ Y †ξk holds ∀ũk, x̃k with the stable Y ÃY †. Then, the control

policy ũk = −K̃ j+1
r ξk stabilizes system (3.36) at every iteration j, where K̃ j+1 = Y K̃r

j+1.

Therefore, Y ÃY †−Y B̃K̃r is Hurwitz. Given Remark 17, if Y is found then, similar to

Algorithm 4, decomposed off-policy RL can be achieved, where K̃r = Y †K̃ ∈ RmM×r is

K̃r
*
= (R+(Y B̃)TP̃*

r (Y B̃))−1(Y B̃)TP̃*
r (Y Ã), (3.58)

and P̃r = Y P̃Y † > 0 ∈ Rr×r satisfies

P̃r
*
= (Y Ã)TP̃r

*
(Y Ã)− (Y Ã)TP̃*

r (Y B̃)(R+

(Y B̃)TP̃*
r (Y B̃)−1)(Y B̃)TP̃*

r (Y Ã)+ Q̃r. (3.59)

Per Remark 14, Algorithm 4 converges to the optimal solution (K̃*, P̃*). Let K̃r be

the initial stabilizing feedback gain matrix. Then, similar to Algorithm 4, given Remark 14,

(P̃r
j+1

, K̃r
j+1

) is uniquely obtained by LS in (3.56) while satisfying the full-rank condition

of ψ
j

r in (3.55) derived from data matrices in (3.53). Thus, Algorithm 5 converges to

Algorithm 4, i.e., to the optimal solution. This finishes the proof.

3.4.3 Computation Complexity

In this section, we show that Algorithm 5 has more computational tractability than

Algorithm 4. As given in Remark 15, LS requires (n2+m2+nm)M2 data samples to obtain

a unique solution in Algorithm 4, whereas Algorithm 5 would require r2+(mM)2+r(mM)

samples.
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(b) 24-area power system

Figure 3.2. Topologies considered for dynamically (a) decoupled and (b) coupled net-
works..

Considering ζ as data samples and d as unknown parameters, the computational

complexity of LS for ζ ≥ d is of the order O(d2ζ ) [110]. When finding optimal control

using policy iteration for large values of M, Algorithm 4 has higher complexity of the

order O((n2 +m2 + nm)M2)2ζ ) compared to Algorithm 5 with order O((r2 + (mM)2 +

r(mM))2ζ ), where r << (nM). Therefore, Algorithm 5 is more tractable than Algorithm

4. Algorithm 5 conserves a substantial amount of learning time provided that r is small

enough. This will be verified through the following numerical simulation studies.

3.5 Simulation Studies

We verify the proposed DMD-based model-free RL Algorithm 5 by simulating two

large-scale networks. First, the consensus network problem is discussed in Section V-A,

where each subsystem is dynamically decoupled but linked with a mutual performance

function. Second, the load frequency control (LFC) for multi-area power systems [153]

is presented in Section V-B, where subsystems are physically coupled and have a mutual

performance function.
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3.5.1 Consensus Network

Figure 3.2(a) shows a large-scale network with 20 subsystems. Consider the LQR

graphical problem in (3.7) with M = 20. The linear large-scale networked dynamical sys-

tem becomes

x̃k+1 = Ãx̃k + B̃ũk, (3.60)

where x̃ = (xT
1 , . . . ,x

T
20)

T ∈ R60, and xi ∈ R3 is the state of the subsystem i. Here, Ã =

I20⊗A ∈ R60×60 and B̃ = I20⊗B ∈ R60×20, where (A ∈ R3×3,B ∈ R3×1) is adopted from

[69] as

A =


0.9064 0.0816 −0.0005

0.0743 0.9012 −0.0007

0 0 0.1326

 ,B =


0.0015

0.0096

0.8673

 . (3.61)

One can select penalizing local state weight Q1 = I3, relative state weight Q2 = 0.5I3,

and control weight R = 1. The global performance function in (3.5) uses Q̃ = I20⊗Q1 +

L ⊗Q2 and R̃ = I20⊗R for the Laplacian matrix L ∈ R20×20 related with the undirected

G .

We first collect state data of the large-scale system under a given ũk in (3.8), i.e.,

x̃k over k = {0 . . .2000}. In step 1 of Algorithm 5, consider the probing noise εk =

0.1sin(9.8k)+0.1sin(10k)+0.1cos(10k)+0.1cos(10.2k). Compute data vectors (ρxxs,ρxus,

ρuus) in step 2 of Algorithm 5 as in (3.32). Given the collected x̃k, time-shifted matrices

are generated as shown in (3.41). The strict threshold µ , selected for singular values, is

10−10 for a concise truncation. Figure 3.3 shows singular values captured for the balanced

truncation in DMD. We compute dynamic modes θ using (3.50) to project (ρxxs,ρxus,

ρuus) to lower dimensions, i.e., (ρ̂xx, ρ̂xu, ρ̂uu) in (3.53), to conclude DMD-preconditioning

in step 3 of Algorithm 5.
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Figure 3.3. Low-rank approximation for DMD (3 dominant singular values)..
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Figure 3.4. Convergence of the feedback gain Kr and performance cost Pr..

The feedback gain K̃r for the lower dimension is computed in (3.57). Figure 3.4

shows the convergence of feedback gain K̃r and performance cost P̃r over iteration j. The

solution of LQR problem yields the feedback gain matrix K̃ in (3.9) which is computed in

step 7 of Algorithm 5.

Table 3.1 shows the computational time for policy improvement with the proposed

dimensionality reduction for the two cases of 20 and 12 subsystems. Figure 3.5 shows the
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Figure 3.5. Convergence of the performance functions J and J̄..

Table 3.1. Computational Time For Policy Improvement

Number of subsystems
Spatio-temporal dimen-
sions of state matrix be-
fore and after truncation

Computational time
(Seconds)

M = 20 R60×2000 116

R3×2000 1

M = 12 R36×2000 70

R3×2000 0.24

convergence of the performance function J in (3.5) and J̄ in (3.46) for state matrices of

dimensions 60 and 3, respectively. A similar conclusion can be drawn for a case with the

state matrices of dimensions 36 and 3. At a minimum, fifteen iterations are required to

achieve the optimal performance for e = 0.003. Table 3.1 and Fig. 3.5 indicate that the

reduction in dimension significantly improves the learning time, whereas comparable op-

timal performance is achieved for nearly the same number of iterations. All computations

are executed on an Intel(R) Xeon(R) W-10855M 2.80 GHz, 32 GB RAM, with MATLAB

2021a.
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3.5.2 LFC of a Multi-area Power System

In this case study, a large-scale LQR graphical problem is formulated for LFC of

multi-area power systems. Figure 3.2(b) shows a network of 24-areas power system. Load

variation in the i-th area cause its frequency fi to deviate from its reference value, and

affects j-th area due to transient variations in f j.

Figure 3.6 illustrates the layout of the i-th area LFC model for a multi-area power sys-

tem. A generator, governor, and turbine are located in each i-th area. Using the linearized

LFC model for multi-area power systems, adopted from [8], we examine the dynamics of

the i-th area without load disturbance

∆ ḟi =
−1
Tpi

∆ fi +
Kpi

Tpi
∆Pmi−

Kpi

Tpi
∆Ptie,i, (3.62a)

∆Ṗmi =
−1
Tti

∆Pmi +
1
Tti

∆Pgi, (3.62b)

∆Ṗgi =
−1

RiTgi
∆ fi−

1
Tgi

∆Pgi +
ui

Tgi
, (3.62c)

∆Ṗtie,i = 2π

M

∑
j ̸=i, j=1

Ti j(∆ fi−∆ f j), (3.62d)

where definitions for i-th area state variables and parameters are summarized in Table 3.2.

The input to the controller is ACEi = ∆Ptie,i + βi∆ fi, and the usual choice of βi is

1
Ri
+Di. At the local level, the system dynamics of the i-th area can be given as

ẋi = A1xi +A2

M

∑
j ̸=i, j=1

Ti j(xi− x j)+Bui, i ∈M , (3.63)
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Table 3.2. Definitions for LFC of a multi-area power system

Variables Definition

∆ fi,∆Pmi,∆Pgi,∆Ptie,i

Frequency deviation, Generator output deviation,
Governor valve deviation, and Tie-line power de-
viation, respectively

Tpi,Tgi,Tti
Time constants of power system, governor and
turbine, respectively

Kpi Gain of power system
ui = ∆Pci Control input
Pci Automatic generation control
Ri Speed regulation parameters of governor

Ti j
Gain of tie-line interconnection between i-th and
j-th area

ACEi Area control error signal
Di Load dependency factor

where xi = [∆ fi,∆Pmi,∆Pgi,∆Ptie,i]
T, and

A1 =



−1
Tp

Kp
Tp

0 −Kp
Tp

0 −1
Tt

1
Tt

0

−1
RTg

0 −1
Tg

0

0 0 0 0


,

A2 =



0 0 0 0

0 0 0 0

0 0 0 0

2π 0 0 0


,B =



0

0

1
Tg

0


. (3.64)

The subscript i is ignored in A1,A2, and B, for brevity, as areas are considered to have

identical dynamics. The numerical values of parameters given in Table 3.3 are adopted

from [8].
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Figure 3.6. Block diagram of the LFC model in M-area power systems with tie-line inter-
connections..

Table 3.3. Parameters of the multi-area power system

Parameter Tp Tg Tt Kp R Ti j
(s) (s) (s) (MW/MW) (Hz/MW) (MW/Hz)

i-th Area 20 0.08 0.3 120 2.4 0.015

For M = 24, global dynamics with states x̃ = (xT
1 , . . . ,x

T
24)

T ∈R96 and control inputs

ũ = (uT
1 , . . . ,u

T
24)

T ∈ R24 are

˙̃x = Ãx̃+ B̃ũ, (3.65)

where Ã = (IM ⊗A1 +L ⊗A2) ∈ R96×96, and B̃ = IM ⊗B ∈ R96×24. Select penalizing

local state weight Q1 = 2I4, relative state weight Q2 = 0.01I4, and control weight R =

1. Performance function in (3.5) uses Q̃ = I24⊗Q1 +L ⊗Q2 and R̃ = I24⊗R with the

Laplacian matrix L ∈ R24×24.

In order to design a discrete-time LQR control policy, system (3.65) is discretized

using the Zero-Order-Hold (ZOH) method with a sampling period of τ = 1 seconds. The

resulting discrete-time system dynamics become

x̃(k+1)τ = Ãd x̃kτ + B̃d ũkτ , (3.66)
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Figure 3.7. Total dynamic modes θ̄ (real part only) of M-area power system..
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Figure 3.8. Low-rank approximation for DMD (4 dominant singular values)..

where Ad = eÃτ ∈ R96×96, and Bd =
∫

τ

0 eÃτ B̃dt ∈ R96×24. The LFC in multi-area power

system is an example of a large-scale system having multiple sampling periods. That is,

control signals sent to areas are in discrete time with a sampling period of 1-5 seconds (s).

Thus, we use discrete-time LFC [142].
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Figure 3.9. Essential modes (real part only) for the singular values in Fig. 3.8..

The state data of (3.66) is collected under ũk in (3.8), i.e., x̃k over k = {0 . . .400} and

probing noise εk = 0.01sin(9.8k)+0.01sin(10k)+0.01cos(10k)+0.01cos(10.2k). Figure

3.7 illustrates the total dynamic modes θ̄ ∈ R96×96 of the original system with the SVD

matrices where U ∈ R96×96, S ∈ R96×96, and V ∈ R400×96. Figure 3.8 shows that 4 dom-

inant singular values need to be captured for the balanced truncation in DMD. Figure 3.9

presents 4 essential dynamic modes θ ∈ R96×4 of decomposed system with the truncated

SVD matrices where Ũ ∈ R96×4, S̃ ∈ R4×4, and Ṽ ∈ R400×4. Figure 3.10 shows conver-

gence of feedback gain K̃r and performance cost Pr over iteration j. As seen in Fig. 3.11,

state deviations of M-area power system i.e., ∆ fi,∆Pmi,∆Pgi,∆Ptie,i converges to zero under

the proposed accelerated control scheme.
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Figure 3.10. Convergence of Kr and Pr..
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Figure 3.11. State trajectories, i.e., deviations of frequency, generator output, governor
valve, and tie-line power of i- th area power system..

3.5.3 Comparative Studies

We compare the computational features of our Algorithm 5 and the RL algorithm

in [119] for the LQR control problem of the large-scale networked system in (3.3). We

consider the case study in Section 3.5.1 and use the same parameters. The system model

in (3.61) with M equal to 20 and 12 are considered. We notice the difference in iteration

72



numbers (No.) and computational time (s). Note that Remark 11 is still satisfied. The

original dynamic information for the system in (3.3) is not lost when using DMD for data

vectors decomposition instead of SVD modes. Table 3.4 shows that our proposed algorithm

has less computational time and iterations than those based on [119].

Table 3.4. Computation features of Algorithm 5 against [119]

Number of subsystems
Iteration No. Computational Time (s)

Algorithm 5 [119] Algorithm 5 [119]
20 15 18 1 1.2
12 12 15 0.24 0.29

3.6 Conclusion & Future Work

This paper proposes a model-free, off-policy discrete-time RL algorithm to solve the

optimal control problem for large-scale systems. Using DMD, this approach reduces the

efforts of RL control while retaining the dynamic information of the original large-scale

system. Since DMD preconditioning is data-driven, the RL algorithm becomes entirely

model-free. Potential path forward would treat DMD-based reinforcement learning, for

high-dimensional systems having heterogeneous subsystems, extended LQR formulations

and DMD-based inverse reinforcement learning [35, 152].
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Chapter 4

Data-Efficient Reinforcement Learning for Complex Nonlinear Systems *

*This chapter, titled ’Data-Efficient Reinforcement Learning for Complex Nonlinear Systems,’ was orig-

inally published in IEEE Transactions on Cybernetics, doi: 10.1109/TCYB.2023.3324601. It has been

reprinted with permission from all co-authors and is used with permission from IEEE without any revisions.

This version represents the authors’ accepted manuscript.
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CHAPTER 4

Data-Efficient Reinforcement Learning for Complex Nonlinear

Systems

4.1 Introduction

Accurate modeling of complex nonlinear systems in various control applica-

tions can be challenging, necessitating data-driven control [132]. The indirect data-driven

control approach addresses these complex systems by first identifying models from mea-

sured data and, then, applying a model-based control [78]. By contrast, direct methods

design stabilizing controllers directly from measured data without explicit model identifi-

cation. Recent progress in data-driven control allows for the development of model-free

controllers [130]. Data-driven optimal control has been widely studied for nonlinear sys-

tems in the fields of robotics and power systems [29, 82, 149, 160]. Nonlinear optimal

control problems need to solve the Hamilton Jacobi Bellman (HJB) equation and find a sta-

bilizing controller. Various techniques have been designed to solve these tasks for specific

types of systems [70, 79, 143], but this remains a challenging problem. Herein, we focus

on the optimal control design via reinforcement learning (RL) for unknown discrete-time

nonlinear systems.

We see RL through the lens of Koopman theory to handle complex nonlinear sys-

tems. This approach allows RL algorithms to iteratively learn a stabilizing controller and

optimize a specific performance index. In model-based RL algorithms, model extraction

could become strenuous for complex and high-dimensional systems [2,55,88]. The model-

free, off-policy RL algorithm [69,80,84,90] can exploit the dataset generated from interac-

tions with the environment to find optimal policies. Employing RL [22, 35, 81, 85, 89, 157]
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Figure 4.1. Overview of the proposed framework for complex nonlinear systems. The linear
model is obtained with Koopman theory. eDMD approximates Koopman to a finite dimension.
Model-based and data-efficient model-free RL algorithms solve LQR control problems for nonlinear
systems with unknown models..

could result in over-fitting due to potentially near-singular rank matrices and longer run

times for high-dimensional systems.

Data-driven optimal control is discussed in [50, 133], where a deep neural network

is employed for system identification. Although the data-driven Koopman approach has

produced promising results [48, 75, 92, 123, 127, 144], to our knowledge, it has not been

considered in data-efficient model-free RL setting to handle high- dimensional nonlinear

systems. We use Koopman theory [63, 74] to analyze symmetries in high-dimensional

datasets. These symmetries are called Koopman eigenfunctions that oscillate at fixed natu-
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ral frequencies. Koopman eigenfunctions serve as intrinsic coordinates along which large

datasets can be effectively truncated [73]. These eigenfunctions can help reflect the ex-

act behaviors of the high-dimensional system into lower dimensions [25]. We develop a

lower-dimensional mapping of large datasets and study their temporal dynamics. Using

this lower-dimension model significantly improves the efficacy of the data-driven RL algo-

rithms. This approach does not rely on the system model, making it appropriate for model-

free RL adaptation. The use of dimensionality reduction to accelerate RL has been recently

proposed for both coupled and decoupled linear networked systems in [34]. Herein, we

present an extension to [34] for complex nonlinear systems using Koopman eigenfunctions.

Datasets of the complex nonlinear system collected over space and time provide

more relevant dynamic information compared to just spatial datasets [24]. Dynamic mode

decomposition (DMD) is a computationally viable framework to analyze spatial-temporal

datasets. It provides a finite approximation of the Koopman operator, which can be depicted

as the best-fit linear dynamical model realizations [111, 125]. The modified framework of

DMD, namely extended dynamic mode decomposition (eDMD) [10, 148], finds a linear

model with the effect of control inputs. When singular values closer to zero are preserved,

singular-value decomposition (SVD) approaches could involve near-singular matrices. The

truncation step in eDMD selects a relatively small threshold and sets all eigenvalues below

this threshold to zero. We show that eDMD can extract spatiotemporally coherent patterns

from data. The off-policy RL is less efficient since it allows the agent to learn from a dif-

ferent behavior policy than the one it is currently improving. Experience replay improves

data efficiency by storing and reusing past data, enhancing system excitability, and aiding

learning [115]. In contrast, we use eDMD to identify the best-fit linear system approx-

imation for the original nonlinear system, even with an unknown model. Subsequently,

we integrate the off-policy RL with Koopman theory to design an efficient optimal control

strategy. Salient contributions of this paper are:
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1. To alleviate strenuous system modeling for a complex nonlinear system, we develop

an entirely data-driven model-based RL algorithm using Koopman operators. This

method avoids the need for an exact model, distinguishing it from RL approaches

in [2, 55, 88, 155]. This feature makes it a more practical choice for control tasks in

complex and uncertain environments.

2. We use Koopman eigenfunctions to truncate large datasets and develop a data-efficient

model-free RL algorithm that reduces the required data for optimal control learning

while retaining the dynamical information of the original nonlinear complex system.

This algorithm significantly improves data efficiency in RL, for unknown complex

systems, addressing longer learning times in [22, 81, 85, 89, 99, 157].

3. We provide convergence analysis for the proposed data-efficient model-free algo-

rithm and validate our framework on a complex nonlinear power system.

Figure 4.1 illustrates an overview of the proposed approach. This paper is organized as

follows: Section II introduces the data-driven Koopman operator and its finite approxima-

tion via eDMD. Sections III and IV present RL algorithms that are entirely data-driven and

data-efficient, respectively. Section V offers simulation studies on nonlinear power system

dynamics. Section VI concludes the paper.

Notations: ⊗ stands for the Kronecker product. For vectors a,b and matrix W ,

a⊤Wb = (b⊤⊗ a⊤)vec(W ). tk denotes the kth discrete-time step. The n-dimensional Eu-

clidean space is denoted by Rn. In indicates the n-dimensional identity matrix. ∥·∥F and

∥·∥ denotes Frobenius norm and Euclidean norm of a vector or a matrix, respectively.

C− indicates an open left-half complex plane. [li j] denotes a matrix whose i j-th element

is li j. S(L) denotes the spectrum of L = {λ1(L), . . . ,λM(L)}, where λi is the ith eigen-

value. Lι stands for the complex conjugate transpose of L. ⟨·, ·⟩ indicates the inner prod-

uct operation. L† denotes the pseudoinverse of L matrix. For a matrix L = [li j] ∈ Rn×n,

vec(L) = [l11 l12 . . . l1n l22 . . . l(n−1)n lnn]
⊤.

78



4.2 Preliminaries and Problem Formulation

This section discusses the Koopman operator for an unknown nonlinear dynamical

system. We use the eDMD method to find the best-fit linear model, given system trajecto-

ries, and design linear quadratic regulator (LQR) control.

4.2.1 Preliminaries of the Data-driven Koopman Operator

Consider a discrete-time, nonlinear, non-affine system

xk+1 = f (xk,uk), (4.1)

where xk ∈Rn, uk ∈Rm, and continuously differential dynamic map f (xk,uk) : Rn×Rm→

Rn.

Following the Koopman theory in [74], we consider an observable function as h(xk) :

Rn→ Rn, and the unknown system model in (4.1) produces trajectories as

h(xk) =

[
h1(xk),h2(xk), . . . ,hn(xk)

]⊤
, (4.2)

where n is the number of spatial measurements.

Assumption 7. The trajectories (h(xk),uk) of the complex system in (4.1) are known, but

f is unknown.

Definition 3. The Koopman operator K for the dynamical system (4.1) acts on the ob-

servable function h(xk) and propagates it to the next time step [74, 117]

h(xk+1) = h( f (xk,uk)) = K h(xk). (4.3)

Remark 21. Note that we can convert a non-affine dynamical control system in (4.1) to an

affine control system by defining extended state space. Define the f̄ on the extended state

space, where control input is added to the state vector, yk := [x⊤k ,u
⊤
k ]
⊤ ∈ R(n+m).
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Similar to (4.2), consider h(yk) : R(n+m)→R(n+m) on extended state space, and (4.1)

produces trajectories as

h(yk) =

[
h1(yk),h2(yk), . . . ,h(n+m)(yk)

]⊤
. (4.4)

Given Remark 21 and Definition 3, operator K for (4.1) acts on the h(yk) and propagates

it to the next time step on extended state space become

h(yk+1) = h( f̄ (yk)) = K h(yk). (4.5)

Although the underlying system in (4.1) is nonlinear, the system (4.3) and (4.5) is

propagating linearly in the space of observables. The operator K is linear but has infinite

dimension [24, 74, 117], which makes computation costly. However, the linear nature of

K enables to execute eigendecomposition of K as

θi(xk+1) = K θi(xk) = λiθi(xk), i = 1,2, . . . ,n, (4.6)

where θi(xk) and λi are Koopman eigenfunctions and eigenvalues of K operator, respec-

tively. Eigenanalysis finds the finite-dimensional approximation of K such that (4.3) prop-

agates linearly in the subspace spanned by a finite set of observable functions h(xk). The

mth observable function can be written in terms of Koopman eigenfunctions θi(xk) [24,148]

as

hm(xk) =
n

∑
i=1

θmi(xk)vmi, (4.7)

where θmi(xk) and vmi are mth Koopman eigenfunction and Koopman mode for the mth

observable function, respectively.

Problem: Given Assumption 7, lift the nonlinear system in (4.1) into a best-fit linear

model and find its optimal control input in terms of the linear feedback policy uk = −Kxk

such that the following quadratic performance index J is minimized

J
(
uk,xk

)
=

∞

∑
k=0

[
x⊤k Qxk +u⊤k Ruk

]
, (4.8)
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where Q = Q⊤ ∈ Rn×n ≥ 0 and R = R⊤ ∈ Rm×m > 0.

4.2.2 LQR Control via Koopman Approximation

We use eDMD [92,148], where a higher-dimensional function space is projected to a

lower-dimensional vector space, to obtain a finite approximation of K . Suppose we have

access to datasets from simulation experiments, where x̄k = h(xk) represents a vector of

observables. Given Assumption 7, we apply eDMD to construct linear state and control

matrices (A,B) using the system state and control measurements. The eDMD in [148]

modifies the framework of DMD to include the effect of the inputs uk ∈ Rm,

x̄k+1 = Ax̄k +Buk, (4.9)

where A ∈ Rn×n and B ∈ Rn×m.

The behavioral trajectories (h(xk),uk) are collected from experiments on the un-

known system (4.1). Given the state measurement sampled at tk, h(xk) ∈ Rn, the state

data matrices X1,X2 ∈ Rn×(p−1) are collected such that X2 is the time-shifted matrix of X1.

They are expressed as

X1 =


| | . . . |

x̄1 x̄2 . . . x̄p−1

| | . . . |

 , X2 =


| | . . . |

x̄2 x̄3 . . . x̄p

| | . . . |

 . (4.10)

The data matrix of control inputs U ∈ Rm×(p−1) is collected as

U =


| | . . . |

u1 u2 . . . up−1

| | . . . |

 , (4.11)

where p is the number of snapshots. Then, the data-driven dynamic model in matrix form

becomes

X2 = AX1 +BU. (4.12)
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Given the measurements yk ∈ R(n+m) on the extended state space, Y ∈ R(n+m)×(p−1)

is the concatenation of the state and control measurements. It is

Y =

X1

U

=


| | . . . |

y1 y2 . . . yp−1

| | . . . |

 . (4.13)

The system model in (4.12) can be written as

X2 =

[
A B

]X1

U

= GY, (4.14)

where G ∈Rn×(n+m) is an augmented matrix. The least-squares (LS) solution to (4.14) can

be obtained by minimizing the norm of ∥X2−GY∥F . This minimization problem can be

efficiently solved via G = X2Y †, where SVD computes the pseudoinverse of Y by

Y =UkSkV ι
k =

Uk1

Uk2

SkV ι
k , (4.15)

where Uk ∈ R(n+m)×(n+m), Sk ∈ R(n+m)×(n+m), Vk ∈ R(p−1)×(n+m). Split Uk into two com-

ponents (Uk1,Uk2) to yield G as

G≈ Ḡ = X2VkS−1
k

U ι
k 1

U ι
k 2

 . (4.16)

where Uk1 ∈ Rn×(n+m) and Uk2 ∈ Rm×(n+m). Similarly, X2 = USV ι , where U ∈ Rn×n,

S ∈ Rn×(p−1), V ∈ R(p−1)×(p−1). The system matrices (A,B) are computed as

A≈ Ā = X2VkS−1
k U ι

k 1,B≈ B̄ = X2VkS−1
k U ι

k 2. (4.17)

Provided (A,B) in (4.17), the LQR control finds the optimal control input u*
k . The

control input u*
k minimizes J(uk,xk) in (4.8) subject to (4.9) as

J∗(xk) = min
uk

J(uk,xk) = min
uk

∞

∑
k=0

[
x⊤k Qxk +u⊤k Ruk

]
= x⊤k Pxk, (4.18)
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where P = P⊤ ∈ Rn×n > 0 is a cost matrix. The optimal control input u∗k [79] is given by

u*
k =−K*xk, (4.19)

where K* ∈ Rm×n is

K* = (R+B⊤PB)−1B⊤PA, (4.20)

and P satisfies the discrete-time Algebraic Riccati Equation

P = A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA+Q. (4.21)

4.3 Data-driven Koopman-based RL Algorithm

This section develops Koopman-based Data-driven RL algorithms to solve the LQR

control problem in (4.18). We leverage the Koopman theory to derive a linear dynamic

model for the data-driven nonlinear system in (4.1).

4.3.1 Data-driven Model-based RL via Koopman Approximations

The solutions to the LQR problem in (4.18), i.e., (P,K*), are computed using RL. The

following lemma recalls the policy iteration (PI) for the discrete-time optimal LQR [52].

Lemma 2. See [52, 72]. Consider an initial stabilizing control gain matrix K0 ∈ Rm×n.

Then, find P j = (P j)
⊤ ∈ Rn×n > 0 for each j = 0,1, . . ., as the solution of the Lyapunov

equation

P j = (A j)
⊤

P jA j +(K j)
⊤

RK j +Q, (4.22)

where A j = A−BK j and

K j+1 = (R+B⊤P jB)−1B⊤P jA. (4.23)

The matrix K0 is selected such that the following claims hold.
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1. S(A j)⊂ C−, i.e., the matrix A j is Hurwitz,

2. lim j→∞ K j = K*, P≤ P j+1 ≤ P j, lim j→∞ P j = P.

We present a model-based design in Algorithm 6 to find the optimal policy. Given

Lemma 2, (4.22) and (4.23) can be iteratively solved using Algorithm 6.

Algorithm 6 Koopman-Based Discrete-Time RL Algorithm
1 Require: Collected behavioral trajectories (xk,uk) of (4.1).

2 Initialization: Set j = 0 and a small threshold e.

3 Koopman:

3.1 Input: Data matrices X1,X2,U .

3.2 Augment: Y =

X1

U

, X2 = GY .

3.3 Compute SVD: (Uk,Sk,Vk)← Y .

3.4 Split: Uk1,Uk2←Uk.

3.5 Output: Identify matrices (A,B) using (4.17).

4 Set stabilizing K0 and K in Lemma 2.

5 Solve (4.22) and (4.23) for (P j,K j+1) simultaneously.

6 Stop if ∥K j+1−K j∥ ≤ e; Otherwise, set j = j+1 and go to step 4.

Remark 22. It is clear from Lemma 2 that model-based PI solutions require knowledge of

system matrices (A,B).

RL Algorithm 6 requires the complete knowledge of system matrices (A,B) found

from Koopman theory. Moreover, the RL Algorithm 6 becomes infeasible for n >> 1,

requiring the solution of high-dimensional Lyapunov equations at each iteration. We can

design a data-driven model-free format to obtain (P,K*), where the system model found by

the Koopman approach and datasets learned iteratively can be reduced to lower dimensions.
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4.3.2 Data-driven Model-free Off-policy RL

We present the model-free RL version based on [70, 128] to solve the LQR problem

in (4.18) for the data-driven nonlinear system in (4.1). The system (4.9) is rewritten to

present the off-policy RL approach as

xk+1 = A f xk +B(K jxk +uk), (4.24)

where A f = A−BK j. The fixed stabilizing policy uk generates the behavioral trajectory

data used in learning. The off-policy Bellman equation using (4.17), (4.18), and (4.24) can

be expressed as

x⊤k P j+1xk− x⊤k+1P j+1xk+1

=x⊤k Qxk + x⊤k (K
j)⊤RK jxk− (uk +K jxk)

⊤B⊤

×P j+1xk+1− (uk +K jxk)
⊤B⊤P j+1A f xk. (4.25)

The off-policy Bellman equation in (4.25) is rewritten as

(x⊤k ⊗ x⊤k )vec(P j+1)− (x⊤k+1⊗ x⊤k+1)vec(P j+1)

+2(x⊤k ⊗ (uk +K jxk)
⊤)vec(B⊤P j+1A)

− ((K jxk−uk)
⊤⊗ (uk +K jxk)

⊤)vec(B⊤P j+1B)

= x⊤k Qxk + x⊤k (K
j)⊤RK jxk. (4.26)

The LS solution of (4.26) for P j+1 and K j+1 can be found without using system dynamics.

One defines (δ j,κ j) as

δ
j =


x⊤k Qxk + x⊤k (K

j)⊤RK jxk

...

x⊤k+ζ−1Qxk+ζ−1 + x⊤k+ζ−1(K
j)⊤RK jxk+ζ−1

 , (4.27)
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κ
j =


ρxx1 ρxu1 ρuu1

...
...

...

ρzzζ ρzuζ ρuuζ

 , (4.28)

where z = 1,2, . . . ,ζ , and

ρxxz = (x⊤k+z−1⊗ x⊤k+z−1)− (x⊤k+z⊗ x⊤k+z), (4.29a)

ρxuz = 2(x⊤k+z−1⊗ (uk+z−1 +K jxk+z−1)
⊤), (4.29b)

ρuuz =−(K jxk+z−1−uk+z−1)
⊤

⊗ (uk+z−1 +K jxk+z−1)
⊤. (4.29c)

Note that in (4.29), ρxxz ∈ R1×n2
,ρxuz ∈ R1×nm, and ρuuz ∈ R1×m2

. Moreover,

((κ j)⊤κ
j)−1(κ j)⊤δ

j =


vec(P j+1)⊤

vec(B⊤P j+1A)⊤

vec(B⊤P j+1B)⊤

 . (4.30)

K j+1 =
(
R+B⊤P j+1B

)−1B⊤P j+1A. (4.31)

Note that (4.30) has Ξ = n2 + m2 + nm unknown parameters. The matrix P j+1

can be uniquely solved with LS in (4.30) while satisfying the full-rank condition, i.e.,

rank((κ j)⊤κ j) = Ξ and a minimum of η ≥ Ξ samples are needed at each iteration j. Using

solutions in (4.30), the feedback gain K j+1 can be found by policy improvement in (4.31).

The system (4.24) should be persistently excited [69, 84], which is guaranteed by adding

probing noises to the control input uk in (4.24).

Lemma 3. See [69]. Consider a discrete-time system in (4.9) and J in (4.8). Assume the

LS solution to policy evaluation (4.30) has a full rank of ((κ j)⊤κ j) and, at a minimum, has

η ≥ Ξ samples at each iteration. Then, the following claims hold.
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1. A− BK j is Hurwitz for each j = 0,1, . . . , where K j follows from the solution of

(4.31).

2. lim j→∞ P j = P, lim j→∞ K j = K*, and control u*
k =−K*xk minimizes J.

Remark 23. Initial control gain matrix K0 for model-free implementation of PI by merely

following (4.20) and (4.21) is identified through experience as there could be infinitely

many stabilizing policies [22, 35, 57]. Thus, one should experiment by trying different

matrices Q and R in (4.21).

Model-free RL version is presented to show datasets (δ j,κ j) generated from inter-

actions with the environment are exploited to find the optimal policy u*
k . Next, we propose

that iteratively-learned datasets (δ j,κ j) in (4.27) and (4.28) can be decomposed to reduce

the computing burden on the RL. This enhances the RL algorithm’s data efficiency to pro-

vide optimal control solutions for large-scale systems.

4.4 Data-efficient Discrete-Time RL Algorithm

We determine the Koopman eigenfunctions for effective decomposition in the model-

free version presented in Section 4.3.2. This reduces the computational complexity of the

RL algorithm for the nonlinear system (4.1).

4.4.1 Lossless Model Reduction

The lossless model reduction technique finds optimal low-ranking decomposition

for linear systems [97]. In performing decomposition, we find a projection matrix that

transforms a high-dimensional space into a lower one by seeking a balanced realization of

(4.9), in which the system is controllable.

The discrete controllability Gramian Φc = ∑
∞
m=0 AmBB⊤(A⊤)m provides a measure

of the control u(·) propagating the state x(·) in (4.9) [136]. The balanced proper orthogonal
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decomposition (POD) [116] is developed to avoid the computation of Φc. Alternatively,

it uses state data matrices in (4.10) for the empirical controllability Gramian, making bal-

anced POD suitable for high-dimensional systems.

Given the discretized measurement xk ∈ Rn, a lower-dimensional state measurement

ζk ∈ Rr is induced by projecting xk through a projection matrix Pr

ζk ≈ Prxk, (4.32)

where the projection matrix Pr ∈ Rr×n can be computed by the following standard mini-

mization problem [67],

min
Pr∈Rr×n

N−1

∑
j=0

∥∥∥(I−P†
r Pr)xk

∥∥∥2
, r << n. (4.33)

The computation of Koopman modes without the optimal low-ranking reduction is

costly. Approximating the K with eDMD is possible. eDMD identifies spatiotemporal

patterns in measurements that help obtain Koopman eigenfunctions. These eigenfunctions

decompose the data vectors in (4.29) onto a lower-dimensional space, while retaining the

complete dynamical information of the original system. The solution to (4.33) with the

balanced POD modes can be found using eDMD, where P†
r = Û . The matrix Û is specified

by the first r columns of the left-singular matrix in SVD of X2. These columns are POD

modes that are orthonormal [54]. Thus, Û is the unitary matrix, where Û ιÛ = I. First,

SVD reduces Y in (4.15) to rank r,

Y ≈ Ỹ = Ũ S̃Ṽ ι , (4.34)

where Ũ ∈ R(n+m)×r, S̃ ∈ Rr×r, and Ṽ ∈ R(p−1)×r. Note that the diagonal matrix Sk in

(4.15) holds singular values (σi) of Y .
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To ensure that a specific amount of energy from the original data is captured in the

low-ranking approximation in subspace Rr ⊂R(n+m), one can apply a strict threshold µ on

Sk to retain the first singular elements [38]. The percentage energy of each σ is given by

Eσi =
σi

∑
n+m
i=1 σi

. (4.35)

The value of r can be any positive integer between 1 to (n+m) for the matrix Sk, determined

by a strict threshold µ ≥ 0, with the constraint that σi ≥ µ∑
n+m
i=1 σi. This thresholding keeps

r leading σs with high energy and eliminates remaining σs with lower energy, i.e., r+1 to

(n+m). The SVD in (4.34) provides a truncated SVD of (4.15) by eliminating nonessential

singular values in Sk such that S̃ is a square matrix. This enables pseudoinverse of Ỹ to

modify G in (4.16) as

G̃ = X2Ṽ S̃−1Ũ ι = X2Ṽ S̃−1

U ι
1

U ι
2

 , (4.36)

where U1 ∈ Rn×r and U2 ∈ Rm×r. Note that G̃ ∈ Rn×(n+m) has the same dimension as G.

The SVD of X2 is

X2 ≈ X̃2 = Û ŜV̂ ι , (4.37)

where Û ∈ Rn×r, Ŝ ∈ Rr×r, and V̂ ∈ R(p−1)×r.

The dynamic model using matrices in (4.17) provides a high dimensional system,

where n >> 1. The data-efficient model of rank r << n can be formed via projection as

shown in [67] that holds the same form as (4.32), where Pr = Û ι . Then, the reduced-order

system matrices become

Ã = PrAP†
r = Û ιX2Ṽ S̃−1U ι

1Û (4.38a)

B̃ = PrB = Û ιX2Ṽ S̃−1U ι
2 , (4.38b)
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where Ã ∈ Rr×r is Hurwitz and B̃ ∈ Rr×m. The resulting data-driven dynamic model is

X̃2 = G̃Ỹ =

[
Ã B̃

]
Ỹ . (4.39)

The following lemma implies that the optimal control learning for the system in (4.9) with

J in (4.8) is analogous to the learning for r-dimensional dynamic model using ζk.

Lemma 4. [136] The r-dimensional dynamic model, satisfied by system dynamics in (4.9),

and ζk in (4.32), is

ζk+1 = Ãζk + B̃uk. (4.40)

Also, xk ≈ P†
r ζk holds for any uk,xk. The r-dimensional state ζk retains the behavior of

xk ∈ Rn, if Pr satisfies (4.33). Then, the performance index concerning ζk becomes

J̄
(
uk,ζk

)
=

∞

∑
k=0

[
ζ
⊤
k Q̄ζk +u⊤k Ruk

]
, (4.41)

where

Q̄ = (P†
r )
⊤QP†

r ≥ 0 ∈ Rr×r. (4.42)

4.4.2 Extraction of Koopman Eigenfunctions

We use eDMD to find Koopman eigenfunctions of the original system from the

reduced-dimensional dynamic model. It is easy to see from (4.6) and (4.7) that a data-

driven system can be decomposed into the Koopman modes, where Koopman eigenfunc-

tions characterize the temporal nature of respective Koopman modes. Eigendecomposition

of Ã generates eigenvalues λ and eigenvectors v that can examine essential characteristics

of the system [136]. Eigenvalue analysis is vital to fully extract dynamic information from

system measurements in the extended state space.

Remark 24. It is clear from (4.39) that eigenvalues and eigenvectors of Ã coincide with G̃.

Eigenvalues of G̃ and G are analogous. Also, the eigenvalue analysis of Ã is more feasible

than that of Ā, where r << n.
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Lemma 5. See [117]. Given the linear system in (4.14) and (4.39), eigenvalues of the linear

operator K are eigenvalues of Ã, and eigenfunctions of K coincide with eigenvectors of

Ã.

Proof. Consider the eigendecomposition of Ã,

Ãvi = λivi, i = 1, . . . ,n, (4.43)

where λi and vi are eigenvalues and eigenvectors of Ã. Let wi denotes eigenfunctions of the

adjoint Ãι defined on Rn linear space so that ⟨vi,wh⟩= ρih,

Ãιwi = λ̄iwi, i,h = 1, . . . ,n. (4.44)

Given Remark 24, one defines eigenfunctions as θi(xk) = ⟨xk,wi⟩, where

K θi(xk) = θi(Ãxk) = ⟨Ãxk,wi⟩= ⟨xk, Ãιwi⟩

= λi⟨xk,wi⟩= λiθi(xk). (4.45)

Given that Ã has a full set of eigenvectors for any xk, one has

h(xk) =
n

∑
i=1
⟨xk,wi⟩vi =

n

∑
i=1

θi(xk)vi, (4.46)

K h(xk) = K
n

∑
i=1

θi(xk)vi =
n

∑
i=1

K θi(xk)vi

=
n

∑
i=1

λiθi(xk)vi. (4.47)

Thus, the eigenfunctions of K coincide with the eigenvectors of Ã.

Remark 25. Note that the infinite-dimensional Koopman operator K has an infinite num-

ber of eigenvalues since λmi is also an eigenvalue corresponding to the eigenfunction

θmi(xk,uk).
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Given the sequences in (4.10), (4.11), and (4.13) having (p− 1) snapshots sampled

at interval tk, the linear operator G in (4.14) drives the evolution of system forward in time.

It is clear from Lemma 5 and Remark 24 that the eigenvalues of the operator A are also the

eigenvalues of the operator K . Moreover, for observable h(xk) = xk, the eigenvectors of A

coincide with the Koopman modes. Given that X2 in (4.10) and Y in (4.13) are sufficiently

long, the last snapshot xp can be approximated by a linear combination of snapshots up to

yp−1 using (4.14)

X p
2 = GY p−1

1 = Y p−1
1 C+ se⊤p−1, (4.48)

where C is a companion matrix, ep−1 ∈ Rp−1 is (p−1)th unit vector, and s is surplus such

that s ̸= 0 if the linear character is not satisfied [138]. Thus, C satisfying (4.48) is not

unique and one solution will be C = X p
2 (Y

p−1
1 )† if Y p−1

1 has linearly independent columns,

i.e., s = 0. Then, S(C) coincides with S(G) and S(K ).

The columns of θ are approximated eigenvectors of A ∈ Rn×n [125]. Koopman

eigenfunctions θ ∈ Rn×r are

θ = X2Ṽ S̃−1U ι
1Ûv = X2Ṽ S̃−1U ι

1P†
r v. (4.49)

The eDMD constructs Koopman eigenfunctions θ using a finite-rank approximation in

Remark 24. It can be used for data preconditioning in model-free RL. This reduces the

dimensionality of data vectors. The updated vectors are computed from (4.29) and (4.49)

as

ρ̂xx = ρxxz(θ
⊤⊗θ

⊤) ∈ R1×r2
, (4.50a)

ρ̂xu = ρxuz(I⊗θ
⊤) ∈ R1×rm, (4.50b)

ρ̂uu = ρuuz(I⊗ I) ∈ R1×m2
. (4.50c)

In the following section, we propose a model-free RL algorithm for (4.1), that is data-

efficient, via Koopman-preconditioning of data vectors.
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4.4.3 Data-efficient Model-free Discrete-time RL Algorithm

In contrast to the model-free version in Section 4.3.2, Algorithm 7 additionally com-

putes Koopman eigenfunction to transform data vectors to lower dimensions such that dy-

namic information of the original system is conserved. The evaluation and improvement

of policy at each iteration are identical to the model-free version in Section 4.3.2. How-

ever, we are using the lower-dimensional state ζk shown in (4.32), which improves data

efficiency.

The operator κ
j

r in (4.52) is updated from κ j in (4.28) using θ in (4.49). At each

iteration j, collected operators δ
j

r and κ
j

r , from (4.51) and (4.52), give P j+1 in (4.53).

Remark 26. Note that in (4.52), ρ̂xx ∈ R1×r2
, ρ̂xu ∈ R1×rm, and ρ̂uu ∈ R1×m2

. Thus, (4.53)

has Ξr = r2 + m2 + rm unknown parameters, where r << n. The matrix P̄ j+1 can be

uniquely solved with LS in (4.53) while satisfying the full-rank condition of ((κ j
r )
⊤κ

j
r ),

and a minimum of η ≥ Ξr samples are needed at each iteration j.

Given Remark 26, it is clear that Algorithm 7 requires fewer data samples η , i.e.,

Ξr << Ξ, at each iteration j, than the model-free version presented in Section 4.3.2. This

shows the data efficiency of the proposed RL Algorithm 7. Using solutions in (4.53), K̄ j+1

can be found by policy improvement in (4.54) and feedback gain K j+1 computed in (4.55).

Similar to Lemma 3, the convergence of Algorithm 7 is shown as follows.

Theorem 9. Consider a discrete-time system in (4.9), J in (4.8), and a projection that

satisfies (4.33). Assume that the LS solution to policy evaluation in (4.53) has a full rank of

((κ
j

r )
⊤κ

j
r ) and, at a minimum, has η ≥ Ξr samples at each iteration. Then, the following

claims hold.

1. A− BK j is Hurwitz for each j = 0,1, . . . , where K j follows from the solution of

(4.55).

2. lim j→∞ P j = P, lim j→∞ K j = K*, and control u*
k =−K*xk minimizes J.
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Algorithm 7 Data-Efficient Model-Free Discrete-Time RL Algorithm
1: Require: Collected behavioral trajectories (xk,uk) of (4.1).

2: Initialization: Set j = 0 and small threshold e.

3: Koopman:

3.1 Input: Data matrices X1,X2,U and strict threshold µ .

3.2 Augment: Same as step 3.2 in Algorithm 6.

3.3 Compute SVD: (Uk,Sk,Vk)← Y & (U,S,V )← X2.

3.4 Truncation: (Ũ , S̃,Ṽ )← Ỹ & (Û , Ŝ,V̂ )← X̃2.

3.5 Split: U1,U2← Ũ .

3.6 Output: Identify θ as (4.49).

4: Select stabilizing K0 and control input uk =−Kxk + εk, where εk is a probing noise.

5: Datasets Collection: Collect (ρxxz,ρxuz,ρuuz) in (4.29).

6: Datasets truncation: Compute reduced-order data vectors (ρ̂xx, ρ̂xu, ρ̂uu) as (4.50), and

operators (δ j
r ,κ

j
r ) given by

δ
j

r =


ζ⊤k Q̄ζk +ζ⊤k (K̄ j)⊤RK̄ jζk

...

ζ⊤k+η−1Q̄ζk+η−1 +ζ⊤k+η−1(K̄
j)⊤RK̄ jζk+η−1

 , (4.51)

κ
j

r =

[
ρ̂xx ρ̂xu ρ̂uu

]
. (4.52)

7: Policy Evaluation: Compute P̄ j+1 by

((κ j
r )
⊤

κ
j

r )
−1(κ j

r )
⊤

δ
j

r =


vec(P̄ j+1)⊤

vec((PrB)
⊤P̄ j+1PrAP†

r )
⊤

vec((PrB)
⊤P̄ j+1PrB)⊤

 . (4.53)
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8: Policy Improvement: Compute K̄ j+1 by

K̄ j+1 =
(
R+(PrB)⊤P̄ j+1PrB

)−1
(PrB)⊤P̄ j+1(PrA). (4.54)

9: Stop if ∥K̄ j+1− K̄ j∥ ≤ e; Otherwise, set j = j+1, and go to step 2.

10: Return:

K j+1 = PrK̄ j+1. (4.55)

Proof. From Lemma 4, it is seen that the unique stabilizing control policy uk = −K̄ζk

minimizes J̄(uk,ζk) in (4.41) as

J̄∗(ζk) = min
uk

J̄(uk,ζk) =
∞

∑
k=0

[
ζ
⊤
k Q̄ζk +u⊤k Ruk

]
= ζ

⊤
k P̄ζk, (4.56)

where P̄ ∈ Rr×r > 0 is a truncated cost matrix. The matrix P̄ spans analogous eigenvalues

as P, i.e., S(P̄) = S(PrPP†
r ). The (4.56) provides that PrAP†

r −PrBK̄ j for each j = 0,1, . . .

is Hurwitz. Since a Pr satisfies (4.33), then, A−BK j is Hurwitz.

Given Lemma 3, the lossless reduced-dimensional off-policy RL can be obtained,

where K̄ = P†
r K ∈ Rm×r is

K̄* = (R+(PrB)⊤P̄*(PrB))−1(PrB)⊤P̄*(PrA), (4.57)

and P̄ = PrPP†
r > 0 ∈ Rr×r satisfies

P̄* = (PrA)⊤P̄*(PrA)− (PrA)⊤P̄*(PrB)

× (R+(PrB)⊤P̄*(PrB)−1)(PrB)⊤P̄*(PrA)+ Q̄. (4.58)

The LS solution of (4.53) for P̄ j+1 and K̄ j+1 can be found without knowing system dynam-

ics by defining (δ j
r ,κ

j
r ) as in (4.51) and (4.52). Given Remark 23, by considering K̄0 as an
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initial gain matrix, (P̄ j+1, K̄ j+1) is uniquely obtained by LS in (4.53), while satisfying the

full-rank condition of ((κ j
r )
⊤κ

j
r ) , which is derived from data matrices in (4.50).

As shown in Section 4.3.2, off-policy RL becomes computationally intractable as it

requires learning from different behavior policies obtained from datasets generated during

interactions with the environment. To address this challenge, we have combined eDMD for

Koopman approximation and off-policy RL to design an efficient optimal control strategy

for complex nonlinear systems with unknown models.

Remark 27. Note that we use the eDMD method to find the best-fit linear model of an

unknown nonlinear system in (4.1). Provided with the derived linear model, the LQR

control of (4.1) finds the optimal control input u*
k in (4.19). Then, in Lemma 3 and Theorem

9, claim 1) demonstrates stability, while claim 2) establishes the optimality of the RL

algorithm solving the LQR control of (4.1).

Remark 28. According to Section 4.3.2, model-free RL requires n2 +m2 +nm data sam-

ples to obtain a unique solution, whereas Algorithm 7 needs only r2 +m2 + rm samples.

The computational complexity of LS, with η as data samples and Ξ representing unknown

parameters, for η ≥ Ξ, is of the order O(Ξ2η). When applying policy iteration for optimal

control, the model-free version in Section 4.3.2 has a complexity of O
(
(n2+m2+nm)2η

)
,

whereas Algorithm 7 has lower complexity of O
(
(r2 +m2 + rm)2η

)
, given r << n. Thus,

Algorithm 7 has more computational tractability and conserves a significant learning time

when r is small enough.

4.5 Simulation Studies

We evaluate Algorithm 7 using an example of excitation control of a power grid under

a three-phase fault [48]. The grid dynamics can be expressed by (4.1), where xk denotes
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        T1, T2, T3- Transformers with  
                           16.5 KV/230 KV, 
                           18 KV/230 KV, 
                           13.8 KV/230 KV

G1, G2, G3- Synchronous generators 
                     consist of excitation          
                     regulator with PSS

Figure 4.2. IEEE 9-bus network schematic is modified from [7] with three synchronous generators,
with a three-phase fault happening between buses 5 and 7..

states and uk denotes control inputs of each generator. Similar to the example in [48], we

consider the state and control data trajectories as

h(xk) =

[
δ , ∆ω, Vt , Pt , Qt

]⊤
,uk =

[
Pre f , E f

]⊤
, (4.59)

where ∆ω is the generators’ rotor speed deviation in per-unit (pu). Vt ,Pt ,Qt are terminal

voltage, active power, and reactive power in pu, respectively. δ in degrees is the rotor angle,

Pre f is the reference power of turbine-governor in pu, and E f is the excitation field in pu.

Figure 4.2 shows the schematic diagram of the modified IEEE 9-bus system, where

all generators are equipped with an automatic voltage regulator (AVR) to maintain E f , reg-

ulate the terminal voltage Vt at Vre f , and ∆ω-power system stabilizer (PSS) provides extra

damping [1]. The buses are connected through a 100 Km, three-phase π-section transmis-

sion line. All computations are executed on an Intel(R) Xeon(R) W-10855M 2.80 GHz, 32

GB RAM, with MATLAB 2021a. We collect data trajectories (h(xk),uk), by implementing
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Figure 4.3. Data trajectories of generator 1 under three-phase fault..

the system in Figure 4.2 in the Simulink environment, to evaluate the proposed Algorithm

7. Therein, (h(xk),uk) are directly accessible from simulation experiments as a vector of
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observables. Therefore, there is no need to explicitly define the specific form of h(x). The

trajectories are collected by randomly selecting Vre f in the interval [0.9,1] and Pre f = 1,

over 5 spaced points under a three-phase fault between buses 5 and 7.

Figure 4.3, 4.4, and 4.5 display collected data trajectories of generators (G1, G2,

G3). The breaker closes after 18 cycles to clear the fault. As shown in Section 4.2.2,

eDMD operates on collected data of three generators, each having 5 state and 2 control data

trajectories with 5 spaced points over k = {0, . . . ,842}, i.e., X2,X1 ∈R75×842, U ∈R30×842

and Y ∈ R105×842.

Figure 4.6 shows singular values captured by the lossless model reduction. As shown

in Section 4.4.1, strict threshold µ on singular values for a balanced POD via eDMD cap-

tures the first 20 dominant modes. The low-dimensional approximation Ỹ to rank 20 in

(4.34) gives Ũ ∈ R105×20, S̃ ∈ R20×20, and Ṽ ∈ R842×20. Similarly, low-dimensional ap-

proximation X̃2 to rank 20 in (4.37) gives Û ∈ R75×20, Ŝ ∈ R20×20, and V̂ ∈ R842×20. This

provides matrix G̃ ∈ R75×105 as in (4.36) where U1 ∈ R75×20 and U2 ∈ R30×20. Koopman

eigenfunction θ ∈ R75×30 is computed as in (4.49). The eigenvalues of the Koopman op-

erators are shown in Fig. 4.7. Note that the computed Koopman operator approximations

are verified by Fig. 4.7. Dominant eigenvalues are consistent throughout the G, Ā, Ã ma-

trices. This implies that the long-term behavior will be the same for approximations of the

Koopman operators.

One can select a penalizing state weight Q = 0.01× I75 ∈ R75×75 for (4.8). The

resulting lower-dimensional state weight in (4.42) becomes Q̄ ∈ R20×20. In step 3 of

Algorithm 7, consider the probing noise εk = 0.001× rand(1). Compute data vectors

(ρxxz ∈ R1×5625,ρxuz ∈ R1×2250,ρuuz ∈ R1×900) in step 4 of Algorithm 7 as in (4.29). We

use Koopman eigenfunction θ in (4.49) to update (ρxxz,ρxuz,ρuuz) to lower dimensions,

i.e., (ρ̂xx, ρ̂xu, ρ̂uu) in (4.50), to conclude Koopman-preconditioning in step 5 of Algorithm

7.
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Figure 4.4. Data trajectories of generator 2 under the three-phase fault..

Figure 4.9 shows the convergence of performance index J in (4.8) and J̄ in (4.41) for

state matrices of dimensions 75 and 20, respectively. The feedback gain K̄ for the lower
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Figure 4.5. Data trajectories of generator 3 under the three-phase fault..

dimension is computed in (4.54). Figure 4.8 shows the convergence of feedback gain K̄.

Finally, K̄ converges to
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Figure 4.10. Speed deviations of generators under three-phase fault..

K̄∗ =
[

0.0022 −0.0056 −0.0033 −0.0020 0.0071 −0.0216

−0.0065 0.0495 0.0052 0.0027 0.0309 0.0297 −0.0079

−0.0087 −0.0588 −0.0438 0.0839 −0.0629 0.0625 0.0496

]
.

In both cases, a minimum of 50 iterations are required. On the contrary, given Q and R,

the computation takes 15 seconds for r = 20, and for n = 75 results in over-fitting due to
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potentially near-singular rank matrices for LS in step 7 of Algorithm 7. Alternatively, se-

lecting a different Q and R for larger systems, as shown in Remark 23, is difficult. This

results in a longer learning time of three to four minutes for n = 75. These results sup-

port that the low-ranking decomposition significantly reduces learning time and avoids

over-fitting. The model-free RL algorithms in [69, 80, 90] do not address nonlinear multia-

gent systems. However, our approach overcomes this limitation and finds optimal policies,

while maintaining data efficiency and preserving dynamic information for such systems.

Figure 4.10 shows the control performance when a three-phase fault occurs. The improved

damping effects can be seen in Figure 4.10 with the speed deviations of each generator,

where Koopman-based controllers have smoother trajectories with fewer oscillations than

∆ω-PSS.

4.6 Conclusion & Future Work

The integration of Koopman theory with RL for nonlinear optimal control reduces

strenuous system modeling and improves data efficiency. Data-driven Koopman precondi-

tioning transforms nonlinear system models into linear representations. This allows linear

optimal control via an entirely data-driven RL algorithm. Simulation studies on nonlinear

power system dynamics show the effectiveness of the proposed approach in achieving data

efficiency by requiring less data. In future work, incorporating external uncontrolled noise

into the data collection process could be explored to enhance the robustness of the proposed

approach.
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Chapter 5

Efficient Reward Shaping for Multiagent Systems *

*This chapter has been used with permission from all co-authors.
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CHAPTER 5

Efficient Reward Shaping for Multiagent Systems

5.1 Introduction

Large-scale multiagent systems (MASs) are becoming prevalent in telecommu-

nication networks, traffic systems, or electrical grids [105, 120, 122]. Linear quadratic

regulator (LQR) design for such systems is discussed in [21, 140]. Reinforcement learning

(RL) algorithms, such as actor-critic learning [32], Q-learning [56, 91, 100, 145], adaptive

dynamic programming [23, 58], or integral learning [130], can solve the resulting LQR

design. These RL methods optimize reward functions to learn optimal control policies

through interactions with the environment. The reward function guides the learning pro-

cess by measuring the utility of taking a particular action in a given system state, while the

policy determines decision-making strategy based on observed states. RL methods typi-

cally assume known reward functions. However, the manual selection of suitable reward

functions could become challenging for a large-scale MAS.

Reward shaping introduces additional rewards to guide the learning process be-

yond the rewards obtained from the underlying dynamics [44, 103, 114]. Among widely

known reward-shaping methods are inverse optimal control (IOC) [37, 65] and inverse

RL [5, 35, 152]. IOC reshapes the reward function using state and control trajectories

assuming a stable control system. Unlike IOC, inverse RL reshapes the reward function

by observing a demonstrated optimal behavior without the knowledge of system dynamics.

However, the inverse RL for reward-shaping becomes infeasible as the system size grows.

Finding a low-dimensional projection of the large-scale MAS dataset, which maintains its

fundamental dynamic information within an iterative framework, is desirable. Maintaining
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MAS stability while retrieving target performance measures is crucial. One way to gen-

erate a reward function that guarantees stability is by using the IOC based on the system

dynamics and demonstrations. Inverse RL in [86] incorporates the IOC to ensure stability

in adversarial apprentice games.

In inverse RL, the system is excited with exploratory noise to collect an adequate

number of data samples for policy and reward updates [152]. For the LQR problem, these

updates are performed using the least squares method. The estimate is iteratively refined

until convergence to an optimal feedback gain derived from solving the Algebraic Riccati

Equation. A minimum of n(n+1)/2 data samples, where n represents the system’s order,

are needed for a unique solution [58]. This issue significantly affects reward-shaping and

control in large-scale MASs. The studies in [30, 101] investigate RL algorithms for de-

composed optimal control problems, while [59, 118] explore RL for MASs, focusing on

dimension reduction using controllability and observability gramians. However, they do

not specifically address reward-shaping.

We propose accelerated and data-efficient design of inverse RL controllers through

dimensionality reduction by leveraging the balanced proper orthogonal decomposition (POD)

[116]. The LQR controller can be learned by projecting the measured states into a lower-

dimensional space and capturing the dominant modes identified through the POD [76]. This

approach harnesses the lossless dimensionality reduction property, controlling the domi-

nant behavior of the MAS states to achieve the desired mission. The inverse RL algorithm

is then designed by using low-dimensional data, which significantly reduces the compu-

tational complexity involved in the learning process. The dynamic mode decomposition

(DMD) in [111, 125] can reduce the data dimensions and analyzes spatial-temporal data

without relying on the system model. It retains the dynamic information of the original

MAS [25], and imitates target MAS trajectories with less computational burden. DMD

provides balanced POD and identifies dynamic modes used to project data vectors in the
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Figure 5.1. Data-efficient Inverse RL framework for solving the large-scale reward-
shaping problem: 1) The learning MAS utilizes optimal control and IOC updates to infer
the unknown performance function from optimal demonstrations of the target MAS, and 2)
DMD is employed for lossless dimensionality reduction, projecting the necessary datasets
for optimal control and IOC updates to lower dimensions. .

least squares of policy and reward updates onto a lower-dimensional space. We have re-

cently proposed dimensionality reduction to accelerate off-policy RL for linear networked

systems [34]. In this paper, we extend our approach to incorporate reward-shaping for

large-scale MASs. Figure 1 shows the proposed framework of data-efficient inverse RL for

large-scale MASs. This article takes the following steps and makes the following salient

contributions:

1. We formulate a reward-shaping problem with dynamically decoupled linear agents.

Therein, the MAS with LQR control tries to imitate the target MAS’s behavior.

2. We leverage DMD for lossless dimensionality reduction, extract dynamic modes

from state measurements, and build a projection matrix to preserve essential dynam-

ics.

108



3. We develop a scalable model-free inverse RL algorithm to shape an unknown reward

function by solving optimal control and IOC as sub-tasks.

4. The proposed algorithm is analyzed for its stability and convergence. We also quan-

tify the non-uniqueness of state reward weights.

5.2 Preliminaries

5.2.1 Notations and Graph Theory

Notations: Rn denotes the n-dimensional Euclidean space. The n-by-n identity ma-

trix is denoted by In. The Frobenius norm of a vector or a matrix is represented by ∥·∥F ,

while the Euclidean norm is represented by ∥·∥. The complex conjugate transpose of D is

denoted by Dι , and the pseudoinverse of D is represented by D†. ⊗ denotes the Kronecker

product. For y = [y1, y2, . . . , yn]
⊤ ∈Rn, y⊗y ≜ [y2

1, . . . ,y1yn,y2y1, . . . ,y2yn, . . . ,y2
n]
⊤ ∈Rn2

and y⊗̄y ≜ [y2
1, 2y1y2, . . ., 2y1yn, y2

2, 2y2y3, . . ., 2yn−1yn, y2
n]
⊤ ∈Rn(n+1)/2. For a symmetric

matrix W ∈ Rn×n, vem(W )≜ [W11, W12, . . ., W1n, W22, . . ., W2n, . . ., Wnn]
⊤.

Graph Theory: The graph topology G = (V ,E ) for MAS with N = {1, . . . ,N}

vertices, where vi ∈ V . The connectivity weights ei j for the edges E ⊆ V ×V connect

the vertices, and if (v j,vi) ∈ E then ei j = 1; Otherwise, it is set to 0. The set of vertices

that are connected to vertex vi is denoted as Ni ∼= {v j : ei j > 0}, and there is no self-loops

(eii = 0). A directed path in the graph from vertex vi1 to vertex vi j is defined as the series

of edges E that pass through vertices (viz−1,viz) ∈ E for z ∈ (2, . . . , j). The in-degree and

out-degree of vertex i are di
i = ∑

N
j=1 ei j and do

i = ∑
N
j=1 e ji, respectively. The graph topology

is defined as balanced, bi-directional, and undirected when ei j = e ji and di
i = do

i for all

(vi,v j). Graph Laplacian matrix is L = D−A ∈RN×N , where A = [ei j],A = A T is the

adjacency matrix, and D = diag{di} is the degree matrix.
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5.2.2 Large-scale Reward-shaping Problem

This section formulates a reward-shaping problem for large-scale MAS in the context

of discrete time. Consider the MAS with dynamically decoupled linear agents i ∈N ,

xik+1 = Axik +Buik , (5.1)

where xi ∈ Rn denotes the state and ui ∈ Rp denotes the control input of agent i at time

instant k. Each agent has identical system matrices A ∈ Rn×n and B ∈ Rn×p. Assume

(A,B) to be stabilizable. The aggregated dynamics of (5.1) is

x̄k+1 = Āx̄k + B̄ūk, (5.2)

where x̄ = (x⊤1 , . . . ,x
⊤
N )
⊤ ∈ RnN , ū = (u⊤1 , . . . ,u

⊤
N )
⊤ ∈ RpN , Ā = IN ⊗ A ∈ RnN×nN , and

B̄ = IN⊗B ∈ RnN×pN .

Consider target MAS that has dynamically decoupled linear agents i ∈N ,

xiek+1 = Axiek +Buiek , (5.3)

where xie ∈ Rn and uie ∈ Rp denote the state and the control input of the target agent i,

respectively. The system matrices (A,B) are the same as that in (5.1). Define aggregated

vectors x̄e = (x⊤1e
, . . . ,x⊤N )

⊤ ∈ RnN and ūe = (u⊤1e
, . . . ,u⊤N )

⊤ ∈ RpN . The aggregated target

MAS of (5.3) is

x̄ek+1 = Āx̄ek + B̄ūek , (5.4)

where Ā = IN⊗A ∈ RnN×nN and B̄ = IN⊗B ∈ RnN×pN .

Remark 29. The target (5.4) and controlled MAS (5.2) are distinct systems. Respective

agents are not adjacent on the same graph.

Consider each target agent i has Re = R⊤e > 0 ∈ Rp×p, Qe1 = Q⊤e1
≥ 0,∀i, and Qe2 =

Q⊤e2
≥ 0,∀i ̸= j, where Qe1,Qe2 ∈Rn×n are identical local and relative state reward weights
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for each target agent, respectively. The aggregated form of the target performance function

that combines the dynamic characteristic of target agents [21, 34] is

Je
(
ūek , x̄ek

)
=

∞

∑
k=0

[
x̄⊤ek

Q̄ex̄ek + ū⊤ek
R̄eūek

]
, (5.5)

where the matrix Q̄e ≥ 0 is strictly diagonally-dominant, and R̄e > 0 is a block-diagonal

matrix given as

R̄e = IN⊗Re ∈ RpN×pN , (5.6a)

Q̄e = (IN⊗Qe1 +L ⊗Qe2) ∈ RnN×nN . (5.6b)

The optimal ū∗ek
is found by minimizing the aggregated Je(ūek , x̄ek) in (5.5) as

J∗e (x̄ek) = min
ūek

Je(ūek , x̄ek)

= x̄⊤ek
Pex̄ek , Pe = P⊤e ∈ RnN×nN > 0. (5.7)

Assumption 8. The matrices Q̄e and R̄e are unknown to the MAS in (5.2), but can observe

target trajectories of (x̄ek , ū
∗
ek
).

Based on the optimal control theory [79], the optimal control policy ū∗ek
, feedback

control gain Ke, and target cost matrix Pe, are given by

ū*
ek
=−K*

e x̄ek , Ke ∈ RpN×nN , (5.8a)

K*
e = (R̄e + B̄⊤PeB̄)−1B̄⊤PeĀ, (5.8b)

Pe = Ā⊤PeĀ− Ā⊤PeB̄(R̄e + B̄⊤PeB̄)−1B̄⊤PeĀ+ Q̄e. (5.8c)

Define a performance function that couples the dynamic behavior for agents the same

as the target MAS. Each agent i has where R = R⊤ > 0 ∈ Rp×p, Q1 = Q⊤1 ≥ 0,∀i, and

Q2 = Q⊤2 ≥ 0,∀i ̸= j. The aggregated form becomes

J
(
ūk, x̄k

)
=

∞

∑
k=0

[
x̄⊤k Q̄x̄k + ū⊤k R̄ūk

]
, (5.9)
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where matrices Q̄ ≥ 0 and R̄ > 0 are given as (by referring to the generation of Q̄e and R̄e

in (5.6)),

R̄ = IN⊗R ∈ RpN×pN , (5.10a)

Q̄ = (IN⊗Q1 +L ⊗Q2) ∈ RnN×nN . (5.10b)

The matrices Q1,Q2 ∈Rn×n penalize the local and relative state differences between agents,

respectively.

Remark 30. MAS in (5.2) knows its own aggregated state reward weight Q̄ and control

weight R̄. It is worth noting that R̄ can differ from R̄e.

Definition 4. (Equivalent state reward weight) Given aggregated system matrices Ā and

B̄, the weights Q̄e and R̄e in (5.5), and ū∗ek
in (5.8a), one can choose R̄ > 0 arbitrarily and

find Q̄ such that there is P∞ in the MAS that solve ūk = ū∗ek
. Then, Q̄ is called an equivalent

weight to Q̄e.

Large-scale Reward-shaping Problem: Given trajectories of the target MAS (x̄ek , ū
∗
ek
),

MAS in (5.2) aims to learn a state reward weight Q̄ that is equivalent to Q̄e and satisfies

(5.8c), replicating the target’s behavior, i.e., (x̄k, ū∗k) = (x̄ek , ū
∗
ek
).

5.3 Efficient Inverse Reinforcement Learning

This section begins with model-free inverse RL for large-scale reward shaping with

optimal control and IOC learning as sub-tasks. We then develop a computationally tractable

formulation using DMD for the inverse RL.
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5.3.1 Model-free Inverse RL

Find a unique optimal control ū∗k for (5.2) which minimizes the aggregated J(ūk, x̄k)

in (5.9) as

J∗(x̄k) = min
ūk

J(ūk, x̄k)

= x̄⊤k Px̄k, P = P⊤ ∈ RnN×nN > 0. (5.11)

If the cost matrix P and feedback gain K satisfy

K* = (R̄+ B̄⊤PB̄)−1B̄⊤PĀ, (5.12a)

P = Ā⊤PĀ− Ā⊤PB̄(R̄+ B̄⊤PB̄)−1B̄⊤PĀ+ Q̄, (5.12b)

then, the optimal control policy ū∗k can be represented as

ū*
k =−K*x̄k, K ∈ RpN×nN . (5.13)

Given an estimate Q̄ of Q̄e, MAS in (5.2) solves (5.12a) and (5.12b) using RL to derive an

optimal solution (P,K*). The reward Q̄ is revised using IOC given x̄ek , ū
∗
ek

. The MAS seeks

Q̄ satisfying (5.12b) to imitate the target’s behavior, i.e., (x̄k, ū∗k) = (x̄ek , ū
∗
ek
).

Lemma 6. If P satisfies the (5.12b) and

P = (Ā− B̄Ke)
⊤P(Ā− B̄Ke)+K⊤e R̄Ke + Q̄. (5.14)

Then, given (R̄+ B̄⊤PB̄) > 0, K = Ke. Thus, ū∗k in (5.13) corroesponding to P is equal to

ū∗ek
and MAS imitates the target’s behavior i.e., (x̄k, ū∗k) = (x̄ek , ū

∗
ek
).

Proof. From (5.12), we can write

P = (Ā− B̄K)⊤P(Ā− B̄K)+K⊤R̄K + Q̄. (5.15)

Subtract (5.14) from (5.15),

K⊤R̄K−K⊤e R̄Ke +(K⊤e −K⊤)B̄⊤PĀ+ Ā⊤PB̄

× (Ke−K)+K⊤B̄⊤PB̄K−K⊤e B̄⊤PB̄Ke = 0. (5.16)
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From (5.12a), we have B̄⊤PĀ = (R̄+ B̄⊤PB̄)K. Then, rewrite (5.16) as

(K⊤e −K⊤)(R̄+ B̄⊤PB̄)K +K⊤(R̄+ B̄⊤PB̄)K−K⊤e

× (R̄+ B̄⊤PB̄)Ke +K⊤(R̄+ B̄⊤PB̄)(Ke−K) = 0, (5.17)

which infers

(Ke−K)⊤(R̄+ B̄⊤PB̄)(K−Ke) = 0. (5.18)

Given (R̄+ B̄⊤PB̄)> 0, (5.18) implies K = Ke and MAS imitates the target’s behavior, i.e.,

(x̄k, ū∗k) = (x̄ek , ū
∗
ek
).

In the inverse RL algorithm [152], the updates of (Ph+1, Q̄h+1,Kh+1) can be summa-

rized as follows:

Step 1: Update Ph+1 to align K in (5.12) with Ke in (5.8b). Given the target MAS (5.4) and

ū∗ek
in (5.8a), we define the Q-function as

Q =

x̄ek

ūek


⊤Ā⊤Ph+1Ā+ Q̄h Ā⊤Ph+1B̄

B̄⊤Ph+1Ā B̄⊤Ph+1B̄+ R̄


x̄ek

ūek



=

x̄ek

ūek


⊤Lh+1

x̄x̄ Lh+1
x̄ū

Lh+1
ūx̄ Lh+1

ūū


x̄ek

ūek

 . (5.19)

Then, Lh+1 =

Lh+1
x̄x̄ Lh+1

x̄ū

Lh+1
ūx̄ Lh+1

ūū

 in (5.19) can be computed by (x̄ek , ūek), with no need for

(Ā, B̄), given by,

([
x̄⊤ek+1

ū⊤ek+1

]
⊗̄
[

x̄⊤ek+1
ū⊤ek+1

]
−
[

x̄⊤ek
ū⊤ek

]
⊗̄[

x̄⊤ek
ū⊤ek

])
vem(Lh+1) =−[x̄⊤ek

Q̄hx̄ek + ū⊤ek
R̄ūek ], (5.20)
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Define the operators (ρk,φk,ρ,Φ) as

ρk =
([

x̄⊤ek+1
ū⊤ek+1

]
⊗̄
[

x̄⊤ek+1
ū⊤ek+1

]
−
[

x̄⊤ek
ū⊤ek

]
⊗̄
[

x̄⊤ek
ū⊤ek

])⊤
∈ R1× (nN+pN)(nN+pN+1)

2 , (5.21a)

φk =−[x̄⊤ek
Q̄hx̄ek + ū⊤ek

R̄ūek ], (5.21b)

ρ = [ρk,ρk−1, . . . ,ρk−s+1]
⊤, (5.21c)

Φ = [φk,φk−1, . . . ,φk−s+1]
⊤, (5.21d)

where s is data sample number. The operator ρk in (5.21a) can be simplified as

ρk =

(x̄⊤ek+1
⊗̄x̄⊤ek+1

x̄⊤ek+1
⊗̄ū⊤ek+1

ū⊤ek+1
⊗̄x̄⊤ek+1

ū⊤ek+1
⊗̄ū⊤ek+1


−

x̄⊤ek
⊗̄x̄⊤ek

x̄⊤ek
⊗̄ū⊤ek

ū⊤ek
⊗̄x̄⊤ek

ū⊤ek
⊗̄ū⊤ek

)

=

ρxx ∈ R1× (nN)(nN+1)
2 ρxu ∈ R1×npN2

ρux ∈ R1×npN2
ρuu ∈ R1× (pN)(pN+1)

2

 . (5.22)

Arranging the submatrices of this symmetric matrix into the vectors to find its unknowns

results in

ρk =

[
ρxx ρxu ρuu

]
∈ R1× (nN+pN)(nN+pN+1)

2 . (5.23)

Compute Lh+1 by the batch least squares (BLS) method

vem(Lh+1) = (ρ⊤ρ)−1
ρ
⊤

Φ. (5.24)
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Step 2: Update Q̄h+1 of (5.2) in (5.12b) by a model-free solution for IOC with

a learning rate δ ∈ (0,1]. Given the system in (5.2), ūk in (5.13), and Mh+1 = Lh+1−Q̄h 0

0 R̄

, we compute Q̄h+1 using (x̄k, ūk),

(x̄⊤k ⊗̄x̄⊤k )vem(Q̄h+1) = (1−δ )x̄⊤k Q̄hx̄k−δ ū⊤k R̄ūk

+δ

x̄k−1

ūk−1


⊤

Mh+1

x̄k−1

ūk−1



−δ

x̄k

ūk


⊤

Mh+1

x̄k

ūk

 . (5.25)

Define the operators (θk,ωk,Θ,Ω) as

θk = [x̄⊤k ⊗̄x̄⊤k ]
⊤ ∈ R1×((nN+1)nN/2), (5.26a)

ωk = δ

x̄k−1

ūk−1


⊤

Mh+1

x̄k−1

ūk−1

−δ

x̄k

ūk


⊤

Mh+1

x̄k

ūk


+(1−δ )x̄⊤k Q̄hx̄k−δ ū⊤k R̄ūk, (5.26b)

Θ = [θk,θk−1, . . . ,θk−s+1]
⊤, (5.26c)

Ω = [ωk,ωk−1, . . . ,ωk−s+1]
⊤, (5.26d)

and Q̄h+1 computed by BLS, given as

vem(Q̄h+1) = (Θ⊤Θ)−1
Θ
⊤

Ω. (5.27)

Step 3: Update ūk using the updated Ph+1

Kh+1 = (Lh+1
ūū )−1Lh+1

ūx̄ , (5.28)

ūk =−Kh+1x̄k =−
(
(Lh+1

ūū )−1Lh+1
ūx̄
)
x̄k. (5.29)
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Note that (5.24) has dp = ((nN + pN)(nN + pN + 1)/2) unknown parameters. At

each iteration, the BLS solution to (5.24) requires the full rank of (ρ⊤ρ) and, at least,

s ≥ dp data samples. Similarly, (5.27) has dq = (nN(nN + 1)/2) unknown parameters.

BLS solution to (5.27) requires the full rank of (Θ⊤Θ) and, at least, s≥ dq data samples at

every iteration.

Remark 31. BLS needs dp = ((nN + pN)(nN + pN + 1)/2) data samples in (5.24) and

dq = (nN(nN +1)/2) data samples in (5.27) to find a unique solution. Given N >> 1, it is

computationally intractable to find the optimal control and reward functions of large-scale

systems using inverse RL.

Next, we develop a scalable framework to address the computational issues in Re-

mark 31. Our algorithm minimizes the performance function J of large-scale MAS in (5.9)

while reducing the time required to imitate the target’s trajectories.

5.3.2 Lossless Dimensionality Reduction

This section proposes a dimensionality reduction that allows for training the con-

troller using a lower-dimensional state without loss of information. We construct lower

dimensional state vectors ηk and ηek using collected state measurements x̄k ∈ RnN and

x̄ek ∈ RnN . We consider projection matrices D ∈ Rr×nN and De ∈ Rr×nN given by

ηk ≈ Dx̄k, (5.30)

ηek ≈ Dex̄ek . (5.31)

For the model-free formulation, matrix D will be solely solved using x̄k. The matrix D

captures the redundant terms that are not required for the controllability of (5.2). One can

use a balanced truncation to build D for a large-scale MAS, which could otherwise become

impractical as it would require solving high-dimensional Lyapunov equations [135, 136].
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An alternative method is balanced POD [116] which approximates the balanced truncation

[97].

Considering (5.30), the lower dimensional state ηk can be used to retrieve x̄k without

any loss of information. Then, one can train the controller (5.13) using ηk, resulting in

an optimal controller that minimizes J in (5.9) and replicates the target’s behavior, i.e.,

(x̄k, ū∗k) = (x̄ek , ū
∗
ek
). We provide the following Lemma based on [136] to show that ū*

k in

(5.13) is obtained by learning from the reduced state ηk rather than x̄k, and the performance

function of the feedback control system is close to the optimal J∗ in (5.11).

Lemma 7. Given MAS dynamics (5.2) and performance function (5.9), ηk in (5.30) satis-

fies

ηk+1 = DĀD†
ηk +DB̄ūk, (5.32a)

J̄
(
ūk,ηk

)
=

∞

∑
k=0

[
η
⊤
k Q̄rηk + ū⊤k R̄ūk

]
, (5.32b)

where DĀD† ∈ Rr×r is Hurwitz, x̄k ≈ D†ηk holds for any ūk, x̄k, and Q̄r = (D†)⊤Q̄D† ≥

0 ∈ Rr×r.

Remark 32. Provided the Lemma 6 and (5.32), given target MAS dynamics (5.4) and

target performance (5.5), ηek in (5.31) satisfies

ηek+1 = DeĀD†
eηek +DeB̄ūek , (5.33a)

J̄e
(
ūek ,ηek

)
=

∞

∑
k=0

[
η
⊤
ek

Q̄erηek + ū⊤ek
R̄eūek

]
. (5.33b)

Remark 33. Note that only spatial patterns can be identified by the balanced POD and

singular value decomposition (SVD) in x̄k, whereas DMD can identify spatiotemporal pat-

terns [76, 116, 147]. First, DMD is utilized for balanced POD to yield D and De. Second,

DMD makes it possible to derive dynamic modes from the collected (x̄k, x̄ek) data. The

inverse RL data vectors of the large-scale MAS (5.2) are projected onto the r-dimensional
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space using dynamic modes. This process preserves the nN-dimensional dynamic informa-

tion of (5.2).

5.3.3 Extraction of Dynamic Modes and Building D

We next extract dynamic modes and build D satisfying lossless dimensionality reduc-

tion using the collected data trajectories (x̄ek , ūek , x̄k, ūk) instead of information of (Ā, B̄).

To extract dynamic modes using DMD, we develop data-driven models of (5.2) and

target system using the collected state measurements (x̄ek , ūek , x̄k, ūk). Let the matrix pair

(ψ1,ψ2) be formed such that ψ2 is the matrix obtained by shifting ψ1 over time,

ψ1 =


x̄1(1) . . . x̄1(l−1)

... . . . ...

x̄nN(1) . . . x̄nN(l−1)

 ∈ RnN×(l−1),

ψ2 =


x̄1(2) . . . x̄1(l)

... . . . ...

x̄nN(2) . . . x̄nN(l)

 ∈ RnN×(l−1), (5.34)

where l is the number of data points. The data-driven dynamic model is given by

ψ2 = qψ1. (5.35)

The approximate solution for q ∈ RnN×nN can be obtained by minimizing ∥ψ2−qψ1∥F .

This norm is minimized by

q = ψ2ψ
†
1 , (5.36)

where ψ
†
1 is computed by SVD. Here, ψ1 = USV ι , U ∈ RnN×nN , S ∈ RnN×nN , and V ∈

R(l−1)×nN . The values in S correspond to the singular values σ j of ψ1, with j ranging

from 1 to nN. The energy content in each σ j is given by Eσ j =
σ j

∑
nN
j=1 σ j

[42, 125]. We

exclude extreme and less significant singular values from S. The resulting square matrix
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is used to compute ψ
†
1 . A high percentage of energy content can be retained by setting

a threshold rank r and truncating S accordingly while reducing the dimensionality of ψ1.

After reduction, ψ1 can be approximated as Ũ S̃Ṽ ι , where Ũ , S̃, and Ṽ are matrices of

dimensions RnN×r, Rr×r, and R(l−1)×r, respectively. The projection matrix D in (5.30) is

computed from the transpose of Ũ as D† = Ũ [67, 136], gives the projection from RnN to

Rr. The approximation of q in (5.36) given by

q≈ q̃ = ψ2Ṽ S̃−1Ũ ι , (5.37)

and dynamic model (5.35) results in

ψ2 ≈ q̃ψ1, (5.38)

where q̃ ∈ RnN×nN . The lower-dimensional model given by

ηk+1 = Dq̃D†
ηk

= Dψ2Ṽ S̃−1
ηk ≜ q̄ηk, (5.39)

where q̄ ≜ Dψ2Ṽ S̃−1 and q̄ ∈ Rr×r. Provided Lemma 6, one can find ūk that minimizes J

in (5.9) as

J̄∗(x̄k) = min
ūk

J̄(ūk, x̄k) =
∞

∑
k=0

[
η
⊤
k Q̄rηk + ū⊤k Rūk

]
= η

⊤
k Prηk, (5.40)

where Pr ∈ Rr×r > 0 is a reduced cost matrix. Given P > 0 of original MAS, the cost

matrix Pr of the reduced feedback control system spans identical eigenvalues as P, i.e.,

S(Pr) = S(DPD†). Learning the optimal control for the nN-dimensional MAS (5.2) having

J in (5.9) is identical to learning for the resulting feedback control system (5.32a).

Equations (5.37) and (5.39) indicate that the eigenvalues of q̃ and q̄ are similar, as

long as D = Ũ ι , according to [125]. This can be seen by observing that q̃v = ψ2Ṽ S̃−1Ũ ιv =
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Dψ2Ṽ S̃−1v = q̄v = λv, where v is an eigenvector and λ is the corresponding eigenvalue.

Analyzing the eigenvalues of q̄ is more practical than analyzing those of q ≈ q̃ when r

is much smaller than nN. Using the dynamic model presented in equations (5.39), the

dynamic modes of q≈ q̃, denoted by Λ, and the eigenvectors of q̄, denoted by v, are linearly

related

Λ =
1
λ

ψ2Ṽ S̃−1v, Λ ∈ RnN×r. (5.41)

The DMD modes of MAS in (5.2) are the exact eigenvectors of q ≈ q̃ ∈ RnN×nN , and the

columns of Λ represent them. [34,125,136] support this statement, and it can be confirmed

by

q̃Λ = Pq̃Λ = (ŨŨ ι)(ψ2Ṽ S̃−1Ũ ι)(
1
λ

ψ2Ṽ S̃−1v)

= ŨŨ ι
ψ2Ṽ S̃−1v = Ũ q̄v = λΛ. (5.42)

Remark 34. Note that we have provided the process of computing D and Λ. Similarly, we

obtain De and Λe for the target system as shown below: Let (ψe1,ψe2) be formed such that

ψe2 is the matrix obtained by shifting ψe1 over time,

ψe1 =


x̄e1(1) . . . x̄e1(l−1)

... . . . ...

x̄enN (1) . . . x̄enN (l−1)

 ∈ RnN×(l−1),

ψe2 =


x̄e1(2) . . . x̄e1(l)

... . . . ...

x̄enN (2) . . . x̄enN (l)

 ∈ RnN×(l−1), (5.43)

ψe2 = qeψe1, (5.44)

where qe = Ā− B̄Ke ∈ RnN×nN and ψ†
e1

is approximated by SVD

qe = ψe2ψ
†
e1
. (5.45)
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Therein, ψe1 =UeSeV ι
e , Ue ∈ RnN×nN , Se ∈ RnN×nN , and Ve ∈ R(l−1)×nN . After excluding

less significant singular values σe j from Se, ψe1 is approximated as ŨeS̃eṼ ι
e , where Ũe,

S̃e, and Ṽe are matrices of dimensions RnN×r, Rr×r, and R(l−1)×r, respectively. One can

compute De in (5.31), given D†
e = Ũe, and approximate qe as

qe ≈ q̃e = ψe2ṼeS̃−1
e Ũ ι

e , (5.46)

ψe2 ≈ q̃eψe1 , q̃e ∈ RnN×nN . (5.47)

The lower-dimensional target dynamic model is given by

ηek+1 = Deq̃eD†
eηek = Deψe2ṼeS̃−1

e ηek ≜ q̄eηek , (5.48)

where q̄e ≜ Deψe2ṼeS̃−1
e ∈Rr×r. The target dynamic modes of qe ≈ q̃e (denoted by Λe) and

the eigenvectors of q̄e (denoted by ve) are linearly related through

Λe =
1
λe

ψe2ṼeS̃−1
e ve, Λe ∈ RnN×r. (5.49)

5.3.4 Data-efficient Model-free Inverse RL

We can now present our proposed inverse RL scheme by drawing from the premise of

constructing the (D,De) for truncating (x̄k, x̄ek) to (ηk,ηek) and extracting dynamic modes

(Λ,Λe) from the collected data trajectories, as discussed in Section (5.3.2, 5.3.3). The

proposed inverse RL scheme consists of four stages: 1. Data collection, 2. Build (D,Λ)

& (De,Λe), 3. Preconditioning of datasets, and 4. Updates of cost matrix, feedback gain,

and state reward weight. In the data collection stage, state measurements x̄k and x̄ek are

collected as a result of exciting the system (5.2) and (5.4) with exploration noise ūk and

ūek , respectively. Given these measurements, one can build (D,Λ) & (De,Λe) as shown in

Section 5.3.3. In the preconditioning stage, we first define Lh+1
r by replacing x̄ek in (5.21)

with ηek to update Pr and Kr. Second, we define Qh+1
r by replacing x̄k in (5.26) with ηk
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to update Q̄r. The third and fourth stages update the cost matrix Pr, feedback gain Kr, and

state reward weight Q̄r for the lower-dimensional models. The updated datasets are

ρrk =


ρxx(Λe⊗̄Λe) ∈ R1×(r(r+1)/2)

ρxu(IpN⊗Λe) ∈ R1×rpN

ρuu ∈ R1×(pN(pN+1)/2)


⊤

, (5.50a)

θrk = θk(Λ⊗̄Λ), (5.50b)

where ρrk ∈ R1× (r+pN)(r+pN+1)
2 and θrk ∈ R1× r(r+1)

2 . The following theorem shows that given

(5.32) and (5.33), we can define a lower-dimensional Q-function and find lower dimen-

sional feedback gain and reward weight by BLS.

Theorem 10. Given the lower-dimensional dynamic model of MAS in (5.32), and of target

system in (5.33), we can find the lower dimensional feedback gain Kh+1
r and reward weight

Q̄h
r

vem(Lh+1
r ) = (ρ⊤r ρr)

−1
ρ
⊤
r Φr, (5.51a)

Kh+1
r = (Lh+1

ūū )−1Lh+1
ūη , (5.51b)

vem(Q̄h+1
r ) = (Θ⊤r Θr)

−1
Θ
⊤
r Ωr. (5.51c)

Proof. Given the lower-dimensional dynamic model of MAS in (5.32) with ηk, as well as

of the target system in (5.33) with ηek , we can define a lower dimensional Q-function as

Qr(ηek , ūek ,P
h+1
r ) =

ηek

ūek


⊤

Lh+1
r

ηek

ūek

 , (5.52)

where the matrix Lh+1
r for Ph+1

r is

Lh+1
r =

Lh+1
ηη Lh+1

η ū

Lh+1
ūη Lh+1

ūū

 , (5.53)
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with Lh+1
ηη = (DĀD†)⊤Ph+1

r (DĀD†)+ Q̄h
r , Lh+1

η ū = (DĀD†)⊤Ph+1
r DB̄, Lh+1

ūη = (Lh+1
η ū )⊤, and

Lh+1
ūū = (DB̄)⊤Ph+1

r (DB̄)+ R̄. A reduced-dimensional Kh+1
r is

Kh+1
r = (Lh+1

ūū )−1Lh+1
ūη . (5.54)

One can compute Lh+1
r using (ηek , ūek) in (5.53), such that there is no need for (Ā, B̄), given

by

([
η⊤ek+1

ū⊤ek+1

]
⊗̄
[

η⊤ek+1
ū⊤ek+1

]
−
[

η⊤ek
ū⊤ek

]
⊗̄
[

η⊤ek
ū⊤ek

])
vem(Lh+1

r ) =−[η⊤ek
Q̄h

r ηek + ū⊤ek
R̄ūek ]. (5.55)

Define the operators (ρrk,φrk,ρr,Φr) as

ρrk =
([

η⊤ek+1
ū⊤ek+1

]
⊗̄
[

η⊤ek+1
ū⊤ek+1

]
−
[

η⊤ek
ū⊤ek

]
⊗̄
[

η⊤ek
ū⊤ek

])⊤
∈ R1×((r+pN)(r+pN+1)/2), (5.56a)

φrk =−(η⊤ek
Q̄h

r ηek + ū⊤ek
R̄ūek), (5.56b)

ρr = [ρrk,ρrk−1, . . . ,ρrk−s+1]
⊤, (5.56c)

Φr = [φrk,φrk−1, . . . ,φrk−s+1]
⊤, (5.56d)

where s is the data sample and Lh+1
r is computed by BLS as

vem(Lh+1
r ) = (ρ⊤r ρr)

−1
ρ
⊤
r Φr. (5.57)
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Note that (5.51a) has dpr =((r+ pN)(r+ pN+1)/2) unknown parameters. Solving (5.51a)

requires a full rank of (ρ⊤r ρr) and needs s ≥ dpr data samples at each iteration. Similarly,

compute Q̄h+1
r using (ηk, ūk) by

(η⊤k ⊗̄η
⊤
k )vem(Q̄h+1

r ) = (1−δ )η⊤k Q̄h
r ηk−δ ū⊤k R̄ūk

+δ

ηk−1

ūk−1


⊤

Mh+1
r

ηk−1

ūk−1



−δ

ηk

ūk


⊤

Mh+1
r

ηk

ūk

 . (5.58)

Define the operators (θrk,ωrk,Θr,Ωr) as

θrk = [η⊤k ⊗̄η
⊤
k ]⊤ ∈ R1×(r(r+1)/2), (5.59a)

ωrk = δ

ηk−1

ūk−1


⊤

Mh+1
r

ηk−1

ūk−1

−δ

ηk

ūk


⊤

Mh+1
r

ηk

ūk


+(1−δ )η⊤k Q̄h

r x̄k−δ ū⊤k R̄ūk, (5.59b)

Θr = [θrk,θrk−1, . . . ,θrk−s+1]
⊤, (5.59c)

Ωr = [ωrk,ωrk−1, . . . ,ωrk−s+1]
⊤, (5.59d)

where Mh+1
r = Lh+1

r −

Q̄h
r 0

0 R̄

 and Q̄h+1
r are

vem(Q̄h+1
r ) = (Θ⊤r Θr)

−1
Θ
⊤
r Ωr. (5.60)

Note that (5.51c) has dqr = (r(r+ 1)/2) unknown parameters. Solving (5.51c) requires a

full rank of (Θ⊤r Θr) and needs s≥ dqr data samples at each iteration.

Preconditioning in (5.50a) implies needing dpr = ((r+ pN)(r+ pN+1)/2) unknown

parameters in (5.51a) and dqr = (r(r + 1)/2) unknown parameters in (5.51c). The BLS
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solution to (5.51a) requires, at least, s≥ dpr data samples for a full rank of (ρ⊤r ρr) at each

iteration, and the BLS solution to (5.51c) requires, at least, s ≥ dqr data samples for a full

rank of (Θ⊤r Θr) at each iteration.

We now analyze Algorithm 8 to investigate properties such as convergence, stabil-

ity, and the non-uniqueness of the learned reward weights compared to the target reward

weights.

Theorem 11. Convergence analysis of Algorithm 8. Following Assumption 1, Lemma 6,

and Theorem 10, Algorithm 8 solves the large-scale reward-shaping game problem and

converges to (P∞
r , Q̄∞

r ,K
∞
r ) which, in turn, converges to the solution (P∞, Q̄∞,K∞).

Proof. Given (5.25) and (5.15), we have

Q̄h+1− (1−δ )Q̄h−δ (Ph+1− Ā⊤Ph+1Ā

+ Ā⊤Ph+1B̄(R̄+ B̄⊤Ph+1B̄)−1B̄⊤Ph+1Ā) = 0. (5.63)

Then, we can write

Q̄h+1 = Q̄h +δ (Ke−Kh+1)⊤R̄(Ke−Kh+1). (5.64)

Let

∇
h+1 = δ (Ke−Kh+1)⊤R̄(Ke−Kh+1). (5.65)

As R̄ > 0 and selecting a suitable scalar δ ∈ (0,1], it follows that ∇h+1 ≥ 0. Then, (5.64)

shows that Q̄h+1 ≥ Q̄h. It should be noted that the equality holds if and only if Ke = Kh+1.

Likewise, if Q̄0 ≥ 0, we have Q̄1 ≥ Q̄0 and Q̄h+1 ≥ Q̄h ≥ ·· · ≥ Q̄1 ≥ 0, implying Q̄h is

monotonically increasing over the iteration index h. Equation (5.64) becomes

Q̄h+1 = ∇
h+1 +∇

h + · · ·+∇
1 + Q̄0. (5.66)

Given (5.8), it is known that the target MAS feedback gain K*
e is optimal with respect

to the Q̄e and R̄e. In practice, it is also known that K*
e is optimal with infinitely many Q̄≥ 0
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Algorithm 8 Data-efficient Model-free Scalable Inverse Reinforcement Learning Algo-

rithm
1 Start: Given l, set h = 0, and select a small threshold e. For MAS in (5.2), select initial

Q̄0
r ≥ 0 and R̄r > 0.

2 Data collection: For h = 0,1,2, . . . , l−1, collect target MAS data trajectories (x̄ek , ūek)

and (x̄k, ūk).

3 Build (D,Λ) & (De,Λe):

• Take data matrices (ψ1,ψ2) and (ψe1,ψe2) as inputs.

• Augment: ψ2 = qψ1 and ψe2 = qψe1 .

• Compute SVD: (U,S,V )← ψ1,(Ue,Se,Ve)← ψe1 .

• Truncate: (Ũ , S̃,Ṽ )← ψ1,(Ũe, S̃e,Ṽe)← ψe1 .

• Output: Identify (D,Λ) and (De,Λe).

4 Preconditioning of datasets: Compute (ρrk,φrk,ρr,Φr) and (θrk,ωrk,Θr,Ωr) given in

(5.50a), (5.56), and (5.59).

5 Update cost matrix and feedback gain: Compute Lh+1
r using (5.51a) and update Kh+1

r

as in (5.51b).

6 Update state reward weight : Compute Qh+1
r using (5.51c).

7 Stop if ∥Kh+1
r −Kh

r ∥ ≤ e. Otherwise, set h← h+1 and go to Step 4.

8 Retrieve:

Kh+1 = DKh+1
r , (5.61)

Q̄h+1 = D†Q̄h+1
r D. (5.62)
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and R̄ > 0, which are not unique to respective Q̄e and R̄e. As the h increases, it is possible

for Q̄h to increase and approach a neighboring value of at least one Q̄e. By varying the value

of δ ∈ (0,1] to adjust the increase of Q̄h+1, it is possible to make the increase arbitrarily

small, such that Q̄h+1 approximates Q̄e more closely in terms of small threshold β over

h. As a result, Kh+1 approaches the Ke with the small threshold b selected, such that

∥Kh+1−Ke∥ ≤ b. Then,

∥Q̄h+1∥= ∥∇h + · · ·+∇
1∥ ≥ ∥δhb2R̄∥. (5.67)

Given (5.67), we have ∥Q̄h+1∥ ≥ δhb2λmin(R̄), signifying the limited steps

h≤ ceil

(
∥Q̄e∥

δb2λmin(R̄)

)
≡ ht . (5.68)

This shows that the convergence. Then, updating (5.64), which is equivalent to (5.63), will

provide an estimate of Q̄h+1 that is approximately equal to Q̄e. As h→ ∞, Ph+1 and Kh+1

are approximately equal to Ph and Kh, respectively. For the converged solutions, we have

Q̄∞−P∞ + Ā⊤P∞Ā− Ā⊤P∞B̄

× (R̄+ B̄⊤P∞B̄)−1B̄⊤P∞Ā = 0, (5.69a)

K∞ = (R̄+ B̄⊤P∞B̄)−1B̄⊤P∞Ā = K*
e . (5.69b)

Given (5.20), we can writex̄ek

ūek


⊤ Ā B̄

−KeĀ −KeB̄


⊤

Lh+1

 Ā B̄

−KeĀ −KeB̄


x̄ek

ūek



−

x̄ek

ūek


⊤

Lh+1

x̄ek

ūek

=−[x̄⊤ek
Q̄hx̄ek + ū⊤ek

R̄ūek ]. (5.70)
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One can conclude that iterating on (Lh+1,Mh+1) is similar to iterating on (Ph+1, Q̄h+1)

Ph+1 =

 I

−Kh+1
e


⊤

Lh+1

 I

−Kh+1
e


= Q̄h +Kh+1

e
⊤

R̄Kh+1
e +(Ā− B̄Kh+1

e )⊤

×Ph+1(Ā− B̄Kh+1
e ), (5.71a)

x̄⊤k Q̄h+1x̄k = (1−δ )x̄⊤k Q̄hx̄k−δ ū⊤k R̄ūk

+δ

x̄k−1

ūk−1


⊤

Mh+1

x̄k−1

ūk−1



−δ

x̄k

ūk


⊤

Mh+1

x̄k

ūk

 . (5.71b)

Since (5.71a) implies (5.14), Kh+1 in (5.29) is equivalent to (5.12a) over iteration h. Sim-

ilarly, equation (5.71b) with Mh+1 is equivalent to (5.63). By employing BLS in (5.24)

and (5.27), the unique solution for Lh+1, Kh+1 and Q̄h+1 are obtained while the full rank

condition is met.

Based on Lemma 6 and Remark 32, it can be concluded that (ηk,ηek) satisfies (5.32)

and (5.33). Specifically, x̄k ≈ D†ηk holds ∀ūk, x̄k and x̄ek ≈ D†
eηek holds ∀ūek , x̄ek , with the

Hurwitz DĀD† and DeĀD†
e , respectively. Then, the control policy ūk =−Kh+1

r ηk stabilizes

system (5.32a) at every iteration h, where Kh+1 = DKr
h+1. Therefore, (DĀD†−DB̄Kr)

is Hurwitz. With Remark 34, if (D,De) and (Λ,Λe) are found, then the scalable model-

free RL can be achieved, where Kr = D†K ∈ RpN×r and Pr = DPD† > 0 ∈ Rr×r satisfy

(5.54) and (5.53), respectively. Considering Kr be the initial stabilizing gain, (Ph+1
r ,Kh+1

r )

is uniquely obtained by BLS in (5.51a). Qh+1
r is uniquely obtained by BLS in (5.51c)

while satisfying the full-rank condition. As shown in Lemma 6 that Kh+1 = DKh+1
r and

Q̄h+1 = D†Q̄h+1
r D, Algorithm 8 converges to (P∞, Q̄∞,K∞) as h→ ∞.
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Theorem 12. Non-uniqueness analysis. Follow Theorem 11. If there exist Q̄µ =D†Q̄h+1
µr

D∈

RnN×nN , Pµ = D†Ph+1
µr

D ∈ RnN×nN , and R̄µ = R̄− R̄e that satisfy

0 = B̄⊤Pµ Ā− (R̄µ + B̄⊤Pµ B̄)Ke, (5.72)

0 = Q̄µ −Pµ + Ā⊤Pµ Ā− Ā⊤Pµ B̄Ke, (5.73)

then, we can show that any Q̄∞ = Q̄e + Q̄µ and any P∞ = Pe +Pµ assure (5.69), where

(Pe, Q̄e,Ke) satisfy (5.8). Any converged solution from Algorithm 1 lies within the set of all

these solutions, implying Q̄ = D†Q̄rD is non-unique.

Proof. Given Pe in (5.8c), Ke in (5.8b), and by substitution Q̄e = D†Q̄∞
r D− Q̄µ and Pe =

D†P∞
r D−Pµ , we can write

0 = Ā⊤(P∞−Pµ)Ā− Ā⊤(P∞−Pµ)B̄

× (R̄e + B̄⊤(P∞−Pµ)B̄)−1B̄⊤(P∞−Pµ)Ā

+(Q̄∞− Q̄µ)− (P∞−Pµ)

= Ā⊤P∞Ā− Ā⊤P∞B̄(R̄e + B̄⊤PeB̄)−1B̄⊤PeĀ− Q̄µ

−Pµ − Ā⊤Pµ Ā+ Ā⊤Pµ B̄Ke + Q̄∞−P∞. (5.74)

From (5.73), we can write (5.74) as

0 = Ā⊤P∞Ā+ Ā⊤P∞B̄Ke + Q̄∞−P∞. (5.75)

One can write (5.72) as

B̄⊤Pµ Ā+ B̄⊤PeĀ = (R̄µ + R̄e + B̄⊤(Pµ +Pe)B̄)Ke, (5.76)

then substitution of R̄µ = R̄− R̄e and Pe = P∞−Pµ gives

0 = B̄⊤P∞Ā− (R̄+ B̄⊤P∞B̄)Ke

= Ke− (R̄+ B̄⊤P∞B̄)−1B̄⊤P∞Ā. (5.77)

130



Given Kh+1 = DKh+1
r and Q̄h+1 = D†Q̄h+1

r D, the solutions obtained by Algorithm 8 in

(5.69b) can be inferred from (5.77).

The converged solutions obtained through Algorithm 8 will be equal to Q̄e and Pe if

and only if (5.72) and (5.73) achieve a unique solution, which is characterized by Q̄µ = 0,

R̄µ = 0, and Pµ = 0. However, if Q̄µ ̸= 0, R̄µ ̸= 0, and Pµ ̸= 0, then obtained Q̄∞, P∞, and

R̄∞ will differ from Q̄e, Pe, and R̄e, while still producing the same optimal gain K∞ = Ke.

This implies that the reward weights leading to the same optimal control gain might not be

unique.

Theorem 13. Stability analysis. Given Lemma 6 and Theorems 10, 11, for each iteration

index h = 0,1, . . . , initiating with Q̄0
r ≥ 0 and R̄r > 0, one can show Ph+1 = (Ph+1)⊤ > 0

such that

Ph+1− Ā⊤Ph+1Ā+ Ā⊤Ph+1B̄

× (R̄+ B̄⊤Ph+1B̄)−1B̄⊤Ph+1Ā≥ 0. (5.78)

Furthermore, with Kh+1
r in (5.51b), the control input

ūk =−Kh+1x̄k (5.79)

stabilizes MAS in (5.2) and minimizes J(ūk, x̄k) in (5.9).

Proof. Given (5.64), for each iteration index h = 0,1, . . . , Q̄h+1 ≥ 0. After selecting a

suitable scalar δ ∈ (0,1], we have Q̄h+1− (1− δ )Q̄h ≥ 0. If Ph+1 satisfies (5.14) with

Q̄h ≥ 0, then from (5.63), Ph+1 = (Ph+1)⊤ > 0. As shown in Lemma 7, Q̄r = (D†)⊤Q̄D† ≥

0. Then, we have condition D†Q̄h+1
r D− (1− δ )D†Q̄h+1

r D ≥ 0. This ensures that Ph+1
r in

(5.53) satisfies with Q̄h
r ≥ 0. Theorem 10 implies that Kr = D†K and Pr = DPD† > 0 satisfy

(5.53) and (5.54). Also, based on (5.58), Q̄h
r ≥ 0 and Ph+1

r = (Ph+1
r )⊤ > 0, one can see that

(5.78) holds.

131



Consider J in (5.9), where Kh+1 and Q̄h+1 are updated by (5.12a) and (5.63), respec-

tively. Then, we have

J(x̄k+1)
h+1− J(x̄k)

h+1

= x̄⊤k+1Ph+1x̄k+1− x̄⊤k Ph+1x̄k

= x̄⊤k ((Ā− B̄Kh+1)⊤Ph+1(Ā− B̄Kh+1)−Ph+1)x̄k

= x̄⊤k

(
(1−δ )

δ
Q̄h− Q̄h+1

δ
−Kh+1⊤R̄Kh+1

)
x̄k. (5.80)

Provided Q̄h+1− (1−δ )Q̄h ≥ 0 and R̄ > 0, we have

J(x̄k+1)
h+1− J(x̄k)

h+1 < 0. (5.81)

As shown in Lemma 7, ū*
k in (5.13) is learned using the ηk instead of x̄k, and J̄ in (5.32b)

is close to the optimal J in (5.9). Thus, control input ūk stabilizes MAS in (5.2). To show

optimality, consider

∞

∑
w=k

[
J(x̄w+1)

h+1− J(x̄w)
h+1]

=
∞

∑
w=k

x̄⊤w ((Ā− B̄Kh+1)⊤Ph+1(Ā− B̄Kh+1)−Ph+1)x̄w

=
∞

∑
w=k

x̄⊤w (Ā
⊤Ph+1Ā−Ph+1)x̄w + ū⊤w B̄⊤Ph+1Āx̄w

+ x̄⊤w Ā⊤Ph+1B̄ūw + ū⊤w B̄⊤Ph+1B̄ūw

= x̄⊤∞Ph+1x̄∞− x̄⊤k Ph+1x̄k. (5.82)

Since x̄∞ = 0, and using (5.63), we have

∞

∑
w=k

[x̄⊤w (Ā
⊤Ph+1B̄(R̄+ B̄⊤Ph+1B̄)−1B̄⊤Ph+1Ā

+

(
(1−δ )

δ
Q̄h− Q̄h+1

δ

)
)x̄w + ū⊤w B̄⊤Ph+1Āx̄w + x̄⊤w

× Ā⊤Ph+1B̄ūw + ū⊤w B̄⊤Ph+1B̄ūw]+ x̄⊤k Ph+1x̄k = 0. (5.83)
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The performance function J(x̄k)
h+1 ≈ J̄(η̄k)

h+1 obtains its minimum provided Q̄h+1
r −(1−

δ )Q̄h
r ≥ 0, δ ∈ (0,1], R̄ > 0, and ūk =−Kh+1x̄k, where Kh+1

r is computed by (5.51b).

5.3.5 Scalable Performance of Algorithm 8

We demonstrate that Algorithm 8 is computationally manageable. Given Remark 31,

optimal control learning requires, at least, s≥ ((nN + pN)(nN + pN +1)/2) data samples

at each iteration to find a unique solution to (5.24) using BLS. In contrast, Algorithm 8

requires, at least, s≥ ((r+ pN)(r+ pN+1)/2) data samples at each iteration. Considering

s as data samples and dp as unknown parameters, the computational cost of BLS for s≥ dp

is of the order O(d2
ps) [110]. When finding an optimal control for large N, (5.24) has higher

complexity of O
(
((nN + pN)(nN + pN +1)/2)2s

)
. This is in contrast to Algorithm 8 that

has O
(
((r+ pN)(r+ pN +1)/2)2s

)
, where r << (nN).

Similarly, IOC learning requires, at least, s ≥ (nN(nN + 1)/2) data samples to find

a unique solution to (5.27) using BLS. Conversely, Algorithm 8 requires, at least, s ≥

(r(r+1)/2) data samples at each iteration. When finding a reward function using IOC for

large N, IOC learning by (5.27) has a higher computational cost, of the order O
(
((nN(nN+

1)/2))2s
)
, unlike Algorithm 8 with O

(
(r(r+1)/2)2s

)
.

Thus, Algorithm 8 is data-efficient as r is much smaller than nN. Comparative sim-

ulation studies, at the end of Section IV, will support this assertion.

5.4 Simulation Results

This section validates the scalability of Algorithm 8 with a large-scale MAS.
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Figure 5.2. Large-scale consensus network..

We consider the interconnected MASs with their connection shown in Fig. 5.2. Each

agent operates independently in terms of dynamics but shares a common performance func-

tion. The system matrices of each agent are adopted from [156] as

A =


0.9064 0.0816 −0.0005

0.0743 0.9012 −0.0007

0 0 0.1326

 ,B =


−0.0015

−0.0096

0.8673

 . (5.84)

We consider N = 10 in (5.2) and (5.9), where x̄ = (xT
1 , . . . ,x

T
10)

T ∈ R30, xi ∈ R3 is the state

of each agent i, Ā = I10⊗A ∈ R30×30, and B̄ = I10⊗B ∈ R30×10. The performance func-

tion (5.9) captures the mutual interaction between the agents and quantifies the network’s

performance. To construct (5.9), we initialize the matrices Q̄ = I10⊗Q1 +L ⊗Q2 and

R̄ = I10⊗R, where L ∈ R10×10, Q1 = 3× I3, Q2 = 0.5× I3, and R = 1.

To provide a general analysis, we consider R ̸= Re and R̄ ̸= R̄e. We select Q̄e = I10⊗

Qe1 +L ⊗Qe2 and R̄e = I10⊗R in (5.5), where L ∈ R10×10, Qe1 = 3× I3, Qe2 = 0.5× I3,

and Re = 2. We gather the state observations by applying control input ūk in (5.13) and

collect the state observations x̄k for k ranging from 0 to 1800. Moreover, we select the
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Figure 5.3. Dynamic modes and SVD matrices of the consensus network with ten agents..
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Figure 5.4. Energy content of each σ j, i.e., Eσ j =
σ j

∑
nN
j=1 σ j

. .

random probing noise rand(10,1), learning rate δ = 1, and the small threshold value of

e = 0.001.

Figure 5.3 depicts all dynamic modes λ̄ ∈ R30×30 and SVD matrices U ∈ R30×30,

S ∈ R30×30, and V ∈ R1800×30 for the original MAS (5.2). Figure 5.4 shows that it is
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Figure 5.5. Dominant modes of the consensus network with ten agents..

lossless to capture the information by using the first 3 dominant singular. Figure 5.5 shows

the dominant dynamic modes λ ∈ R30×3 and SVD matrices Ũ ∈ R30×3, S̃ ∈ R3×3, and

Ṽ ∈ R1800×3 of the low-dimensional system.

The lower dimensional feedback gain Kh+1
r and reward weight Q̄h

r are computed by

(5.51b) and (5.51c) in Algorithm 8. Figure 5.6 demonstrates the convergence of Kr, Q̄r,

and Lr. Figure 5.7 depicts the differences between the learned weights Kr, Q̄r, Lr and the

respective target’s ones Ker , Q̄er , Ler . The converged solutions K∞ and Q̄∞ are obtained by

using (5.61) and (5.62). Figure 5.7 illustrates that the converged values of Q̄r and Kr closes

to the target value Q̄er and Ker exhibit a satisfactory reward-shaping. Applying the K∞, the

MAS in Figure 5.2 finds a performance function comparable to the target MASs.

Table 5.1 compares the computational time by inverse RL with and without DMD

preconditioning. By comparing, Algorithm 8 with DMD requires fewer data samples for
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Figure 5.6. Convergence of Lh
r , Q̄h

r , and Kh
r ..

each iteration and shorter computational time for reward-shaping. The computations are

performed in MATLAB 2021a with an Intel(R) Xeon(R) W-10855M CPU operating at

2.80 GHz with 32 GB RAM.

5.5 Conclusion

This paper proposes a data-efficient model-free inverse RL approach for reward shap-

ing in large-scale MASs. Our approach employs DMD for lossless dimensionality reduc-

tion and enhances the scalability of the inverse RL. This reduction is achieved entirely in a

model-free manner using state measurements. The convergence and stability of the large-

scale MAS in inverse RL are guaranteed. Simulation studies demonstrate the effectiveness

of the method.
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Table 5.1. Computational time for reward-shaping using our proposed Algorithm 8

Spatio-
temporal
dimensions
of state

Dimension of
operators

Computational
time
(Seconds)

Without Pre-
conditioning

R30×1800 ρk ∈ R1×820

θk ∈ R1×465 545.347

With Precon-
ditioning

R3×1800 ρrk ∈ R1×91

θrk ∈ R1×6 1.07
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CHAPTER 6

Future Work

We foresee several potential research avenues that could enhance and build upon

our current work.

1. Developing an output feedback (OPFB) controller when the system matrices are un-

known, and only have access to output and input data can be challenging. This

problem falls under the domain of system identification and control, and it typically

involves designing a controller that can adapt to unknown system dynamics based on

observed output data. The main objective of this work will be to show the integration

of DMD within RL to offer a computationally manageable OPFB control solution

suitable for extensive networks. The key contributions of this paper will encompass:

• Introducing an off-policy RL controller tailored for large-scale systems, utiliz-

ing only output measurements to derive optimal control policies.

• Illustrating the limitations in scalability and efficiency associated with the model-

free RL approach for OPFB control within network systems.

• Developing a data-efficient RL-based OPFB controller, which will leverage off-

policy RL and DMD, ensuring scalability, bias-free solutions, and eliminating

the necessity for system state measurements during the learning process.

• Providing rigorous theoretical proofs and demonstrating the algorithm’s effec-

tiveness through extensive numerical analyses.

2. In future expansions, there’s potential to adapt the tools proposed in Chapter 2 for co-

operative control among multiple power microgrids. The synchronization of islanded

multi-microgrids’ states before reconnection is a critical aspect. The ”learner” micro-
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grids, utilizing demonstrated trajectories from the ”expert” microgrids, can employ

inverse RL to mirror the unknown cost functions. This approach aims to synchronize

learner states with the common values established by the expert microgrids. Possible

expansions could involve heterogeneous nonlinear multi-agent systems or variations

in graph topologies between expert and learner MAS.

3. A potential direction ahead could explore DMD-based RL for high-dimensional sys-

tems featuring heterogeneous subsystems, and extended LQR formulations.

4. For future work, investigating the inclusion of external uncontrolled noise within the

data collection process could be a prospective avenue to bolster the robustness of the

proposed approach in Chapter 4.
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[21] Francesco Borrelli and TamÁs Keviczky. Distributed LQR design for identical dy-

namically decoupled systems. IEEE Trans. Autom. Control, 53(8):1901–1912, 2008.

[22] S.J. Bradtke, B.E. Ydstie, and A.G. Barto. Adaptive linear quadratic control using

policy iteration. Proc. of Amer. Control Conf., 3:3475–3479, 1994.

[23] Steven J Bradtke, B Erik Ydstie, and Andrew G Barto. Adaptive linear quadratic

control using policy iteration. Amer. Control Conf., 3:3475–3479, 1994.

[24] Steven L Brunton and J Nathan Kutz. Data-driven science and engineering: Ma-

chine learning, dynamical systems, and control. Cambridge University Press, 2022.
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