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ABSTRACT

RESOURCE MANAGEMENT AND OPTIMIZATION OF INTERACTIVE

MICROSERVICE AND MPI-BASED ENSEMBLE APPLICATIONS IN THE

CLOUD

MD RAJIB HOSSEN, Ph.D.

The University of Texas at Arlington, 2024

Supervising Professor: Mohammad A. Islam

As user-interactive applications in the cloud transition from monolithic ser-

vices to agile microservice architectures, efficient resource management becomes a

key challenge. The multitude of loosely coupled components and fluctuating traffic

patterns make traditional cloud autoscaling methods ineffective. Existing machine

learning-based approaches, while attempting to address this, often require extensive

training data and can lead to intentional violations of service level objectives (SLOs).

To tackle these challenges, I propose PEMA (Practical Efficient Microservice Au-

toscaling), a lightweight resource manager for microservices. PEMA aims to optimize

resource allocation through opportunistic resource reduction, considering the intricate

dependencies between microservices.

On another front, scientific workflows are evolving to accommodate the increas-

ing diversity and parallelism of modern computing systems. The integration of multi-

scale simulations with Artificial Intelligence and Machine Learning (AI/ML) methods

has made interdisciplinary workflows increasingly complex and challenging to man-
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age using traditional high-performance computing (HPC) infrastructure. Converged

computing, a growing movement that integrates HPC and cloud technologies into a

seamless environment, can provide a means to bridge the gap between the needs and

capabilities of modern scientific workflows. Ensemble-based HPC workflows, par-

ticularly those leveraging MPI-based (Message Passing Interface) workflows, stand

to benefit from the efficiency improvements enabled by cloud-native orchestration.

While these workflows have been demonstrated to scale in Kubernetes, limited work

has explored the combined impact of autoscaling and elasticity on MPI-based work-

flows. To address this, we leveraged the Flux Operator, a Kubernetes operator of the

Flux framework, and developed a workload-driven autoscaling strategy that outper-

forms traditional CPU utilization-based autoscaling for MPI-based ensembles. This

approach enhances efficiency and reduces ensemble completion time by up to 4.7×

compared to CPU utilization-based methods.

Additionally, significant power consumption remains a critical challenge for cur-

rent and future HPC systems. Despite this, HPC systems often remain power under-

utilized, making them ideal candidates for power oversubscription to reclaim unused

capacity. To mitigate the risk of system overload during oversubscription, I propose

MPR (Market-based Power Reduction), a scalable, market-driven approach that in-

centivizes HPC users to reduce power consumption during overloads in exchange for

rewards. Real-world trace-based simulations show that MPR consistently benefits

both users and HPC managers by balancing resource gain and performance loss. We

also demonstrate the effectiveness of MPR on a prototype system, highlighting its

potential as a sustainable power management solution.
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CHAPTER 1

Introduction

Background: Cloud computing has revolutionized modern IT infrastructure

by offering organizations the flexibility, scalability, and cost-effectiveness needed to

handle diverse computational workloads. This shift has reduced capital expenditures

and enabled businesses to access computational resources on-demand, transforming

both public and private sectors. With the acceleration of cloud adoption, projections

indicate that the cloud computing sector will generate nearly $1 trillion in revenue

by 2025 [7]. This growth is not only reshaping traditional IT infrastructure but

also driving new paradigms, such as the convergence of high-performance computing

(HPC) with the portability and automation of the cloud.

One key architectural shift enabled by cloud computing is the rise of microser-

vices, which break down monolithic applications into smaller, independently deploy-

able services [8]. This architecture enhances the scalability and flexibility of appli-

cations, making it a preferred approach in cloud-native environments. However, the

widespread adoption of microservices introduces new challenges in resource manage-

ment, especially in balancing performance, cost-efficiency, and resource contention in

cloud infrastructures.

Similarly, HPC systems are experiencing increased demands for more efficient

resource management as they approach exascale computing. Large-scale scientific

computations place tremendous strain on power and computational resources, requir-

ing sophisticated strategies to manage resources while minimizing costs, particularly

as the power consumption of supercomputers reaches megawatts.

1



Motivation: As cloud computing becomes ubiquitous, managing the resources

of interactive applications built on microservices architectures has emerged as a crit-

ical challenge. Effective resource management is necessary to ensure performance,

avoid resource contention, and optimize cost in dynamic cloud environments. Tradi-

tional rule-based resource management systems often fall short in efficiently managing

cloud-native microservices, leading to unnecessary resource wastage or performance

degradation under varying workloads.

In HPC systems, the power consumption and complexity of scheduling diverse

workloads across heterogeneous resources pose significant challenges. Maximizing

system utilization while minimizing energy consumption has become paramount, as

the operational costs of supercomputers continue to escalate. There is also a growing

need to integrate the elasticity and automation of cloud computing into HPC systems,

allowing for real-time resource scaling based on workload demands.

To address these concerns, new resource management strategies that can dy-

namically adjust to workload variations and provide efficiency in both cloud and

HPC environments are needed. This includes the development of lightweight, adap-

tive approaches that can operate without extensive training or over-reliance on static

configurations.

Contribution Summary: This thesis contributes to addressing the challenges

of resource management in both cloud and HPC environments through the following:

Power-Efficient Microservice Allocation (PEMA): We present a novel microser-

vice resource manager, PEMA, which optimizes resource allocation for cloud-native

applications. Unlike traditional methods, PEMA employs iterative, feedback-based

tuning that starts with abundant resource allocation to meet Service Level Objec-

tives (SLOs) and then gradually reduces resources based on real-time workload per-
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formance. The method ensures resource efficiency without violating SLOs, leading to

up to 33% savings compared to rule-based systems [9].

Market Mechanism-Based Power Management in HPC: We introduce a power

management strategy for HPC systems that employs a market-based approach to

power oversubscription. This method allows HPC systems to operate beyond tradi-

tional power limits while optimizing resource utilization. By involving users in real-

time power management decisions, the system can dynamically allocate resources

based on current needs, resulting in more efficient power usage during periods of high

demand (3).

Elasticity in HPC Workloads with Cloud Integration: We explore the integra-

tion of cloud computing elasticity into HPC environments through the development

of a workload-driven autoscaling algorithm. By leveraging Kubernetes (K8s) and the

Flux Framework, we enable real-time resource scaling for HPC applications based on

workload fluctuations, reducing operational costs and enhancing system performance.

This convergence of cloud and HPC introduces a hybrid computing environment that

supports the growing complexity of scientific workflows (4).
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CHAPTER 2

Practical Efficient Microservice Autoscaling with QoS Assurance

2.1 Introduction

Motivation. Microservices architecture is enjoying a growing penetration in user-

facing cloud applications where an ensemble of loosely-coupled and small service

components (i.e., microservices) work together to serve user requests [4, 10, 11]. As

illustrated in Fig. 2.1, microservices architecture is a significant departure from tradi-

tional monolithic deployments with a few large application layers such as user-facing

front-end, back-end business logic, and database [12]. Unlike monolithic applications,

the small microservices can be easily managed and kept updated by small dedicated

DevOps teams [13]. Moreover, microservices are typically stateless and communicate

using lightweight APIs [14,15]. Hence, they offer agile resource management and scal-

ing, better fault tolerance, and great platform agnostic compatibility among different

microservices that cannot be matched by monolithic applications [13,16].

Microservices come with their own sets of challenges, and in this paper, we focus

on its resource management. In principle, microservice resource management is same

as monolithic applications - achieve the desired performance (e.g., end-to-end response

latency) with the minimum resource allocation [17–19]. Resource management for

microservices-based applications, however, is more challenging because these applica-

tions have a much larger configuration space due to the sheer number of microservices

responsible for the application performance. For example, if we consider an applica-

tion with m microservices where each microservice can be configured with n different

CPU allocations, there will be nm possible resource configurations. Moreover, mi-
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vices consists of many small loosely coupled systems.

croservices have complex communication topology and inter-dependencies that make

it harder to identify and mitigate Quality of Service (QoS) violations [4,16]. A single

user request may traverse through several microservices, and if any microservice in

the critical path becomes a bottleneck, the end-to-end response time will increase

significantly [20]. Our motivating experiments on three prototype microservices show

that the same amount of CPU allocation can result in more than 250% increase in

application latency based on how the resource is distributed among different microser-

vices. Meanwhile, existing resource management techniques developed for monolithic

applications with a few service layers cannot readily capture the complex microser-

vice interactions to make effective resource allocation choices [21–24]. Nevertheless,

addressing these resource management challenges for microservices is of paramount

importance as an increasing number of production cloud services have been adopting

microservice architectures [12,25].

Limitation of state-of-art approaches. Owing to the growing interest, sev-

eral recent works try to address the resource management challenges in microser-

vices [12, 20, 25–27]. They focus on utilizing machine learning (ML) techniques to

capture the complex relationship between microservice resources and performance.
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For instance, FIRM [20] uses a combination of support vector machines (SVM) and

reinforcement learning to localize root causes of SLO violations, and apply resource

autoscaling to avert these violations. Sage [26], on the other hand, uses super-

vised training to identify dependencies between different microservices using a Causal

Bayesian Network, and a graph encoder to track the QoS violating microservices to

adjust their resources. However, this line of works built on ML are fundamentally

limited by their extensive training requirements, both in terms of training time to

capture the dynamics of the microservices and data resolution (e.g., request level

traces to build dependency graphs). More importantly, to learn from the data, some

ML-based techniques intentionally cause or allow SLO violations which is undesirable

in production systems [20,25–27]. Also, any changes in the microservices architecture

and inter-dependencies will require retraining the system. This ML retraining can

become a barrier for real world microservices applications which go through frequent

software/code updates. ML retraining can also be triggered by changes in underlying

cloud hardware due to server migrations and upgrades. On the other hand, the re-

source demand of microservices changes with the workload on a daily basis. However,

existing approaches focusing on SLO violations do not directly incorporate dynamic

workload in their learning [20,25–27].

Key insights and contributions. To avoid the hurdles of the approaches men-

tioned above, we propose PEMA (Practical Efficient Microservice Autoscaling), a

lightweight microservice resource manager that does not need extensive training.

PEMA utilizes iterative feedback-based tuning to find efficient resource allocations

that satisfy the SLO. Instead of finding the best resource configuration, PEMA first

allocates abundant resources to all microservices to satisfy SLO and then tries to

exploit resource reduction opportunities. Allocating abundant resources for the mi-

croservices can be easily accomplished as cloud native applications enjoy a great

7



degree of resource scalability. The initial (and inefficient) resource allocation can be

achieved using existing rule-based resource managers [28]. Using this opportunistic

resource reduction approach, PEMA avoids causing intentional SLO violations as it al-

ways allocates enough resources for microservices, even when performing poorly (i.e.,

missing resource reduction opportunities). To enable PEMA’s approach, we introduce

the notion of “monotonic resource reduction” where we either reduce the resource of

a microservice or keep it unchanged. In contrast, a non-monotonic resource reduction

can be made through resource reduction for some microservices and resource increase

for some other microservices with an overall total resource reduction (i.e., a greater

total reduction than total increase). We observe that monotonic resource reductions

result in a monotonic increase in response time. Hence, we can use the response time

as feedback to identify resource reduction opportunities to make gradual monotonic

resource changes to reach efficient allocations. In addition, based on experiments on

prototype microservice implementations, we identify that we can avoid resource re-

duction in bottleneck services using only two microservice-level performance metrics

- CPU utilization and CPU throttling time.

Our feedback-based design also allows us to seamlessly adapt a workload-aware

design where we implement a novel approach of using dynamic workload ranges with

a dynamic response time target. More specifically, to avoid time-consuming learn-

ing of the efficient allocation for different workload levels independently, we use dy-

namic ranging where PEMA starts resource allocation for a large workload range (e.g.,

100∼1000 requests-per-second) and then gradually splits them into smaller ranges

(e.g., 100∼200 requests-per-second). We retain the resource allocation learned by the

parent workload range during the range split to bootstrap the tuning for the new

workload range. Based on the workload, we also dynamically alter the feedback from

response time to allow headroom for response time change due to workload change.
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Our performance evaluation reveals that PEMA can attain resource efficiency

close to the optimum 1 with high probability. We also show that PEMA can save

as much as 33% resource compared to rule-based resource allocation strategies of

commercially available cluster managers. We demonstrate that PEMA can seamlessly

adapt to changes in microservice deployment due to changes in underlying cloud

hardware. Moreover, we show that adaptability of PEMA allows its integration with

opportunistic resource management where variable SLO is used for trading perfor-

mance for resource savings.

Experimental methodology and artifact availability. We use three prototype

microservices implementations widely used in academic research on microservices [20,

25,26]. We implement TrainTicket from [2] consisting of 41 microservices, SockShop

from [1] with 13 microservices, and HotelReservation from [4] with 18 microservices.

We deploy these services in Docker [29] containers managed by Kubernetes [30]. Our

Kubernetes cluster consists of five nodes with one master node and four worker nodes.

Each node is equipped with two 10-core Intel Xeon processors, and 128 GB of Memory

running the Ubuntu 20.04.3 operating system. Our software artifacts are available at

our GitHub repository [31].

Limitations of the proposed approach. We share our insight on the limitations

of PEMA on two different fronts - the fundamental limitations in PEMA’s design

approach and the limitations of PEMA’s current implementation. Due to its non

ML-heavy approaches, PEMA’s design loses on capturing complex interdependen-

cies between microservices, and therefore is limited on the absolute best resource

efficiency it can achieve. However, PEMA makes up for this loss of optimization po-

tential through its simplicity and adaptability to change (e.g., workload variation).

1Optimum resource allocation refers to the minimum resource required to satisfy SLO. We de-

scribe how we identified the optimum resource allocation in Section 2.4.2.
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Figure 2.2: Architecture of the SockShop [1].

Also, due to our randomized exploration based search, PEMA offers provably efficient

management and can result in arbitrarily inefficient resource allocations at times. We

defer the discussion on the limitations of PEMA’s current implementation to the end

of our paper in Section 2.6 to make it more meaningful to the reader.

2.2 Preliminaries

2.2.1 Microservice Prototypes

SockShop [1]. SockShop implements the user-facing microservices of an e-

commerce website. SockShop’s functionalities include searching, order placement,

and shipping. Its functionalities can be divided into three parts - front-end, business-

logic, and databases. The user requests arriving at the front-end are routed to ap-

propriate microservices to serve the requests. The business-logic interact with each

other and the databases as needed. The front-end is implemented using NodeJS, or-

ders and carts microservices are implemented using Java, and the rest of the services

are implemented with Go. Shipping service uses RabbitMQ to propagate messages

to Queue-Master which is implemented in Java. The databases are implemented

using MySQL and MongoDB. For SockShop, we set the SLO response time to 250

milliseconds. The overall architecture is shown in Fig.2.2.
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Figure 2.3: Architecture of the TrainTicket [2, 3].

TrainTicket [2]. TrainTicket implements a complete train ticket booking

system consisting of 41 microservices. Its functionalities include ticket search with

date and destination filtering, seat booking, ordering food, payment, and consign-

ment service. The business logic of TrainTicket is implemented using 24 microser-

vices divided into five layers where the microservices in the upper layers depend on

the microservices of the lower layers. There are some intra-layer communications

as well. The overall architecture is shown in Fig. 2.3. TrainTicket covers many

features of microservices such as synchronous invocations, asynchronous invocations,

and message queues. The TrainTicket business logics and front-end are built using

NodeJS, Java, Python, and Go. The databases are implemented using MongoDB,

and MySQL. For TrainTicket, we set the SLO response time to 900 milliseconds.

HotelReservation [4]. HotelReservation application is adopted from Death-

StarBench microservices benchmark applications. It has 18 microservices. HotelReservation

lets users get nearby hotel information and reserve rooms. All the services in HotelReservation

are written in Go, and they communicate with each other via gRPC [32]. The back-

end uses Memcached for in-memory caching to provide faster searches while the per-

sistent databases are implemented using MongoDB. The application is pre-populated
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Figure 2.4: Architecture of the HotelReservation [4].

with 80 hotels and 500 registered users. This application consists of 18 microservices.

For HotelReservation, we set the SLO response time to 50 milliseconds.

2.2.2 Performance Monitoring and Resource Allocation

For performance monitoring of our container-based microservice implementa-

tion, we use Prometheus [33] to collect container-specific metrics such as CPU utiliza-

tion and CPU throttling. For collecting end-to-end latency performance and work-

load (i.e., requests per second), we use Linkerd [34]. We also use Jaeger [35] which

provides detailed tracing of each request showing its service path through different

microservices. Note that, our resource manager does not utilize Jaeger.

We use the 95-th percentile end-to-end response latency as a performance met-

ric and refer to it as the application performance unless specified otherwise. For our

cloud-based microservice applications which exploit request-level-parallelism, end-to-

end response latency is the popular choice of performance metric [36]. For microser-

vice resources, we only consider the total CPU allocation to a microservice with the

assumption that the memory is not a bottleneck resource. Furthermore, we do not
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Figure 2.5: Impact of “Good” (i.e., satisfies SLO) and “Bad” (i.e., violates SLO)
resource distribution on the response time normalized to the SLO at different work-
loads levels. In Fig. (a), for workloads 100, 200, and 300, total CPU allocations are
40.5, 42, and 47 respectively. In Fig. (b), for workloads 250, 550, and 950, total CPU
allocations are 6.3, 7.7, and 14.1, respectively. In Fig. (c), for workloads 300, 500,
and 700, total CPU allocations are 5.1, 6.9, and 9.4, respectively.

explicitly address the number of container replicas and consider homogeneous settings

for each microservice.

2.2.3 Challenges in Microservice Resource Management

As in any general computing system, the performance of microservices appli-

cations depends on their resource allocation. Various theoretical and practical tools

have been developed over the years to establish a mathematical relationship between

computing resource and performance [17]. However, they are not equipped to cap-

ture complex interactions between different microservices. Any request’s end-to-end

response time (i.e., performance) is the aggregation, often non-linearly due to parallel

processing, of time spent in many microservices. Consequently, the presence of any

microservice with a resource bottleneck on the service path affects the end-to-end

response time. Meanwhile, the resource demand for different microservices can be

widely different based on their service. Hence, the distribution of resources among

different microservices plays a crucial role in application performance.
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To demonstrate the importance of resource distribution, we run a few experi-

ments on our microservices prototypes. We first identify “good” resource allocations

that satisfy the SLOs for the prototypes for different workload levels. We then change

these to “bad” distributions by randomly altering resource allocations while keeping

the total resource the same. Fig. 2.5 shows the impact of this resource distribution -

even with the same amount of resources, the performance varies significantly because

of changes in distribution. For, TrainTicket we see as much as 43.88% increase in

response time while SockShop and HotelReservation suffer up to 91.3% and 256.2%

increase, respectively.

Due to the large configuration space, the “good” resource distribution cannot

be readily determined for microservices. Also, the nature of processing done in dif-

ferent microservices is different and cannot adhere to any general resource allocation

principle, such as keeping utilization lower than a certain level [18, 19, 28, 37]. To

illustrate this, we show the resource distributions of SockShop’s microservices for the

good and bad configurations with the same amount of total resource in Fig. 2.6(a) and

the corresponding CPU utilization in Fig. 2.6(b). We see that there is no readily iden-

tifiable root cause (e.g., microservice with bottleneck resource) in response latency in

Fig. 2.6(b) for the 74% increase (236 milliseconds to 411 milliseconds). Also, while

we see an increase in utilization for the cart, catalogue, and user services for the

bad configuration, their utilization remains below the frontend’s utilization, mak-

ing it impossible to employ any common utilization-based resource allocation policy.

Furthermore, we see that the utilization change due to resource change is different

for different services. For example, the frontend’s utilization changed more than

orders even though they experienced similar resource change. This indicates that

resource allocation policies that try to increase overall utilization [20], may not be

the most efficient.
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Figure 2.6: (a) Total CPU allocation of 7.5 distributed among different microservices
of SockShop. (b) CPU utilization.

To summarize, for efficient microservice management, it is crucial to identify

how resources should be distributed among different microservices as the same amount

of resources can result in significantly different performance based on which microser-

vice gets how much resources. However, finding the efficient resource distribution is

very hard as there are no easily generalizable markers (e.g., high utilization) to assist

in the resource allocation.

2.3 Design of PEMA

We have two design goals for our resource manager - (1) assure QoS (i.e., avoid

SLO violations), and (2) find efficient resource allocation. Using a discrete-time

model with a time step ∆t (e.g., one minute) where the microservice resource allo-

cation decisions are updated at the beginning of each time step, we formalize our re-
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source management as the following optimization problem ORA (Optimum Resource

Allocation)

ORA : minimize
xt

N∑
i=1

xti (2.1)

subject to F(xt) ≤ R (2.2)

Here, at time step t, xt = (xt1, x
t
2, · · · , xtN) is the resource allocation vector of the N

microservices, F(xt) is the end-to-end latency response of the application for resource

allocation xt, and R is the response latency threshold defined in the SLO. In what

follows, we develop PEMA (Practical Efficient Microservice Autoscaling) - a practical

microservices resource manager that finds a provably efficient solution to ORA. We

first discuss the design principles of PEMA to achieve our goals (i.e., the solution to

ORA), followed by the rationale for our choices and implementation details of PEMA.

Note here that, instead of minimizing the total resource allocation, ORA can

also adopt cost minimization as its goal by replacing xti in Eqn. (2.1) with C(xti)

which represents the cost of resource xti. Moreover, resource allocation vector xt is

not restricted to CPU allocations only. We can incorporate other types of cloud

resources such as memory allocation and I/O bandwidth in xt. Nevertheless, our

general solution principle still applies, albeit the opportunistic resource reductions

need to be conducted on multiple resource dimensions.

2.3.1 Design Principles of PEMA

A learning-based approach. Achieving either of our design goals for a

microservice-based application is non-trivial due to their complex topology and inter-

dependency between different microservices. Moreover, the relation and interaction

with each other for these microservices varies with applications and deployments,

even among different versions of the same application. Not to mention, the under-
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lying cloud hardware (e.g., processor type/model) hosting these applications also

affects the microservice performance and resource allocation. Consequently, our re-

source manager needs to identify resource allocation strategies for each microservice

implementation and at the same time be able to adapt as the application evolves.

Hence, we take a learning-based approach where PEMA iteratively interacts with the

application through a feedback loop to navigate towards efficient resource allocations.

Provably efficient resource allocation. Solving PEMA can be interpreted

as tuning the application resources that will make the response latency exactly equal

to the SLO specified level. However, since the resource distribution across different

microservices affects the latency and microservice-based applications usually consist

of many microservices, there could be many different resource allocations that result

in a latency equal to the SLO. Consequently, in PEMA, instead of finding the best

resource allocation (i.e., the lowest aggregate resource), our goal is to find a resource

allocation close to the optimum with fewer iterations.

QoS preserving learning. An unwanted pitfall of the learning-based ap-

proach in the existing literature is that the system needs to learn “bad” resource

allocations that cause SLO violation by causing/creating these violations [20,25–27].

While our approach too cannot completely eradicate the possibility of SLO violations,

unlike prior works, we do not cause them intentionally. Instead, we adopt a QoS con-

servative approach where we start from with sufficient resource for all microservices to

satisfy SLO, and then iteratively search for resource reduction opportunities based on

the application’s performance statistics. During the search/learning, PEMA always

tries to maintain latency performance better than the SLO. Moreover, we dynamically

tune how much resource we reduce based on how close our performance is to the SLO

and stop tuning if the performance is at the SLO level. For example, with a response

time SLO of 250ms, PEMA will try to reduce more resources when the response time
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is 150ms than when the response time is 200ms. Hence, during resource allocation

navigation, PEMA does not set a resource allocation to violate the SLO intentionally.

Feedback-based navigation. Starting with ample resources for each mi-

croservices to comfortably satisfy SLO, PEMA uses the difference between current

application performance and the SLO as an indicator of resource reduction oppor-

tunity. However, it does not tell us on which microservice(s) we should exercise the

resource reduction. Hence, PEMA uses microservice-wise performance metrics to de-

termine the target microservices. More specifically, PEMA uses the microservice-wise

performance metrics to filter out the microservices approaching their bottleneck re-

source configuration and then implements a randomized selection process where the

probability of picking a microservice is determined by its performance metrics. With

unknown relation between a microservices resource allocation with the overall appli-

cation performance, a guided randomized selection allows PEMA to explore various

possible combinations of resource allocation.

2.3.2 Supporting Results for Design Rationales

Here, we provide corroborating observations for PEMA’s design using our proto-

type microservices implementations. We first show why application’s performance can

be a safe yet effective indicator of resource reduction, followed by how microservice-

wise performance metrics can help PEMA navigate.

Gradual resource reduction for efficiency. In PEMA, we use the difference

between SLO specified response time and current system response time to determine

how much resource-saving opportunity is available. Our design choice is motivated

by our observation that, in general, monotonic resource changes across microservices

result in monotonic changes in the end-to-end response time. We say a resource

reduction is monotonic if some microservice resources are decreased while other mi-
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Figure 2.7: (a) Distribution of end-to-end response time increase (normalized to SLO)
due to monotonic resource reduction. (b) Change in response time (normalized to
SLO) with resource (normalized to optimum).

croservices’ resources are unchanged. A resource change is not monotonic if some

microservices receive greater resources while some others have their resource reduced,

regardless of what happens to the aggregate resource allocation. Fig. 2.7(a) shows

the CDF of increase in end-to-end response time for monotonic resource reduction for

our applications. Note that there is no direct relationship between resource reduction

and the amount of change in response time. This is because, the same amount of

resource reduction on different microservices will have different impact on the end-to-

end response time. The CDF is showing distribution of latency increase for random

amounts of monotonic resource reduction on random numbers of microservices at

random initial (before resource reduction) resource allocations. The CDF highlights

the most likely impact of a monotonic resource reduction - an increase in the response

latency regardless of the state of the microservice, i.e., its total resource allocation.

The CDFs also show that the opposite, i.e., response latency decreasing with resource

reduction, happens an only handful of times (10.2% for TrainTicket and 6.1% for

SockShop). We attribute these cases as transient anomalies based on our observation

of the application’s performance metric fluctuations.
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The key take away from Fig. 2.7(a) is that by making monotonic resource reduc-

tions, we can gradually increase the latency to the SLO level. In Fig. 2.7(b), we show

examples of such monotonic resource reduction steps and its impact on latency. Here,

we normalize the resource to the optimum resource allocation and the latency to the

SLO level. PEMA’s goal in Fig. 2.7(b) is to reach coordinate (1, 1) by gradually mak-

ing monotonic resource changes. Note that the resource reduction steps in Fig. 2.7(b)

is not unique. Moreover, monotonic resource reduction alone does not guarantee to

reach the optimum resource allocation keeping the response latency within the SLO.

Instead, it offers a QoS preserving approach of navigation to find efficient resource

allocation.

Microservice-wise augmentation. While the response latency tells us about

the resource reduction opportunities, it does not tell us from which microservices we

should reduce the resources. We need to avoid microservices that may create a bottle-

neck during this resource reduction. We define a microservice’s “bottleneck resource”

as the resource allocation that makes the microservice a bottleneck. In PEMA, we use

microservice-level performance metrics to identify the microservices with imminent

bottleneck resources. However, as opposed to prior works where complex machine

learning models are applied to determine such bottleneck services, we use only two

performance metrics - CPU utilization and CPU throttling time [38].

Our choice of these performance metrics is based on our experiments. We inten-

tionally create bottlenecks and use feature extraction to identify which performance

metrics can be used to identify the bottleneck services reliably. Note that these exper-

iments are done to assist in our design. PEMA does not need any offline experiments

or pre-training. For each microservice, we collect the following performance metrics -

cpu usage seconds total, memory usage bytes, cpu cfs throttled seconds total,

Jaeger tracing - self time, and duration. We then run classification with various
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Table 2.1: Classification accuracy with CPU utilization and CPU throttling time as
features to detect bottleneck microservices.

Microservice Name Botteleneck Services Accuracy (%)
TrainTicket seat 94.18
TrainTicket seat, ticketinfo 96.2
SockShop carts 100.0
SockShop carts, orders 98.3

HotelReservation front-end 97.8
HotelReservation front-end, search 95.6

combinations of the performance metrics as features. We find that, when used as

the classification features, CPU utilization and CPU throttling time give us the high-

est classification accuracy. Table 2.1 shows the classification accuracy for different

applications with various bottleneck services.

To better understand the role of CPU utilization and CPU throttling time

as bottleneck indicators, we track these metrics for three different microservices in

TrainTicket- seat, basic, and ticketinfo, as we reduce their resources to create

bottlenecks. To identify the bottleneck, we allocate sufficient resources to all other

microservices. Fig. 2.8 shows the change in CPU utilization and CPU throttling

as we reduce the resource of the microservice under investigation. We normalize

the microservice resource allocations to their respective bottleneck resources. We

make a few important observations here. First, the CPU utilization (Fig. 2.8(a))

changes gradually as the microservice approaches and eventually crosses the bottle-

neck resource. We also see that the utilization corresponding to bottleneck is different

for different microservices. For example, ticketinfo’s bottleneck utilization is around

25%, whereas seat’s bottleneck utilization is around 15%. Second, CPU throttling

time changes rapidly at bottleneck resource. The bottleneck CPU throttling time

also varies with microservices.
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Figure 2.8: Changes in CPU utilization and CPU throttling time with resource
allocation for three bottleneck microsservices in TrainTicket- seat, basic, and
ticketinfo.

2.3.3 PEMA

Here we present the details of PEMA’s implementation that builds on our design

principles and experimental observations.

Resource reduction opportunity. In PEMA, similar to gradient descent,

we start with sufficient resources for all microservices and gradually decrease their

resource based on how our resource change affects the end-to-end response time. We

update resource allocation in regular intervals based on the response time observed

in the previous interval. Since we rely on the response time statistics, we set suffi-

ciently long update intervals to have stable response time statistics. For instance, in

TrainTicket, SockShop, and HotelReservation, we use update interval of two min-

utes. For resource reduction at time step t, we first decide the number of microservices

nt to reduce resources from using

nt = N ·min

(
R− rt−1

αR
, 1

)
, (2.3)
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where rt−1 = F(xt−1) is the response time in the previous time step. α ≤ 1 is a user-

defined non-negative parameter that determines how aggressively we want to reduce

the resource. A smaller α will reduce resource more aggressively and vice versa.

Next, using similar approach as Eqn.(2.3), we decide how much resource we

reduce in the nt microservices in percentage using

∆t = β ·min

(
R− rt−1

αR
, 1

)
· 100%, (2.4)

where β ≤ 1 is another user defined parameter that decides the maximum resource

reduction for any microservice in one time step. A high value of β makes PEMA

aggressively change the resource between update intervals and vice versa. We analyze

the impact of α and β in our evaluation in Section 2.4.3.

Using Eqns. (2.3) and (2.4), PEMA dynamically adjusts the amount of mono-

tonic resource reduction as our response time rt approaches SLO limit R. We can

also set the values of α and β dynamically to have more aggressive reduction when

R− rt−1 is high and reduce the amount of reduction per interval as rt approaches R.

In addition, to avoid triggering resource change for transient perturbation in response

time, we can keep a response time buffer by scaling down R, for instance, to 95%, in

Eqns. (2.3) and (2.4).

Avoiding bottleneck services. For the i-th microservice, we denote its uti-

lization as ui with a bottleneck threshold U th
i and CPU throttling time as hi with a

bottleneck threshold H th
i . To decide the nt candidate microservices, we first take the

set of microservices that has a CPU throttling time less than their respective thresh-

olds. We denote the set of indexes of these microservices as It = {i : ht−1
i ≤ H th

i }.

We then normalize the utilization of each microservice in It to their respective uti-
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Figure 2.9: Block diagram of the PEMA.

lization threshold as u∗t−1
i =

ut−1
i

Uth
i

and update the probability of each microservice in

It as follows

pti = 1− u∗t−1
i −mini∈It(u

∗t−1
i )

1−mini∈It(u
∗t−1
i )

(2.5)

Here, mini∈It(u
∗t−1
i ) means the minimum normalized utilization among all the mi-

croservices in It. Eqn.(2.5) indicates that a microservice with utilization equal to

its threshold, i.e., u∗t−1
i = 1 will result in a “zero” probability (pti = 0), whereas the

microservice with the lowest utilization, i.e., u∗t−1
i = mini∈It(u

∗t−1
i ), will have the

probability of “one” (pti = 1). We populate a new candidate set I∗t with a inclusion

probability of pti for the i-th microservice. If the size of I∗t is equal to or smaller than

nt, we take the entire set I∗t and reduce each microservice in I∗t and reduce their

resource by ∆t. However, if the size of I∗t is greater than nt we uniformly randomly

choose nt microservices from I∗t.

Dynamically updating bottleneck thresholds. As shown in Fig. 2.8, the

bottleneck thresholds for utilization and CPU throttling time varies among microser-

vices. Hence, we need to learn the appropriate threshold settings for each microser-

vice. In PEMA, we begin with a conservative estimation of utilization threshold set
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Figure 2.10: (a) Response time change due to workload. (b) Dynamic workload range
to bootstrap efficient resource allocation for different workloads. (c) Dynamically
updating target response time to tackle response time change due to workload change.

at 15% and CPU throttling time threshold of “zero” (i.e., no CPU throttling) for

all microservices. We expect all microservices to satisfy these thresholds as PEMA

starts with ample resource allocation. Similar to our resource reduction approach,

we opportunistically increase these thresholds. More specifically, at the beginning of

every time step t, we update the utilization and CPU throttling time thresholds as

follows

U th
i = max

(
U th
i , u

t−1
i

)
,∀i (2.6)

H th
i = max

(
H th
i , h

t−1
i

)
,∀i (2.7)
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Iterative resource allocation. PEMA applies the resource reduction itera-

tively and saves all resource allocations, xt, and the response times, rt, in a “resource

allocation history database (RHDb)”. The purpose of the RHDb is to allow PEMA

to roll back to a previous SLO satisfying resource allocation for all microservices in

case of an SLO violation. Even though the resource reduction slows down when the

latency approaches the SLO, PEMA cannot guarantee that its opportunistic resource

reduction will never cause an SLO violation. In addition, changes in microservice

implementation or changes in its hardware configuration may also alter optimum re-

source allocation and cause SLO violations. In such cases, rolling back to a previous

configuration allows PEMA to jump start on finding the new optimum, instead of

resetting the resource allocation to the maximum and starting from scratch. While

RHDb itself does not add significant overhead due to its lightweight single-table im-

plementation, the action of rolling back may cause extra iterations for PEMA to find

an efficient resource allocation. Nonetheless, the mechanism of roll back using RHDb

is essential for PEMA’s adaptability and QoS assurance.

Escaping sub-optimum configurations. The combination of monotonic re-

source reduction and probabilistic choice of microservices to reduce resource may

cause PEMA to make unfavorable resource reductions early on (e.g., making partic-

ular microservice reach bottleneck and push response time close to SLO) and settle

at inefficient resource allocation, even though other microservices have redundant re-

sources. This can force PEMA to slow-down prematurely, even stop further resource

reduction. To escape from such inefficient resource allocations, we implement ran-

dom exploration where PEMA with a probability pte rolls back to a uniformly random
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previous resource allocation in RHDb. We set pte based on the response latency as

follows

pte = A ·min

(
R− rt−1

αR
, 1

)
+B (2.8)

Here, A andB are exploration parameters that decide the maximum and the minimum

probability of exploration, respectively, and satisfy 0 ≤ B ≤ A ≤ 1 and A + B ≤ 1.

The exploration probability decreases as PEMA’s response time rt−1 approaches the

SLO R. The random exploration also allows PEMA to “walk back” the resource reduc-

tion path it took and identify previously missed reduction opportunities. Naturally,

the degree of exploration affects how quickly we reach an efficient resource allocation.

Nonetheless, we do not anticipate this exploration to add significant overhead since

PEMA can find an efficient resource allocation in a few tens of iterations.

Implementation of PEMA. We present the working principle in Algorithm 1

where PEMA takes performance metrics from the system using Prometheus and Link-

ered and then updates the resource allocation of the microservices while keeping a log

of all resource allocations and response times in its database RHDb. The high-level

architecture block diagram of PEMA is presented in Fig. 2.9.

2.3.4 Workload-Aware Resource Allocation

Our design of PEMA so far addresses how we can navigate to find an efficient

resource allocation for our microservice-based application. Our design, through con-

figuration rollback, can also handle changes in microservice implementation. Here we

address how PEMA tackles the workload variations. For any cloud application, the

workload intensity (i.e., requests per second) directly affects the response time, and

hence, how much resource is needed [17–19]. In Fig. 2.10(a), we show the change in

response time as the workload changes. As PEMA iteratively makes resource reduc-
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tions based on the response time, a decrease in workload will falsely indicate resource

reduction opportunities that do not work for high workloads, leading to many SLO

violations when the workload increases. The same is true for prior ML-based ap-

proaches that do not explicitly address workload change [26,27].

Hence, PEMA needs to identify efficient resource allocations at different work-

load levels. A straightforward way is to divide the workload variations into dis-

crete workload ranges (e.g., a workload range from “X” requests-per-second to “Y”

requests-per-second) and run multiple copies of PEMA in a “pseudo-parallel” fashion.

We say pseudo-parallel as at any time only one PEMA is working on its corresponding

workload range. Note here that the workload ranges need to be small enough to not

significantly affect the response latency, requiring resource allocation changes, i.e., a

single resource allocation should work for the entire range. For instance, a range of

25 requests-per-second in TrainTicket microservice is a suitable workload range.

Dynamic workload-range. While in principle multiple parallel PEMA works,

it may take a long time to reach efficient allocations for every workload range. To

accelerate the learning, we propose a novel approach where we start with a few

(two/three) larger workload ranges and gradually split each range (i.e., parent range)

into smaller ranges (i.e., child range) until we reach our target workload ranges. The

goal here is to utilize learning from the parent ranges to bootstrap the learning pro-

cess for the child ranges. During a range split, the parent range is divided into two

equal child ranges. We attach PEMA of the parent range to the child range with a

higher workload, whereas a new PEMA process is launched for the other child range.

The new PEMA uses the resource allocations of the parent range as the starting point

and requires fewer iterations to reach an efficient resource level. The intuition for

this approach is that a resource allocation that satisfies SLO at a higher workload

should also satisfy SLO for a lower workload. Fig. 2.10(b) illustrates the idea where
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we start with a workload range of 200∼400 and then branch out to smaller ranges.

The number on top of each range identifies the PEMA process attached to this range.

The original PEMA process with id “#1” remains attached to the higher workload

ranges (e.g., 300∼400, 350∼400, 375∼400) as we split each range into smaller ranges.

Dynamic response time target. While this approach benefits the learning

time, we need to tackle the latency variation due to workload changes when the

workload ranges are large (e.g., 200∼400 rps for TrainTicket). We use one PEMA

process for each workload range, even during the initial stages with large ranges (e.g.,

PEMA #1 for 300∼400 range in Fig. 2.10(b)). Each PEMA process needs to make an

SLO preserving resource allocation that works for its entire range. To achieve this,

instead of setting it to the SLO specificity response time, we update R in Eqns. (2.3),

(2.4), and (2.8) into a function of workload λ as follows

R(λ) = m · (λ− λmax) +RSLO (2.9)

Here, m is a parameter that determines the change in latency performance for a

unit change in workload, λmax is the upper limit of a workload range, and RSLO

is the SLO specified response time. Fig. 2.10(c) illustrates our approach of using a

dynamic response time target. We see from Eqn. (2.9) that when the workload is

low within a range, we set a conservative (i.e., lower than SLO) latency target to

intentionally allocate more resource than needed and therefore allow headroom for

higher workloads. This approach intentionally makes conservative inefficient resource

allocations for lower workload levels within a range. However, as the ranges get

smaller as we split them, the latency variation within a range also gets smaller, and

so is the inefficiency. On the other hand, we learn m at the beginning of PEMA when

we keep the resource allocation fixed for a few time steps while the workload changes.

We then use linear regression on the workload vs response time (as in Fig. 2.10(a)) to
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extract m. Note that we learn m only once at the beginning when the workload ranges

are large. During range splits, we keep the m from the parent range. Now, m may

change as we make the resource allocations change on the microservice. Nonetheless,

as our range split reaches the final workload ranges, we no longer need the dynamic

response target, and m becomes irrelevant.

2.3.5 Handling Transient Events

From our extended experiments we identify that PEMA is susceptible to unnec-

essary SLO violations due to transient dips in the response time. More specifically,

after PEMA has already identified an efficient allocation, a momentary/transient dip

in response time drives PEMA to make resource reductions only to meet with SLO

violation in the next iteration. To circumvent this, we adopt a moving average ap-

proach where we take the average of the response time of K recent time steps and

update the nt and ∆t as follows

nt = N ·min

(
R− 1

K

∑K
k=1 r

t−k

αR
, 1

)
(2.10)

∆t = β ·min

(
R− 1

K

∑K
k=1 r

t−k

αR
, 1

)
· 100% (2.11)

Note that, to ensure QoS, we do not apply this moving averaging for detecting SLO

violations. We still roll back resource allocations based on the most recent response

time as in Line 4 in Algorithm 1.

2.4 Evaluation

We use our microservice application prototypes, TrainTicket, SockShop, and

HotelReservation, to evaluate PEMA. Here we first discuss details of PEMA’s execu-

tion followed by performance evaluation against other resource allocation strategies.
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Figure 2.11: Execution of PEMA on SockShop with different explorations. The ex-
ploration parameters in Eqn. (2.8) for high exploration are A = 0.1, B = 0.01, and
for low exploration are A = 0.05, B = 0.005.
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Figure 2.12: Execution of PEMA for TrainTicket and HotelReservation.

We then present how different parameters affect PEMA, and finally show how PEMA

can adapt to change in operating conditions.

2.4.1 Execution of PEMA

Here, we first show how PEMA finds efficient resource allocation using iterative

resource reduction, where the duration of each iteration is two minutes. We then

demonstrate how workload-aware PEMA utilizes the dynamic workload range and

response time target. Finally, we present a 36-hour long experiment with PEMA

making efficient resource allocation maintaining QoS.
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Figure 2.13: Execution of PEMA on TrainTicket with dynamic workload range. (a)
CPU allocation. (b) Response time.

Efficient resource allocation. Fig. 2.11(a) demonstrates the iterative re-

source allocation and Fig. 2.11(b) shows the corresponding response times for SockShop

under a workload of 700 requests per second for two different sets of exploration pa-

rameters. Here, the optimum total CPU allocation is 8.8 which is identified using

extensive trial and error.

We see in Fig. 2.11(a) that when a higher exploration is used, PEMA inten-

tionally increases the resource allocation twice around iteration 10 by going back to

an older and higher CPU allocation. We also see that PEMA with high exploration

settles at an inefficient allocation after 20 iterations as the response time reaches SLO

(Fig. 2.11(b)). However, due to exploitation, we see that around iteration 45, it rolls

back to an older allocation and finds its way to the efficient allocation. Incidentally,

PEMA with low exploration also reaches the efficient resource allocation. We see a

few SLO violations in Fig. 2.11(b) which are mitigated immediately by increasing the

CPU resource. Figs. 2.12(a) and 2.12(b) show the iterative resource change and the

corresponding response times for TrainTicket and HotelReservation, respectively.

Regardless of the microservice implementation, we see that PEMA can success-

fully find efficient resource allocations with only a few unintentional SLO violations.
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Figure 2.14: Extended execution of PEMA in SockShop. (a) Workload and CPU
allocation. (b) Response time normalized to SLO.

Dynamic workload range. Next, in Fig. 2.13(a), we show the resource allo-

cation of PEMA for TrainTicket as our workload varies between 200 and 300 requests

per second. The legend in this figure indicates the upper limit on the workload range.

The workload range 300 (i.e., 200∼300) first splits into ranges 300 and 250 around

iteration 50. The 250 range splits into 250 and 225 around iteration 80, while the 300

splits into 300 and 275 right before iteration 85. We see that each workload range

finds an efficient allocation within a few iterations as they start from an already good
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Figure 2.15: Performance comparison of PEMA against optimum (OPTM) and com-
mercial autoscaler (RULE). The CPU allocation is normalized to that of OPTM.
PEMA is close to optimum and saves up to 33% resource compared to RULE.

allocation. Fig. 2.13(b) shows the corresponding the response time. We see some

SLO violations, which are mitigated by PEMA.

Extended execution. We run PEMA on SockShop for 36-hour where we

change the workloads between 200 and 1100 requests per second following the work-

load pattern of Wikipedia collected from [39]. Fig. 2.14(a) shows the workload pat-

tern and the corresponding resource allocation. We see that PEMA varies the total

resource allocation with changing workload to maintain efficient allocation. Note here

that simply varying scaling resource allocation based on workload does not work on

microservices as the distribution of the resource plays an important role in perfor-

mance. Fig. 2.14(b) shows the corresponding response times. We show both the

instantaneous (i.e., most recent) and moving average responses with a window size

of five. Recall that PEMA reduces resources based on the moving average to avoid

transient changes while tackling SLO violation based on the instantaneous response

time.
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2.4.2 Performance evaluation

Benchmark strategies. We compare the resource allocation efficiency of

PEMA against two benchmark strategies - optimum (OPTM) and rule-based (RULE).

In OPTM, we use an exhaustive trial and error search to identify the best possible

resource allocation. We identify a resource allocation as optimum if a small resource

reduction (in our case 0.1 CPU) in any of the microservices results in a SLO violation.

Note that, OPTM cannot be used in practice as it causes many SLO violations during

trial and error. It acts as the upper limit of resource efficiency achievable by any

resource manager. RULE is Kubernetes’ rule-based resource scaling [40]. We chose

RULE as a commercially available resource allocation algorithm to gauge PEMA’s effi-

ciency improvement. We do not compare PEMA to the ML-based resource allocation

strategies as they do not focus on resource allocation efficiency.

Comparison of resource allocation efficiency. We run each of the three

microservices applications using PEMA and the two benchmark algorithms. Since

OPTM requires extensive manual search, we evaluate these algorithms for three dif-

ferent workload levels for each microservice. Also, since PEMA is provably efficient,

we run PEMA several times under each setting and show the average resource alloca-

tion. We normalize each resource allocation for each workload level using the resource

allocation of OPTM.

Figs. 2.15(a), 2.15(b), and 2.15(c) show the resource allocations of TrainTicket,

SockShop, and HotelReservation, respectively for the three different algorithms.

We see that PEMA’s resource allocation efficiency is very close to OPTM. We also

observe that PEMA’s efficiency drifts away with increasing workload. On the other

hand, PEMA consistently beats RULE, saving as much as 33% on resource allocation

for SockShop at high workloads.
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Figure 2.16: PEMA’s sensitivity to α for a β = 0.3 (a) Resource allocation normalized
to optimum. (b) SLO violations.

0.1 0.3 0.5 0.7 0.9
β Values

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 R
es

ou
rc

es Train Ticket
Sock Shop

(a) Resource allocation

0.1 0.3 0.5 0.7 0.9
β Values

0
10
20
30
40
50

SL
O

 V
io

la
tio

ns
 (%

)
Train Ticket
Sock Shop

(b) SLO violations

Figure 2.17: PEMA’s sensitivity to β for a α = 0.5 (a) Resource allocation normalized
to optimum. (b) SLO violations.

The performance comparison results demonstrate that despite being a lightweight

resource manager, PEMA can deliver close to optimum resource allocation while re-

taining its capability to tackle workload variation without any significant overhead

(e.g., ML training).

2.4.3 Parameter Sensitivity

Here we study how the two parameters α and β affect PEMA. Recall that α

in Eqn. 2.3 determines how aggressively we reduce resource - smaller α makes PEMA

reduce more resource for the same difference between response time and SLO. β,
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on the other hand, determines the maximum percentage resource reduction in each

resource update iteration - smaller β results in smaller resource change and vice versa.

For this study, we run experiments on TrainTicket and SockShop with workload 225

and 700 requests per second.

In Fig. 2.16(a), we show the change in resource allocation and in Fig. 2.16(b),

we show the number of SLO violations as we change α. During this experiment, we

keep β = 0.3. We see that both smaller and larger values of α result in sub-optimal

resource allocations for TrainTicket and SockShop. This is because, for small α,

PEMA is too aggressive making many SLO violations (as seen in Fig. 2.16(b)) and

force to revert back to inefficient allocations. For high α, on the other hand, PEMA

is slowed down prematurely at inefficient allocations, although it suffers much fewer

SLO violations.

Next, in Figs. 2.17(a) and 2.17(b), we show the impact of change in β while

we keep α = 0.5. Similar to our observation for α we see that aggressive resource

reduction due to higher values of β results in sub-optimal resource allocation while

also suffering from many SLO violations. While PEMA is somewhat sensitive to both

α and β, we can set α and β for any system by tuning based on SLO violation. We can

take a conservative approach, start with large α and small β, and gradually change

their values keeping a close eye on the SLO violations.

2.4.4 Adaptability

Workload bursts. PEMA can seamlessly handle sudden changes in workload.

In Fig. 2.18, we show how PEMA handles workload bursts for SockShop by switching

the resource allocation to the workload range corresponding to the workload burst.

Here, we consider PEMA has already traversed through the resource reduction itera-

tions for all workload ranges. As shown in Fig. 2.18(a), we create two workload burst

37



0 10 20 30 40 50
Time (Min)

400

500

600

700

800

W
or

kl
oa

ds
 (R

PS
) RPS

5.5

6.5

7.5

8.5

9.5

To
ta

l C
PU

Total CPU Burst

(a)

0 10 20 30 40 50
Time (Min)

150
170
190
210
230
250
270

R
es

po
ns

e 
(m

s)

Response SLO Burst

(b)

Figure 2.18: Operation of PEMA with bursty workload in SockShop. (a) Workload
and CPU allocation. (b) Response time.
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Figure 2.19: Adaptability of PEMA to changes in CPU speed for SockShop. The
CPU speed change represents hardware or software updates that alters the resource
demand.

of 10 minutes where the workload shoots up from 400 RPS to around 750 RPS and

650 RPS. We see that PEMA quickly changes the CPU allocation to keep the response

time below SLO (in Fig. 2.18(b)). Note here that, since we update the resource al-

location every two minutes, PEMA can react to a workload burst lasting less than

two minutes. Nevertheless, we can adapt PEMA to respond to short-lived workload

bursts by reducing the resource update interval.
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Figure 2.20: Adaptability of PEMA to changes in SLO for SockShop. Dynamic SLO
can be used to trade performance for resource savings.

Operating environment. Our PEMA’s lightweight design enables adaptabil-

ity to operation condition changes. Such changes may lead to different response

times even when the resource allocation is not altered. We change our server’s CPU

clock speeds from 1.8 GHz to 1.6 GHz and 2 GHz. These changes mimic a real-

world scenario where a hardware or software change in the microservice alters the

resource allocation dynamics. While we make the clock speed changes, we use PEMA

to manage SockShop’s resource. A change in CPU frequency essentially changes the

resource requirement for satisfying the SLO. Fig. 2.19 shows the CPU allocation and

the corresponding response time as we change the CPU frequency. We see that PEMA

can successfully change the resource allocation to satisfy the SLO demonstrating its

capabilities to adapt.

Dynamic SLO change. In Fig. 2.20, we show that PEMA can also navigate

towards efficient resource allocation as we change the SLO. Dynamically changing

SLO can be a useful approach for applications that are willing to trade performance

for resource savings to meet long-term goals such as cost budget [41]. Dynamic SLO

essentially adds another control knob for managing the microservices application.
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Unlike existing ML-based microservice managements, which will need to retrain with

new SLO, PEMA can quickly adapt to SLO changes and tune the resource accordingly.

2.5 Related Works

Microservice autoscaling. Resource autoscaling has been extensively stud-

ied in the public cloud domain [17, 42–45]. The recent advancement of microservices

has attracted a similar interest in autoscaling of microservice-based applications in

academic settings [46, 47], as well as industrial settings [18, 28]. These autoscalers

implement rule-based approaches in resource management. For example, Kuber-

netes [28] uses 90-th percentile resource usage in recent samples to set CPU and

memory allocations with a 15% overprovisioning. Google Autopilot [18] uses 95-th

percentile for CPU and maximum for memory in the recent samples as a marker for

resource allocation in the upcoming interval. Alternative to the rule-based approach,

Google also uses ML-based autoscaling using a combination of reinforcement learning

and time series analysis [48]. [49] also proposes rule-based autoscaling based on CPU

and memory utilization. However, rule-based autoscaling requires deep application

knowledge to set up the thresholds that can vary with application. Meanwhile, [46]

proposes hybrid autoscaling based on analytical modeling using a layered queue net-

work.

SHOWAR [50], in spirit, is the closest to our design approach. It uses the

variance in historical usage for vertical scaling and a proportional-integral-derivative

(PID) controller for horizontal scaling. Nonetheless, SHOWAR still requires extensive

tracing from the CPU scheduler for its scaling decision. On the other hand, simi-

lar to our opportunistic resource reduction, [51] utilizes “resource deflation” where

preemptible virtual machines’ resources are dynamically controlled. However, while

40



resource deflation gives away transient resources to avoid preemption, we use resource

reduction as a mean to find efficient allocation by carving redundant resources.

SLO oriented resource management. In another line of work, ML-based

approaches are used to identify and mitigate root causes of SLO violations in mi-

croservices [12,20,25–27]. For example, Sinan [25] uses a neural network to estimate

short-term performance and a boosted trees model to estimate long-term performance

to make per tier resource allocation. Sinan allows SLO violations to identify corner

cases for resource allocation. Seer [27] requires fine-grained tracing for building its

model and SLO violating cases to train its deep neural network to identify QoS vio-

lations. AlphaR [12], on the other hand, uses neural graph networks to capture the

complex relationship between microservices and estimate application performance

for resource allocation. Despite their impressive results in capturing minute details of

microservices, they heavily depend on data and are slow to dynamically changing con-

ditions for microservices. In designing PEMA, we depart from using complicated ML

models and instead trade capturing microservice details for agility and adaptability

in resource management.

2.6 Concluding Remarks

In this paper, we proposed PEMA, an iterative feedback-based approach to

autoscaling microservices. PEMA is lightweight as it only requires the applications

end-to-end performance and microservice-level CPU utilization and CPU throttling

to navigate to efficient microservice resource allocation. Utilizing the lightweight

design, we also developed a novel approach of dynamic workload-ranging to make

workload-aware resource allocation with PEMA. Using three prototype microservice

implementations, we showed that PEMA can achieve a performance close to the opti-
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mum resource allocation and save as much as 33% resource compared to commercially

used rule-based resource allocation.

Limitations of PEMA’s current implementation. PEMA’s implementation

has several limitations that we plan to address in its future iterations. First, when

PEMA causes an unintentional SLO violation, it rolls back the resource configuration

in the next time step. Hence, the application suffers from bad performance during the

entire resource update interval (e.g., 10 minutes). PEMA can be improved by imple-

menting higher resolution performance monitoring (e.g., within 10 seconds), catching

the SLO violations early, and rolling back configuration to mitigate it. Further, PEMA

rolls back the configuration to the most recent configuration without SLO violation. It

does not take into account the degree of SLO violation. For instance, a QoS violation

where the response time is significantly higher than the SLO indicates that PEMA

should roll back the configuration farther into the past to allocate more resources.

On the other hand, while PEMA logs the resource allocation of all microservices and

response times in its allocation history database, RHDb, for rollback and exploration

purposes, it does not utilize this information in its decision. Finally, PEMA in this

study only considers CPU resource allocation meanwhile memory and I/O resources

allocation can also be important for microservices’ performance depending on the na-

ture of the application. Moreover, PEMA also does not explicitly address the impacts

and trade-offs among vertical (i.e increasing resource in one node) and horizontal (i.e.,

increasing the number of nodes) resource scaling.
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Algorithm 1 PEMA

Input: SLO (R), affinity for resource reduction (α), maximum resource reduction

limit (β), bottleneck utilization (U th
i ), and bottleneck CPU throttling time (H th

i )

for all microservices, exploration probability parameters A and B

Output: Resource allocation (x)

1: for each time-step t do

2: Performance metrics: Collect end-to-end response time (rt−1), CPU utiliza-

tion ut−1
i , and CPU throttling time ht−1

i .

3: Database update. Insert xt−1
i , rt−1, U th

i , and H th
i to resource allocation

history data base with key t− 1.

4: Handling SLO violation. If rt−1 > R, update resource allocation to config-

uration from the resource allocation database with minimum resource and no

SLO violation. Go to Line 11.

5: Updating bottleneck thresholds. For all microservices, update bottle-

neck thresholds for utilization, U th
i , and CPU throttling time, H th

i , following

Eqns. (2.6) and (2.7), respectively.

6: Exploration. With a probability pte defined in Eqn. (2.8), update resource

allocation, xt to a randomly chosen configuration from database without SLO

violation. Go to Line 11.

7: Resource reduction targets: Determine number of microservice for resource

reduction, nt, using Eqn. (2.3) and resource reduction target for each microser-

vice, ∆t using Eqn. (2.4).

8: Avoid bottleneck services: Get the set It of microservices that do not

exceed CPU throttling time threshold.

9: Microservice-wise augmentation: Build a new set I∗t from microservices

in It with an inclusion probability of pti defined in Eqn. (2.5).

10: Resource reduction: If |I∗t| > nt, uniformly randomly choose nt microser-

vices from I∗t, else choose all microservices from I∗t, and then update their

resource to xt−1
i ·∆t.

11: end for
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CHAPTER 3

Market Mechanism-Based User-in-the-Loop Scalable Power Oversubscription for

HPC Systems

3.1 Introduction

Motivation. Advances in high-performance computing (HPC) systems have

enabled scientists to perform large-scale computations quickly and efficiently. How-

ever, with the increasing computational requirement, HPC power consumption has

also increased tremendously. The top supercomputers currently consume power in the

megawatts range [52,53]. Massive power consumption remains a central challenge as

we move towards exascale and zettascale computing [54,55].

Addressing the significant power consumption of HPC systems requires the

adoption of energy-efficient techniques. Power oversubscription is a useful scheme to

increase utilization by fitting the HPC system with more computing resources than its

capacity. Power oversubscription has been widely adopted in hyperscale data centers

of the likes of Google, Facebook, and Microsoft [56–61], which oversubscribes by as

much as 20% [56]. Meanwhile, HPC systems are rife with oversubscription opportuni-

ties as these typically suffer from even greater underutilization. Approximately 30%

of the power in mid-scale HPC systems remain underutilized [62], while in large-scale

HPC systems, about 15− 40% of the power is never utilized [63]. This underutiliza-

tion, however, is not due to a lack of demand but due to the HPC’s highly specialized

usage. To that end, power oversubscription can reclaim unutilized power capacity and

allow HPC expansion without additional infrastructure investment.
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Limitations of existing approaches. Power oversubscription comes with

an unwanted pitfall of introducing the possibility of system overload (i.e., power

consumption exceeding capacity). Several recent studies propose “power-aware job

scheduling” where the HPC job scheduler allocates resources to keep the power con-

sumption within the power budget while also targeting various efficiency improve-

ments, such as increasing the overall system utilization, increasing throughput, and

reducing job runtime [63–69]. However, optimizing such job scheduling with a peak

power budget is a combinatorial bin-packing problem that is very hard to solve ef-

ficiently [70]. Moreover, the resulting power consumption from resource allocation

varies depending on the job’s characteristics. Not to mention, HPC jobs also go

through different phases that consume different amounts of power [65–67]. Hence,

power-aware scheduling faces the daunting task of estimating the power consumption

over the period of each job’s execution while also tracking phases of these jobs’ pro-

gressions. Furthermore, HPC managers trying to maximize the system’s performance

(e.g., throughput) also need to consider different jobs’ varying resource efficiency (e.g.,

work done per unit resource) during job scheduling. Hence, while existing approaches

can proactively avoid overloading an oversubscribed HPC system, they also add a

significant burden on job scheduling. More importantly, prior works on HPC over-

subscription do not incorporate the HPC users whose job performance is adversely

affected (because of power constraints) by oversubscription.

Our contribution. In stark contrast to proactive approaches, we propose a

“reactive” approach for managing oversubscribed HPC systems. In our approach, the

HPC manager allows the system’s power to go beyond the power capacity, causing

infrastructure overload. And when such an overload occurs, the HPC manager re-

duces the system’s power consumption to mitigate it. The rationale for this reactive

approach is that first, the HPC manager can quickly and reliably cutback the power
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utilizing existing power management techniques such as dynamic voltage frequency

scaling (DVFS) and hardware power capping (e.g., Intel’s Running Average Power

Limit (RAPL) [71]). Such power capping techniques are also available for modern

heterogeneous computing architectures with accelerators, such as the nvidia-smi

tool for Nvidia GPUs [72]. Second, we allow overloads by a relatively small margin

as the maximum overload depends on the level of oversubscription (e.g., 20%). With

such level of overloads, protective circuit breakers operate in the “long-delay” zone

and take several tens of minutes before tripping [73–75]. Meanwhile, HPC data cen-

ter cooling can also withstand these short-lived (HPC manager reacts to mitigate the

overload) overloads due to thermal inertia [76]. In fact, reactively handling power

overload is the norm in the cloud data centers [59, 77]. Therefore, we consider that

reactively handling power overloads is a safe approach for managing oversubscribed

HPC systems.

While reactively mitigating power overloads in HPC systems is a viable ap-

proach, the HPC manager still needs to decide how to best exercise the power re-

duction. The power reduction essentially translates into resource reduction (e.g.,

reduced CPU speed) for the active jobs executing in the system. Hence, overload

handling adversely affects the active jobs’ performance, and the HPC manager needs

to judiciously apply power capping for a graceful power reduction with the minimum

performance impact. This, however, brings us back to the challenges of job charac-

teristics profiling of power-aware scheduling and requires the HPC manager to know

the impact of resource reduction for every active job.

To avoid this burden on the HPC manager, we propose a market-based ap-

proach where the HPC users themselves determine the performance impact and ac-

tively participate in making the resource reduction decision during an overload. More

specifically, we propose MPR (Market-based Power Reduction), where the users sup-
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ply, in exchange for incentives/rewards (e.g., free HPC core-hours) from the HPC

manager, the necessary resource reduction for handling the overloads. The users use

a parameterized supply function to express how much resource they are willing to

reduce at what price (i.e., incentive per unit reduction). The HPC manager acts

as the market facilitator, and the market outcome determines which job will reduce

how much resources and what would be the incentive for the resource reduction. We

develop a static market and an interactive market for MPR. The static market of-

fers rapid market decision, while the interactive market guarantees socially optimum

power reduction with minimum performance degradation. We also develop strategies

that the user can adopt to participate in these markets.

Merits of our approach. ( 1 ) Our reactive approach frees the HPC sched-

uler from requiring job-wise power estimation and execution tracking. Instead, the

HPC manager tracks the system’s instantaneous total power consumption to detect

overload and uses MPR to reduce power consumption. ( 2 ) MPR brings the user in

the loop in managing an oversubscribed HPC system. In MPR, users can integrate

their own “perceived value” of performance (i.e., the same amount of performance

loss can be valued differently by different users) in the resource reduction process

- a user who values their performance more can ask for a greater incentive for re-

source reduction and vice versa. Such integration of user preference is not available

in any existing work on managing an oversubscribed HPC system. ( 3 ) MPR also

offers a highly scalable HPC management solution as the HPC manager no longer

needs to solve complicated scheduling problems with many variables (e.g., each job’s

resource allocation). Instead, she only decides the market-clearing price that ensures

the active jobs supply the target amount of resource/power reduction. ( 4 ) Finally,

by empowering users to influence the HPC system’s power consumption through the

market mechanism, we believe MPR’s user-in-the-loop approach can go beyond han-
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Figure 3.1: (a) HPC power architecture. Here, ATS = Automatic Transfer Switch,
UPS = Uninterrupted Power Supply, PDU = Power Distribution Unit. (b) CDF of
four real-world HPC cluster workloads [5].

dling power oversubscription. For instance, users can also assist in socially responsible

HPC management, such as cutting carbon emissions by doing less work with “dirty”

power with low/no renewable [78] and participating in demand response to improve

the grid’s stability [79].

Evaluation of MPR. We extensively evaluate MPR using several real-world

trace-based simulations using the performance profiles of fourteen different HPC ap-

plications. We demonstrate that MPR can effectively handle power overloads while

capturing the users’ willingness for resource reduction.

We show that, by participating in MPR, a user always gets more incentive than

its cost of performance loss, while the HPC manager enjoys orders of magnitude more

resource gain than her incentive payoff to the users. Finally, to demonstrate MPR’s

effectiveness in real life, we run experiments on a prototype HPC system and show

that MPR can effectively mitigate overloads due to oversubscription.
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3.2 Background

HPC power system. As illustrated in Fig. 3.1(a), HPC data centers typically

use a hierarchical power infrastructure [59, 60]. The utility power is delivered to

the data center through an automatic transfer switch (ATS) that switches its power

source to the backup generator if the utility power fails. The ATS feeds the UPS

(uninterrupted power supply) which is responsible for supplying power while the

generator warms up to takeover followed by a utility failure. The UPS typically needs

to supply power for two to three minutes. There could be multiple UPSs working in

parallel or active/redundant modes. For large HPC systems (e.g., 10-MW systems),

the power infrastructure can be divided into multiple pieces, each with dedicated

UPSs. The UPS powers the cluster PDUs (power distribution units) which supply

power to the server racks.

Power oversubscription. In our context, oversubscription is permanently

adding more servers than the HPC power infrastructure’s capacity allows. Each

layer of the HPC power infrastructure, from the server rack to the ATS/UPS, is

subject to capacity limits and can be oversubscribed. However, we focus on UPS-

level oversubscription while considering the cluster PDUs and racks have adequate

capacity. We choose this as UPS is typically the dominant contributor in a data

center’s per kilowatt capital cost for its power system [80, 81]. Oversubscribing an

existing HPC data center would mean that we add additional server racks connected

to an existing cluster PDU with increased capacity or a new cluster PDU connected to

the existing UPS. Cluster PDUs typically have a modular design, and we can increase

their capacity by adding more circuit breakers [82].

Opportunities and challenges of power oversubscription. Oversubscrip-

tion in the HPC data center is enabled by its low average utilization [63]. Fig. 3.1(b)
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Table 3.1: Capacity oversubscription in Gaia [6].

Oversubscription 10% 15% 20% 25%
Extra Capacity (core-hours/month) 144K 216K 288K 360K

Probability of Overload 2.5% 5% 9% 14%
Overload Time (hours/month) 17.8 35.5 68.62 101.3

Overloaded Capacity (core-hour/month) 1.25K 3.9K 8.9K 17.5K
Estimated Maximum Overload Payoff 115× 55× 32× 20×

shows the CDFs of the utilization of four real-world HPC clusters where we see that

∼5% capacity of Gaia [6], ∼20% capacity of Metacentrum [83], ∼55% of RICC [84],

and ∼65% of PIK [85] are rarely used. Even for the Gaia cluster with relatively high

utilization, oversubscription can be beneficial.

Table 3.1 shows a quantitative analysis of the benefits of different levels of

oversubscription on Gaia cluster considering the workload is scaled-up proportional

to the extra capacity. Here, the unit of one core-hour indicates the availability of one

HPC core for one hour. The extra capacity refers to the additional core-hours we

can add to the 2004-core Gaia system. We have 144K extra core-hours every month

at 10% oversubscription, going up to 360K core-hours at 25% oversubscription. The

probability of overload tells us how often the total power consumption goes beyond

the infrastructure capacity, and overload time gives us the total time the HPC system

stays in an overloaded state each month. To understand the impact of these overload

periods, we then calculate the total overloaded capacity, which indicates how many

core-hours are spent over the HPC capacity. In other words, overloaded capacity

tells us how many total core-hours we need to cut back every month to avoid these

overloads. It also reveals the most intriguing observation from this analysis that we

add far more core-hours capacity each month (e.g., 144K added vs. 1.25K cut at

10% oversubscription) than we have to cut back to handle the overloads. Finally,

we show the maximum payoffs we can afford if we pay all the added core-hours as
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payment to users for their core-hour cutbacks during overloads. For instance, at 10%

oversubscription, we can pay up to 115× of a user’s core-hour reduction.

There are compelling benefits of oversubscription in HPC data centers as the

HPC manager can add a significant additional capacity to the system. However, as

shown in Table 3.1, an oversubscribed HPC data center may occasionally get over-

loaded. While UPS circuit breakers can handle power overloads for tens of minutes,

sustained overloaded operation will affect UPS’s longevity [86,87]. More importantly,

however, the HPC data center’s cooling system cannot withstand overloads as long as

UPSs [88]. Consequently, even when adopting a reactive approach, an HPC manager’s

goal is to mitigate the overloads as soon as possible. In the next section, we formalize

the problem of handling these power overloads into an optimization problem, identify

the HPC manager’s challenges, and propose our market-based solution.

3.3 Handling Power Overloads in HPC

3.3.1 Problem Formulation

Let us consider that at any given time t, there are M(t) jobs running in the

HPC system resulting in a total power consumption of P (t) =
∑M(t)

m=1 pm(t, rm), where

pm(t, rm) is the power consumption attributed to job m running with resource rm.

Note that, instead of traditional approaches of server-wise power modeling (e.g., [66]),

here we do job-wise power modeling. The job-wise power model facilitates our market-

based design where HPC users (who submit the jobs) play an integral role and are

oblivious to how many servers are executing their jobs. Also, such a job-wise power

model can be easily extracted by the HPC manager by attributing server power to jobs

according to the job’s resource share (i.e., number of cores) on that server. In addition,

we are considering a unified aggregate power and capacity model for the HPC data
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center. However, as described in Section 3.2, large HPC data centers can have multiple

parallel power infrastructures, each connected to a dedicated UPS. Nonetheless, our

model can be seamlessly extended to these data centers by considering individual

infrastructure capacity Ci and aggregate power consumption Pi(t) for the data center’s

i-th parallel power infrastructure.

With HPC data center power capacity of C, a power overload occurs when

P (t) > C, and the HPC manager needs to intervene to handle this overload by

reducing the power consumption by P (t)−C. The power reduction target, P (t)−C,

needs to be met by reducing the power consumption of the running jobs. Reducing

power consumption is accomplished through the reduction of resource allocation. For

example, a CPU core slowed down to 90% of its regular frequency can be interpreted

as allocation of “0.9 cores”. Resource reduction to handle power overload leads to

performance degradation of the affected jobs. Hence, an HPC manager’s goal is to

minimize the overall performance degradation while still achieving the target power

reduction. We formalize this as the following optimization problem OPT (OPTimum

power overload handling)

OPT : minimize
δm

M(t)∑
m=1

Lm(δm) (3.1)

subject to

M(t)∑
m=1

P(δm) ≥ P (t)− C, (3.2)

where δm is the resource reduction for job m and Lm(δm) and P(δm) are the per-

formance degradation and power reduction, respectively, due to resource reduction

δm. Here, the optimization objective (3.1) is a scalar measure of overall performance

impact due to the overload, and the constraint (3.2) specifies the power reduction

requirement to mitigate the power overload.
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bm is the bid.

Challenges. A major challenge for an HPC manager in solving OPT is to

accurately determine the performance impact Lm(δm) for each running job when an

overload occurs. However, the user who submits the job can best estimate the poten-

tial impact of the resource reduction, both in terms of performance degradation and

its perceived impact. On the other hand, determining power reduction for resource

reduction, P(δm), is straightforward with established models for any adopted power

capping technique [65].

In this work, we decouple determining the jobs’ performance impact due to re-

source reduction from the HPC manager and engage the HPC users in the power

reduction decision. We enable users to express their affinity for contributing towards

meeting the goal of power reduction during overloads.

3.3.2 MPR: Market-Based Power Reduction

We propose a supply function bidding-based market mechanism, MPR, where

the HPC users participate in the power overload handling by agreeing to “supply”,

in exchange for incentives, the required power reduction through resource reduction
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of their jobs. At their own discretion, the users determine the level of participation

in MPR.

Supply function. In our market design, HPC users use a predetermined form

of supply function to indicate how much resource they can reduce at what level of

incentive. For a job m, its user provides the parameters ∆m and bm to form the

following parameterized supply function

δm(q) =

[
∆m −

bm
q

]+

, (3.3)

where ∆m indicates the maximum resource reduction from job m, bm is the bidding

parameter that determines job m’s affinity of resource reduction, and q is the incen-

tive/reward per unit resource reduction (e.g., one core of CPU resource reduction for

one hour). q can be interpreted as the “unit price” of the market’s product which

in our case is the resource reduction. [·]+ indicates that δm(bm, r) is non-negative,

meaning that in our market, no job is asked to increase its resource. A similar form

of supply function has also been utilized in prior work on electricity markets [89,90].

The supply function in Eqn. (3.3) indicates how much resource can be reduced for

job m if the HPC manager offers an incentive of q for each unit of resource reduction.

Fig. 3.2 illustrates MPR’s supply function for different bids that results in different

amounts of resource reduction for the same q.

Rationale for the choice of our supply function. While the form of

our supply function in Eqn. (3.3) is widely used, there are other supply functions,

for instance, a linear supply function [91], that can be used for the supply function

bidding mechanism. However, our choice is motivated by the fact that Eqn. (3.3)

captures the diminishing return on resource reduction, i.e., as we ask for more supply

of resource reduction (δm), we need to pay more incentive per unit reduction (q).

We see similar behavior in HPC applications (Fig. 3.7(b)), where as we increase the
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resource reduction, the performance degradation increases super-linearly. In addition,

our supply function in Eqn. (3.3) is also backed by theoretical performance guarantees

under reasonable assumptions [89,92,93].

Power reduction during overload. When an overload occurs, the HPC

manager invokes the market to reduce the power consumption of the running jobs.

Acting as the facilitator of the market, the HPC manager needs to set the market

“clearing price” q′(t), which is used as the basis to determine how much resource

reduction each running job needs to supply (i.e., δm(q′(t)) for job m) towards meet-

ing the total power reduction goal. Setting the market clearing price q′(t) can be

formalized as the following optimization problem MClr (Market Clearing)

MClr : minimize
q

M∑
m=1

q · δm(q) (3.4)

subject to
M∑
m=1

P(δm(q)) ≥ P (t)− C. (3.5)

MClr’s objective in (3.4) is to minimize the cost of handling the overload by minimizing

the total incentive payoff to the running jobs. The key distinction between OPT and

MClr is that the HPC manager in MClr no longer needs to determine the performance

impact Lm(δm) to set the resource reductions of the active jobs.

Soliciting bids and exercising the market. As part of the implementation

of MPR, we introduce two approaches towards how the bids (i.e., ∆m and bm) are

collected from the users and how the market clearing price q′(t) is set.

A static market: In the first approach, the bidding parameters ∆m and bm are

supplied to the HPC manager during job submission. The HPC manager invokes a

market instance when there is an overload and uses the already-received bids of all

active jobs. The HPC manager sets the market clearing price by plugging the bids
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into MClr. Since the bids remain unchanged during the market execution, we call this

approach MPR-STAT (MPR with static bidding).

An interactive market: In the second approach, the bidding parameters ∆m and

bm for job m are iteratively updated by the users after the HPC manager invokes the

market following an overload. First, the HPC manager declares an initial clearing

price q′0(t). Upon receiving the clearing price, users with jobs running in the system

send their bids. The HPC manager plugs the bids into MClr and determines the new

clearing price. The HPC manager sends the updated clearing price to the users, who

in turn send back their updated bids. This back-and-forth communication continues

until the clearing price converges to a stable value. The convergence of clearing price

(i.e., Nash equilibrium) is guaranteed if the users take the price set by the HPC

manager in each iteration and behave rationally by maximizing their net market gain

(Eqn. (3.7)) [89, 92, 93]. Since the clearing price is determined based on interactions

between the HPC manager and the users, we call this approach MPR-INT (interactive

MPR). We defer the qualitative comparison of these two approaches to Section 3.3.4.

3.3.3 User Bidding in MPR

A key step for enabling MPR’s performance-oblivious power reduction by the

HPC manager is collecting bids from the users/jobs. Our market mechanism is

designed to proxy the performance impact Lm(δm) using the supply function in

Eqn. (3.3). Hence, the bidding parameters need to be decided based on the per-

formance impact from the job’s resource (and hence power) reduction. Here, we

describe how an HPC user devices its bids based on its performance impact.

Cost of performance loss. We define Cm(δm) as the user-perceived cost of

performance degradation from δm resource reduction. The notion of cost enables HPC

users to integrate their own relative importance of different jobs in their bidding.
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Figure 3.3: (a) Performance at different levels of resource allocation. (b) Impact of
resource reduction. ExtraExecution = 100−Performance

Performance
. (c) Cost impact of resource

reduction. Cost = α · ExtraExecution with α = 1.

While the HPC users can decide how they want to quantify the cost at their own

discretion, in this work, we consider the additional work (i.e., increase in execution

time or “extra execution”) needed to finish the job as the cost of performance loss.

Considering L(x) to be the job runtime with a core reduction of x, we can generalize

the cost impact of resource reduction as

Cm(δm) = αm(Lm(δm)− Lm(0)), (3.6)

where α ≥ 1 is a coefficient that a user can tune to reflect its perceived cost of the

additional execution. α = 1 indicates that the HPC user does not add any surcharge

on the actual performance impact. Alternative to this linear cost and popularly

used in system research for performance cost is a “quadratic cost” function, i.e.,

Cm(δm) = αm · (Lm(δm)−Lm(0))2, where the cost of performance grows quadratically

with increasing performance loss.

As a concrete example, Fig. 3.3(a) shows the performance of XSBench applica-

tion [94] with different levels of resource allocation. Here, a core allocation of “1”

indicates the core is running at 100% speed. Next, in Fig. 3.3(b), we show the extra
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execution needed when the core allocation is reduced. In Fig. 3.3(c), we show the

cost associated with different levels of resource reduction using Eqn. (3.6) and α = 1.

Devising the reference cost for bidding. Our supply function is based on

the unit price of supply, i.e., payment for per unit resource reduction, and hence to

utilize the performance data for bidding we convert the cost of resource reduction

into cost per unit resource reduction as C ′m(δm) = Cm(δm)/δm. Using this equation,

the reference lines in Figs. 3.4(a) and 3.4(b) are derived from the cost of performance

shown in Fig. 3.3(c). For any amount of resource reduction (in the y-axis), from

the reference lines in Fig. 3.4, we can find a user’s actual cost of per unit resource

reduction (in the x-axis). In our context of bidding for supply, we can interpret this

cost reference curve as the upper limit on resource reduction without a loss (i.e., the

cost is greater than the incentive).

Bidding strategy. An HPC user’s net gain from market participation is the

payment it gets for resource reduction minus the corresponding performance degra-

dation cost it incurs. Hence, with the market clearing price q′, we can write the m-th

user’s net gain as

Gm =

Market payoff︷ ︸︸ ︷
q′ · δm(q′) −

Cost of resource reduction︷ ︸︸ ︷
Cm(δm(q′)) (3.7)

The bidding strategy for a user depends on what kind of market is implemented. For

MPR-STAT market, the users need to decide their bidding parameters, bm, without

any knowledge of the market clearing price, q′. Note that the bidding parameter

∆m depends on the HPC application’s behavior, and the user does not tune this

parameter during bidding. For instance, in XSBench we have ∆m = 0.7. In MPR-

STAT, a user cannot maximize its net gain Gm. Nonetheless, we propose a cooperative

bidding strategy where the bids are devised to achieve a non-negative net gain over

the entire price range. More specifically, in this bidding strategy, a user sets its
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Figure 3.4: User bidding strategy for market participation.

bidding parameters to keep its bidding curve δm(q) always below its reference cost

with the highest supply of resource reduction. We deem this a “cooperative” bidding

strategy as the HPC users offer their best resource reduction for handling the power

emergency. Fig. 3.4(a) illustrates the cooperative bid for XSBench application. To

better understand this bidding strategy for MPR-STAT, we also show a “conservative”

bid, where the HPC user is less willing to reduce power and bids for lower resource

reduction than its reference. We also show a “deficient” bid, where the HPC user’s

bid may result in a negative gain for certain clearing prices (for 0.2 ≤ q′ ≤ 0.8 in

Fig. 3.4(a)).

On the other hand, for MPR-INT market, the clearing price q′ is iteratively

updated. During each iteration, a user can plug in the clearing price into Eqn. 3.7,

and can find the value of bm that maximizes its net gain Gm. In this bidding strategy,

the user can maximize its market incentive. We illustrate this bidding strategy in

Fig. 3.4(b) for three different clearing prices.

The bidding strategy presented here relies on the estimation of performance

impact due to resource reduction. This performance estimation for HPC jobs, how-
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ever, is non-trivial and introduces additional hurdles on the user’s part. We offer a

qualitative discussion of such challenges of MPR in Section 3.3.6.

3.3.4 Properties of Our Market Design

MPR-STAT vs MPR-INT. The fundamental difference between MPR-STAT

and MPR-INT is the market agility, i.e., how quickly the HPC manager can deter-

mine the clearing price. While exercising the market in MPR-STAT, the HPC manager

has all the information it needs (i.e., the bids and the reduction goal) to handle the

overload and, therefore, can very quickly determine how much resource to cut back

from each job. Meanwhile, in MPR-INT, multiple rounds of back-and-forth commu-

nication between the HPC manager and the users are needed to reach a consensus on

the clearing price.

MPR-INT, however, offers theoretical guarantees on the optimality of the overall

performance cost [89, 92], and performs as well as OPT. In MPR-STAT, on the other

hand, the users devise their bids without any knowledge of the clearing price. Hence,

unlike MPR-INT, they cannot guarantee that the power reduction is achieved with the

minimum performance impact on the running jobs. MPR-STAT can still capture the

relative performance impact of different users’ jobs and consistently achieve better

cost performance than performance-oblivious power overload handling strategies.

MPR-STAT, due to its agility, is suitable where fast reaction time to power

overload is warranted. Meanwhile, MPR-INT can offer the best cost performance,

where the HPC system can sustain the power overload long enough for the market

to clear. Here, to ensure the safe handling of power emergencies, the HPC manager

can set a fixed timeout (e.g., 30 seconds) for MPR-INT’s iterations and take the last

price as the clearing price. MPR-INT also requires autonomous software agents who

send bids without manual user/human involvement. Such bidding agent implemen-
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tation is relatively straightforward as they require lightweight computation to find

the optimum bid for Eqn. (3.7). Also, to better accommodate MPR-INT, the HPC

manager can invoke the market early by predicting power overloads and estimating

the power/resource reduction goals.

Scalability. The HPC manager uses MPR’s market when a power emergency is

detected that needs to be mitigated by power reduction. To set the market clearing

price and determine job-wise resource reduction in MPR-STAT, the HPC manager

needs to solve MClr only once using the bids of the active jobs. Moreover, since MClr

has only one optimization variable q and the objective function is monotonically in-

creasing in q, it can be solved by finding the minimum, q′ = minq{q|
∑M(t)

m=1 P(δm(q)) =

P (t) − C} using a bi-section search. MPR-STAT can scale very well with a growing

number of active jobs. In our evaluation, we find that MPR-STAT can find the clear-

ing price in less than a second for even 30,000 active jobs (Fig. 3.10(a)). In contrast,

OPT has M optimization variables (i.e., number of jobs running in the HPC) with

exponentially growing problem size (e.g., 40+ minutes to solve a problem of 30,000

jobs).

MPR-INT, on the other hand, is by nature slower as it needs iterative commu-

nication between the HPC manager and the users. However, the time required for

MPR-INT mainly comes from the communication overhead as MPR-INT also solves

the lightweight MClr only once every communication round. Meanwhile, to deter-

mine their bids, the users need to solve even a simpler problem of maximizing Gm in

Eqn. 3.7 without any constraints. More importantly, the users devise their bids by

themselves in a distributed fashion. Hence, the growing number of users only adds

more parallel work while the HPC manager’s task (to solve MClr) in every communi-

cation round grows similar to MPR-STAT. The main scalability concern for MPR-INT

is how many communication rounds are needed for the clearing price to converge.

61



Because of our predefined form of the supply function, the convergence is guaranteed

with the user’s cost monotonically increasing with resource reduction [89, 92, 93]. In

our evaluation, we find that the number of iterations needed for clearing the market

for MPR-INT remains almost unchanged even when we increase the jobs from 10 to

30,000 (Fig. 3.10(b)).

3.3.5 Implementation of MPR

Detecting power emergency. MPR uses the HPC cluster’s real-time power

monitoring to identify when the power consumption exceeds the capacity and there is

an overload. MPR then determines the amount of power that needs to be reduced to

return the power at or below the capacity. To avoid declaring a power emergency for

transient power spikes, the HPC manager may set a minimum duration of overload

(e.g., 10 seconds).

Setting the market clearing price. The solicitation of bids and market

clearing is done following the adopted version of MPR. The HPC manager plugs in

the market clearing price q′ and every user’s bids (in case of MPR-INT, the bids in the

final iteration) in the supply function (Eqn. 3.3) to determine the user’s corresponding

resource reduction.

Executing resource/power reduction. The HPC manager reduces each

job’s resource allocation utilizing existing techniques such as slowing down the pro-

cessor using DVFS [95, 96]. During a power emergency, MPR also temporarily halts

starting any new HPC job execution.

Resuming normal operation. MPR resumes normal HPC operation when

it determines that lifting the power reduction will no longer violate the capacity.

Hence, MPR lifts the power emergency when the power consumption falls below the

capacity by at least the amount of power reduction. Here, the HPC manager can add
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Figure 3.5: Interaction between HPC manager and users in MPR.

a cool-down timer (e.g., 60 seconds) to avoid lifting a power emergency followed by

a momentary power dip only to declare an emergency again. The cool-down timer

also ensures a minimum time frame for payout to the HPC users participating in the

market.

Resource control mechanism. While MPR can be implemented with vari-

ous resource reduction techniques, such as power capping and node/core scaling, we

advocate using DVFS on CPU/GPU cores as it is ubiquitously available with rapid

and scalable execution. Moreover, DVFS has a more predictable impact on job execu-

tion time as it only slows down the execution (Fig. 3.16(b)). Hence, confining MPR’s

resource control knobs to DVFS (or a similar technique) also alleviates the hurdles of

performance modeling.

3.3.6 Challenges in MPR

Performance prediction for bidding. In MPR, the HPC users devise their

bids based on the estimation of the performance impact of resource reduction. Hence,

an integral part of MPR is performance prediction which remains challenging [65].

This paper mainly focuses on the user-in-the-loop handling of HPC oversubscription
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and treats HPC performance modeling as an orthogonal task. Nevertheless, we would

like to emphasize that MPR is not dependent upon rigorous and extensive performance

modeling. In MPR, HPC users express their performance impact through a predefined

form of supply function (Eqn. (3.3)), which is already an approximation of actual

performance impact (Fig. 3.4), allowing margin-of-error in performance prediction.

Moreover, HPC users, at their discretion, can intentionally raise their bids bm (e.g.,

conservative bid in Fig. 3.4(a)) to add even more room for estimation error to account

for uncertainties of the operating environment, such as interference between different

jobs. We evaluate the impact of model error on MPR in Section 3.5.4.

Market participation. Naturally, MPR’s user-in-the-loop design requires

HPC users’ willingness to actively participate in the market to supply the resource

reductions necessary to handle the overloads. While the market participation re-

quires additional user efforts (i.e., bidding), as opposed to prior studies on managing

oversubscribed HPC systems, MPR compensates users for the inevitable performance

impact of oversubscription. Hence, we believe there is a strong incentive for user par-

ticipation in MPR. We study the impact of user participation on MPR in Section 3.5.4.

Meanwhile, to encourage user participation in MPR and ease up their bidding pro-

cess, the HPC manager can take a more active role by accommodating discounted

job execution to assist performance modeling and hosting users’ bidding agents.

Market collusion. In theory, MPR’s design is susceptible to market collusion

where multiple HPC users coordinate and artificially inflate the reward/price for their

resource reduction. However, market collusion requires coordination among many

users to have enough market power to influence the clearing price. Hence, we believe

the efforts outweigh the incentives for market collusion in the HPC system.

Malicious users. Unlike self-serving market colluding users, malicious users

want to steal private/secret data and harmfully affect the HPC system. MPR does
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not add any new attack surface regarding data security. However, allowing users

to take an active role in HPC overload handling, MPR creates a new vulnerability.

By tracking when the market is invoked, a malicious user would know if the HPC

system is experiencing a power overload. The attacker can utilize this information and

launch “power attacks” [75, 97], where the attacker triggers power-intensive stage(s)

of their active jobs to intensify the overload by creating power spikes. However, such

power attacks cannot easily reach dangerous levels (e.g., HPC system/data center

shutdown [75]) as the HPC manager actively manages jobs’ resources (and hence

power capping) and can quickly thwart unwanted power spikes by “directly” reducing

the power of all users/jobs bypassing MPR.

Impact on the total cost of ownership (TCO). MPR affects the HPC’s

TCO in two ways - increase in HPC utilization and reward payoff to HPC users. The

infrastructure utilization will increase due to oversubscription affecting the cost of

electricity in TCO. Meanwhile, MPR rewards the HPC user for their market participa-

tion. The reward payoff will be a MPR specific addition to existing TCO calculations.

3.4 Evaluation Methodology

3.4.1 Simulation Settings for HPC

Workload traces. We use real-world workload traces for our evaluation. For

our core results, we use the workload traces from the Gaia cluster at the University of

Luxemburg [6]. The Gaia trace contains 51,987 jobs spanning a three-month period

from May 2014 to August 2014. This trace has been widely used in the literature and

referenced in a number of studies throughout the years to generate useful workloads
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Figure 3.6: Core allocation of the Gaia cluster [6].

(e.g., [98–100]). Fig. 3.6 shows the core allocation of the Gaia cluster with a peak

core allocation of 2012.

Power consumption. We convert the core allocations to power consumption

using the widely used power model, Power = Powerstatic + Utilization · Powerdynamic

[41], considering each core has a dynamic power of 125W and static power of 25W,

resulting in peak power of 301.8KW for Gaia. Utilization is calculated as core alloca-

tion divided by total available cores. Here, we consider that the power consumption

of different components, such as the uncore, DRAM, and storage power, are incor-

porated in Powerstatic and Powerdynamic. The per-core dynamic and static powers are

only estimations. Our simulation and analysis hold for other power models as well.

Job simulation. We use Matlab to simulate the HPC job execution by dividing

the entire simulation period into one-minute time slots. We get the start time, core

allocation, and runtime for each job from the workload traces. We keep a list of active

jobs with remaining runtimes. The list is updated at each time slot by adding new

jobs (if the system is not overloaded) and discarding completed jobs. For every active

job, we also track their core speeds. At the end of a time slot, the remaining runtimes

of all active jobs are updated based on their corresponding core speeds. To determine

how much work has been done for a given core speed, we use the performance models
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described in Section 3.4.2. We use the power model (Section 3.4.1) to convert the

core allocation to HPC power consumption and determine if there is an overload.

Oversubscription levels and power emergencies. For our evaluation, we

consider four levels of oversubscription thresholds at 5%, 10%, 15%, and 20%. With

x% oversubscription, overloading occurs if the power demand exceeds 100
100+x

of its

peak power consumption (e.g., 301.8 kW for Gaia). To avoid immediate relapse to

another overload, we set the power reduction target using an additional 1% buffer

as ∆P = P (t) − 0.99 · C. We use a 10-minute cool-down period before we consider

resuming normal operation by giving back the capped resources to the active jobs.

After the 10-minute cool-down, we resume normal operation if 0.99 ·C −P (t) ≥ ∆P .

Benchmark algorithms. We evaluate MPR against two benchmark algo-

rithms - OPT and EQL. OPT finds the optimum resource allocation by solving the

non-linear optimization problem that minimizes the total cost of performance loss of

all active jobs. OPT acts as the performance upper limit for handling the overloads.

EQL, on the other hand, is oblivious to the performance impact of resource change

and equally slows down all cores in the system to reduce power.

3.4.2 Simulation Settings for Users

Performance models. We utilize existing literature to model the performance

impact of power capping [65]. We collect the power vs. performance measurements

for eight applications that include CoMD- a molecular dynamics simulation application

that studies dynamic properties of various materials, XSBench- an application that

stresses system through memory capacity, miniFE- a proxy application for unstruc-

tured finite element solver, SWFFT- an application for cosmology and astrophysics,

SimpleMOC- a three-dimensional reactor simulation application), miniMD- a parallel

molecular dynamics code from Mantevo mini-application suite, HPCCG- a conjugate
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Figure 3.7: Performance models, cost models, and bidding references for benchmark
applications.

gradient proxy application, and RSBench- a transport application for Monte Carlo

neutron transport.

We convert the power capping values from [65] to core allocations by normal-

izing no power capping (290W) to the core allocation of “1”. Fig. 3.7(a) shows the

performance changes for resource allocation changes of our benchmark applications.

We see that different applications have different impacts on their performances when

their resource allocation is altered. We see that some applications, such as SimpleMOC,

SWFFT, miniMD, and XSBench, are more sensitive to changes in resource allocation than
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others. Here, we do not consider the impact of inter-core/node communication, which

is typically much less compared to the impact of power capping [66,67].

Next, in Fig. 3.7(b), we show the impact of the performance change in terms of

“extra execution” that these applications need to finish the same job due to a change

in their performance. In this figure, both the resource reduction and extra execution

have the same unit of time - if we consider resource reduction for one hour, then we

need the corresponding amount of extra execution cores for one hour as well.

Cost models. We consider the extra execution as the added “cost” for the ap-

plication when their resource is reduced. Then we use the cost model (Section 3.3.3)

to derive the cost. To model the cost of performance loss due to resource reduc-

tion, we use a logarithmic curve fitting on our costs calculated based on results from

Fig. 3.7(b). Our logarithmic fitting is cost = a log(b · x)− a, where x is the resource

reduction, and a and b are model parameters. Fig. 3.7(c) shows the cost of resource

reduction based on our logarithmic model.

Bidding references. Using the cost calculated in Fig. 3.7(c), we derive the

bidding references for our applications and show them in Fig. 3.7(d). Here, the price

of the bidding references is the cost of unit resource reduction. Since we use cores as

both the unit of cost and the unit of resource reduction, our price becomes unitless.

Application profiles. We devise eight application profiles using our perfor-

mance models, cost models, and bidding references. We uniformly randomly assign

an application profile to each HPC job we simulate. The application profile of a

job determines its performance impact due to core reduction and its bids in market

participation. We also scale up our per-core model with the core allocations of the

respective HPC job.
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Figure 3.8: Impact of oversubscription on the Gaia system and the HPC jobs. Gaia

has a capacity of ∼4.3million core hours over our simulation period.

3.5 Evaluation Results

3.5.1 Impact of Oversubscription

Capacity overloads. Figs. 3.8(a) and 3.8(b) show how often the system stays

in the overloaded state as we increase the oversubscription level. We see that at 5%

oversubscription, the system stays in the overloaded state less than 1% of the time.

However, as we increase the oversubscription level, the overload percentage grows

super linearly, indicating a diminishing return of oversubscription. All the algorithms

perform comparably to each other in terms of causing overloads.

Impact on jobs. In Fig. 3.8(c), we show the percentage of jobs affected by the

overloads. We consider a job has been affected by overload if an overload event occurs
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Figure 3.9: Comparison of benchmarks over 90-days simulation using Gaia trace.

when the job was in the active state, regardless of whether the job’s resource was cut

back or not to handle the overload. We observe that increasing oversubscription

affects more jobs. Note that, despite a greater percentage of jobs being affected

during the oversubscription, the performance impact on the jobs is not significant

(Fig. 3.9(b)).

Resource reduction. Fig. 3.8(d) shows the total resource reduction for dif-

ferent algorithms. Since the required resource reduction is dictated by the overloads,

all algorithms result in similar amounts of resource reduction.
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3.5.2 Benchmark Comparison

Performance cost. Fig. 3.9(a) shows the total cost of performance loss due to

resource reduction to handle overloads at different oversubscription levels. The unit

of cost is “core-hours”, indicating how much extra computing is needed to handle the

slowdown caused by the overloads. Naturally, the cost increases as we increase over-

subscription. Here, we see significant differences in algorithm performances, where

EQL suffers from significantly higher performance cost, while MPR-INT achieves cost

performance at nearly the same level as OPT. MPR-STAT, however, incurs notably

more cost than OPT. EQL’s higher cost is due to its performance-oblivious nature.

As shown in Fig. 3.9(c), EQL reduces as much resource from sensitive applications

(e.g., SimpleMOC) as other less-sensitive applications (e.g., RSBench) and incurs high

performance cost for the sensitive applications (Fig. 3.9(d)). Both OPT and MPR-INT

achieve a good balance in spreading the resource reduction among the applications,

reducing more resources from less-sensitive applications, and vice versa. MPR-STAT,

on the other hand, reduces much more resources from the less-sensitive applications

(e.g., RSBench) and does not reduce any resources from sensitive applications (e.g.,

SWFFT). This is because MPR-STAT uses static bidding from users where users have to

bid considering a wide range of prices and end up soliciting unnecessary conservative

bids for lower price ranges.

Application performance. Fig. 3.9(b) shows the average increase in runtime

(compared to the no oversubscription case) of only the jobs affected by the overload.

We see that there is less than 1% increase in average runtime for any algorithm. The

performance impact is very small as the overload periods are a small fraction of typical

job’s total execution time. Moreover, most overloads require less than 20% resource
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Figure 3.11: User rewards and HPC system’s gain from MPR.

reduction, for which, only sensitive jobs suffer a discernible performance degradation

(Fig. 3.7(b)).

We see that EQL performs worse than other algorithms, and causes a greater

increase in the execution time. We also see that MPR-STAT performs better than

OPT and MPR-INT on many occasions. This is because MPR-STAT heavily relies on

the less-sensitive jobs for reaching the target resource reduction. Nonetheless, the

takeaway is that overload handling does not significantly affect performance.

Scalability. Fig. 3.10 presents the solution times (i.e., time to determine the

resource reductions) of OPT, MPR-INT, MPR-STAT, and EQL for varying numbers of

active jobs on an iMac computer with Intel Core i9 processor and 128GB of memory.

The solution time increases for all the benchmarks as the number of active jobs
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increases (Fig. 3.10(a)). Note that, MPR-STAT demonstrates very good performance

compared to OPT for varying numbers of active jobs. The EQL benchmark achieves

the same level of performance as that of MPR-STAT, however, incurs a significantly

higher cost of performance loss compared to MPR-STAT (Fig. 3.9(a)). Note here

that, EQL’s increasing solution time is due to the “bookkeeping” (e.g., log each job’s

new CPU allocation) associated with an increasing number of active jobs. MPR-INT,

on the other hand, needs additional communication time for each round of iterative

bidding. We present MPR-INT’s solution time considering that each communication

round adds 500 milliseconds. Nevertheless, we see that MPR-INT can find the resource

allocation in less than 30 seconds even with 30,000 active jobs. Fig. 3.10(b) shows

the number of iterations needed for clearing the market for MPR-INT algorithm. The

iteration number remains almost unchanged with the number of active jobs.

3.5.3 Market Performance

User’s reward. Fig. 3.11(a) shows the reward users receive for their participa-

tion. The reward is calculated as a percentage of the cost incurred due to performance

degradation from resource reduction. As evident from the figure, users always receive

more rewards (>100%) than their cost of performance loss. Therefore, users will

always enjoy a net benefit for participating in MPR’s market for overload handling.

HPC system’s benefit. Fig. 3.11(b) shows the gain of the HPC manager

due to oversubscription and the reward earned by the HPC users. We see that the

HPC manager gains orders of magnitude more core-hours than she had to pay to the

users as the incentive/reward. Also, note that while the HPC gain increases with

oversubscription, the user incentive grows at a higher rate. It indicates that it is

not beneficial for the HPC manager to oversubscribe the system beyond a certain
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Figure 3.12: Impact of user participation on MPR. (a) Impact on performance cost.
(b) Impact on reward payoff.
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Figure 3.13: (a) Random estimation errors do not affect MPR. (b) Even when users
underestimate cost, they retain a net gain - more reward than cost.

level. Nevertheless, these results highlight the economic motivation for both the HPC

manager and HPC users to adopt MPR.

3.5.4 Sensitivity Study

User participation. If fewer users participate in MPR, for a given power

reduction target, each job needs to supply more resource reduction incurring more

performance costs, while the HPC manager will need to pay more rewards. Fig. 3.12

shows the impact of user participation on the overall performance cost and reward

for 15% oversubscription. We see increasing performance cost with decreasing user
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participation in Fig. 3.12(a). As shown in Fig. 3.12(b), the increase in users’ per-

formance cost is offset by an increase in reward payment from the HPC manager.

However, note that, even at 50% user participation, HPC gain remains two orders of

magnitude higher than the reward payment.

Error in the performance cost model. To understand the impact of errors

in the performance cost model, we study the actual performance cost when there are

random estimation errors of up to 30% in Fig. 3.13(a). We see that random estimation

errors do not affect the overall performance cost. We then study with a pessimistic

setting where users underestimate their true performance cost and show the results

in Fig. 3.13(b). We see that, while the cost increases with underestimation, even at

30% underestimation, the reward is two times the cost for MPR-INT and MPR-STAT.

3.5.5 Evaluation Under Different Settings

Different workload traces. We collect three other workloads (PIK, RICC,

and Metacentrum) for this study from [5]. The traces are representative of different

workload characteristics. The PIK trace is from a medium-scale HPC cluster over

a longer time duration (Fig. 3.14(a), RICC trace is from a large-scale HPC cluster

(Fig. 3.14(c)), and Metacentrum trace is from a small-scale HPC cluster (Fig. 3.14(e)).

The PIK trace contains 742,964 jobs spanning a three-year period from April 2009 to

July 2012. The RICC trace contains 447,794 jobs over a 5-month period from May 2010

to September 2010. The Metacentrum trace contains 103,656 jobs, which are collected

from January 2009 to May 2009. PIK trace, RICC trace, and Metacentrum traces have

peak CPU allocation of 6,963 cores, 20,4156 cores, and 528 cores, respectively.

Figs. 3.14(b), 3.14(d), and 3.14(f) show the cost of performance loss for the

workload PIK, RICC, and Metacentrum, respectively. The performance cost increases

with the increase in oversubscription. MPR-INT achieves cost performance almost the
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Figure 3.14: Performance comparison of MPR under different workload traces demon-
strating its effectiveness in various scenarios.

same as OPT for all traces. EQL suffers from much higher performance cost compared

to MPR-INT and OPT while MPR-STAT also incurs higher costs than OPT.

Heterogeneous system with GPU. To evaluate MPR using a heterogeneous

HPC system, we collect six different HPC applications’ power and performance data
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Figure 3.15: MPR under a heterogeneous system with GPUs.

on GPU nodes from [101, 102]. The resource-performance relation of the six appli-

cations is shown in Fig. 3.15(a). Jacobi and TeaLeaf are from [101] and runs on

NVIDIA P40 GPUs. Meanwhile, the GEMM and BT are from [102] running on NVIDIA

GTX 1070 and RTX 2080 GPUs. We use Gaia trace for this evaluation. We normalize

each application’s maximum power to “one core” allocation to maintain generality.

For instance, for Jacobi and GEMM, “one core” is when the power consumption is

225W and 200W, respectively.

Fig. 3.15(b) shows the overall performance cost under different levels of over-

subscription. The results are similar to our prior evaluation using a homogeneous

CPU-based system. MPR-INT performs at the same level as OPT, while MPR-STAT

incurs additional costs. EQL, in this case, performs much worse and cannot even pro-
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vide a feasible resource allocation at 20% oversubscription. As shown in Figs. 3.15(c)

and 3.15(d), this is because Jacobi and TeaLeaf suffer significantly more performance

loss under EQL due to resource reduction, while the other algorithms do not ask for

much resource reduction from these two performance-sensitive applications. These

results highlight that performance oblivious approaches will suffer significantly when

managing HPC applications with a diverse resource-performance relation.

3.5.6 Prototype Experiment

We run MPR on a prototype HPC cluster consisting of two Dell PowerEdge

servers with a total of 40 Intel Xeon CPU cores and 256GB of memory. We implement

four applications from our simulation study - CoMD, HPCCG, miniMD, and XSBench. We

run these applications each with 10 CPU cores. We use acpi-cpufreq driver for

Linux to control the CPU frequency for resource/power reduction [103]. Fig. 3.16(a)

shows the dynamic power of the applications as we change the CPU speed from 1GHz

to 2.4GHz. Fig. 3.16(b) shows the corresponding execution times normalized to each

application’s execution time at 2.4GHz. In both figures, we see that the impact of

CPU speed change is different for different applications. This supports the need for

MPR’s application/user-level control approach.

Next, we run two 30-minute experiments - one without MPR and one with MPR,

where we create overload conditions by setting the power capacity at 400W. As shown

in Fig. 3.17(a), MPR handles the overload by reducing the power by nearly 50W by

slowing down the CPU speeds (i.e., reducing resource allocation) of the applications.

In Fig. 3.17(b), we see that different applications reduce different amounts of resources

based on their performance impact and bids. We devise the bids for these applications

based on their performance impact (Fig. 3.16(b)) and follow the steps outlined in
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Figure 3.16: Impact of CPU speed change on dynamic power and execution time.

Section 3.3.3. Our prototype experiment, albeit on a small scale, demonstrates the

effectiveness of using MPR in handling power overloads due to HPC oversubscription.

3.6 Related Work

Power overprovisioning in the cloud and HPC systems. Power over-

subscription in hyper-scale/cloud data centers has been actively studied to overcome

infrastructure underutilization and save capital investment (e.g., [57,104,105]). How-

ever, power overprovisioning in HPC systems has been relatively less explored but

gaining traction in recent years. Works on HPC overprovisioning focus on tackling

the job scheduling to satisfy the ensuing operational constraints [63, 68, 106, 107].

Khemka et al. [108,109] develops dynamic resource management techniques to safely

oversubscribe heterogeneous distributed systems. Xiong et al. [64] discuss the interfer-

ence problem that can be introduced when colocating applications on oversubscribed

nodes. The authors then propose an application framework to colocate HPC appli-

cations by combining offline profiling, machine learning, and scheduling. Sakamoto

et al. [66] explores power-aware resource management techniques at scale in overpro-

visioned HPC systems. In [67], authors develop a hardware overprovisioning system

that allocates extra nodes to the system. The proposed system includes various
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Figure 3.17: Demonstration of MPR on our prototype HPC cluster.

strategies for dynamic allocation of power capping, various node on-off techniques,

and job scheduling techniques. Patel et al. [65] presents a power management frame-

work to improve the system throughput of a hardware-overprovisioned HPC system

while ensuring fairness among concurrently running jobs.

Mechanism design applications. Mechanism design is widely-used in many

real-life applications. Vickery Clarke Grove (VCG) auction is a sealed-bid auction

mechanism, where bidders submit their bids of items with unknown information about

other bidders. The mechanism rewards users for their true valuations of the items.

VCG auction has been widely used in different fields, including network communica-

tion [110, 111], crowdsourcing [112, 113], smart grid [114], among others. Although

VCG auction mechanism is efficient and incentive compatible, the mechanism requires

the users to reveal their cost functions, which are private function.

Supply function bidding is a cost-efficient mechanism that ensures optimality

at a Nash equilibrium. Compared to other mechanism models (e.g., VCG auction)

supply function is simpler and does not reveal the private cost function of the users.

Supply function has been applied in various applications, such as demand response [90,

91] and power emergencies [59].
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3.7 Conclusion

In this paper, we presented MPR, a market-based approach to managing over-

subscribed HPC systems. MPR enables HPC users’ participation in resource reduc-

tion in exchange for rewards. Using extensive real-world trace-based simulation, we

showed that both HPC users and HPC managers are highly incentivized for their

market participation. To the best of our knowledge, the solution outlined in this

paper is the first market-based approach to handle power oversubscription in an HPC

system via active user participation.
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CHAPTER 4

Enabling Workload-Driven Elasticity in MPI-based Ensembles

4.1 Introduction

The end of Dennard scaling together with the progressive waning of Moore’s

Law has caused an explosion of parallelism and a rapid increase of resource hetero-

geneity and complexity, making it much harder to run and reproduce multidisciplinary

scientific workflows [115]. To cope with increased complexity, resource manage-

ment needs to adapt to schedule diverse workflow components, including multi-scale

simulations, in-situ data analysis, and Artificial Intelligence and Machine Learning

(AI/ML) techniques [116–119], accounting for changing events, resource dynamism,

and costs [115]. To add complexity, each component may be mapped to a specific

on-node resource (e.g., GPU or dedicated accelerator) or even to a separate cluster

with the desired hardware capabilities [120].

The increase in system parallelism has encouraged a transition to ensemble

techniques for simulation and uncertainty quantification (UQ) [121]. Ensembles are

a core component of HPC workflows for drug discovery [122, 123], molecular screen-

ing [120], cancer research [124], inertial confinement fusion [125, 126], and weather

and climate models [127–129] among many others. At Lawrence Livermore National

Laboratory, one of the largest scientific computing centers in the world, nearly 50%

of jobs on large production clusters are ensemble-based [130]. HPC ensemble-based

workflows can adapt dynamically based on Machine Learning (ML) models and in-

corporate in-situ feedback while using Message Passing Interface (MPI) for intra-job

communication [124, 131], and be composed of tens [128, 132] to over 100 million
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jobs [126]. Ensemble-based composite HPC workflows present significant challenges

in deployment, portability, reproducibility, and automated management. Running

complex scientific workflows on systems of increasing size and heterogeneity with

resource dynamism compounds the challenges.

New economic forces are shaping the future of computing, leading to innova-

tions to manage system and workflow complexity. A new fragmentary economic cycle

creates specialized computing islands that bring fewer benefits to each other; commu-

nities that cannot use innovations financed and produced by market leaders will be

left behind [133]. Cloud computing is on pace to overtake all other computing sectors

by 2025, attaining nearly $1T in total revenue [7].

As cloud computing becomes a dominant market force, it drives innovation

in both hardware [133] and the software needed to manage the rapidly increasing

resource diversity, scale, and complexity of current and future systems.

Converged computing, or an environment that provides the performance and ef-

ficiency of HPC together with the automation, portability, and reproducibility of the

cloud, is a promising emerging area of computing that seeks to address challenges

faced by complex scientific workflows. K8s [30], the de-facto standard container

orchestration framework, provides native support for automation, reproducibility,

and elasticity. K8s’ vast (over 90,000) contributor base and widespread adoption

in the industry have made it the second largest open-source software project after

Linux [134, 135]. The scale of adoption and reliance on K8s makes it an excellent

choice for ensuring workflow portability.

From the HPC side of converged computing, Flux, a hierarchical, graph-based

resource management and scheduling framework, was created to solve portability,

throughput, and scheduling challenges faced by complex scientific workflows running

at exascale [130]. The Flux Framework features rich application programming in-
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terfaces (APIs) and a modular design that facilitates integration into cloud technolo-

gies [130,136,137]. Flux and K8s are well-matched technologies that, when integrated,

can bring the benefits of converged computing to workloads.

Creating a seamless HPC+K8s converged environment that supports HPC- and

cloud-oriented components of workloads requires K8s to adopt characteristics of HPC,

and HPC those of the cloud. Large, dynamic MPI ensemble-based complex workloads

running in static HPC allocations can experience long startup times, leading to re-

source under-utilization [131]. The ability to dynamically increase the size of an HPC

resource allocation and improve efficiency through autoscaling remains a highly de-

sirable [131] but an unrealized goal. There have been recent advancements in the

ability to run MPI-based workloads at scale using the automation of cloud-native

orchestration in K8s [138, 139], but unlocking efficiencies of elasticity also requires

autoscaling capability in HPC.

In this study, we develop and implement a workload-driven autoscaling strategy

that adjusts the number of nodes running an ensemble based on the length of a job

queue and the application median runtime. We perform a series of experiments to

measure the performance, overheads, and costs of running ensembles of four well-

known MPI-based proxy applications under static and autoscaled resources via the

Flux Operator running on Elastic Kubernetes Service (EKS) in Amazon Web Services

(AWS).

Specifically, we make the following contributions:

• Develop a workload-driven autoscaling strategy to change the number of nodes

running an MPI-based ensemble workload

• Analyze end-to-end runtime and dollar cost of ensembles in three configurations—

static allocation, full autoscaling, and workload-driven autoscaling
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• Demonstrate that workload-driven autoscaling costs less and reduces ensemble

runtime in comparison to fully automatic autoscaling and enables a trade-off

option that balances cost and runtime

• Measure and analyze overheads of operations such as cluster creation and re-

source scale-out operations

4.2 Background

4.2.1 Flux Framework

Emerging scientific workflows present throughput, portability, co-scheduling,

and job coordination challenges that cannot be addressed by current HPC resource

managers and schedulers [130].

The Flux Framework [140] supports hierarchical resource management, which

allows it to instantiate external resource manager instances (or itself) for portabil-

ity [140] and high throughput [130]. Its modular architecture and APIs facilitate

integration with the cloud [137, 138]. Additionally, the Flux Framework’s directed

graph-based resource model, sophisticated scheduling policies, and resource manage-

ment algorithms provide flexible representation to enable workloads to run efficiently.

Flux follows a leader-follower architecture. A Flux broker is a distributed mes-

sage broker that runs in each cluster node. A single dedicated leader is the root of

a tree-based overlay network to which other follower brokers connect. The brokers

can self-identify their roles via a shared system configuration file. This setup works

equivalently on HPC nodes as it does on “nodes” in the cloud, which are typically vir-

tual machine instances. Thus, in this paper, we use the terms “node” and “instance”

interchangeably.
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4.2.2 Kubernetes

There are several compelling reasons behind K8s’ widespread adoption com-

pared to other orchestration solutions. Its declarative management approach allows

users to define the desired state, and K8s automatically maintains that state and

recovers from failures. Although K8s typically runs as an infrastructure as a service

in the cloud, it can be deployed on premises. We describe several K8s components

relevant to the study in the following sections.

4.2.2.1 Pods

A Pod [141] is a fundamental component of application deployment, grouping

one or more containers. These containers share storage and network resources. To

ensure isolation between Pods, Kubernetes utilizes Linux namespaces and cgroups.

4.2.2.2 Horizontal Pod Autoscaler

The K8s Horizontal Pod Autoscaler (HPA) [40] is a dynamic control mechanism

that adjusts the number of Pod replicas in an application deployment or replica set

based on specified metrics or resource utilization. It periodically evaluates resource

metrics such as CPU and memory utilization or custom metrics. It then automatically

adjusts the number of Pod replicas within a deployment or replica set to maintain a

specified resource utilization target.

4.2.2.3 Cluster Autoscaler

The Cluster Autoscaler (CA) [142] is a tool that automatically adjusts the size

of a K8s cluster based on resource demands. It increases the cluster size when re-

source shortages are causing Pod scheduling failures and decreases it when nodes
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Figure 4.1: Example of HPC with cloud computing convergence used in our study.
The Flux Operator is deployed in a Kubernetes cluster, which deploys an HPC cluster
in K8s. The K8s cluster is managed by, e.g., AWS.

are consistently underutilized, ensuring resource utilization and improving efficiency.

Cloud providers provide cluster autoscalers for their respective resources, including

AWS. The CA operates by first identifying the autoscaling group designated for scal-

ing instances. It constantly monitors the K8s cluster for pending Pods. When it

identifies pending Pods, it assesses whether the autoscaling group’s configuration can

accommodate them, and if so, requests the cloud provider to increase the number of

instances.

4.2.3 Convergence of Flux and K8s

A K8s operator is a controller that uses domain-specific knowledge to automate

the entire lifecycle of complex applications within the K8s ecosystem. The Flux

Operator [143] was developed to deploy an entire Flux cluster on demand. When

deployed in Kubernetes, this Custom Resource is called a MiniCluster. Each K8s Pod

running a Flux broker is mapped to a node, and the network to connect the nodes

is provided by a K8s Headless Service. Pods are mapped one-to-one to K8s nodes to

manage hardware resources efficiently. Several features distinguish the Flux Operator
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from other MPI operators, such as interactive modes, queue monitoring, bursting

to external resources, and, most importantly, elasticity (ability to expand/retract

resources dynamically). The Flux MiniCluster can scale due to the Scale Subresource

[144], which increases the size of the underlying indexed Job that comprises the cluster

nodes. When new follower brokers appear (running pods) and register with the lead

broker, the Flux workload manager registers them as up nodes from a down state.

This ability to grow in size is essential for both autoscaling strategies described in

this work. Due to its unique design and utilization of K8s resources efficiently, the

Flux Operator consistently outperforms the MPI operator [145] by completing the

execution of an application at least 5% faster [143]. Figure 4.1 shows our adaptation

of the converged computing utilizing the Flux Operator and K8s.

4.2.4 Public Cloud

Public cloud providers, such as AWS, Google Cloud Platform (GCP) [146], Mi-

crosoft Azure [147], and IBM Cloud [148] offer scalable and elastic infrastructure as a

service (IaaS), enabling access to compute resources, storage, and services on-demand.

The scale and elasticity of the cloud model poses a challenge for the connectivity needs

for HPC applications.

Unlike HPC, cloud clusters are often geographically or spatially distributed. We

run our experiments on AWS, which uses the Elastic Fabric Adapter (EFA) [149–151].

EFA provides lower latency communications for HPC applications running across

instances. EFA uses a specialized operating system bypass mechanism to enable

HPC applications to scale on AWS [152]. To improve performance, AWS suggests

that EFA be used with a placement group. Placement groups [153] ensure low-latency

communication by launching instances within the same subnet, binding them to the

same Availability Zone [154], reducing data transfer time [155].
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4.2.5 MPI-based Ensembles

Ensembles are workloads composed of similar runs of an application, differing

by initial conditions or parameters and often based on MPI. Ensembles can number

tens [128, 132] to hundreds of millions [126] of elements or members. Ensembles can

have a fixed number of members or be dynamic [120,124,131], depending on the input

or parameter space to explore. They are frequently part of a larger complex workflow,

which may have AI/ML components or data analysis stages that create new ensem-

ble members. Ensemble-based workflows running near exascale can suffer under-

utilization due to startup delays caused by dependence on input generation [124,131].

Ensembles, AI/ML, and data analysis components of emerging workflows can benefit

from improving utilization via cloud techniques like autoscaling.

4.3 Methodology

Enabling elasticity in MPI-based ensemble workflows poses unique challenges.

For example, cloud autoscaling solutions are designed for microservices with variable

resource utilization and dynamic traffic. However, autoscaling solutions designed for

microservices are impractical for HPC applications, which often exhibit 100% CPU

utilization. Transitioning HPC to the cloud requires understanding various cloud

features such as instance acquisition time or the time to pull large container im-

ages. Additionally, setting up an HPC cluster in the cloud is complex, necessitating

automation. In the next section we address these challenges and discuss our contri-

butions to the autoscaling of ensemble workloads and the performance analysis on

running HPC in the cloud.
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Figure 4.2: Flow of fully automatic autoscaling and workload-driven autoscaling
mechanism. Given jobs that each require 4 nodes, a fully automatic strategy (top)
scales based on CPU utilization, often resulting in extra pods that cannot be uti-
lized. A workload-driven mechanism (bottom and marked area) adds nodes that fit
job requirements exactly.

4.3.1 Autoscaling

We studied the benefits of elasticity on MPI-based ensemble workloads using

two approaches. First, we examined the default autoscaling behavior of K8s with the

Flux Operator and MPI-based ensemble workloads. Then, we developed a workload-

driven autoscaling approach where the workload manager can launch instances based

on parameters such as the job queue size, time to get instances from the cloud, and

the median job completion time. We compared these mechanisms’ time and dollar

costs with the baseline approaches of no autoscaling.

Figure 4.2 shows the overall system flow diagram of the two autoscaling ap-

proaches. A K8s cluster with a fixed number nodes is deployed. Then the Flux

Operator deploys the application container to a pod on each node, adding Flux to

create a MiniCluster. The Flux MiniCluster is responsible for maintaining the Flux

Operator Pods cluster’s size and deploying one Pod per physical instance to maintain

the one-to-one mapping. Then, the MPI-based ensemble application is launched.

Each ensemble task (also referred to as a job) is submitted to the Flux lead bro-

ker. The jobs are scheduled by the Flux scheduler based on resource availability. If

resources are unavailable, jobs have to wait in the queue.
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4.3.1.1 Fully Automatic

This setup is fully automatic because no intervention or external input is re-

quired for the autoscaling decision. Fully automatic autoscaling involves the integra-

tion of two crucial components within the K8s orchestration system: the Horizontal

Pod Autoscaler (HPA) [40] and the Cluster Autoscaler (CA) [142].

HPA tracks the CPU utilization of all Pods managed by the Flux Operator and

increases the number of Pods to maintain a CPU utilization target. As Flux Operator

Pods occupy the entire resources of one node, the newly deployed Pods stay pending

due to the unavailability of the instances [143].

The CA considers the requirements of the pending Pods and finds matching

instances from AWS that can host these Pods. If it finds matching instances satisfying

user-provided constraints, it launches the instances from AWS by communicating via

the AWS cloud API.

Once these new nodes are successfully integrated into the K8s cluster and be-

come visible to the K8s control plane, the pending Pods are scheduled onto these

nodes. Finally, the Flux follower brokers are initiated on the newly added nodes,

allowing Flux to recognize and seamlessly incorporate these nodes into its cluster.

The Flux lead broker can then launch pending jobs from its queue.

4.3.1.2 Workload Driven

For our workload-driven mechanism, we devised a strategy that determines re-

quired resources rather than relying solely on automated response to CPU utilization.

Figure 4.2 shows the steps involved in the full and workload-driven autoscaling setup.

In the case of workload-driven autoscaling, instead of relying on HPA, we utilize

custom metrics and Algorithm 2.
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Algorithm 2 Workload-Driven Autoscaling

Input: Median job runtime X, job resource requirement R, instance acquisition time

I, max num. of instances Nmax

Output: Scaling Operation, num. nodes N at job completion event t

(SCALEUP/SCALEDOWN/NOACTION, Nt)

1: for each job completion event t do

2: Get num. jobs in the queue Jt, current num. nodes Nt

3: Rt = R(Jt − d IX e − 1) Num. nodes required for queued jobs

4: if Rt < Nt then

5: return SCALEDOWN by Rt

6: else if Rt == Nt then

7: return NOACTION, Nt

8: else

9: return SCALE UP min(Rt, Nmax)

10: end if

11: end for

First, the cluster is created with an initial number of instances, which in our

study was set equal to the number required by each job (8). The choice of an initial

cluster size of 8 instances allows one job to run immediately. Our approach described

in Algorithm 2 starts after jobs are submitted to the queue and executes at the

completion of each job. While the strategy can scale the number of cluster nodes up

or down, the parameters we selected in our experimental work caused the cluster to

scale up to the maximum number of instances (Nmax = 48) upon completion of the

first job.
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Recognizing the existence of pending Pods, the cluster autoscaler responds by

provisioning new EC2 instances, aligning with the demands signaled by the pending

Pods. Once the new instances are added to the cluster, the pending Pods are sched-

uled, and the Flux follower brokers in those Pods start executing and connecting to

the lead broker. Once the scheduler detects newly available resources satisfying job

requirements, the resource manager starts queued jobs on the resources.

4.3.1.3 Study of Performance Overhead

Along with developing an autoscaling strategy for ensemble workloads, we also

investigated the unique issues that can arise when running HPC applications in a

converged computing setting. For example, with elasticity, when we request instances

from the cloud there is a waiting time to provision the instances. Moreover, we also

need to understand how container pulling impacts application launch time and incurs

additional costs. Moreover, the container images built for HPC applications can be

larger than traditional cloud service-oriented applications. Requesting hundreds of

them from a central registry at the same time may create a bottleneck.

To automate the deployment of cloud infrastructure and measure these times,

we used a tool called “kubescaler” that uses the Kubernetes API and automates the

deployment of clusters, controls resource elasticity, and records timings of various

events that are important when running MPI-based ensemble in the cloud [156]. The

tool automates the deployment of an EKS cluster to aid in performing the scalability

study of EKS.

4.3.2 Selection of MPI-based ensemble

For our evaluation, we used four benchmarks from the CORAL2 [157] suite:

LAMMPS [158], AMG [159, 160], Kripke [161], and Laghos [162, 163]. CORAL-2
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benchmarks have been designed specifically for performance analysis of upcoming

supercomputers. LAMMPS (Large-scale Atomic/Molecular Massively Parallel Sim-

ulator) [158] is a classical molecular dynamics (MD) code that models a large set of

particles. The application can be run in serial mode, in distributed parallel mode

with MPI, in multithreaded mode with OpenMP, and in hybrid MPI and OpenMP

mode. AMG [159, 160] is a parallel multigrid solver that solves linear systems on

unstructured grids. Kripke [161] is a scalable 3D deterministic particle transport

code designed to study the impact of data layout, programming paradigms, and ar-

chitectures on implementation and performance. Laghos (LAGrangian High-Order

Solver) [162, 163] is a mini-application designed to solve the time-dependent Euler

equations for compressible gas dynamics.

We created an ensemble workload by running 20 identical jobs of each appli-

cation. These jobs are identical in their resource requests and in the initial condi-

tions or parameter space they explore. We also ran a larger ensemble with 100 jobs

and an ensemble with varying application problem sizes to study the effectiveness of

workload-driven autoscaling on ensembles with a greater number of jobs and variable

job runtimes, respectively.

4.3.3 Determining Utilization Threshold

To determine the appropriate target CPU utilization for HPA in a fully auto-

matic setup, we conducted a simulation considering that HPC applications typically

maintain a consistent CPU utilization close to 100%. Figure 4.3 shows the cor-

responding new instance counts for desired utilization thresholds. By varying the

target CPU utilization, it was observed that starting above 50% was necessary to

prevent unbounded behavior. When the desired metric value was set below 50%, the

HPA continuously doubled instance counts due to the rapid job launches on newly
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Table 4.1: Node and Cluster Setup
Module Attributes

Kubernetes Version V1.27
eksctl version base - v0.168 with customization for ARM

EFA enabled
Placement Group enabled

Instance CPU 64 ARM cores
Threads Per Core 1
Instance Memory 128 GB
Instance Network 200 Gigabit

Initial Cluster Size 8 nodes
Total Ranks 512

Ranks in each node 64

added nodes, resulting in a repetitive cycle. Conversely, setting the metric to 100%

prevented HPA from adding instances. As a balanced approach, a target metric value

of 80% was chosen for the experiments. Moreover, our experiments show that the

target metric value is also independent of application end-to-end completion time.

4.4 Experimental Setup

4.4.1 Autoscaling Study

This section describes the experimental design for testing a novel autoscaling

strategy in the context of deployment overhead such as time to completion and cost.

For each of a suite of MPI applications, we create a cluster that is either static (no

autoscaling) or dynamic (autoscaling). For each cluster we submit a set of jobs and

allow the jobs to run given static resources or with an autoscaling strategy. We

compare our workload-driven autoscaling approach against CPU utilization-based

autoscaling and static cluster sizes.
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4.4.1.1 Cluster Creation

Both static and dynamic EKS clusters are created using the eksctl [164] com-

mand line tool. We measured the cluster creation times for all autoscaling study

experiments. Once the cluster and associated resources are available, we set up the

Flux Operator using the kubectl command line tool. This deploys a “MiniCluster,”

an entire HPC cluster (Flux Framework) in K8s with lead and follower brokers con-

necting pods [143]. The job submission of each experiment is performed from the

lead broker pod. For a static cluster the size (8, 16, 32, or 64 nodes) is constant. A

dynamic or autoscaling cluster starts with a preliminary size of 8 nodes that is then

scaled up or down depending on application needs.

4.4.1.2 Ensemble Job Design

An ensemble is composed of a group of jobs, where each job occupies a specific

number of nodes. For all of our experiments, we chose a job size of eight nodes as a

baseline configuration. For these experiments, we used hpc7g.16xlarge nodes with

64 CPU cores. This choice was driven by cost and temporal feasibility – obtaining

hundreds of nodes in the cloud would have been time-consuming and costly. Thus, this

choice is practical, and strikes a balance between representing an HPC environment

and managing costs effectively. For the dynamic, autoscaling clusters, we chose to

match the initial cluster size to the job size to ensure greater resource utilization at

the onset of creation of a cluster. The workload-driven and fully automatic setups

add more instances to the eight nodes. Additional details of the node and cluster

setup are available in Table 4.1.
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Figure 4.3: HPA calculates new instances based on desired utilization value and
current utilization

4.4.1.3 Application Setup

Applications, autoscaling strategies, iterations, problem sizes, and parameters

are detailed in Table 4.2. Problem sizes were chosen explicitly to achieve a desired

runtime of 2-3 minutes for each job, and exact median runtimes were recorded for

each application to inform the strategy. For AMG, the largest possible problem size

that would run on the hpc7g.16xlarge instance without running out of memory

resulted in a runtime comparable to LAMMPS. Parameters were chosen for Laghos

that ensured a longer runtime to introduce runtime heterogeneity in the experiments.

For this set of experiments, each application was run at least 20 times. A

time span of a few minutes is short enough to run substantial repetitions to measure

variability, but not too long to add cost without additional benefit to our analysis. The

workload-driven autoscaling strategy (Algorithm 2) considers the median job runtime

and the time it takes to acquire new instances from the cloud, and longer median

runtimes do not impact behavior. Further, longer runtimes are more susceptible to

cloud maintenance and failures. Each job is launched with 64 MPI ranks for each of

8 nodes, resulting in 512 ranks in total.
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To test the applicability of the workload-driven algorithm to larger ensembles

and varying ensemble member runtimes we ran AMG experiments with an increased

number of iterations and varying problem sizes. These experiments are “Larger En-

semble” and “Runtime Variability,” respectively (see Table 4.2). For the varying

problem sizes, we generated parameters by sampling from a normal distribution, im-

posing an upper bound on the distribution to ensure successful job execution given

instance memory constraints. As an example, we set the mean to 150 for a particular

job parameter with a standard deviation of 5 and then constrained the values to fall

within the range of 140 to 160 by setting the lower and upper bounds. This design is

important to the study because ensemble jobs can exhibit variability in problem sizes

or parameters, leading to varying runtimes.

Table 4.2: Autoscaling Experiments S (static), F (fully automatic), W (workload-
driven)
Experiment Name Application Autoscaling-Strategy Ensemble Size Parameters

Autoscaling Study LAMMPS S8 S16 S64 F W 20 (problem size) 64x16x16
AMG S8 S16 S64 F W 20 (problem size) 160x145x70
Kripke S8 S16 S64 F W 20 --groups 500 --zones 64,64,64--procs 16,8,4

Laghos S8 S16 S64 F W 20 (mesh) -m cube 211 hex.mesh

(solver and mesh refinements) --ode-solver 7 -rs 4 -rp 1

(steps) --max-steps 160

Larger Ensemble AMG S8 S16 S64 F W 100 (problem size) 160x145x70
Runtime Variability AMG S8 S16 S64 F W 20 (problem size) varying (Section 4.4.1.3)

4.4.1.4 Pods and Container Timings

The time to pull an application container from a registry until the time it can

run an application is an important consideration when assessing experimental costs.

Further, in the context of autoscaling when containers must wait for a node allocation

to be scheduled, pending time is important to assess. We used the Kubernetes API

to record pod events (creation, scheduling, and ready) during all repetitions of the

automatic and workload-driven experiments. With the timing event data we can
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determine the time it takes for a Pod to be scheduled, then be pulled from the

registry and to enable it to run. Once all these steps are completed, the new Flux

broker Pods join the lead broker of the MiniCluster.

4.4.1.5 Autoscaling Protocol

For each experiment described in Table 4.2, the cluster is created and the Flux

Operator deployed (4.4.1.1), and the set of jobs (4.4.1.2) are submitted to run on

the Flux MiniCluster. For a static cluster, the jobs are allowed to run to completion

with no additional intervention. When autoscaling with the CPU utilization-based

(fully automatic) strategy, the cluster autoscaler adds nodes in response to pending

Pods based on CPU-utilization. The workload-driven autoscaler uses a metrics from

the Flux queue to change the number of nodes based on Algorithm 2. Within the

fully automatic setup, we opt for a target CPU utilization of 80% averaged across

all pods (Section 4.3.3). We run five repetitions for each of the static and fully

automatic experiments, and three repetitions for each workload-driven experiment.

Each experiment progresses until all ensemble jobs are completed, and then the cluster

is deleted.

To measure the impact on cost of downscaling with the workload-driven strategy

we ran two ensembles of 20 AMG jobs with and without downsizing. Workload-driven

autoscaling with downsizing enabled allows reduction of the number of nodes when

those nodes are no longer running jobs. Without downscaling, the nodes persist and

continue to incur costs until the cluster is terminated when all jobs are complete.

4.4.2 Scaling Study

We conducted a scaling study to assess the time and cost overhead of cluster

creation and deletion.
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4.4.2.1 Cluster Creation

The kubescaler tool [156] provides a means to create and scale Kubernetes

clusters on AWS (EKS) and Google Cloud. It provides a Python SDK that leverages

the AWS boto3 API for automating the process [165], which is similar to eksctl in

that it also uses AWS CloudFormation, an infrastructure-as-code service, to model,

provision, and manage AWS and third-party resources.

Kubescaler initially creates a CloudFormation stack to establish a Virtual Pri-

vate Cluster (VPC), which provides a logically isolated virtual network for launching

resources [166]. Subsequently, another CloudFormation stack is created to deploy a

K8s cluster. Finally, a third CloudFormation stack (a worker stack) is created to set

up a managed nodegroup responsible for managing EC2 instances for K8s. When

creating the worker stack, it generates an AWS Auto Scaling Group (ASG) in the

background and maintains the desired number of instances. To scale the instances

of the K8s cluster, the user can adjust the desired size of the CloudFormation stack.

The CloudFormation stack then updates the size of the underlying AWS ASG, which

in turn updates the EC2 instances. As the managed nodegroup is a part of the EKS

cluster, the nodes are launched, and the K8s controller can locate them. During

this process, Kubescaler keeps timings in seconds for each operation. These tim-

ings include the creation of instances in AWS during CloudFormation stack updates,

the time required for these instances to become ready to accept Pod requests from

Kubernetes, and the completion of CloudFormation stack updates.

4.4.2.2 Scaling Operations

In conducting the scale-out operations, we used the hpc6a.48xlarge instance

type with 96 cores and 384GB memory to match our autoscaling experiments. Af-
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Table 4.3: EKS cluster creation times (seconds) by size
Cluster Size Median Min Max Repetitions

8 1087.57 957.08 1230.02 14
16 1151.66 1009.05 1261.20 5
32 1052.12 1033.091 1180.450 4
64 1106.82 971.56 1212.55 4
128 1050.46 1010.97 1119.64 3
256 1280.22 1257.55 1300.012 3

Timings in seconds to create clusters with initial instance sizes of 8-256. Timings of size 8-64 were measured as part
of the autoscaling study. Size 128 and 256 tests were run to measure larger cluster creation time and did not include
autoscaling or application runs.

ter cluster deployment (Section 4.4.2.1) we systematically increased the number of

instances in increments of 4 nodes until a maximize size of 64 nodes, measuring the

time of each incremental scaleout. We repeated this procedure with increments of 8

and 16 nodes (each up to 64 nodes), providing us with cluster creation, deletion, and

scaling times for all increments. Understanding how long these processes take is an

important factor when designing an autoscaling experiment.

4.5 Results

In this section we present results of our performance studies of running MPI-

based ensembles in the cloud. We assessed the temporal and monetary cost of au-

toscaling ensembles (Section 4.5.1), along with cluster creation and deletion times

(Section 4.5.2). You can find all of our data and scripts to reproduce the experiments

here: https://doi.org/10.5281/zenodo.13247408 [167].

4.5.1 Autoscaling Study

4.5.1.1 Comparison of Autoscaling Strategies

Figure 4.4(a) shows the end-to-end runtime of all ensemble members for each of

the five strategies. Median runtimes based on application configurations and resources
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were determined to be 116, 110, 128, and 179 seconds each for each of LAMMPS,

AMG, Kripke, and Laghos, respectively. The workload-driven autoscaling ensemble

completion time is 4× less than the fully automatic time for AMG, and 4.7× less

for Laghos. The fully automatic configuration adds node counts that are incompat-

ible with the job requirements. For example, adding seven nodes when eight are

needed causes underutilization because seven nodes cannot be used for jobs. The

workload-driven strategy adds an integer multiple of the per-job node count require-

ment, ensuring that enqueued jobs will be started on the resources. Adjusting the

strategy to account for downscaling produces similar end-to-end median runtimes

(382.37 seconds) as without downscaling (383.97 seconds).

Table 4.3 shows the median, minimum, and maximum times required to create

EKS clusters ranging from sizes 8 to 256 nodes. The median time required to launch a

cluster does not depend on the number of instances up to 128 instances, and increases

by 22% from 128 to 256 instances. Figure 4.8(a) illustrates the time required for

creating an EKS cluster and its associated resources, while Figure 4.8(b) shows the

timings for deletion and associated resources.

4.5.1.2 Cost

Figure 4.4(b) illustrates the median costs of total end-to-end runtime and non-

runtime for various autoscaling strategy. For LAMMPS, the median runtime cost of

the static cluster with 8 nodes was $8.62; the workload-driven strategy was $15.32,

and the fully automatic scaling $10.68. The static cluster with 64 nodes produces the

lowest total ensemble completion time but incurs the highest cost. For our experi-

ments, the largest contributor to the costs are non-runtime costs, as shown in Figure

4.4(c).
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Figure 4.4: Comparison of MPI ensembles end-to-end runtime and costs in various
autoscaling strategies for each of a specific size of static (S), fully automatic (F ), and
workload-driven (W ) setups with 3 repetitions. End-to-end runtime is fastest across
applications for the static size 64 and workload-driven setups (a), however costs are
highest for the same static size 64 setup (b), primarily resulting from the non-runtime
costs for the setup (c).

The larger the initial cluster size, the greater non-runtime cost incurred. The

workload-driven approach incurred only a 1.43× more cost for a 3.24× lower total

completion time than the full autoscaling strategy in LAMMPS. With downsizing

enabled, we can save as much as 20% cost over workload-driven autoscaling without

downsizing.

4.5.1.3 Larger Ensemble

We assessed the performance of our workload-driven autoscaling strategy for

larger MPI ensembles. Figure 4.5(a) shows the end-to-end runtime of ensembles

with 100 members, whereas figure 4.5(b) shows the corresponding cost of running

the larger ensemble and non-runtime cost of the cluster, respectively. Figure 4.5(a)

demonstrates that workload-driven autoscaling outperforms static (except for static-

64) and fully automatic setup in terms of runtime and incurs only a small percentage

more cost than the static-8 setup.
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Figure 4.5: Total cost and end-to-end runtime of 100-member ensemble of AMG jobs
with fixed resource requirements. The majority of cost across strategies is incurred
during setup, and the temporal pattern (a) is consistent with smaller ensemble runs
in Figure 4.4(a).

4.5.1.4 Runtime Variability

Figure 4.6(a) illustrates the overall costs of running an ensemble of jobs with

greater runtime variability, which is controlled by varying the problem size (Section

4.4.1.2). While there is no strategy that is both fastest and lowest cost, workload-

driven autoscaling offers a balance between end-to-end completion time and cost, a

trade-off that we will discuss in Section 4.6.

4.5.1.5 Pods and Container Timings

We observed no significant differences in median registry pull times between

workload-driven autoscaling (50.1 seconds) and fully automatic strategies (50.02 sec-

onds). However, the median time for pending Pods was lower for workload-driven au-

toscaling (155.11 seconds) compared to fully automatic (158.27 seconds), with greater

variability (standard deviation - 11.85 and 3.28 seconds, respectively). The workload-

driven setup results in greater variability because the autoscaler system requests a
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Figure 4.6: End-to-end runtime (a) and total cost (b) of 20 runs of AMG with variable
job sizes and fixed resource requirements. Parameters are generated from a normal
distribution.

larger number of instances simultaneously, leading to longer wait times for some in-

stances to become available.

4.5.2 Scaling Study

4.5.2.1 Cluster Operations

The operations in this experiment start with creating the VPC and configuring

subnets, followed by cluster creation, and conclude with worker stack creation. Figure

4.8(a) depicts the timing for creating a VPC and worker stack or managed node group.

The worker stack creation time is measured to be constant. As seen in Figure 4.8(a),

the median time for cluster creation is approximately 550 seconds.

We also measure the timings of deletion of the same components upon EKS

cluster termination. Figure 4.8(b) displays the timing for deleting the VPC stack,

worker stack, and overall cluster. Similar to resource deployment, resource deletion

occurs sequentially. Cluster deletion typically takes less time than creation; however,

there are cases when cluster deletion may require more time.
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Figure 4.8: Timings of creating (a) and deleting (b) EKS clusters and supporting
stacks. “W”-worker stack, “C”-cluster creation

4.5.2.2 Scaling Out Operations

Figure 4.7 illustrates the timings of scale-out operations under different instance

increment sizes. Scaling out a cluster can be done in large increments less frequently

or in small increments more frequently. Since each scaling out operation accrues

additional time, selecting a scale out increment that matches the job requirements

and minimizes the number of scale out operations is suggested.
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4.6 Discussion

Ensembles composed of MPI-based applications are increasingly common in

HPC [120–129] and form a large percentage of HPC workloads at large centers like

Lawrence Livermore National Laboratory [130]. Ensembles running on static resource

allocations can suffer from underutilization due to staged workloads and long startup

times. The cloud provides native technologies such as autoscaling and resource dy-

namism to dynamically manage and provision resources, which can be used to im-

prove the utilization and efficiency of MPI-based ensemble workloads. Autoscaling in

the cloud has traditionally used simple metrics like CPU utilization that work well

for scaling stateless services. However, it is not clear if CPU utilization accurately

accounts for the resource needs of ensembles.

When the needs of a workload, including the number of ensembles, ensemble

members, and application parameters are known before runtime, deploying a fixed

number of resources that match the exact requirements is sufficient. However, a

different strategy is needed for dynamic ensembles, where the amount of work depends

on simulation values, statistical properties of output data, or the workload is steered

by AI/ML. We describe our key findings in the following subsections.

4.6.1 Novel workload-driven autoscaling strategy

We demonstrate that our workload-driven strategy outperforms both traditional

CPU-based autoscaling strategies, along with different choices of static cluster sizes

with four HPC proxy applications. Our results showed that the workload-driven

autoscaling outperforms both static and fully automatic autoscaling setups by up

to 4.7×, while incurring only 1.43× higher costs compared to the static setup. We

reproduced this result with a larger ensemble size and with varying problem sizes,
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showing the extensibility of the strategy. While our study focused on running MPI-

based ensembles, this general pattern can be extended to any kind of application

that requires a group of nodes to perform coordinated work concurrently, which also

includes AI/ML and cloud-native workloads.

4.6.2 Analysis of end-to-end runtime and costs

Another purpose of our study was to understand the overhead of necessary op-

erations for running MPI-based ensemble applications in the cloud with elasticity.

We measured the time required to launch an EKS cluster with varying numbers of

instances and found that the creation time does not depend on the requested num-

ber up to 128 instances, and increases by 22% from 128 to 256 nodes. Additionally,

we observed that there is a waiting period to obtain instances from AWS, and to

pull and execute containers. Consequently, it is essential to design a scale-out pol-

icy strategically to maximize utilization and minimize instance costs. Due to the

unknown contributions to non-runtime costs, it is essential for the community to

measure, analyze, and understand the component costs of deploying workloads on

cloud infrastructure.

4.6.3 Determining the impact of scale-out strategies

In a workload-driven autoscaling setup, we have the option of selecting scale-out

strategies, such as scaling out with fewer instances more frequently or scaling out with

more instances less frequently. We observe that scaling out by 16 instances proves

to be more effective because the less frequent scaling incurs lower waiting times and

thus translates to lower cost.

However, scaleup may result in under-utilization of allocation when some of

the additional instances are not needed. To address this, we introduced downscaling
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(scaling in) to our workload-driven autoscaling strategy. This addition saved us more

than 20% in costs compared to the prior version. Based on our findings, we conclude

that requesting more instances less frequently is more cost-effective.

4.7 Related Work

4.7.1 Autoscaling HPC Applications

Dynamic autoscaling of high-performance applications is a complex task that

involves challenges on multiple fronts. Typically, HPC applications are designed

to use a fixed number of resources that can not utilize elasticity provided by the

cloud [168,169]. Elasticity enabling API extensions with MPI V2.0 are proposed and

applied to an application with a prototype solution in [169]. Other approaches involve

checkpoint-restart mechanisms that lead to application termination and redeploy-

ment, which require data redistribution and impact performance [168]. Reinit [170]

and Reinit++ [171] support global-restart recovery and ULFM [172] provides MPI

fault-tolerance, but these techniques do not support full elasticity.

Substantial effort has been put into autoscaling workflows and dynamic resource

management of workflow stages. Liu et al. [173] propose an autoscaling framework for

ML workflows. Their work demonstrates that application performance can be gained

for ML workflows through auto-tuning the horizontal Pod autoscaler threshold by

monitoring and utilizing application run-time metrics like fluctuations in CPU uti-

lization [173]. However, as we demonstrated, such CPU utilization-based auto-tuning

mechanisms are ineffective in the HPC domain since these applications are designed

to maintain CPU utilization close to 100%. The paper [174] presents a novel autoscal-

ing strategy designed for scientific workflows in cloud computing environments. The
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strategy leverages spot instances for cost efficiency and employs a heuristic scheduling

method to optimize makespan while mitigating the impact of out-of-bid failures.

Finally, the KubeFlow project [175] provides the MPI Operator [145] and other

necessary tools to facilitate MPI-based applications. The MPI Operator bootstraps

MPI but does not provide queuing, resource management, or scheduling and struggles

to scale [139].

4.7.2 Autoscaling in the Cloud

There is much work on addressing resource management and autoscaling of

cloud applications. Some of the work focuses on improving the horizontal autoscal-

ing of web applications [42, 176–179], and some of it focuses on resource allocation

and quality of services [9, 12, 17, 25, 180–186]. K8s provides a horizontal autoscaling

mechanism based on the utilization threshold of various metrics such as CPU or Mem-

ory [40]. The authors of [176] also propose a rule-based autoscaling mechanism based

on CPU and memory utilization. The author of SHOWAR [177] uses the variance in

historical usage for vertical scaling and a proportional-integral-derivative (PID) con-

troller for horizontal scaling. Nonetheless, SHOWAR still requires extensive tracing

from the CPU scheduler for its scaling decision. However, threshold-based approaches

work best if there is a variable amount of resource utilization of the applications and

some relationship between utilization and performance. HPC applications do not

show such behaviors.

These works [9, 12, 25, 27] proposed various techniques and frameworks to find

the efficient resource allocation and quality of services for cloud applications. They

used machine learning and iterative techniques to identify the root cause of perfor-

mance bottlenecks and find the optimum resources for iterative applications. The
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above approaches are explicitly designed for microservices and can not be readily

applicable to MPI-based ensemble workflows.

Recently, AWS developed a cluster autoscaler module called Karpenter [187] to

assist autoscaling nodes for the EKS cluster. Karpenter provides several advantages

over the cluster autoscaler, such as supporting a full range of instance types across

availability zones and providing instances directly from AWS without a managed node

group. While Karpenter could have been used to perform autoscaling, the ability to

extend our work to other cloud providers was important. We choose not to use

Karpenter because it did not have support for additional providers at the onset of

this work.

To the best of our knowledge, we are the first to enable autoscaling for MPI-

based ensemble workflows.

4.8 Conclusion & Future Work

The work performed in this study provides valuable insights for running MPI

ensembles in the cloud. We started with a series of comprehensive tests to measure

the costs of deploying, managing, and running ensembles of MPI-based applications

within AWS EKS clusters. To improve upon traditional approaches toward CPU

utilization-based auto-scaling, we developed and implemented a workload-driven scal-

ing strategy that reduced end-to-end runtime by 3-5×. To inform the sizing strategy

for scaling out a cluster, we studied the costs and timings of resource scale-out based

on different node increments. While cloud infrastructures and cost models change

rapidly, our workload-driven scaling strategy, test methodology, and data presented

here provide valuable insights to inform future improvements in cloud workload de-

ployment. Since cloud technologies and their cost models evolve rapidly, it is essential
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to understand the interaction between HPC workload deployments and cloud infras-

tructure costs.

Our findings offer guidance to engineers, developers, and scientists running HPC

workloads in Kubernetes environments, but also emphasize the need for resource and

allocation elasticity in traditional HPC to reap the same benefits. Efficient resource

provisioning and workload-driven resource scaling are essential for improving perfor-

mance and cost-effectiveness.

In future work, we will focus on enhancing the workload-driven autoscaling

strategy by introducing machine learning techniques to adapt and update these strat-

egy parameters dynamically. We will improve upon the deployment and autoscaling

strategies performed here by testing advanced metrics such as inter-job dependency

representations, dynamic job lengths, variable resource requirements, and variable

instance acquisition patterns by AI/ML. Advanced analysis techniques can expose

further efficiencies and increase the performance of complex, dynamic workflows com-

posed of traditional HPC applications as well as cloud services and integrated AI/ML.
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CHAPTER 5

Conclusion

In summary, this dissertation contribute to advancing resource management

strategies across different computing paradigms, addressing the growing challenges in

cloud computing, microservices, and high-performance computing (HPC) systems.

First, the development of PEMA addresses the critical need for efficient resource

management in microservice-based cloud environments. PEMA ’s feedback-based ap-

proach offers a lightweight, scalable solution that ensures Service Level Objectives

(SLOs) are met while optimizing resource usage. This innovation is particularly rele-

vant in the context of cloud-native applications, where the demand for elasticity and

cost efficiency continues to rise.

Second, in the domain of HPC systems, the exploration of power management

strategies highlights the importance of energy efficiency as we move towards exascale

and zettascale computing. The proposed market-based power reduction mechanism

introduces a novel way to involve users in managing power consumption, thereby

enhancing system utilization without compromising performance. This approach not

only addresses the challenges of oversubscription but also provides a scalable, user-

centric solution for managing power in large-scale HPC environments.

Finally, the integration of cloud technologies with HPC systems, as explored in

the third article, demonstrates the potential for converged computing environments.

By enabling workload-driven elasticity in MPI-based ensembles, this research bridges

the gap between the automation and flexibility of cloud computing and the perfor-

mance demands of HPC workloads. The proposed autoscaling algorithm and its
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implementation within Kubernetes and Flux frameworks exemplify how cloud-native

principles can be applied to enhance the efficiency and scalability of complex scientific

workflows.

Together, these articles contribute to the broader goal of developing resource

management techniques that are not only effective and scalable but also adaptable

to the evolving needs of diverse computing environments. The innovations presented

here offer practical solutions for optimizing resource utilization, reducing costs, and

improving the overall efficiency of cloud and HPC systems, paving the way for more

sustainable and performant computing infrastructures in the future.
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