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ABSTRACT

Constructing Large Open-Source Corpora and Leveraging Language Models for

Simulink Toolchain Testing and Analysis

Sohil Lal Shrestha, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Christoph Csallner

In several safety-critical industries such as automotive, aerospace, healthcare,

and industrial automation, MATLAB/Simulink has emerged as the de-facto standard

tool for system modeling and analysis, model compilation into executable code, and

code deployment onto embedded hardware. Within the context of cyber-physical

system (CPS) development, it is imperative to both rigorously test the development

tools, such as MathWorks’ Simulink, and understand modeling practices and model

evolution. The existing body of work faces limitations primarily stemming from two

factors: (1) contemporary testing methodologies often prove inefficient in identifying

critical toolchain bugs due to a paucity of explicit toolchain specifications and (2)

there exists a pronounced scarcity of a reusable and publicly available corpus of

Simulink models for research.

In response to these challenges, we first pioneered the use of language mod-

els for random Simulink model generation by both training and fine-tuning (large)

language models such as LSTM and GPT-2 on sample Simulink models. Second,

we meticulously curated the largest collection of Simulink models: SLNET, which is

vi



redistributable and contains detailed metadata. In addition, to encourage research

on Simulink model evolution, we have curated EvoSL, a dataset of 900+ Simulink

projects that has over 140k commits. Leveraging these datasets, we have systemat-

ically replicated previous studies, corroborating and/or refuting prior findings. As

a further aid to the research community, we have developed ScoutSL, an open-

source search engine for Simulink models. This tool simplifies the process of sampling

Simulink projects from open-source domains, addressing the limitations of popular

code hosting platforms that lack Simulink-specific filtering attributes. ScoutSL has

already indexed over 100k Simulink models sourced from 18k projects.
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CHAPTER 1

Introduction

MATLAB/Simulink is one of the popular toolchain for model-based design and

it is widely used across a multitude of safety-critical domains [10–12]. The toolchain

serves dual propose, primarily facilitating the prototyping of cyber-physical systems

including design and simulation of such prototype. Moreover, it enables generation

of embedded code through the prototypes meant for deployment to the target hard-

ware. In light of this significance, it is important to develop measures to eliminate

defects from the toolchain such as silent introduction of bugs in the executable due

to incorrect compilation.

In software engineering, there are a number of ways to find bugs. For instance,

one could try to formally verify the entire Simulink toolchain. Unfortunately, such

formal methods require formal specifications which is not publicly available for MAT-

LAB/Simulink toolchain, which can be partly attributed to the commercial nature

of the tool. Even in the hypothetical scenario where such specification are available,

formal verification of toolchain such as MATLAB/Simulink will be incredibly expen-

sive as it spans across millions of lines of code and has a rapid release cycle occurring

twice every year [13]. Also, toolchain testing suffer from test oracle problem similar

to other software systems [14].

As formal verification is not feasible, prior works have explored in the direction

of randomized differential testing [15–17]. Coined by McKeeman [18], randomized

differential testing entails generation of random, valid test cases. These randomly

generated test cases are then used to evaluate comparable programs, and any differ-
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ences in the results may indicate the presence of bugs in one of the programs. In

scope of Simulink toolchain testing, CyFuzz [17], first work that adapted randomized

differential testing for Simulink, has a random model generation component which

generates random, valid Simulink models which is then fed to its differential testing

component. The differential testing component simulate (i.e. compiles, links and sim-

ulates) the model under different toolchain configurations [19–21]. Apart of handful

of built-in library support, CyFuzz was inefficient in generating valid Simulink mod-

els as it initially generates models by randomly connecting blocks, often resulting

invalid models and then iteratively addresses the issues until Simulink can success-

fully compile and simulate the models. The subsequent work, SLforge [22], leveraged

free-form specification from the Simulink vendor’s public webpage to guide the model

generation that significantly reduce the time it took to generate valid models. On

top of it, it also performed an exploratory study of 391 freely available Simulink

models to prioritize the key model characteristics that realistic model is likely to

have. The approach significantly improved the valid model generation rate as well

as the efficiency of generation. SLforge built a parser to automatically incorporate

the free form specifications to its model generator component but due to the parser’s

limitations, it could only collect parts of some specification. Furthermore, despite sig-

nificant research and engineering investment, SLforge need to manually update the

tool, whenever MathWorks updates model validity rules.

As SLforge is tightly coupled with Simulink, in this dissertation, we first pro-

posed an alternative to random Simulink model generation by leveraging natural lan-

guage processing and deep learning based methods. Random program generation for

compiler testing using deep learning has gained some traction due to advent of neural

language models where researchers have mainly focused on textual programming lan-

guage such as C, OpenCL [23, 24] (these programming languages have specifications
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publicly available). In natural language processing (NLP), language modeling is the

task of predicting the next word (or tokens) conditioned in a set of previous words (or

tokens). In the literature, there are series of advancement on how to learn language

models starting from traditional n-grams models to current transformer based neural

network architecture [25, 26] capable of capturing longer sequential structure of the

text. In this dissertation, we first used Long Short Term Memory (LSTM) network

to learn a language model directly from sample Simulink models (Chapter 2). The

work, dubbed DeepFuzzSL [27, 28], reported high valid model generation rate i.e.,

90% valid models on par with the SLforge, and found 2 confirmed bugs.

As the deep learning models typically require large number of training sam-

ples to generalize and no such large training corpus of Simulink models were readily

available at the time, in DeepFuzzSL, we trained DeepFuzzSL with SLforge-generated

Simulink models. Hence, DeepFuzzSL is inherently limited in terms of the validity

rules it can learn from and generate. To overcome the limitation, the relatively nascent

approach in NLP is transfer learning. Transfer learning involves pre-training the neu-

ral network on a task that has abundant training samples and then fine-tuning it in a

related target task. The advent of transformer network accelerated the development

of transfer learning based approach in NLP. Our SLGPT [29] (Chapter 3) tool used a

pre-trained transformer based neural network, Generative Pre-trained Transformer-

2 (GPT-2) [30] and finetune it on sample Simulink models. We also automatically

mined open-source Simulink models to gather real world third party Simulink models

to finetune GPT-2 in addition to using SLforge-generated models. In our experi-

ments, SLGPT generated Simulink models were more similar to open-source models

and it found a super-set of toolchain bugs DeepFuzzSL found.

The absence of corpus of open-source Simulink models has been a limiting fac-

tor hindering application of deep learning techniques. Also, understanding Simulink
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modeling practices and its key characteristics has been critical to guide the random

model generator in SLforge. Recognizing the dearth of a centralized corpus for the

research community to do empirical study, Chowdhury et al. [31] manually collected

over 1,000 freely accessible Simulink models. The corpus, while a step towards the

right direction, suffer from issues such as scalability, inconsistencies, missing details

such as metadata and were, at best, modest in size. Addressing the shortcomings of

previous corpora, we built SLNET [32], which is 8X larger than prior corpora (Chap-

ter 4). SLNET is fully self-contained including its metadata, redistributable and

stored in Zenodo for long term access and storage. Further, we have automatically

collected SLNET from open-source domain and thus, the accompanied collection tool

can be used to enlarge SLNET as projects become available in open-source domains.

In a literature review, Boll et al. [33] found limited number of empirical Simulink

research to be replicable in theory. They raised concerns about the low availability of

research tools and experimental subjects (e.g, Simulink models), which severely hin-

dered the replication and reproduction of existing work. To investigate such claims, we

performed a thorough replication study of large-scale empirical research of Simulink

on SLNET (Chapter 5). Our replication study highlighted several insights on docu-

mentation issues, incomplete replication packages and inconsistencies attributable to

human error and bias. We also confirm and contradict several prior findings along

providing key evidence on usefulness of dataset such as SLNET for research including

model evolution.

One of the highlight in our replication study was the projects in SLNET can en-

able model changes or evolution study. However, the prior corpora, including SLNET,

did not directly support such studies as they only contain a snapshot of the projects.

Given much of the open-source projects are code dumps, it is challenging to get

relevant projects for the evolution study. Thus, we curated EvoSL (Chapter 6), a
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collection of 900 projects, consisting over 140,000 commits, mined using automated

tools and scripts. Similar to SLNET, our new evolution study focused dataset is

self-contained and redistributable. To further gauge the usefulness of corpus such

as EvoSL, we replicated a study that analyzed the changes of closed-source indus-

trial models. Our replication effort show that much of the original findings can be

observed on the open-source models. We hope that both our dataset, SLNET and

EvoSL, would allow the research community to develop hypothesis that can be tested

easily than in an academic-industrial collaboration.

To further ease sampling of Simulink projects from open-source domains, we

built a web based search engine, called ScoutSL [34] that allow users to search for

relevant Simulink models using text-based as well as model and project metrics based

attributes. ScoutSL has indexed over 100,000 Simulink models sourced from 18,000

Simulink projects. The search engine’s key features is backed by the survey among

Simulink researchers. ScoutSL is the first search engine specifically designed to search

for Simulink models with key features not supported by any other search engines.

To summarize, the dissertation makes the following contributions:

• We present an alternative approach to generate random valid Simulink models

where we directly learn from sample Simulink model files. To the best of our

knowledge, DeepFuzzSL and SLGPT are the first work that employs LSTM and

transfer learning to automatically generate Simulink models to test Simulink

toolchain (Chapter 2 and 3).

• To encourage research on Simulink, we have curated two large dataset of Simulink

models and projects, SLNET and EvoSL . Both the dataset and the tools used

to build the dataset are open-source. We hope that our dataset would help

research to test their hypothesis more easily than in an academic-industrial col-
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laboration which may lead to faster progress and promote open science (Chapter

4 and 6).

• Our replication studies (Chapter 5 and 6) have uncovered several issues with

existing empirical research while also providing evidence of usefulness of open

source projects for various research.

• Our search engine, ScoutSL (Chapter 7), is first of its kind supporting search

queries targeted towards Simulink attributes that may enable researchers to

sample relevant Simulink projects for their research. Using a third-party pro-

jects/models in the research may reduce bias in the evaluation.

1.1 Author Contribution

The chapters in this dissertation are accepted publications. This section intro-

duces the chapters along with the co-author contributions:

1.1.1 Chapter 2: DeepFuzzSL: Generating Simulink Models with Deep Learning

to Find Bugs in the Simulink Toolchain

Proceedings: 2nd Workshop on Testing for Deep Learning and Deep Learning

for Testing (DeepTest). 2020

Authors: Sohil Lal Shrestha, Shafiul Azam Chowdhury and Christoph Csallner

Dr. Csallner supervised the entire project shaping the research direction, re-

viewing the research questions and experimentation setup. Shafiul Azam Chowdhury

provided valuable feedback throughout the project and implemented one of the pre-

processing step of DeepFuzzSL. I was responsible for designing and analyzing the

experiments, and implementing core framework of DeepFuzzSL tool.
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1.1.2 Chapter 3: SLGPT: Using Transfer Learning to Directly Generate Simulink

Model Files and Find Bugs in the Simulink Toolchain

Proceedings: 25th International Conference on Evaluation and Assessment in

Software Engineering (EASE). 2021

Authors: Sohil Lal Shrestha and Christoph Csallner

Dr. Csallner supervised the entire project and provided continuous feedback

developing the research questions and experimental setup. He also helped to improve

the quality of paper. I was responsible for designing and implementing SLGPT along

with running experiments and analyzing the results.

1.1.3 Chapter 4: SLNET: A Redistributable Corpus of 3rd-party Simulink Models

Proceedings: 19th International Conference on Mining Software Repositories

(MSR). 2022

Authors: Sohil Lal Shrestha, Shafiul Azam Chowdhury and Christoph Csallner

Dr. Csallner supervised the entire project from designing the corpus to denois-

ing the corpus and strengthened the quality of the paper. Shafiul Azam Chowdhury

analyzed the initial collection to remove license restricted projects. I was responsi-

ble for implementing tools for automatic collection of the corpus as well as metric

extraction and analysis.

1.1.4 Chapter 5: Replicability Study: Corpora For Understanding Simulink Mod-

els & Projects

Proceedings: 17th International Symposium on Empirical Software Engineer-

ing and Measurement. 2023

Authors: Sohil Lal Shrestha, Shafiul Azam Chowdhury and Christoph Csallner
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Dr. Csallner provided valuable feedback that was helpful to shape the research

questions and avoid experimental setup pitfalls. He significantly improved the paper’s

quality. Shafiul Azam Chowdhury provided valuable feedback throughout the project

and helped answer one of the research questions. My contribution includes developing

replication and analysis tools, analyzing the results and highlighting the key insights

along with communicating with the author’s of studies to ensure that the reproduction

and replication are fair and consistent.

1.1.5 Chapter 6: EvoSL: A Large Open-Source Corpus of Changes in Simulink

Models & Projects

Proceedings: 26th International Conference on Model-Driven Engineering

Languages and Systems. 2023

Authors: Sohil Lal Shrestha, Alexander Boll, Shafiul Azam Chowdhury, Timo

Kehrer and Christoph Csallner

Dr. Csallner and Dr. Kehrer supervised the entire project and helped improve

the quality of the paper. Dr. Csallner helped with formulating the research questions

along with researching and reviewing centralized location to host EvoSL. Alexander

Boll and Shafiul Azam Chowdhury analyzed the project’s license file to ensure EvoSL

is redistributable. Alexander Boll and I were involved in communicating with the

original authors to ensure consistency in the replication we did. Besides communica-

tion, I was responsible for building tools to curate the dataset and its metrics along

with analysis.

1.1.6 Chapter 7: ScoutSL: An Open-source Simulink Search Engine

Proceedings: 26th International Conference on Model-Driven Engineering

Languages and Systems. 2023
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Authors: Sohil Lal Shrestha, Alexander Boll, Timo Kehrer and Christoph

Csallner

Dr. Csallner and Dr. Kehrer supervised the entire project shaping the research

direction and improved the paper. Alexander Boll conducted the user survey that

included shortlisting relevant researchers, building survey questions, collecting input

from them to visualize the survey responses. I designed and built the ScoutSL tool

interface, its offline and online backend that collects as well as make the data available

and deploy the tool in Amazon Web Services (AWS).

1.2 Other Publications and Presentation

1.2.1 ICSE Student Research Competition: Automatic Generation of Simulink

Models to Find Bugs in a Cyber-Physical System Tool Chain using Deep

Learning

Proceedings: 42nd International Conference on Software Engineering: Com-

panion Proceedings (ICSE-Companion). 2020

Authors: Sohil Lal Shrestha

1.2.2 ISSTA Doctoral Symposium: Harnessing Large Language Models for

Simulink Toolchain Testing and Developing Diverse Open-Source Corpora of

Simulink Models for Metric and Evolution Analysis

Proceedings: 32nd International Symposium on Software Testing and Analy-

sis (ISSTA). 2023

Authors: Sohil Lal Shrestha
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1.2.3 Tapia Doctoral Consortium: Leveraging Language Models to Tackle Soft-

ware Engineering Problems in Commercial Cyber-physical System Toolchain

Presentation: 2023 CMD-IT/ACM Richard Tapia Celebration of Diversity

in Computing Conference (Tapia). 2023

Authors: Sohil Lal Shrestha
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CHAPTER 2

DeepFuzzSL: Generating Simulink Models with Deep Learning to Find Bugs in the

Simulink Toolchain

This chapter was originally published in 2020 Virtual Workshop on Testing for

Deep Learning and Deep Learning for Testing (DeepTest). It is reproduced here with

permission without revision [27].

2.1 Abstract

Testing cyber-physical system (CPS) development tools such as MathWorks’

Simulink is very important as they are widely used in design, simulation, and verifi-

cation of CPS models. Existing randomized differential testing frameworks such as

SLforge leverages semi-formal Simulink specifications to guide random model gener-

ation. This approach requires significant research and engineering investment along

with the need to manually update the tool, whenever MathWorks updates model

validity rules. To address the limitations, we propose to learn validity rules automat-

ically by learning a language model using our framework DeepFuzzSL from a existing

corpus of Simulink models. In our experiments DeepFuzzSL consistently generated

over 90% valid Simulink models and also found 2 bugs in Simulink version R2017b

and R2018b confirmed by MathWorks Support.

2.2 Introduction

Cyber-physical systems (CPS) are integration of cyberspace and physical world

through a network of interconnected components such as actuators and sensors. En-
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gineers typically prototype CPS with graphical block diagram using commercial de-

velopment tools such as MathWorks Simulink [35] (a de-facto industry standard),

which enable them to model, simulate and analyze their system. Furthermore, these

toolchain can automatically generate embedded code that are often deployed in target

hardware of safety critical systems. It is thus very important to find and remove bugs

in such development toolchains.

In software engineering, there are a number of ways to find bugs. Ideally one

can formally verify the entire Simulink toolchain, but it is not feasible due to its large

and complex code base and lack of complete formal specification, which can be partly

attributed to its commercial nature [16]. Like many other software systems, toolchain

testing suffers from the test oracle problem [14].

An alternative is fuzzing, or random test case generation which is an effective

way to identify bugs [36,37]. State-of-the-art Simulink-testing tool SLforge combined

randomized fuzzing with differential testing and found 8 new bugs in Simulink [16].

Since Simulink does not have complete publicly available language specification,

Chowdhury et al. [16] parsed semi-formal specifications from Simulink’s web page

automatically and rigorously incorporated them in SLforge’s random model genera-

tor. While SLforge is proven effective, it inherently relies on documented specification

to update it’s random model generator.

To overcome the engineering effort of maintaining the tool with respect to subtle

specification changes and adding new features while also preserving reasonable fidelity

to the real world Simulink models, we propose to build a neural network model that

can automatically generate Simulink models by learning directly from third-party

Simulink models. We hypothesize that a neural network model should be able to

capture undocumented Simulink specifications that is missed by earlier approach.

The hypothesis is motivated by recent development in deep learning and natural

12



language processing research that have constructed probabilistic language models of

how humans write code. Such approach have shown efficacy of random program

generation without the need of rigorously defining rules or grammar in a random

program generator [38, 39]. For e.g., DeepSmith [39], a deep learning based fuzzer,

have reported 50+ bugs in OpenCL compiler such as LLVM and claimed that it

can be easily extensible to other programming languages with minimum engineering

efforts.

Earlier work on applying deep learning to compiler fuzzing have mostly focused

on programming languages (such as C, OpenCL) whose complete specifications are

publicly available. In contrast, we focus on Simulink that lacks complete specification

making it a better candidate to validate language agnostic deep learning framework

that earlier work claims [39].

In this work, we portray random Simulink model generation task as a language

modeling problem (Section 2.3.1). Traditional statistical language model approach

like n-grams fails to capture semantic relations, thus is not useful in our work. In

contrast, neural language model (Section 2.3.1) captures the semantic and syntactic

structure of a given language. While there are different types of neural network

architecture (such as feed forward, convolutional, recurrent etc), we chose Long Short

Term Memory(LSTM) [40], a variant of recurrent neural network, which has proven

effective in language modeling [41].

In our DeepFuzzSL framework, we extend DeepSmith architecture to generate

random Simulink models. In doing so, we verify their earlier claim and validate our

hypothesis. In our preliminary evaluation, our trained DeepFuzzSL model is able to

generate over 90% valid Simulink models and have found 2 bugs in Simulink versions

R2017b and R2018b confirmed by MathWorks Support.

To summarize, this paper makes the following major contributions.
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• To best of our knowledge, this is the first work that employs LSTM to auto-

matically generate Simulink models to test the Simulink toolchain.

• In our experiment, DeepFuzzSL found 2 confirmed bugs in the widely used CPS

development tool Simulink, one of which is missed by previous state-of-the-art.

• Our DeepFuzzSL prototype implementation and evaluation data are open source

at GitHub [42].

2.3 Background

This section provides necessary information on neural language model, CPS

models and commercial CPS tool chain Simulink.

2.3.1 Neural Language Model

Language modeling is the task of predicting the next word in a sequence based

on the words already observed in the sequence. In essence, a language model assigns

probability to a sequence of words, which is expressed as a joint probability over the

words as:

P (w1, w2, . . . , wn) = P (w1)
n∏

i=2

P (wi|wi−1, wi−2, . . . , w1),

where wi is the i-th word in a sentence of length n. So given a arbitrary word

sequence (x1, x2, . . . , xt), a language model can compute the probability distribution

of the next word xt+1 as P (xt+1|xt . . . x1), where xt+1 can be any word in a vocabulary

V = {w1, . . . , w|V |}.

Conventional language models such as n-grams look at fixed consecutive context

window (or finite window of consecutive previous words) to predict the next word.

These kinds of language model couldn’t be conditioned over large context window

without running into out of memory issue [43].
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On the other hand, a neural language model uses a neural network architecture

to learn a language model as a distributed representation of words [25, 26]. Further

improvement on neural language model gave rise to recurrent neural networks that

can retain a state that can represent information from an arbitrarily long context win-

dow achieving state-of-the-art result in language modeling as well as other sequential

learning task [44].

Using a language model, one can generate sequence of words conditioned on

previous words. This is relevant to textual programming languages such as C, where,

for example, a variable use never comes before variable definition. Although Simulink

models are designed using graphical block diagrams, textual representation of the

model follow the norm, where a block information never comes before the connection

(or line) information making language model a good fit for this work.

2.3.2 CPS Model and Simulink

Figure 2.1: Example minimal toy

Simulink model adding two con-

stants, encoded in Listing 2.1.

Model { ...

Block {

BlockType Constant

Name ”Constant1”... }

...

Line {

SrcBlock ”Constant1”

DstBlock ”Add” ... }

... }

Listing 2.1: Figure 2.1 model as

text file (excerpt).
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A CPS model is typically designed as a set of graphical models as seen in

Figure 2.1. A model contains blocks that accepts data through the input ports. Block

performs some operation on the data and can pass output to other blocks through

output ports, using connection lines.

Simulink is a powerful, flexible, and de-facto standard commercial toolchain for

CPS that supports various programming paradigms including data-flow and object

oriented programming [45]. To design a CPS model, Simulink has support for various

built-in block libraries [46]. Users can also create custom-blocks whose functionality

can be defined through custom “native” code. Users can then compile and simulate

a model. After compilation, Simulink offers different simulation modes [47]. In depth

descriptions of CPS and Simulink can be found elsewhere [16,48].

When a user attempts to open a Simulink model in Simulink, first the Simulink

parser checks the model, possibly rejecting it and preventing the model from opening

in Simulink. Once the model is opened, the user can compile and then simulate the

model, which triggers different simulation phases [19]. In this paper, we consider

a Simulink model to be valid if Simulink can open and compile the model without

errors.

2.4 Overview and Design

Preprocess Encoder Deep 
Learner Sampler FilterSimulink Model 

Corpus
Valid Simulink

Models

Figure 2.2: Overview of DeepFuzzSL’s main processing phases.

DeepFuzzSL needs as input a set of seed Simulink models (“corpus”). Based on

these seed models, DeepFuzzSL proceeds in five main processing phases, as shown in
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Figure 2.2, to encode the seed models and use the encoded seeds to train a generative

ML model, sample from the trained ML model, and decode the samples back to

Simulink.

2.4.1 Seed Models: Simulink Model Corpus

We identified two main options for representing Simulink models in files, mdl

and slx. While the main format since 2012 has been slx, this format has several

drawbacks for our purposes. Specifically, slx stores a given model as a sequence of

XML files, which is verbose and requires reasoning about a set of files.

In contrast, the earlier mdl format is also text based but more compact and thus

easier to parse and generate for a deep learner. Each model is contained in a single

mdl file and there is tool support for conversion between mdl and slx. DeepFuzzSL

thus uses mdl .

While more compact than slx, mdl is still much too verbose for state-of-the-art

deep learning systems. For example, the mdl representation of the Figure 2.1 toy

example consists of over 1 kLOC with over 1,000 keywords and parameters following

the structure shown in Listing 2.2. Before using a model as a seed for deep learning,

we thus transform it as follows.

We remove BlockDefaults {...} and AnnotationDefaults {...} as such mdl file

can be compiled without any issue.

We also observed information of model component desgined by user in Simulink

are stored inside System{...}. Thus we stripped down all other model parameter such

as configuration defaults, graphical interface defaults ensuring that the model can be

compiled (aka valid).

Model {

<Model Param Name> <Model Param val>
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. . .

B lockDefau l t s {

<Block Param Name> <Block Param val>

. . .

}

Annotat ionDefau l t s {

<Annotation Param Name> <Annotation Param val>

. . .

}

System {

<System Param Name> <System Param val>

. . .

Block {

<Block Param Name> <Block Param val>

. . .

}

Line {

<Line Param Name> <Line Param val>

. . .

Branch {

<Branch Param Name> <Branch Param val>

. . .

}

}

Annotation {

<Annotation Param Name> <Annotation Param val>

. . .

}

}
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}

Listing 2.2: Typical mdl file format representation

2.4.2 DeepFuzzSL Processing Phases

Following are DeepFuzzSL’s five main processing phases.

Pre-processing : Before feeding the seed corpus of Simulink models to the neural

network for training, we perform pre-processing steps so that we don’t overburden the

neural network to learn unnecessary rules that do not contribute to generate a valid

Simulink model. We carry basic pre-processing steps such as white space removal,

converting long block name to shorter ones, removing any annotations and location

information as they are not required for its validity.

The mdl representation lists all ”Blocks{ ... }” first and then the connection

between them later in the file. During our initial experiments, our trained deep

neural net model was only able to generate Simulink models containing just blocks

without any connection between them. To mitigate this issue, we interleave block

and connection (or line) information in the mdl file such that every pair of connected

blocks are defined first followed by their connection information.

Encoder : Neural network requires numeric sequences as inputs. Hence all seed

models are converted to a sequence of fixed size feature vectors, where each integer is

an index of predetermined vocabulary. We also studied different ways source code is

encoded. In [38], character level encoding of source code is adopted. This minimizes

the vocabulary size but leads to very long sequences. On the contrary, token level

encoding leads to shorter sequences but increases vocabulary size as every literal is

uniquely represented. To demonstrate the two extremes, we ran an experiment with

30 unmodified Simulink models’ mdl files, each consisting of 5 to 15 blocks and then
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extracted the number of tokens and vocabulary size in Table 2.1, with and without

removing duplicate white space. To limit the size of the resulting feature vector, we

encode Simulink models using a hybrid scheme that maps a few common keywords

and parameters to tokens and the rest to characters.

Preprocess Encoding Tokens Vocabulary
n/a character 1,056,673 87
DWR character 846,075 87
n/a token 466,000 1,063
DWR token 168,000 1,063

Table 2.1: Token count and vocabulary size of 30 Simulink models based on character
and token level encoding; DWR = duplicate whitespace removal.

Deep Learner : We use a Long Short Term Memory (LSTM) network, a variant

of recurrent neural networks following the success of many recent works [39, 49, 50].

We use a two layer LSTM network with 512 nodes per layer, which strikes a balance

between the size of the neural net and the closeness of the learned distribution to the

true distribution. This, in turn, yields a practical training time of the neural network.

We defined the model using Keras [51] and Tensorflow [52] and open sourced the

project on Github1 for other researchers to train on their own corpus.

Sampler : After the training is complete, we seed the trained neural net with

”Model {” tokens since every mdl file starts with it. Then we sample token-by-token

to generate Simulink models. We halt the sampling when the opening and closing

bracket counts become balanced or it reaches the maximum number of allowed tokens.

Finally we decode the generated sequence back to text, which represents a Simulink

model. Since we want to maximize the number of variations of generated models,

1https://github.com/50417/DeepFuzzSL/releases
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we chose the next token from a randomized learned distribution, by performing a

multinominal experiment.

Filter : Lastly we filter out the generated Simulink models by opening and

compiling them in Simulink. The valid Simulink models can then be used to test

Simulink for crashes or be used for differential testing.

2.5 Preliminary Evaluation

Deep learning requires a large number of seed models. While there is existing

work on a public corpus of third-party open-source Simulink models [31], these third-

party models are quite diverse. It would have taken us significant work to normalize

these existing models, to bring them into a unified shape useful for our deep learning

setup. To side-step these issues, we instead trained our LSTM network on 1,000

SLforge-generated models.

We performed the training remotely in the high performance Texas Advanced

Computing Center (TACC) [53]. Specifically, we used TACC’s Maverick 2 cluster,

which has support for GPU accelerated deep learning research workloads. We ran

our experiments on a single Maverick 2 GTX node2, which has 128 GB RAM, two

8-core 2.1 Ghz Intel Xeon processors and 4 NVidia 1080-TI GPUs.

Using the Adam optimizer [54], we trained the network for 400 epochs using

gradient descent with a learning rate of 0.002, decaying 5% every epoch with mini-

batch size 64. We selected these hyper-parameters (epochs, learning rate, decay, batch

size) based on the best result after multiple experiment runs. On TACC’s Maverick2

GTX nodes, training the neural network took some 2 hours.

2https://portal.tacc.utexas.edu/user-guides/maverick2
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As a preliminary evaluation, at this stage we focus on if it is possible to build

on LSTM-based deep learning an effective approach for finding bugs in the Simulink

toolchain. Specifically, we explore the following two research questions.

RQ1 Can a LSTM-based deep learning approach generate valid Simulink models?

RQ2 Can a LSTM-based deep learning approach find bugs in the Simulink toolchain?

2.5.1 Generating Valid Simulink Models (RQ1)

To evaluate our approach, we sampled 1,024 Simulink models from our trained

LSTM network, limiting the maximum number of tokens in each generated sample

to 5,000 (since the largest seed model also had 5k tokens) and reported the ratio of

valid Simulink models (i.e., models Simulink compiles without warning).

To encourage variation in the generated sample Simulink models, we adapted

the following three sampling strategies [55]. These strategies either re-scale the prob-

ability or restrict the set of tokens to be sampled from.

1. Sampling with Randomization (“Temperature Sampling”): Temperature

sampling allows to control the variability of the next generated token while preserving

the fidelity of the corpus to the learned distribution. In temperature sampling, we

increase or decrease the probability of the most likely next token before sampling it.

Basically the probability of the next token is controlled by a hyper-parameter called

temperature (T) as:

P (xt+1|xt . . . x1) =
P (xt+1|xt . . . x1)1/T∑

x=V P (xt+1|xt . . . x1)1/T

A low temperature (less randomization) makes the language model increasingly con-

fident in its top choices while infinite temperature (full randomization) corresponds

to uniform sampling.
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2. Top-k Sampling: In top-k sampling we order the tokens by probability and

select the top k tokens. With p′ =
∑

x=Vk
P (xt+1|xt . . . x1), the original distribution

is re-scaled as

P (xt+1|xt . . . x1) =


P (xt+1|xt . . . x1)/p′ if x ∈ Vk

0 otherwise

(2.1)

3. Top-p or Nucleus Sampling: Similar to top-k sampling, we select the highest

probability tokens whose cumulative probability mass is greater than p. Specifically,

the top-p tokens form the smallest set such that

∑
x=Vp

P (xt+1|xt . . . x1) >= p

The probability distribution is re-scaled similar to Equation 2.1.

Sampling type Valid model %
Sampling with randomization(T), T = 0.8 92.8

Top-k, k = 10 92.5
Top-p, p = 0.9 94.4

Table 2.2: Ratio of valid Simulink models generated via various sampling strategies.
The randomization, k, and p values were chosen based on experiments with best
results; p = cumulative probability.

In all three sampling strategies, we sample the next token based on a multi-

nomial experiment with the given probability distribution. In our experiment, the

sampling time for each sampling strategy took around 13 minutes.

Table 2.2 summarizes our results. Overall, in all cases we observed over 90%

valid generated Simulink models. In other words, Simulink could compile over 90%

of the DeepFuzzSL-generated models without warning. Nucleus sampling performed

better than the other two, which aligns with earlier results [55].
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TSC Summary Kind MW
03322011 Simulink’s parser fails to reject ill-formed model and

crashes
O K

03632450 Simulink’s parser fails to reject model with ill-configured
signal generator block

S N

Table 2.3: Summary of issue reports; TSC = Technical Support Case number from
MathWorks; O = issue when opening model; S = issue when simulating model;
MW = feedback from MathWorks; K = known bug; N = likely new bug.

2.5.2 DeepFuzzSL Found Bugs in Simulink (RQ2)

We encountered six Simulink crashes (triggered by six DeepFuzzSL-generated

models), of which five crashes occurred while Simulink opened a model and one crash

occurred while Simulink compiled a model (after successfully opening it). So far we

have reported the latter issue plus one representative of the five “crash while opening”

cases to MathWorks via its bug report website3.

For each reported issue we received email from a MathWorks Support person

who investigated the issue and tried to the find the crash’s root cause. Unlike open

source projects, MathWorks does not list all issue reports or even all confirmed bugs

on its website. The bugs listed on their web site do not show their corresponding

Technical Support case (TSC) number.

Table 2.3 summarizes the two issues we have reported. MathWorks Support has

confirmed both issues as bugs. Following are the details of these two bugs.

2.5.2.0.1 TSC 03322011: Invalid Input Model (Known Bug) This Deep-

FuzzSL generated model consists of 3 discrete transfer function blocks. When trying

to open this model Simulink crashes. Upon investigation, MathWorks Support deter-

mined that the generated model misses a certain parameter (OutputPortMap). Math-

3https://www.mathworks.com/support/bugreports/
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(a) (b)

Figure 2.3: Signal Generator Block (a) DeepFuzzSL generated (b) from Simulink
library

Works Support confirmed that this is a known bug. Instead of crashing, Simulink

was supposed to produce an error and terminate normally.

2.5.2.0.2 TSC 03632450: Valid Input Model (Likely New Bug) This

model generated by DeepFuzzSL consists of 25 blocks and 12 connections between

them. Simulink could open this model normally without warning or errors. Simulink

crashed when we tried to compile or simulate this model. In other words, DeepFuzzSL

can generate models that pass Simulink’s frontend parser.

Upon investigation, MathWorks Support provided as a reason that a signal

generator block had a missing output port, which caused the crash. Figure 2.3(a)

shows the signal generator block generated by DeepFuzzSL as opposed to one in

Simulink library in Figure 2.3(b). MathWorks Support confirmed that this is a likely

new bug. Instead of crashing Simulink should either produce an error or autofix the

model. While the bug itself may be of low severity, it is an interesting one that

validated our hypothesis ”DeepFuzzSL can find bugs missed by SLforge”. SLforge

build a random model using Simulink block library, thus can not build Simulink

models with such Signal Generator block.
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2.6 Related Work

Fuzzing is a well established testing and validation approach. Many test case

generators use programming language’s grammar to systematically generate syntac-

tically valid programs. Textual programming language such as Java, C, Rust have

random program generator that aimed at finding bugs in their respective compil-

ers [18,56–58]. McKeeman present generators capable of enumerating programs from

random ASCII sequences to C programs [18]. CSmith [59] is a widely known ran-

dom C program generator which exploits infrequently combined language features

to generate programs with clearly defined behavior but very unlikely functionality,

increasing the chances to trigger a bug. Similar tool for other languages include

JCrasher [56] for Java and Rust Typechecker Fuzzer [57] which uses constraint logic

programming. Glade [58] generates programs after learning grammar from a corpus

of example programs. Unlike our approach which learns the distribution, Glade uses

the derived grammar to enumerate program uniformly at random.

While earlier work have largely focused on generating textual program (such as

C , Java), limited work have been done for CPS models. CyFuzz [17] is perhaps the

first tool to systematically generate Simulink models. As discussed throughout the

paper, SLforge is the most closely related to our work. SLforge builds upon CyFuzz’s

limitations by incorporating informal Simulink specification into their random model

generation. A subsequent work SLEMI [60] uses SLforge generated models to generate

mutant of the seed model and found 9 confirmed bugs in Simulink. All of these

work are tightly coupled with a particular CPS modeling language covering a subset

of language specification and incurs high porting cost to other modeling language.

In contrast, our work is loosely coupled with Simulink and has potential to cover

undocumented specification.
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Researchers are increasingly applying deep learning for software testing. Learn

& Fuzz [61] learned from a corpus of PDF files to fuzz Microsoft Edge renderer.

Closely related work DeepSmith [39] and DeepFuzz [38] learned probabilistic language

model from a corpus of OpenCL and C programs and found multiple bugs in respective

compilers. Both of the work target languages which have complete specification. On

the contrary, although our work is built upon DeepSmith framework, we target CPS

modeling language that does not have complete specification.

Similarly, while this paper looks for bugs in CPS tools such as Simulink using

deep learning, a complementary line of work fuzz CPS models using machine learning

and deep learning [62–66]. Liu et al. [65] use decision tree algorithm to stop test suite

generation for fault localization of Simulink models. Chen et al. [62] use LSTM and

Support Vector Regression to systematically guide generation of test suites for CPS

network attacks. Their smart fuzzing system fuzzes actuator to drive CPS into unsafe

state to diagnose cyber attacks. Kravchik et al. [66] study the use of convolutional and

recurrent neural networks for detecting cyber-attacks in industrial control systems.

A summary of this work will also appear as a 2-page abstract in ICSE 2020’s

ACM Student Research Competition (SRC) [28]. In addition to the SRC summary,

this paper adds details on sampling from the trained DeepFuzzSL model in Sec-

tion 2.5.1 along with results in Table 2.2. Furthermore, this paper adds a description

of the need for a hybrid encoding scheme with the results shown in Table 2.1. This pa-

per also adds a mdl file structure and leverages the information while pre-processing

that aid in training DeepFuzzSL in Section 2.4.1. This paper also includes details

of the bug summary along with how we reported issues with MathWorks Support in

Section 2.5.2.
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2.7 Conclusions and Future Work

Testing cyber-physical system (CPS) development tools such as MathWorks’

Simulink is very important as they are widely used in design, simulation, and verifi-

cation of CPS models. Existing randomized differential testing frameworks such as

SLforge leveraged semi-formal Simulink specifications to guide random model gener-

ation which required significant research and engineering investment along with the

need to manually update the tool, whenever MathWorks updates model validity rules.

To address the limitations, we proposed to learn validity rules automatically

by learning a language model. Our framework DeepFuzzSL learned from existing

corpus of Simulink models and generated valid Simulink models. In our experiments

DeepFuzzSL consistently generated over 90% valid Simulink models and also found 2

bugs confirmed by MathWorks Support.

Future work includes gathering a large Simulink model collection from public

repositories such as Github and MathWorks File Exchange4 and training the gener-

ative model on such a corpus as well as verifying the pre-processing heuristics.

4https://www.mathworks.com/matlabcentral/fileexchange/
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CHAPTER 3

SLGPT: Using Transfer Learning to Directly Generate Simulink Model Files and

Find Bugs in the Simulink Toolchain

This chapter was originally published in 2021 ACM International Conference

on Evaluation and Assessment in Software Engineering (EASE), Trondheim, Nor-

way, 2021, pp. 260–265, doi: 10.1145/3463274.3463806. It is reproduced here with

permission from ACM without revision [29].

3.1 Abstract

Finding bugs in a commercial cyber-physical system (CPS) development tool

such as Simulink is hard as its codebase contains millions of lines of code and com-

plete formal language specifications are not available. While deep learning techniques

promise to learn such language specifications from sample models, deep learning needs

a large number of training data to work well. SLGPT addresses this problem by us-

ing transfer learning to leverage the powerful Generative Pre-trained Transformer 2

(GPT-2) model, which has been pre-trained on a large set of training data. SLGPT

adapts GPT-2 to Simulink with both randomly generated models and models mined

from open-source repositories. SLGPT produced Simulink models that are both more

similar to open-source models than its closest competitor, DeepFuzzSL, and found a

super-set of the Simulink development toolchain bugs found by DeepFuzzSL.
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3.2 Introduction

Finding bugs in a commercial cyber-physical system (CPS) development tool

such as Simulink is hard as its codebase contains millions of lines of code and com-

plete formal language specifications are not available. While deep learning techniques

promise to learn such language specifications from sample models, deep learning needs

a large number of training data to work well and the closest related deep learning

tool DeepFuzzSL [27] is severely limited by the relatively small number of available

training models.

Testing CPS development tools is important as engineers design and develop

dynamic safety-critical systems using these development tools. For example, Math-

Works’s Simulink is widely used in industry such as automotive, medical, industrial

automation and aerospace [67]. Engineers use Simulink to design, simulate, test, and

generate embedded code from CPS models and deploy it to end-user hardware. At

worst a subtle bug in the Simulink tool chain could result in unexpected behaviour

in safety-critical applications such as in cars or airplanes.

Given the complexity of the Simulink language, training a deep learning tool

such as DeepFuzzSL from scratch would require a very large number of training

models. However relatively few open source Simulink models are available. While

random model generators such as SLforge [22] could fill in some of these gaps, it is

not clear how well SLforge can cover the various features (and their combinations) of

the Simulink language.

Given the limited amount of Simulink training models, this paper proposes to

use transfer learning for generating Simulink models. Transfer learning is a promising

alternative to learning from scratch, as it leverages a machine learning model trained

on a large set of related training data. We can then use a relatively small set of
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Simulink-specific training data to fine-tune such a pre-trained model for generating

Simulink models.

Here, we fine-tune the Generative Pre-trained Transformer 2 (GPT-2) [30]

model using both randomly generated models and models we mined from the open-

source repositories GitHub and MATLAB Central. Our experimental results suggest

that GPT-2 generated Simulink models are of higher quality and address the short-

comings of earlier deep learning approaches. SLGPT also found a wider range of sim-

ilar bugs found by DeepFuzzSL in Simulink versions R2018b, R2019b, and R2020b

confirmed by Mathworks Support. To summarize, the paper makes the following

contributions.

• SLGPT is the first use of transfer learning for generating graphical block-

diagram models.

• The paper implements SLGPT for Simulink, collects a training set of 400 open-

source Simulink models, and compares SLGPT with the closest related tool

DeepFuzzSL.

• SLGPT-created models were more similar to open-source models and SLGPT

found a super-set of the Simulink development toolchain bugs DeepFuzzSL

found.

• The SLGPT implementation, parameter settings, and training sets are open-

source [68].

3.3 Background

Simulink [69] is a powerful commercial tool-chain for model-based design and

has become a de-facto standard in several domains such as automotive and aerospace.

An engineer typically designs a model via Simulink’s graphical modeling environment.

A Simulink model is a (potentially hierarchical) block diagram, where each block
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Figure 3.1: Simulink model (left) and excerpt of its 1.1k line (Simulink-generated)
model file representation (right).

represents equations or modeling components. A Simulink user can also define custom

blocks in custom “native” code using the S-function interface. Simulink typically

stores a model in its proprietary model file format, i.e., as a structured ASCII file that

contains keywords and parameter-value pairs (many of which are case-sensitive) [70].

Figure 3.1 shows a flat Simulink model and parts of its model file representation.

Depending on the block type, each block can accept input via input ports,

perform some operation on its inputs, and pass output via output ports to other

blocks through (directed) edges. Simulink users can add blocks from various built-in

libraries and toolboxes. A source block generates signals in a Simulink model while

a sink block is used to display or output signals [71]. A model’s maximum source-

to-sink path length is the longest directed non-circular path from a source to a sink

node (and includes source and sink).

When a user opens a model, Simulink’s parser performs its checks and prevents

corrupt models from opening. Once opened, a user can compile and then simulate the

model, where the tool chain uses configurable solvers to iteratively solve the model’s

network of mathematical relations via numerical methods, yielding for each output

block a sequence of outputs. After simulation, the user may use Simulink’s embedded

code generation workflow for deployment on a target platform.
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3.3.1 Transfer Learning & NLP Language Models

Transfer learning [72] is a promising technique for generating Simulink mod-

els, as transfer learning can work well in scenarios that suffer from relatively small

amounts of training data. Transfer learning achieves this by using a machine learn-

ing model trained for a source task or domain (“pre-training”, e.g., programs in any

programming language) as a starting point to train on a different but related target

task or domain (“fine-tuning”, i.e., Simulink models). This works well if pre-training

uses huge amounts of training samples, learns features common to both tasks, and

fine-tuning can apply the learned knowledge on a target task. Successful applications

include computer vision, where large datasets such as ImageNet [73] have been used

to pre-train deep learning models that are later fine-tuned for tasks such as image

segmentation.

In natural language processing (NLP), language modeling is the use of statistical

techniques to determine the probability of a given word sequence. A language model

basically estimates the probability of a word based on the words already observed

in a sequence. An effective language model not only understands language structure

(syntax) but also long-term context (semantics). For example, a Simulink language

model should predict tokens that are both syntactically correct and produce valid

connections between blocks (e.g., respecting Simulink language rules on define-before-

use).

Transfer learning in natural language processing is relatively new. ULMFiT

presents a specific training schedule enabling transfer learning using LSTMs [74].

GPT-2 uses transformer decoder as a building block and trains a language model on

the WebText dataset [30]. Using transformers instead of LSTMs allows longer-range

context capture. GPT-2’s byte pair encoded vocabulary also supports Unicode (and
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Figure 3.2: SLGPT obtains Simulink models from a random generator and open-
source repositories, simplifies them, and uses them to adapt GPT-2 for finding
Simulink crashes.

does not require common pre-processing steps such as lower-casing and stemming).

So GPT-2 is a great candidate to learn Simulink model files.

3.4 Overview and Design

Figure 3.2 gives an overview of SLGPT. To obtain a variety of Simulink models

for machine learning, we both ran the random model generator SLforge and mined

open-source repository sites, i.e., GitHub and MATLAB Central. Since GitHub cur-

rently does not treat Simulink as a searchable language, we used the GitHub API

with ”Simulink” as search keyword. Since MATLAB Central does not provide an

API for downloading Simulink models, we used its RSS feed1 to heuristically con-

struct Simulink project download links.

1https://www.mathworks.com/company/rss.html
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Figure 3.3: Figure 3.1 Simulink model and excerpt of its model file, after SLGPT
simplified it to 45 lines, by removing layout info, restructuring code via BFS, etc.

We want our training corpus to only contain valid Simulink models. So we

automate the process of checking if a Simulink model is compilable on Simulink. The

validity checker also helps detect any crashes caused by an input Simulink model,

which is then manually reviewed and reported to the developers. To limit the number

of Simulink language features in our training data, we only used flat models that do

not have additional toolbox or library dependencies, yielding 400 valid open-source

Simulink models for training.

3.4.1 Training Data Preparation: Simplification

SLGPT simplifies training models to (1) remove model features we currently

cannot handle given the limited number of training models and to (2) restructure

models to fit GPT-2’s learning style. While both simplification types may change

model semantics, SLGPT compensates for type-2 simplifications (restructuring), by

rewriting generated models into equivalent Simulink-compliant style.

Specifically, we pre-process the model file to remove macros, default configu-

ration settings, comments, duplicate white spaces, annotations, and block-position

information. We similarly rewrite model identifiers (e.g., block names) to short but
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Figure 3.4: Figure 3.3 Simulink model and excerpt of its 45 line model file, after
SLGPT restored it to Simulink-compliant style (plus manual layout changes for read-
ability).

unique names (a, b, c, . . . , aa, ab, ac, . . . ), based on their appearance order in our

restructured model file.

The ASCII style in which Simulink saves its models to files is problematic for

state-of-the-art deep learning language models, as Simulink files are long and verbose.

Furthermore, these files also list all nodes before all edges. Taken together, this is

a poor fit for current language models, which model context with a text window of

limited size.
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Algorithm 1: Restructuring Simulink model. “Neighbour” refers to

both incoming and outgoing blocks and edges.

Require: source blks (S), other blks (B), graph info (G)

Result: BFS-rewrite of Simulink model file (CBFS)

1 while S ̸= ∅ or B ̸= ∅ do

2 Q = empty queue

3 b = remove element from (S ̸= ∅)?S : B

4 add b to back of Q

5 while Q ̸= ∅ do

6 curb = pop element from front of Q

7 if curb /∈ CBFS then

8 add curb to CBFS

9 remove curb from B

10 Bnei, Enei = curb’s neighbour blocks, edges in G

11 forall e ∈ Enei do

12 if e /∈ CBFS then

13 add e to CBFS

14 end

15 end

16 forall b ∈ Bnei do

17 if b /∈ CBFS then

18 add b to back of Q

19 end

20 end

21 end

22 end

23 end
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To make such files easier to learn, SLGPT’s Algorithm-1 rewrites these files in

a breath-first search (BFS) style. Specifically, we first parse the Simulink model file

and maintain an adjacency representation of the Simulink model in the graph info

map, which maintains two disjoint sets: source blks has blocks with in degree = 0

and other other blks has all remaining blocks. Algorithm-1’s outer loop iterates over

both S and B as some Simulink models have dangling blocks (blocks that are not

source blocks and are not connected to any other block). Also some models (especially

from SLforge) have no source blocks because they have cycles.

3.4.2 Synthesizing Simulink Models with GPT-2

Given the complexity of the Simulink language, generating valid Simulink model

files is an ambitious task for unsupervised machine learning, especially given our

small amounts of training data. Instead of training from scratch, we thus use the

pre-trained language model GPT-2. GPT-2 is a good fit, as it employs byte pair

encoding to construct its vocabulary, meaning all tokens in a Simulink model file can

be mapped to the vocabulary set.

Second, GPT-2’s architecture is based on the transformer architecture [75],

which has benefits over a traditional LSTM architecture, as transformers avoid re-

cursive computation by processing sequences as a whole and learning relationships

between tokens by using multi-head attention mechanisms and positional embeddings.

This enables better prediction, which is typically lost with LSTM over long-term de-

pendencies in the text.

SLGPT’s Algorithm-2 iteratively samples from the fine-tuned language model

to generate Simulink model files. We seed the model with the sequence “Model {”

and then sample token by token. In this early project stage we followed the best

sampling techniques of DeepFuzzSL (nucleus or top-p sampling [76]). Specifically,
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given a start text S, sampling parameters nucleus N and temperature T , the fine-

tuned GPT-2 model G computes the probability mass function PMF representing

the probability distribution of all tokens in the vocabulary. We normalize the PMF

after scaling with T to introduce randomness. To reduce the size of next plausible

tokens, we select the smallest subset of PMF such that the sum of all values in the

subset is greater than N . The normalized subset PMF is then used to perform a

multinomial experiment to choose the next token.

Algorithm 2: Sampling a candidate Simulink model from a seed text.

Require: Fine-tuned GPT-2 model (G), temperature (T ), nucleus (N)

Result: Completed sample string S

1 S = “Model { ”

2 while ⟨endoftext⟩ /∈ S do

3 PMF = get distribution of next predicted tokens(G,S)

4 Scale the obtained PMF by T

5 Sort PMF in descending order

6 Subset PMF such that the smallest possible set sum is greater than N

7 R = Perform multinomial experiment on subset PMF

8 S = S +R

9 end

Since the resulting Simulink model file S is (as the training samples) in BFS

style (as Simulink expects block definitions before edge definitions in a model file),

SLGPT restructures S such that the model defines all blocks before defining

edges. To continue the Figure 3.1 example, if we assume Figure 3.3 shows a model pro-

duced by Algorithm-2, SLGPT then reorders its element definitions to the Simulink-

friendly style of Figure 3.4.
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In lieu of full differential testing, SLGPT just uses its validity checker to detect

crashes of the Simulink tool. We then manually investigate each crash, judge if a

crash is an example of a known bug, and report representatives of the remaining

crashes to MathWorks Customer Support.

3.5 Initial Experience

While a full evaluation is future work, this paper compares SLGPT to its most

closely related competitor, i.e., DeepFuzzSL.

We first used DeepFuzzSL’s evaluation setup of a SLforge-generated training

corpus, in which each Simulink model has 5–57 blocks. SLGPT’s pre-processing

reduced the number of tokens by 75%, yielding 987 Simulink models with a total of

0.5M lines. We ran a related experiment on the 400 open-source Simulink models.

SLGPT’s pre-processing removed the 23 of the 400 models that only contained

annotation blocks, yielding 3.5k blocks represented in 87k lines.

OpenAI has released four different sizes of pre-trained GPT-2 models ranging

from 0.1 to 1.5 billion parameters. To limit computational resource needs, for these

initial experiments we used the smallest model. We fine-tuned the GPT-2 model re-

motely in the high performance Texas Advanced Computing Center (TACC)’s Mav-

erick 2 cluster [53]. We ran our experiments on a single Maverick 2 GTX node2 of two

8-core 2.1 Ghz Intel Xeon processors, 128 GB RAM, and 4 NVidia 1080-TI GPUs.

As in DeepFuzzSL’s experimental setup we used the Adam optimizer (here to

fine-tune the GPT-2 model). We could not use a mini batch size of 64 as it triggered

out-of-memory errors on TACC. Instead, we used batch size of 1. To compensate for

the low batch size, we set the learning rate to 0.00002 (vs. 0.002) and trained SLGPT

2https://portal.tacc.utexas.edu/user-guides/maverick2
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for 24 hours on SLforge-generated models and in a separate experiment for 24 hours

on the open-source models.

We trained DeepFuzzSL on the same hardware as SLGPT but otherwise as

described in its paper, i.e., for 400 epochs with mini batch size 64. While this “only”

took about 6.5 hours, DeepFuzzSL’s loss function tapered off after 100–150 epochs (so

it was not learning much after that). While sampling, we let DeepFuzzSL run until it

either emits a terminating token or reached 15k tokens (corresponding to the largest

open-source training model). In the latter case the resulting file typically contained

several model-start sequences. When opening such a file, Simulink and our counts

just ignore all but the first model. We use the following research questions.

RQ1 Can SLGPT generate valid Simulink models? How does the structure of Deep-

FuzzSL and SLGPT generated Simulink models compare to open-source mod-

els?

RQ2 How do DeepFuzzSL and SLGPT compare in the bugs they find in the Simulink

tool chain?

3.5.1 SLGPT Can Generate Valid and More Realistic Simulink Models (RQ1)

Earlier approaches were evaluated in terms of the validity of generated models

and their bug-finding ability (e.g., in SLForge, SLEMI, and DeepFuzzSL [22,27,60]).

In addition, to evaluate the quality of a model generator, we compare structural

properties of the generated Simulink models against open-source Simulink models.

Specifically, we use the number of nodes in the generated Simulink model and metrics

based on the common notion of a connected subgraph (i.e., a subgraph in which each

node is connected to at least one other node in the subgraph).

To explore SLGPT’s ability to generate valid Simulink models, we continuously

generate Simulink models for 24 hours. Sampling the version trained on SLforge-
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generated models yielded 2,912 Simulink models of which 43% compiled. The version

trained on open-source models yielded 709 Simulink models of which 47% compiled.

The most frequent cause of compile errors include data type mismatches between two

connecting blocks and assigning an alphanumeric value to a numeric block attribute.

Most of these could be fixed easily by adding data type conversion blocks to the model

and changing alphanumeric to numeric values.

We trained DeepFuzzSL on the same training sets as SLGPT and sampled

around 1k samples each with DeepFuzzSL’s sampling heuristics. To make the com-

parison consistent we removed DeepFuzzSL’s output token bound and allowed Deep-

FuzzSL to generate complete Simulink model files. Of around 1,200 DeepFuzzSL-

generated models trained on Slforge-generated models, 89% compiled, closely aligning

with the 90% validity rate reported in the DeepFuzzSL paper. On the other hand,

out of 1,024 DeepFuzzSL-generated Simulink models trained on open-source models

only 42% compiled.

The valid models generated by DeepFuzzSL were not as similar to the training

models as SLGPT-generated valid models. Figure 3.6 compares these models along

four metrics. For example, DeepFuzzSL-generated models tend to have many sub-

graphs that only contain 2 blocks, many blocks have unconnected input and output

ports, and there is often no connection between source and sink.

3.5.2 SLGPT Found Superset of Bugs DeepFuzzSL Found (RQ2)

Trained on SLforge-generated Simulink models, from nearly 3k SLGPT-generated

models 13 crashed Simulink. Upon analysis these 13 instances belong to the same

two bug categories DeepFuzzSL found (MathWorks confirmed both types as known

bugs). The first issue is a Simulink crash while opening a model. The second issue is

Simulink opening a model but crashing while compiling the model.
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Trained on our open-source models, 30 DeepFuzzSL-generated and 14 SLGPT-

generated models crashed Simulink while compiling. 13 of the SLGPT-generated (and

all DeepFuzzSL-generated) models get rejected by Simulink R2018b but crash version

R2020b (case 04777147). The last one crashes R2018b but is accepted by R2020b

(case 04767975). Following are brief summaries of these two cases.

3.5.2.1 Case 04777147 (Non-bug)

This SLGPT-generated Simulink model triggered an interesting behavior, where

Simulink R2018b rejects it as corrupt and the newer R2020b version crashes. Math-

Works told us that the way Simulink parses MDL files has changed since R2020a,

which may have caused the crash. As it is impossible to create this model via

Simulink’s graphical editor or standard API, MathWorks Support marked it as a

non-bug. DeepFuzzSL-generated models triggered similar Simulink crashes.

3.5.2.2 Case 04767975 (Known bug)

Figure 3.5: Scope (left) and Floating Scope (right).

Figure 3.5 shows two types of Simulink scope blocks: Scope and Floating Scope.

Floating Scope does not have any physical ports while Scope does. A SLGPT-

generated model set floating parameter off (indicating that it is a normal scope) while

setting the ports attribute to 0 (instead of a vector), causing the crash. Simulink’s
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graphical editor or standard API cannot create this model. This issue exists in R2018b

and has been fixed in later versions. DeepFuzzSL did not trigger this bug.

Figure 3.6: Training models (top), DeepFuzzSL-generated models (middle), and
SLGPT-generated models (bottom). Left y-axis is for open-source training models
and right y-axis is for SLforge-generated training models. X-axis is (valid) Simulink
models sorted in ascending order for metric (from left to right column): Blocks per
model, connected subgraphs, blocks in largest connected subgraph, maximum path
length from a source to a sink block. Metrics of SLGPT-generated models are overall
closer to the training models than DeepFuzzSL-generated models.

3.6 Related Work

Small training datasets are a common problem in deep learning applications.

Researchers thus often use synthetic datasets [77]. Robbes et. al. showed a promising

avenue to alleviate the dataset problem by using transfer learning [78], i.e., that a

small natural-language software engineering dataset can be used to improve sentiment

analysis using pre-trained neural networks.
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In the CPS domain, Chowdhury et al. developed a randomized differential

testing tool using semi-formal specifications to test the Simulink toolchain [22]. Sub-

sequently SLEMI generated semantic-preserving mutants of a seed model for differen-

tial testing of the Simulink toolchain [60]. While these approaches are tightly coupled

with Simulink, SLGPT is only loosely coupled and does not rely on explicit Simulink

language specifications.

Success of modeling natural language using deep learning has garnered interest

to model source code for program generation. Researchers have used language models

to improve software engineering task such as code completion and code clone detec-

tion [79–81]. For compiler validation, DeepSmith [82], DSmith [24], and DeepFuzz [23]

uses deep learning based sequence modeling to model the OpenCL and C languages

from real world programs and found compiler bugs. All of these approaches target

languages with complete available specifications while we target Simulink, which does

not have such a specification publicly available.

The most closely related work DeepFuzzSL [27] use LSTM architecture to model

Simulink. However they only train on synthetic models, citing the need for a larger

training corpus. In contrast, we use a pre-trained language model and fine-tune it

with open-source Simulink models.

Transfer learning for source code modeling is relatively new. Benito et al. stud-

ied the use of pre-trained models for source code generation and completion [83].

Hussain et al. proposed a transfer-learning based attention learner approach to im-

prove code suggestions [84]. While earlier work focused on traditional languages we

focus on a graphical CPS language.
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3.7 Conclusions

Testing a commercial CPS development tool such as Simulink is hard as its code-

base contains millions of lines of code and complete formal language specifications are

not available. While deep learning techniques promise to learn such language spec-

ifications from sample models, deep learning needs a large number of training data

to work well. SLGPT addressed this problem by using transfer learning, to lever-

age the powerful GPT-2 model that has been pre-trained on a large set of training

data. SLGPT adapted GPT-2 to Simulink with both randomly generated models

and models mined from open-source repositories. SLGPT produced Simulink models

that are both more similar to open-source models than its closest competitor, Deep-

FuzzSL, and found a super-set of the Simulink development toolchain bugs found by

DeepFuzzSL.
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CHAPTER 4

SLNET: A Redistributable Corpus of 3rd-party Simulink Models

This chapter was originally published in 2022 IEEE/ACM 19th International

Conference on Mining Software Repositories (MSR), Pittsburgh, PA, USA, 2022, pp.

237–241, doi: 10.1145/3524842.3528001. It is reproduced here with permission from

ACM without revision [85].

4.1 Abstract

MATLAB/Simulink is widely used for model-based design. Engineers create

Simulink models and compile them to embedded code, often to control safety-critical

cyber-physical systems in automotive, aerospace, and healthcare applications. De-

spite Simulink’s importance, there are few large-scale empirical Simulink studies,

perhaps because there is no large readily available corpus of third-party open-source

Simulink models. To enable empirical Simulink studies, this paper introduces SLNET,

the largest corpus of freely available third-party Simulink models. SLNET has sev-

eral advantages over earlier collections. Specifically, SLNET is 8 times larger than

the largest previous corpus of Simulink models, includes fine-grained metadata, is

constructed automatically, is self-contained, and allows redistribution. SLNET is

available under permissive open-source licenses and contains its collection and anal-

ysis tools.
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4.2 Introduction

Currently there is no collection of Simulink models that is commonly used in

empirical studies. Though there have been previous model collections, they lack

fine-grained meta-information, are not self-contained, and are not redistributable due

to restrictive or missing licenses—making them hard or impossible to use for most

empirical researchers. Given the lack of such a collection, the few existing empirical

studies of Simulink models have been limited to proprietary models or a small number

of public models [22,86,87].

Deepening our understanding of Simulink models and modeling practices is

important, as Simulink is a de-facto standard tool in several safety-critical industries

such as automotive, aerospace, healthcare, and industrial automation—for system

modeling and analysis, compiling models to code, and deploying code to embedded

hardware [67, 88]. Having a large corpus of third-party Simulink models may make

it easier for engineers and researchers to produce, reproduce, and validate empirical

results about Simulink models, modeling practices, and tools that operate on such

models.

The most closely related previous work has studied an initial collection of

391 third-party Simulink models [22] and later extended it to a curated corpus (“SC”)

of some 1k third-party Simulink models [31]. Boll et al. [89] collected an updated

version of SC and assessed the corpus’s suitability for empirical research. While pio-

neering larger studies and validating that models from such a corpus can be similar

to industrial models, these collections consisted of a list of URLs to non-permanent

resources [22] and contained models with unclear license information [31]. These

collections were largely manual, which lead to inconsistencies (empty projects, dupli-

cate projects, and missing metadata), relatively modest collection size, and may yield

unintended human errors and bias.
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To address these limitations, SLNET automates corpus construction and analy-

sis, including data acquisition, cleaning (except for the rarely required manual review

of a new license type), metric computation, and packaging. SLNET thereby automat-

ically mines and analyses Simulink models from the two most popular repositories for

sharing Simulink models, yielding a collection of thousands of models that is fully

self-contained and allows redistribution.

To allow fine-grained selection of Simulink models and projects, SLNET com-

putes several project-level and model-level metrics [89] and exposes them in a SQL

database. SLNET similarly identifies and labels libraries and models that are test

harnesses [90]. To summarize, this paper makes the following major contributions.

• SLNET is redistributable and 8 times larger than the prior largest known corpus

of third-party Simulink models.

• SLNET [2] and its tools [91, 92] are available under permissive open-source

licenses (CC BY and BSD 3-clause), e.g., SLNET is at: https://doi.org/10.

5281/zenodo.5259648

4.3 Background on Simulink

Simulink [69] is a widely used commercial tool-chain for model-based design [67,

88]1. Engineers typically design a cyber-physical system (CPS) model in Simulink’s

graphical modeling environment. A Simulink model such as Figure 4.1 is a block

diagram, where each block represents equations or modeling components. Depend-

ing on the block type, each block can accept input (via input ports), perform some

operation on its inputs, and produce output (via output ports), which then can op-

tionally be forwarded to other blocks via explicit or implicit connection lines (aka

1Searching for “Simulink” jobs on LinkedIn in the US currently yields over 5k job postings:

https://www.linkedin.com/jobs/search/?keywords="simulink"&location=US
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signal lines). Simulink users can add blocks from various built-in libraries and tool-

boxes [71], and can also define custom blocks in “native” code (e.g., in C) using the

S-function interface.

Figure 4.1: Sample SLNET Simulink model of a 1.5MW wind generation plant [1]
with 18 blocks and 23 connections.

To deal with model size, users can create hierarchical models, by (recursively)

grouping blocks in (a) a Subsystem or (b) in a separate model via Model Reference.

Simulink does not permit a cyclic model hierarchy, but there may be block connection

(aka data dependence) cycles, including algebraic loops2.

As a first step, compiling translates the model into a toolchain-internal repre-

sentation. When simulating the compiled model, the toolchain computes the output

of each block at successive time steps over a specified time range using pre-configured

2https://www.mathworks.com/help/simulink/ug/algebraic-loops.html
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numerical solvers. Fixed-step solvers solve the model at fixed time intervals whereas

variable-step solvers automatically adjust the time intervals at which the model is

solved. Simulink may reject a model if it cannot numerically solve an algebraic loop.

Simulink offers different simulation modes, i.e., Normal mode “only” simulates blocks,

Accelerator speeds up simulation by emitting native code, and Rapid Accelerator pro-

duces a standalone executable3.

4.4 SLNET Design & Construction

Figure 4.2: Overview: SLNET-Miner collects files and data, removes empty and
duplicated projects or those without appropriate license. SLNET-Metrics extracts
model metrics.

SLNET is not a superset of earlier Simulink corpora [31, 89] as earlier cor-

pora were neither self-contained nor redistributable. Figure 4.2 gives an overview

of SLNET’s construction. We built SLNET from models shared in GitHub [93] and

3Simulink’s embedded code generation workflow for deployment on target platforms is distinct

from these simulation modes.
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MATLAB Central [94]. Due to time limitations we do not collect Simulink models

from smaller repositories such as GitLab [95] and SourceForge [96]. Before remov-

ing projects that are empty, duplicate, or have an unclear license, a quick search for

“Simulink” yields some 60 GitLab and some 70 SourceForge projects.

While GitHub offers commit-level version control, MATLAB Central “only”

serves project releases. To limit SLNET’s size and due to the different versioning (git

commits vs. project releases), in February 2020 we “only” collected Simulink project

snapshots (i.e., all current project files plus project metadata).

GitHub provides a REST API to discover projects and extract them with their

metadata. SLNET-Miner queries the GitHub API (via PyGithub [97]) with the key-

word “Simulink”. Unlike previous work [22,31], we used keyword search and not file

extension search, as file extension search is typically intended to search within a given

GitHub repository and using file extension search in GitHub’s search page produced

many false positives.

The GitHub API expose 23 types of project-level information [98], of which

SLNET retains 20. The other 3 are redundant (full project name) or API-internal

(API query relevance score and node id). From the API we also obtain each project’s

topics (user-created labels and tags). From the downloaded project files, we extracted

the list of Simulink model files plus the project’s license.

As MATLAB Central “only” offers an RSS feed [99] for its file exchange plat-

form, we filter the search result feed by Simulink models and then parse the feed to

collect each project’s download URL plus 14 other types of project metadata. Since

from the RSS feed we could not construct the download URL for all projects, we

extracted 2,941 of the 3,110 available projects.
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4.4.1 Data Cleaning & Storage: ZIP + SQLite

We remove projects without Simulink models (i.e., file extensions slx or mdl)

and projects we know to contain synthetic models (i.e., model generators [22, 60]).

We heuristically search for other model generators (via terms “automat”, “random”,

“fuzz”, and “generate”) in project titles, project descriptions, and project tags, which

yielded 530 projects (e.g., on fuzzy logic). As we did not find evidence that these

projects generate models we kept them in SLNET.

Table 4.1: Data cleaning: Real = has 1+ models (likely non-synthetic); License = has
a license; SLNET+D = license allows redistribution; SLNET = has a model with 1+
blocks after removing potential duplicate projects; Model counts here include 1,130
library and 9 test harness models.

Projects Models
Real License SLNET+D SLNET SLNET

GitHub 1,284 232 231 225 2,088
MATLAB Cl 2,941 2,746 2,728 2,612 7,029
Total 4,225 2,978 2,959 2,837 9,117

We then remove projects without a license or whose license does not allow

redistribution. GitHub has a structured way for authors to set a license, which GitHub

converts to a file (and exposes via an API). We manually reviewed the remaining

50 projects’ licenses (where GitHub did not understand the author’s license or for

MATLAB Central projects without a BSD license).

We heuristically remove potentially duplicate projects. We consider project A

a duplicate of B if (1) A and B contain the same number of Simulink model files and

(2) there is a bijective mapping between models in A and B based on our Section 4.4.2

model metrics (excluding compile time). If A and B are from the same data source

(GitHub or MATLAB Central), we keep the first-created one in SLNET. Otherwise,
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we keep the one from GitHub, as it offers more fine-grained meta-data. Finally, we

remove dummy projects (projects whose Simulink models all have zero blocks).

Table 4.1 summarizes data cleaning. After removing model generators we down-

loaded 4,225 projects with at least one Simulink model, of which 2,978 had a license,

of which 2,959 allowed redistribution. Removing 112 potentially duplicate plus 10

dummy projects yielded 2,837 projects and their 9,117 Simulink models in SLNET.

SLNET is on Zenodo (a second archive contains the 112 duplicate projects) [2].

Each project has a snapshot of its files in a ZIP archive in either the GitHub or

MATLAB Central directory. Each project is named ID.zip, where ID is an identifier

defined by GitHub or MATLAB Central. SLNET includes the Figure 4.3 SQLite4

database. It contains project-level information (license type, etc.) from the source

repositories and the model metrics our tools extracted. Users can thus select models

and projects from SLNET via SQL queries.

4.4.2 Project & Model Metrics

Table 4.2: SLNET’s project engagement distributions are long-tailed as in other
studies of open-source projects [6–9].

Metadata Min Max Avg Med. SD

GitHub
Stargazers 0 128 3.5 0 12.1
Forks 0 122 2.8 0 10.7
Open Issues 0 82 1.2 0 6.5

MATLAB Cl
Comments 0 218 3.5 1 12.3
Ratings 0 108 2.9 1 6.8
Avg. Rating 0 5 2.5 3 2.2

4SQLite is widely used, free, self-contained, server-less, zero-configuration, backwards compatible,

and cross-platform: https://www.sqlite.org/index.html
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Figure 4.3: SLNET database schema (GitHub portion). The MATLAB Central por-
tion only differs in its Projects table [2].
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To get an insight into the projects’ domain and popularity we first searched

the user-generated project tags (i.e., GitHub “topics” and MATLAB Central “cate-

gories”) for common domains (i.e., the Simulink project domains identified by Boll et

al. [89]), yielding Electronics (983), Automotive (64), Communications (61), Robotics

(52), Energy (48), Aerospace (47), Biotech (20), and Medicine (2). Table 4.2 shows

data often used as proxies for project popularity or engagement (e.g., people who

have starred or forked a GitHub project or provided a 1–5 star rating for a MATLAB

Central project). For example, a SLNET GitHub project has on average 2.8 forks.

Models Hierarchical Blocks Connections Solver Step Simulation Mode
Source M Mc Mh Mht0 B Bt0 C Ct0 Fixed Var Nor Ext PIL Ac
GitHub 1,639 541 878 1,304 190,321 414,241 188,285 395,725 860 762 1,501 103 2 14
MATLAB Cl 6,251 3,636 3,893 5,566 838,956 3,197,221 915,975 3,084,605 1,757 4,493 5,984 186 2 76
Total 7,890 4,177 4,771 6,870 1,029,277 3,611,462 1,104,260 3,480,330 2,617 5,255 7,485 289 4 90

Table 4.3: SLNET’s model metrics after removing library & test harness models;
M = models; Mc = models we could readily compile; Mh = hierarchical models
(readily compilable and otherwise); C = non-hidden connections; t0 = via SC’s metric
tool; Var = variable; Nor = normal; Ext = external; PIL = processor in the loop;
Ac = accelerator. For 18 models the API did not indicate simulation mode or solver
type. The remaining 4 models are configured for Rapid Accelerator simulation mode.

To extract commonly used model metrics (such as number of blocks, connec-

tions, subsystems, and linked blocks5) we implemented the SLNET-Metrics tool [92]

on top of Simulink’s APIs. While our Simulink installation and toolbox configu-

ration [100] cannot compile a significant portion of SLNET models (mostly due to

missing toolbox licenses), these APIs still compute metrics for these non-compiling

models, except for three metrics (algebraic loops, cyclomatic complexity, and compile

time).

5https://www.mathworks.com/help/simulink/ug/creating-and-working-with-linked-blocks.

html
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SLNET-Metrics failed to compute metrics for 88/9,117 models (21 from GitHub,

67 from MATLAB Central). Most of these 88 were due to Simulink version issues

(missing Simulink toolboxes, model name conflicts with a keyword or toolbox file

name) and bugs introduced by manually-edited model files. SLNET does not include

metrics for these 88 models and thus also ignores them for the above duplicate-via-

bijection removal.

SLNET-Metrics collects each model’s hierarchical depth, solver type, simulation

mode, target hardware, and use of S-functions and model references. While SLNET

models contain elements from the state-machine toolbox Stateflow, Stateflow is out

of scope and our metrics do not count the Stateflow-contents of a Simulink block.

Unlike SC, SLNET-Metrics does not count nested blocks imported from li-

braries or their connections (aka “masked subsystems”). This mirrors procedural

code metrics, which also do not count LOC a program imports from a library. As

SC’s counting of such imported blocks approximates the model’s overall conceptual

complexity [101], Table 4.3 also includes these counts. As an example, the Figure 4.1

model imports blocks from the Simscape toolbox, yielding a SC-style block count of

907 with 919 connections.

The Simulink API labels only 9 SLNET models as a test harness, likely because

many open-source projects do not have the required ”Simulink Test” license to develop

such tests. Beyond this official classification SLNET contains likely “work-around”

test harnesses. The SC metrics tool heuristically matches model and folder names

with “test” and “harness” and SLNET labels such models separately.

We performed sanity checks on the model metrics other papers reported about

industrial models (block count, etc.). We also randomly sampled from the top 100

largest models in SLNET. Based on the sampled models’ documentation we are con-

fident that these were real human-created (non-synthetic) models.
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4.5 Potential Research Directions

Since most industrial models are proprietary SLNET is unlikely to reflect their

distribution. Instead, the goal is to provide the largest possible redistributable self-

contained corpus of non-synthetic models. Different research projects will require

different SLNET subsets (e.g., many small models for training deep-learning classifiers

vs. large models to evaluate a technique’s scalability), which the SQL metadata

database facilitates. Having more models is better, especially in deep learning, but

also when trying to understand the breadth of modelling practices, or when looking

for edge cases (e.g., to test model analysis tools). Following are example directions.

While there has been significant interest in other software engineering areas [102–

104], applying machine learning is relatively under-explored in model driven engi-

neering [105, 106]. To work well, many machine learning and deep learning algo-

rithms require large training sets. SLNET with its many models and rich metadata

is thus well-suited. For example, a SLNET subset has been used to train a deep

learning model for random Simulink model generation, to find bugs in the Simulink

toolchain [29]. Due to their smaller size, this would have not been possible with the

earlier corpora.

Due to the lack of easily available open-source models that fit certain charac-

teristics, recent work reverted to evaluating tools on synthetic models [60]. SLNET

offers a complimentary (and often preferred) evaluation option with human-authored

models.

Recent work including in clone detection, refactoring, model slicing, and model

smells has relied on evaluations with few proprietary Simulink models [107–111]. For

example, Deissenboeck et al. [107] evaluated their clone detection approach on a single

proprietary Simulink model with 20k blocks. Complementing such evaluations with
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a variety of open-source models from SLNET could make such studies more general

and easier to replicate.

Understanding modeling practices would enable researchers to tune their tools

to how engineers use Simulink in various settings. For example, SLforge guides its

random model generation by how often blocks appear in 391 open-source models [22].

The larger size of SLNET could thus, e.g., yield useful insights for tool design.

There may also be interesting correlations between metrics, maybe connecting

model metrics to project metrics (e.g., model size metrics with project engagement).

More generally, SLNET could contribute to a deeper understanding of model modu-

larity, comprehension, quality, and maintainability [112–115].

While SLNET is unlikely to exactly represent closed-source development, the

precise shape of this relation is an open question. For example, for the related domain

of Object Constraint Language (OCL) expressions [116], Mengerink et al. found

the distribution of expression complexity mined from GitHub projects reflects the

distribution in closed-source projects, so open-source projects can be used as a proxy

for industrial projects [117,118].

4.6 Threats to validity

Due to its search heuristics SLNET-Miner may miss Simulink models (e.g., by

missing some of the non-documented RSS feed URLs). Furthermore, since SLNET

contains only redistributable projects, results may not be representative of all open

source Simulink projects. On the flip side, while removing forks and duplicates,

SLNET likely contains clones (from near-duplicate projects to adapted model por-

tions), which can be an opportunity for clone-based research (and a challenge for

others). Finally, SLNET-Metrics calls the Check API of Simulink R2019b. While
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this API has been available since Simulink R2017b, its behavior may change across

releases and thus yield different metric values in future Simulink versions.

4.7 Conclusions

In conclusion, SLNET is the first self-contained and redistributable corpus of

freely available third-party Simulink models that aims to facilitate future empirical

studies on model based design. SLNET has several advantages over earlier collections.

Specifically, SLNET is 8 times larger than the largest previous Simulink corpus, in-

cludes fine-grained metadata and is constructed automatically. SLNET is available

under permissive open-source licenses and contains its collection and analysis tools.
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CHAPTER 5

Replicability Study: Corpora For Understanding Simulink Models & Projects

This chapter was originally published in 2023 ACM/IEEE International Sym-

posium on Empirical Software Engineering and Measurement (ESEM), New Orleans,

LA, USA, 2023, pp. 130–141, doi: 10.1109/ESEM56168.2023.10304867. It is repro-

duced here with permission from IEEE without revision [119].

5.1 Abstract

Background: Empirical studies on widely used model-based development tools

such as MATLAB/Simulink are limited despite the tools’ importance in various in-

dustries.

Aims: The aim of this paper is to investigate the reproducibility of previous em-

pirical studies that used Simulink model corpora and to evaluate the generalizability

of their results to a newer and larger corpus, including a comparison with proprietary

models.

Method: The study reviews methodologies and data sources employed in prior

Simulink model studies and replicates the previous analysis using SLNET. In addition,

we propose a heuristic for determining code-generating Simulink models and assess

the open-source models’ similarity to proprietary models.

Results: Our analysis of SLNET confirms and contradicts earlier findings and

highlights its potential as a valuable resource for model-based development research.

We found that open-source Simulink models follow good modeling practices and con-

tain models comparable in size and properties to proprietary models. We also col-

61



lected and distribute 208 git repositories with over 9k commits, facilitating studies

on model evolution.

Conclusions: The replication study offers actionable insights and lessons learned

from the reproduction process, including valuable information on the generalizability

of research findings based on earlier open-source corpora to the newer and larger

SLNET corpus. The study sheds light on noteworthy attributes of SLNET, which is

self-contained and redistributable.

5.2 Introduction

There are only a few empirical studies of open-source MATLAB/Simulink arti-

facts, maybe due to a widespread perception that open-source Simulink artifacts are

typically small, do not represent closed-source development, and are often hard to ac-

quire [22,60,120–122]. Most empirical Simulink studies to date have instead relied on

academic-industry collaborations—to get access to large closed-source Simulink arti-

facts [123]. Most empirical results on Simulink development and artifacts are thus

based on case-studies of closed-source artifacts that (even when providing detailed

experimental design descriptions and measurement tools) are hard to reproduce or

replicate [33].

It is well-known how important replication is for scientific progress. Successful

experiments need to be cross-validated under different conditions before they can be

considered a part of science and interpreted with confidence [124]. Working towards

large open-source Simulink corpora and empirical results that are easier to reproduce

and replicate are thus important goals, given how widely Simulink is used in industry

in safety-critical domains such as automotive and healthcare.

Towards these goals, recent initial work created via manual mining a first large

corpus (which we call SC [31]) of open-source Simulink models and investigated mod-
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eling practices on a re-collected version of that corpus (SC20 [89]). The work found

that some of these manually-collected Simulink models are suitable for empirical re-

search, based on model metrics analysis and a qualitative assessments by a domain

expert [89]. Follow-up work automated Simulink model collection, yielding the larger

SLNET corpus that also allows redistribution [32]. However we are not aware of ear-

lier work that either characterizes this larger SLNET corpus or uses it to replicate

earlier empirical studies of Simulink models.

We thus first reproduce studies that are based on the initial SC large-scale

Simulink model corpus, identifying inconsistencies in the original studies. We then

replicate results of the earlier studies using the newer and larger SLNET corpus. By

re-running the original study designs, we found inconsistencies between the exper-

imental results and the ones reported in the paper, attributable to oversight and

incomplete documentation. Our replication study using SLNET confirmed several

previous findings, such as the low utilization of model references and algebraic loops.

In contrast to prior work, we only found a weak correlation between cyclomatic com-

plexity and other model metrics. To summarize, this paper makes the following major

contributions.

• Through empirical data, we identify inconsistencies in earlier empirical Simulink

studies.

• We characterize the SLNET corpus in relation to earlier corpora of open-source

Simulink models.

• On SLNET we replicate previous studies, which both confirms and contradicts

earlier findings.

• We collect and distribute 208 SLNET git repositories, containing 9k+ commits

including 5k model versions, as artifacts that can be analyzed by the commu-

nity [125].
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• Our analysis tool [126] as well as reproduction and replication data [125] are

open-sourced and available.

5.3 Background

Using Simulink’s graphical modeling environment, engineers can design a com-

plex system model as a hierarchical block diagram [69]. Each block represents a

dynamic system that may take input through its input ports and produce output

via its output ports, either continuously or at specific points in time. A block can

be from a Simulink built-in library [71], from a separate toolbox library, or a custom

S-function block defined via “native” code (e.g., in C). Blocks pass data to each other

via directed connections (aka lines). Simulink is a commercial de-facto standard tool-

chain in several domains such as aerospace, automotive, healthcare, and industrial

automation.

Figure 5.1: (a) A tiny Simulink example model, (b) shows the contents of (a)’s
referenced model.

Simulink offers several hierarchy mechanisms, ranging from a subsystem block

grouping that can only be used in one context to a model reference (which essen-

tially calls an independent model via its own well-defined interface and can thus be

widely reused) [127]. These constructs allow further recursive decomposition, en-

abling deeply nested models. Figure 5.1(a) shows a tiny example hierarchical model
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that contains a model reference to the Figure 5.1(b) referenced model. Alternatively,

the user can use library-linked blocks [128], that are references to blocks defined in

a custom library [129], that enables reusability and centralized maintenance of block

functionality across multiple models.

A compiled model can be simulated, where Simulink successively computes the

output of each block over a specified time range using pre-configured numerical fixed-

step and variable-step solvers. In an algebraic loop, a block’s output can reach its input

port in the same simulation step (i.e., without passing through a delay block), which

complicates simulation. Besides normal mode, Simulink offers various accelerator

modes to speed up simulation [130]. With additional toolboxes [131], from the model

the user can then generate and deploy low-level code to the target hardware.

5.3.1 Simulink Modeling Guidelines and Best Practices

The MathWorks Advisory Board (MAB) is a group of commercial MathWorks

customers that (starting with Daimler, Ford, and Toyota in 2001) publishes guide-

lines and best practices on developing and maintaining Simulink models. Besides

standardization, these guidelines address key software engineering challenges such as

creating models that are well-defined, readable, easy to integrate, and reusable.

In their current 2020 version [132] these guidelines include to (1) avoid algebraic

loops as they are hard to simulate and cannot be compiled to target hardware, (2) use

S-functions to implement custom algorithms, (3) use subsystems to modularize the

model by functional decomposition, and (4) use model references to create hierarchies

of reusable components.
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5.3.2 Cyclomatic Complexity & Size Metrics in Simulink

McCabe introduced cyclomatic complexity and argued it corresponds to our in-

tuitive notion of complexity. McCabe also reported on a set of 24 Fortran subroutines

with “high” (>10) cyclomatic complexity. The subroutines’ ranking by cyclomatic

complexity closely correlated with their ranking by reliability [133]. With some 9k

citations this article has been highly influential in academic software engineering.

Some five decades later the question of measuring program complexity and pro-

gram understanding remains an active research area with several recent advances [134–

136]. Researchers keep returning to cyclomatic complexity with recent tweaks [137,

138] and more fine- grained measures [139]. An example controversy was if cyclomatic

complexity is just a proxy for program size (e.g., lines of code in a Java- or C-like

language) [140], with recent empirical data showing cyclomatic complexity to remain

independently valuable [141].

For Simulink, recent work has shown the value of size metrics (i.e., block count),

e.g, metric outliers yield interesting findings [142]. Such results are also eventually

reflected in industry practices. For example, while the MAB industry board’s 2001

Simulink guidelines did not yet mention size metrics, the current 2020 version contains

a recommendation (≤60 LOC / function) [132]. However neither MAB guideline

version mentions McCabe or cyclomatic complexity yet.

For calculating a metric, Simulink basically first flattens a given model into a

single hierarchy level, essentially “inlining” both subsystems and referenced models.

So if two blocks in a model refer to the same referenced model, for metric calculations

the referenced model will appear in the flattened model twice. Simulink has an option

to also similarly (recursively) inline the contents of (any) library blocks and prior work

is split on activating this option when reporting metric results.

66



While a block diagram does not represent a procedural language’s control-flow

graph, Simulink still has several block types that provide control-like functionality.

For example, the value a multiport-switch block receives on its first input port selects

which of the remaining input ports the block will forward to its output port [143]

(which corresponds to a procedural switch or nested if construct). Simulink thus

first defines the cyclomatic complexity of each built-in block as the number of the

block’s conceptual branching decisions (i.e., mostly zero or one) and then sums up

the cyclomatic complexity of all blocks in a given (flattened) model [144].

5.3.3 Scope of Empirical Studies of Simulink Models

The limited availability of repositories with large numbers of freely accessible

Simulink models has restricted empirical studies that seek to understand Simulink

model characteristics and metrics [113, 145, 146]. For example, Dajsuren et al. [112]

investigated model metrics including cohesion and coupling using small subset of

Simulink models.

Open-source Simulink models are generally considered insufficient to meet the

high industry standards required for meaningful results [33]. To address this issue,

Altinger et al. [147] published metrics from three proprietary Simulink models for

researchers to analyze. However, the dataset is no longer available. Schroeder et al.

studied 65 proprietary automotive Simulink models and found via interviews that

engineers preferred simple size metrics such as block count over structural metrics to

capture model complexity [148].

5.3.4 SC: First Corpus of Open-Source Simulink Models

Via a two-stage process Chowdhury et al. created what we call SC, the first

corpus of freely available Simulink models [22, 31]. First [22], the research team col-
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lected 391 models, i.e., 41 of the MathWorks’s tutorial models the team considered

to not be “toy” examples, the open-source models from MATLAB Central that were

most popular (by ratings or downloads), GitHub keyword search results, and 28 mod-

els from academic papers, colleagues, and Google searches. Second, the team added

the Simulink models of 12 SourceForge repositories and of the 96 most-downloaded

MATLAB Central projects, yielding a study of a total of 1,071 Simulink models [31].

SC classifies its 1,071 models as tutorial (41), simple (442), advanced (452),

and other (136). The distinction between simple and advanced is determined heuris-

tically: any GitHub project with forks or stars and any MATLAB Central project that

are not academic assignment are labeled “Advanced”. Models shipped with MAT-

LAB/Simulink are labeled “Tutorial”, while models from other sources are labeled

’Other’.

Overall, SC collects Simulink models of projects that (at least partially) are

selected and labeled manually. While initially “only” providing project URLs [22],

the full corpus [31] includes Simulink model files, metadata, and collection tools and

is stored on a Google Drive directory linked from the project’s GitHub homepage.

Analyzing the corpus with Simulink R2017a, the work found good modeling

practices such as model referencing were not widely used. The work found Math-

Works’s cyclomatic complexity to be at most moderately correlated1 with various

other model metrics. The correlation was strongest (0.55) for the model’s maximum

hierarchy depth, followed by the model’s number of contained subsystems (NCS). This

contrasted with an earlier study by Olszewska et al. [113], which showed strong (0.73)

1The earlier work discussed in this paragraph and our own analysis all use Kendall’s τ at a 0.05

significance level and follow a recent labeling of subsequent |τ | ranges at that level, i.e.: “weak”

below 0.4, then “moderate” to below 0.7, “strong” to below 0.9, etc. [149]
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correlation between MathWorks’s cyclomatic complexity and the model’s number of

contained subsystem (NCS).

5.3.5 SC20: SC Projects Recollected in 2020

In August 2020—some three years after SC was published [31], Boll et al. (a

research team acting independently of Chowdhury et al.) collected what we call

SC20 [89], i.e., the latest Simulink model versions of SC’s Simulink projects, yielding

1,734 Simulink models. Simulink models, metadata, and the team’s collection tools

are preserved on Figshare [150].

The work evaluated SC20’s suitability for empirical model-based research, ana-

lyzing each SC20 project’s domain, origin, and model metrics. The work also proposed

a heuristic for identifying models configured for code generation. The paper’s analysis

found that the majority of SC20 models were inadequate for most empirical research,

but identified a few mature models. The work also noted that some SC20 GitHub

projects’ characteristics (e.g., a high number of commits and collaborators) suggest

potential for evolution research.

5.3.6 SLNET: Largest Known Simulink Corpus

In February 2020 Shrestha et al. collected the SLNET corpus [32], which ad-

dresses key issues of SC and SC20 (i.e., manual project selection and unclear project

licenses), yielding the first redistributable corpus of open-source Simulink models.

Specifically, SLNET collects Simulink projects from the GitHub API and from MAT-

LAB Central’s RSS feed and does not include projects without Simulink model files,

known model generators and their synthetic models, projects that do not have an

appropriate license, potentially duplicate projects (via bijection of the projects’ mod-

els’ metrics), and projects whose models all have zero blocks, yielding 9,117 Simulink

69



models. Simulink models, metadata, and the team’s collection tools are preserved on

Zenodo [2, 91,92].

Combining models from the two largest collections of open-source Simulink

models (GitHub and MATLAB Central), SLNET is 8 times larger than the largest

previous corpus of Simulink models (SC). In March 2023 we confirmed that other

hosting sites (still) contain significantly fewer public Simulink repositories (i.e., we

could only find 52 Simulink projects on SourceForge and one on GitLab).

5.4 Research Design

Our goal is to gain a deeper understanding of the reproducibility and replicabil-

ity in model-based development research, particularly regarding Simulink models, as

emphasized in a recent literature review [33]. The literature review identified a single

study that conducted a large-scale empirical investigation, emphasizing open science,

i.e., SC [31]. Subsequently, members of the literature review team undertook their

own investigation, by collecting the latest version of the models of the same corpus,

i.e., SC20 [89].

The recently released SLNET corpus [32] has rectified limitations of the two

existing corpora, allowing us to replicate the results of earlier empirical studies. Thus,

we perform a sample study utilizing the existing corpora and employ a statistical

learning strategy to generalize the findings of prior studies on a smaller dataset to a

larger dataset [151,152]. As such, our replication efforts serve a confirmatory purpose.

To structure our study effectively, we have formulated two primary research

questions that center around reproducibility and replication.

I What challenges and implications arise when attempting to reproduce model-

based development research, specifically for Simulink models?
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II To what extent can we generalize prior studies’ findings to a dataset that is

open-source or larger?

RQ1 In terms of basic Simulink model metrics, how does SLNET compare with

earlier open-source corpora and what we know about industrial models?

RQ2 Is SLNET suitable for empirical studies of Simulink projects and their

change histories?

RQ3 How do empirical results obtained on smaller open-source corpora and

closed-source industry models carry over to the larger SLNET corpus?

Figure 5.2: Parameters a through i for reproducing and replicating results on
Simulink models. Relative to earlier studies (and unless noted otherwise), for re-
production we only varied i and for replication we only varied a,b,i.

Figure 5.2 applies ACM’s guidelines on reproducibility (“different team, same

experimental setup”) and replicability (“different team, different experimental setup”)

to empirical studies of Simulink models and summarizes the relevant variables. The

following sections point out where we had to deviate from this model (e.g., when an

exact earlier corpus is no longer available for exact reproduction).
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Table 5.1: Overview of three existing (top) plus our four new or re-collected corpora
(bottom) of open-source Simulink models; cut-off = date of latest model version in
corpus; × = cannot distribute due to unclear licenses.

Corpus Version of Simulink Models Cut-off Data

SC Original corpus 2017 [153]
SLNET Larger corpus Feb ’20 [2]
SC20 SC re-collected at later version Aug ’20 [150]

SCR SC re-collected at SC’s version 2017 ×
SC20R SC20 completed at SC20’s version Aug ’20 ×
SC20REvol SC20R GitHub projects’ Git histories Apr ’23 ×
SLNETEvol SLNET GitHub projects’ Git histories Apr ’23 [125]

5.5 Corpora to Reproduce & Replicate Results

Table 5.1 summarizes the corpora of this study. Boll et al. [89] highlighted

that the SC study results had several inconsistencies and Shrestha et al. [32] claimed

earlier corpora suffer from unintended human errors and bias. Since both claims

lacked sufficient empirical evidence, we attempted to reproduce these studies.

5.5.1 SCR Corpus to Reproduce SC Results

To reproduce the SC study results, we downloaded all models and metadata

from SC’s Google Drive [153], yielding 1,347 models. This did not include all of the

original study’s 1,071 models, as the SC distribution excludes 169 models for their

unclear licenses. We use SC’s source metadata (for 862 of 1,071 models SC lists

project URL and version, models studied within the project, and MATLAB version

requirements) and retrieve 142 of 169 of these unclearly-licensed models from GitHub

(at the same version as in SC).

For 40 of 1,071 models the download included multiple model versions but

the metadata did not specify which version was used in the SC study. Since SC

only provides aggregated model metrics (instead of per-model measurements), we
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could not disambiguate same-name models via comparing the metrics. After receiving

confirmation from the SC team, we add all 113 potential model name matches from

the SC download, yielding 1,117 models in SCR (but still missing 27 of 1,071 now

inaccessible GitHub models).

Due to the above model name ambiguity (or human error in SC creation), 5 of

1,071 models are now categorized as both Simple and Advanced. Since the SC study

reported results per model category, we focused our reproduction on the one category

not affected by the above missing/duplicate model issues, i.e., the 41 models labeled

“tutorial”. Since these 41 models ship with Simulink and we have access to earlier

Simulink releases, it was straight-forward to reproduce the SC study results on the

same version of the same models on the same Simulink version as the SC study.

The SC paper states that some reported metric results come from a third-party

tool [101]. But we found the tutorial models’ reported metrics instead exactly match

the results of only running the SC metrics tool (which calls the Simulink API [154]).

Specifically, we ran the SLNET-Metrics tool [92] as it can run SC’s metric tool in the

Simulink toolbox configuration [155] the SC study used, yielding the reported 10,926

blocks (as opposed to 10,391 the other tool returns [101]). After this calibration on

the tutorial models we ran the SC tool in the same configuration on the rest of SCR.

Finally, we clarified with the SC team SC’s “S-function reuse rate”, which

SC defined to approximate how often a model contains an S-function it contains

elsewhere. The metric basically counts how many S-function blocks in a model have

the same name. For example, if a model contains four S-function blocks, three named

“a” and one named “b”, the reuse rate would be (3-1 + 1-1)/(3+1) = 0.5. SC reported

a median reuse rate below 0.5%. Our result on SCR being much higher triggered an

interaction, in which the SC team confirmed that the SC paper mistakenly added the

percentage symbol.
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5.5.2 SC20R & SC20REvol Corpora to Reproduce SC20 Results

We obtained the SC20 replication package (v2) from Figshare [150], which con-

tains 1,736 models grouped into 194 projects with non-model files removed. The

SC20 team categorized projects into four groups based on affiliation: 112 academic,

34 industry-mathworks, 25 industry, and 23 no-information. We included one project

with an unknown category in the ‘no-information’ category, yielding SC20R.

To extract model metrics, SC and SC20 mostly use the Simulink API, but there

are differences. For instance, SC20 counts blocks via sldiagnostics [156] while SC uses

Simulink Check [154] (the counts can differ). Additionally, SC uses the Simulink API

for cyclomatic complexity, while SC20 implements McCabe’s definition (independent

paths). From the SC20 paper [89] and our correspondence with the SC20 team we

could not reconstruct how SC20 computed project-level cyclomatic complexity.

The remaining model metrics we reproduced using the provided tool and docu-

mentation. To run the tool we had to install Simulink R2020a and the Check toolbox.

We observed discrepancies in the results of 11/1736 models, which we attribute to

a lack of documentation regarding the exact Simulink configuration (i.e., toolbox,

library, etc).

The SC20 team analyzed 35 GitHub projects, but didn’t include the necessary

git repositories or commit extraction tool in the replication package. We indepen-

dently developed the tool, and after contacting the authors, they updated their pack-

age, but the repositories remained missing. In April 2023 via metadata we obtained

32/35 repositories (“SC20REvol”). 3/35 repositories were no longer online.
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Finding 1: The SC and SC20 replication packages are insufficient to reproduce

the original studies’ results.

Implication: Authors should host the replication package in permanent archival

repositories for long-term access and preservation with documentation, such as

Simulink configuration and instruction [157].

5.5.3 SLNET Results & SLNETEvol Corpus

While the SLNET paper does not present any specific study or analysis, it does

offer a valuable resource in the form of a corpus of Simulink models along with as-

sociated metadata on their metrics. In our attempt to reproduce SLNET’s metrics,

we first downloaded their corpus from Zenodo [2], which consists of 225 GitHub and

2,612 MATLAB Central projects, as well as a SQLite database of metadata. Fol-

lowing their documentation on Simulink configuration [100], we ran SLNET-Metrics,

SLNET’s metric collection tool, first on R2018b and then R2019b, as the latter ignores

‘resource’ folder, which some older SLNET projects use. By following this process,

we were able to reproduce their reported metrics.

Like SC20, SLNET only offers project snapshots, but to assess its suitability for

evolution studies, we require its git repositories. In April 2023 we obtained 208/225

SLNET GitHub repositories, as 17 projects were offline. We refer to this collection

as SLNETEvol, which we have made available for other researchers to analyze.

5.5.4 Issues in Simulink Tool-chain Found

While trying to reproduce SLNET’s results, we encountered the following two

Simulink issues. MathWorks classified the first one as a bug and the second one

as a documentation issue. First, when using multiple machines to speed up metric

collection, Simulink R2018b crashed while compiling a SLNET model on Windows but
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compiled the model without issue on Ubuntu. We reported this issue (#04254318),

which MathWorks confirmed as a bug and fixed in Simulink R2021b.

Finally, we reported (#04386513) that the cyclomatic complexity definition of

the multiport switch [143] did not seem to match Simulink’s metrics results. Math-

Works addressed this issue by updating its public metric description [144].

5.6 Replicating Empirical Results Using SLNET

To date, empirical data on Simulink models and projects have been obtained

on select closed-source projects and smaller open-source corpora (i.e., SC and SC20).

We would thus like to know how these earlier results generalize to the larger SLNET

corpus of 2,837 open-source projects and their 9,117 Simulink models. As earlier work

has not characterized SLNET, we will first put it into context for any subsequent

findings or comparisons.

As in similar comparative studies, when interpreting experimental results we

need to know how much results are skewed by differences in experimental setups.

While conceptually straight-forward, calculating Simulink metrics is influenced by

many parameters (Figure 5.2) and we realized that earlier studies did not document

all relevant parameter values.

To increase confidence in our results we replicate earlier experiments where

possible. Unless noted differently we apply the same metric extraction setup to

all corpora—i.e., the same of our researchers use a single consistent set of met-

ric definitions, metric tool version (SLNET-Metrics), Simulink version (R2020b on

Ubuntu 18.04), and toolboxes [158].

We used Simulink R2020b as it enhanced metric calculation [159]. For exam-

ple, in Simulink R2019b a video surveillance system’s [160] cyclomatic complexity

is 38,403, which on manual inspection seems highly inflated. For the same sys-
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tem Simulink R2020b returns 322. Such a drastic change makes it hard to directly

compare our results with results reported elsewhere, e.g., the SLNET work used

Simulink R2019b [32].

Finding 2: Small changes in experimental setup can drastically skew Simulink

model metrics. In one example, upgrading to a newer version of Simulink changed

a model’s cyclomatic complexity from 38,403 to 322.

Implication: There are subtle but severe pitfalls when comparing Simulink metric

results across papers. To increase confidence in such comparisons we thus repeat

earlier experiments where possible.

5.6.1 Removing User-defined Libraries And Test Harnesses

User-defined libraries and test harnesses serve different goals than regular Simulink

models. As they are also structurally different, we first identify and separate them

from the regular models. While user-defined libraries are interesting themselves, for

analyzing regular models we treat user-defined libraries like all other libraries. We

thus either inline blocks from all or none of the libraries. Following prior work [31],

we use the Simulink API [161] and identify 235 user-defined libraries in SCR, 411 in

SC20R, and 1,137 in SLNET.

Simulink’s Test API [162] can identify models as test harnesses and we thus

remove 9 test harnesses from SLNET and two each from SCR and SC20R. This

is likely an under-count, as many open-source projects may not have the license

necessary for this API and thus use workarounds. We thus heuristically label (but

not remove) models as potential test harnesses by checking if model and folder names

contain “test” or “harness”, thereby labeling 143 models in SCR, 233 in SC20R, and

903 in SLNET.
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5.6.2 RQ1: Basic Simulink Model Metrics of Corpora

At a high level, while it contains significantly more models, SLNET is not a

superset of the previous open-source corpora. Even when containing the same model,

corpora may differ in the included model version, due to different corpus collection

times. When treating all versions of a model as the same model and including user-

defined library models, SLNET contains 30% of the SC models (328/1071), 36% for

SCR (402/1117), 28% for SC20 (492/1734), and 28% for SC20R (492/1736).

Table 5.2: Model metrics after removing library & test harness models in SCR (top),
SC20R (middle), and SLNET (bottom); M = models; Mc = models compiling in
our setup; Mh = hierarchical models; C = non-hidden connections; t0 = via SC’s
metric tool; var = variable; nor = normal; ext = external; PIL = processor in the
loop; ac = accelerator; rap = rapid accelerator; Industry-M = Industry Mathworks;
M-Central = MATLAB Central; excludes 14 SLNET models that crash Simulink
R2020b; includes 20 SLNET models for which Simulink R2020b does not show solver
and simulation metrics.

Models Hierarchical Blocks Connections Solver Step Simulation Mode
M Mc Mh Mht0 B Bt0 C Ct0 fixed var nor ext PIL ac rap

Tutorial 41 41 37 40 3,703 13,917 3,700 14,020 13 28 41 0 0 0 0
GitHub 165 92 53 151 7,350 20,734 7,967 21,500 60 105 162 2 0 1 0
M-Central 674 294 488 595 76,473 483,645 80,683 473,466 257 417 655 14 1 4 0
SourceForge 230 33 196 201 18,444 126,123 17,800 125,021 183 47 175 55 0 0 0
Other 7 4 3 7 611 680 636 701 1 6 7 0 0 0 0∑

SCR 1,117 464 777 994 106,581 645,099 110,786 634,708 514 603 1,040 71 1 5 0

Academic 690 232 456 634 75,813 185,574 86,223 185,733 229 461 597 68 0 16 9
Industry-M 404 61 259 351 30,826 220,011 27,631 212,299 176 228 399 4 1 0 0
Industry 174 15 93 161 24,753 180,929 25,116 194,655 135 39 169 3 0 1 1
No info 55 24 44 46 4,889 26,690 5,524 26,803 29 26 54 1 0 0 0∑

SC20R 1,323 332 852 1,192 136,281 613,204 144,494 619,490 569 754 1,219 76 1 17 10

GitHub 1,637 541 875 1,297 190,213 424,175 188,069 400,753 860 759 1,498 103 2 14 2
M-Central 6,239 3,370 3,874 5,485 828,210 3,197,090 914,857 3,074,782 1,753 4,484 5,971 186 2 76 2∑

SLNET 7,876 3,911 4,749 6,782 1,018,423 3,621,265 1,102,926 3,475,535 2,613 5,243 7,469 289 4 90 4

The remainder of this work removes from each corpus each model that is a test

harness or a user-defined library. This differs from earlier work that treated user-

defined library models as regular models and thus included them in overall metric

counts [89]. (The only exceptions are the three Table 5.2 t0 columns, which in-
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line user-defined libraries.) Table 5.2 compares SCR, SC20R, and SLNET on basic

Simulink model metrics, such as number of models, models that are hierarchical,

blocks, connections, and solver and simulation modes.

5.6.2.1 Model Size

A widely-used proxy for model size is the model’s number of blocks [163–165].

For example, a recent paper conducted experiments on what it introduced as large

industrial automotive models, containing 3.7k–73k blocks (and having hierarchy depth

8–16) [166]. Boll et al. report conversations with Simulink experts indicating typical

industrial models often have 1k–10k blocks [33]. Industry-scale models at automotive

supplier Delphi were earlier reported to have on average some 750 blocks [167].

Table 5.2 shows that (except for “Others”), including imported library blocks

(Bt0) at least doubles the overall block count. Focusing on 1k+ block models, SC’s

custom tool (which includes imported library blocks) found 93 such models in SC

on Simulink R2017a. On Simulink 2020b, SC’s tool found 132 such models in SCR,

139 in SC20R, and 799 in SLNET. When excluding any imported library blocks, SCR

contains 14 such models, SC20R 15, and SLNET 148.

5.6.2.2 Hierarchical & Compiling Models

Model hierarchy is important for studying model complexity, model slicing and

evaluating Simulink model generation tools [29,60,109,168]. SCR has 777 hierarchical

models, of which we could compile 44%. Of SC20R’s 852 hierarchical models we could

only compile 20%. Of SLNET’s 4.7k hierarchical models we could compile 47%.

SC20R’s low compile rate can be attributed to that corpus not distributing non-model

files, which may have served as dependencies for the Simulink model.

79



5.6.2.3 Project and Model Metric Distributions

Table 5.3: Model (after removing library & test harness models) metric distribu-
tions per project (p) and per model (m) in SCR (R), SC20R (20R), and SLNET (N);
Cyclom. C. = cyclomatic complexity (for a project the max of its models); Model
Ref. = model references; Alg. L. = algebraic loops; LL Blocks = library linked blocks;
Sub. Blocks = blocks in a subsystem at depth that has most such blocks.

Min Max Average Median Standard Deviation

R 20R N R 20R N R 20R N R 20R N R 20R N

Models p 1 1 1 124 124 237 5.6 6.9 2.8 1.0 1.0 1.0 14.7 16.4 9.7

Blocks
p 1 1 0 13,555 13,831 172,196 457.4 706.1 362.8 116.0 140.0 52.0 1,419.9 1,959.8 3,577.1
m 1 0 0 13,555 13,555 18,255 95.4 103.0 129.3 25.0 25.0 27.0 448.4 430.6 690.1

Block types
p 1 1 1 55 58 104 18.3 19.2 13.2 16.0 17.0 11.0 11.1 11.9 9.3
m 1 1 1 47 47 101 10.6 10.4 10.4 8.0 8.0 8.0 8.3 7.8 7.9

Connections
p 0 0 0 14,169 16,491 231,672 475.5 748.7 392.9 124.0 153.0 57.0 1,422.1 2,103.5 4,611.7
m 0 0 0 14,169 14,169 25,078 99.2 109.2 140.0 26.0 27.0 28.0 466.2 453.7 887.1

Subsystems
p 0 0 0 1,809 1,873 19,622 46.9 68.4 34.0 7.0 7.0 2.0 179.3 210.8 414.1
m 0 0 0 1,294 1,294 2,117 9.8 10.0 12.1 3.0 2.0 2.0 44.1 41.8 75.3

Cyclom. C.
p 0 0 0 322 322 2,404 27.7 30.7 22.2 7.0 7.0 5.0 49.4 54.1 81.1
m 0 0 0 322 322 2,404 14.0 13.6 13.7 4.0 4.5 2.0 32.4 31.6 59.0

Model Ref.
p 0 0 0 4 10 54 0.1 0.1 0.1 0.0 0.0 0.0 0.4 0.8 1.5
m 0 0 0 4 2 12 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.4

Alg. L.
p 0 0 0 7 9 37 0.2 0.2 0.1 0.0 0.0 0.0 0.7 1.0 1.1
m 0 0 0 2 1 6 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.2 0.3

LL Blocks
p 0 0 0 657 423 2,311 9.1 11.8 5.6 0.0 0.0 0.0 53.8 48.7 81.1
m 0 0 0 31 31 441 1.9 1.7 2.0 0.0 0.0 0.0 4.5 4.3 15.0

Sub. Blocks - 2 2 3 21 21 100 9.6 9.5 9.1 11.0 11.0 7.0 3.9 3.9 11.5

Table 5.3 shows model metric distributions across SCR, SC20R, and SLNET.

The majority of SLNET models are relatively small, with mean exceeding median

values. The overall distribution of metrics in SLNET is akin to that of earlier corpora,

i.e., offering a broad spectrum with most standard deviations exceeding the means.

SLNET however offers a broader range of Simulink models with similar min but

notably larger max metric values. Following are additional distribution details of

project size, most frequently used block types, and file types.

5.6.2.3.1 Project size Similar to earlier corpora, the distribution of models in

SLNET is skewed towards a few large projects. The 50 largest projects (i.e., the
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largest 1.8% of projects) contain 35% of all models, while 76% of the projects contain

just one model. Some SLNET projects feature 18 empty models alongside non-empty

models. By comparison, in SC20R, 5/194 projects contain 35% of the models, and

53% of the projects contain just one model. With the exception of a single SLNET

project that comprises a library model, all projects include some blocks and signal

lines.

5.6.2.3.2 Most Frequently Used Block Types Figures 5.3a and 5.3b show

that the distributions of the most-commonly used block types are similar in SCR

and SLNET. For example, in each corpus over 60% of models contain a SubSystem

block, making SubSystem appear in the most models in both corpora. SLNET uses

SubSystem less-widely, likely as 28% of SLNET models have less than 8 blocks, which

typically does not require a SubSystem block.

SCR models use 156 distinct block types vs. 203 in SLNET (150 are in both).

SLNET thus offers a potentially valuable resource for research studies [22,169]. Both

SC and SC20 studies included library-imported blocks and reported a lower occur-

rence of output blocks (e.g., Scope [170], Display [171], and ToWorkspace [172]) than

SLNET. The possible explanation for this discrepancy is that, like in procedural

programming languages (where programmers include logging statements at various

execution points), libraries may not have such statements for efficiency purposes. This

practice is also observed in Simulink modeling.

Furthermore, From [173] and Goto [174] blocks, which are typically used to

improve the visual layout of the model, are equally widely used in SC and SLNET.

However, excessive non-local usage of From and Goto blocks adversely affects read-

ability and design, warranting further investigation.
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(a) Most-common block types in SCR (o) and their SLNET (x) rate.
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Figure 5.3: Most-common block types in SCR (a) and SLNET (b).

5.6.2.3.3 File types Each Simulink model is stored in one of two file formats,

the MDL legacy file format or SLX. Introduced in Simulink R2012a, SLX conforms to

the Open Packaging Conventions (OPC) interoperability standard. Across corpora,

few projects contain both MDL and SLX files (SCR 3%, SC20R 7%, and SLNET 2%).
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Overall the major file type has shifted from MDL in SCR to SLX in SLNET (39%

of SCR models are in SLX, 45% for SC20R, and 55% for SLNET). The prevalence

of SLX files in open-source models is significant for developing SLX to MDL back-

transformation tools [175].

In summary, SLNET shares many similarities with prior corpora and offers a

broader view of open-source Simulink projects. The majority of SLNET models are

small, which may be relevant for analyzing simple models [28,29,176,177], while also

including a substantial number of non-trivial models using diverse features.

Finding 3: As in many other kinds of open-source projects [9, 178], SLNET

project and model metrics follow long-tailed distributions.

Implication: Research studies may use SLNET subsets based on their objectives.

The diverse SLNET corpus can help address generalizability challenges in model-

based development research.

5.7 Replicating Findings on Modeling Practices

5.7.1 Converging Result: Model Referencing

Analogous to classes in object-oriented programming, model references [179]

enable modular model design, unit testing, and code reuse. But similar to the SC

work [31], we found that only 10 SCR (0.9%), 18 SC20R (1.4%), and 139 SLNET

models (1.8%) use model referencing. Even when accounting for the skewed SLNET

model size distribution, Table 5.3 shows that model reference use remains sparse.

5.7.2 Converging Result: Algebraic Loops

An algebraic loop arises from a circular dependency between a block’s output

and input at the same simulation time step. An algebraic loop may reduce simulation
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performance or prevent the solver from resolving the loop. As the SC work [31],

we found such loops relatively rarely, with only 20 SCR and 186 SLNET models

containing such loops.

5.7.3 Converging Result: Small Class Phenomenon

Zhang et al. observed the “small class” phenomenon in Java programs (most

classes have few lines of code while a few classes are large) and found a high correla-

tion between class size and number of defects [180,181]. In Simulink, subsystems are

used to encapsulate a function, resulting in a hierarchical model. Similar to the small

class phenomenon noted in the SC work [31], we observe that the median number of

blocks in a subsystem at any hierarchy does not exceed 11 in both SCR and SLNET.

This may inform future hypotheses on Simulink subsystem size and defects.

Finding 4: The median number of blocks in a subsystem at any hierarchy level

does not exceed 11.

Implication: More research is needed to assess how subsystem size impacts

Simulink model quality.

5.7.4 Converging Result: S-function Reuse Rate

Table 5.4: S-function per-model reuse rate for models with 1+ S-functions; MS-fct =
models with 1+ S-functions; LQ = lower quartile; UQ = upper quartile; med = me-
dian.

MS-fct min LQ med UQ max avg

SCR 351 0.0 0.0 0.0 0.38 0.92 0.20
SC20R 378 0.0 0.0 0.0 0.50 0.98 0.23
SLNET 1,504 0.0 0.0 0.0 0.50 0.99 0.21
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Besides reuse of legacy C code, S-functions allow within-model code reuse (i.e.,

defined once but added to and used in several model components). In the same spirit

as the SC work [31], Table 5.4 shows that S-functions are not widely used, with just

31% of SCR models and 20% of SLNET using S-functions. For models that use S-

functions, 41% of SCR models and 40% of SLNET models reuse at least one S-function

(but these models’ median S-function reuse rate is zero across corpora).

5.7.5 Diverging Result: Cyclomatic Complexity vs Other Metrics

We conduct a correlation analysis between cyclomatic complexity and the other

Table 5.5 model metrics using Kendall’s τ . We only use models for which we could

calculate cyclomatic complexity (e.g., excluding models we could not compile). As in

the SC study, for SCR we used non-Simple models. For SC20R, we used industry and

industry-MathWorks models. As SLNET models are not categorized, we used those

containing 200+ blocks. All metrics exhibit a statistically significant correlation at a

0.05 significance level.

Table 5.5: Correlation between cyclomatic complexity and model metrics; M, B, C
from Table 5.2: models, blocks, and non-hidden connections; UB = unique block
types; MHD = max. hierarchy depth; CRB = child-model representing blocks i.e.,
model reference and subsystem; NCS = contained subsystems.

M B C UB MHD CRB NCS

SCR 160 0.29 0.32 0.31 0.38 0.28 0.29
SC20R 58 0.16 0.16 0.20 0.31 0.41 0.41
SLNET≥200 279 0.27 0.27 0.23 0.10 0.28 0.27
SLNET200-300 111 -0.02 0.12 0.16 0.05 0.07 0.07

SCR models have a weak positive correlation (0.28 to 0.38) between cyclomatic

complexity and model metrics. For SC20R models the correlation is positive and weak
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to (barely) moderate (0.16 to 0.41). For SLNET models with 200+ blocks the corre-

lation is positive but remains weak (0.10 to 0.28).

Finding 5: Contrary to previous work [113], cyclomatic complexity does not seem

strongly correlated with other model metrics.

Implication: Similar to Java- and C-like languages, in Simulink cyclomatic com-

plexity seems to remain an independently valuable metric.

Table 5.6: SLNETEvol and SC20REvol per-model (m) and per-project (p) change
metrics; Total commits, commits per day during project duration, merge commits
(≻), and commits of 1+ mdl/slx files (MS); commit authors and commitMS authors;
med = median; std = standard deviation.

SC20REvol SLNETEvol

min max avg med std min max avg med std

Commits p 1 590 62.7 10.5 124.6 1 963 43.9 7.5 120.1
Commit / day p 0 4 0.9 0.3 1.2 0 24 1.9 0.6 3.1
CommitsMS [%] p 0 100 38.8 26.8 31.2 1 100 31.4 25.0 23.5
Commits≻ [%] p 0 17 2.7 0.0 4.7 0 40 3.2 0.0 6.7
UpdatesMS m 0 43 3.3 1.0 5.7 0 53 1.8 1.0 2.8

Authors
p 1 16 2.8 2.0 3.5 1 21 2.0 1.0 2.6
m 1 3 1.1 1.0 0.4 1 8 1.3 1.0 0.7

AuthorsMS [%] p 0 100 68.6 75.0 34.5 10 100 82.2 100.0 26.1

5.7.6 Converging Result: Suitability For Change Studies

To assess their applicability for Simulink model and project change studies, we

analyzed SC20REvol’s 32 and SLNETEvol’s 208 git repositories (for SLNETEvol we only

studied the commits until SLNET’s February 2020 snapshot). Three projects (with

811 commits) were in both corpora.

Table 5.6 gives an overview of the project and model change metrics. For

example, 53% of SC20REvol projects (17/32) and 39% of SLNET projects (82/208)
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are maintained by at least two collaborators, of which 8/17 and 32/82 have commits

spanning over a year. Just 22% of SC20REvol and 15% of SLNETEvol projects have

more than 50 commits. Across SC20REvol and SLNETEvol projects, 20% of commits

involved updates or the creation of one or more models.

In both corpora, an average of 22% of models were under active development

throughout the projects with 3+ commits, indicating the models were primary ar-

tifacts of these projects. However, 40% of SC20REvol and almost half of SLNETEvol

projects did not update their models after committing them to the repository. In

both corpora, roughly 55% of models were not updated at all. The lack of model

updates may be due to GitHub Simulink projects mainly serving as archives—like

most other GitHub projects [9].

Figure 5.4 breaks each project’s duration into 10 buckets of equal length (nor-

malized to each project’s duration). Here project duration is the duration from a

project’s first to last commit as recorded by the timestamps assigned by the authors’

machines. While this approach has its pitfalls, the more-active projects are usually

less affected and we performed the basic recommended sanity checks to ensure there

are no impossible outliers (e.g., commits with Unix time zero) [182].

To avoid potential skewing caused by “code dump” projects, Figure 5.4 excludes

projects with less than 3 commits, yielding 26 SC20REvol projects and 186 SLNETEvol

projects. Even with this filtering, the figure may still be biased towards projects with

fewer commits as the majority of both SC20REvol and SLNETEvol projects have less

than 11 commits.
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(a) Timeline of 26/32 SC20REvol 3+ commit projects.

(b) Timeline of 186/208 SLNETEvol 3+ commit projects.

Figure 5.4: Across normalized project duration (x-axis): Total project commits, com-
mits of 1+ mdl/slx files, individual mdl/slx file updates, and mdl/slx files under de-
velopment (i.e., in between a file’s first and last commit).

Finding 6: A quarter of SLNETEvol projects are developed collaboratively and

have 1+ multi-revision models.

Implication: SLNETEvol projects have the potential to yield valuable insight into

open-source Simulink development.

5.7.7 Diverging Result: Open-source Code Generation Models

Simulink models that can generate code are of interest in model-based research

and tool-development [164, 183–186]. Initially we applied SC20’s heuristics to search
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Table 5.7: Models configured for code generation; M = all models; EC20 = SC20

Embedded Coder heuristics; EC = our Embedded Coder heuristics; GRT = Simulink
Coder (Real-Time Workshop); Other = other code generation toolboxes.

M EC20 EC GRT Other Total

Tutorial 41 1 1 12 0 13
GitHub 165 0 4 52 4 60
MATC 674 0 47 101 109 257
Sourceforge 230 0 0 96 87 183
Others 7 0 0 1 0 1∑

SCR 1,117 1 52 262 200 514

Academic 690 0 3 94 136 233
Industry-M 404 0 33 77 67 177
Industry 174 0 5 129 1 135
No Info 55 0 1 28 0 29∑

SC20R 1,323 0 42 328 204 574

GitHub 1,637 14 129 502 234 865
MATC 6,239 19 423 1,050 297 1,770∑

SLNET 7,876 33 552 1,552 531 2,635

for Embedded Coder [187] or TargetLink [188] traces. But we found inconsistencies

between SC20’s results (finding no code generation models) and their replication pack-

age’s heuristics [189]. During our interactions the SC20 team acknowledged a bug and

fixed it in their replication package version 2 [150].

Specifically, SC20’s heuristics determine if a model can generate code based on

the presence of atomic subsystems [190] or special TargetLink blocks. This found

33 SLNET models configured for Embedded Coder but no TargetLink traces. We

found this heuristic restrictive and not specific to Embedded Coder. Our counter-

example model had non-atomic subsystems and successfully generated code via Em-

bedded Coder.
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For background, while every Simulink model can generate code using Simulink

Coder [191], this requires a fixed-step solver, which conflicts with the default variable-

step solver model configuration. Simulink models further rely on a target language

compiler (TLC) file [192] to map Simulink blocks and parameters to the target lan-

guage’s constructs.

Simulink offers a set of standard-named TLC files that support various solver

types [193]. For example,‘rsim.tlc’ supports fixed-step and variable-step solvers. To

determine if the Simulink model is configured to generate code, we follow a heuristic

approach. First, we check if the model’s TLC file name matches with one provided by

Simulink and the model is configured with appropriate solver type. Second, in cases

where the solver type required is ambiguous, we make a conservative assumption that

the model must be configured with the fixed-step solver.

Table 5.7 shows the number of models configured for code generation. SLNET

has 2,635 models with code generation capabilities, at least 4× more than previous

corpora.

Finding 7: SLNET has 4× models configured for code generation (a common

configuration in industrial models) than the largest earlier open-source model col-

lection. Implication: Additional investigation is required to determine if the code

generation models in SLNET can meet requirements of research studies.

5.8 Threats to Validity

Internal validity concerns the experimental design, data collection and analysis.

In our replication efforts, we closely adhered to the original study’s setup and tools.

We calibrated the provided tools and contacted the authors for clarification and con-
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sistency in data analysis. It is important to note that the choice of Simulink version

can impact model metrics and introduce slight differences in insights.

Specifically, for a subset of 554 SLNET models (the models of the 10 SLNET

projects with the most models) we compared model metrics obtained using both

R2020b and R2022b. Results for all metrics were the same for all models, except for

3/554 models where the cyclomatic complexity differed by 2–6 between R2020b and

R2022b.

External validity examines the generalizability of reproduced and replicated

study results. In our case, the generalizability of our findings is limited to Simulink

models within the SLNET corpus. SLNET may not represent all available Simulink

projects, as its construction involved a keyword search on GitHub and filtering for

redistributable projects. However, considering that the majority of results from the

original studies, which involved some level of cherry picking in their corpus, hold true

in SLNET–a larger dataset encompassing diverse models with a small overlap–we

are optimistic in the generalizability of the presented results to other open-source

Simulink models.

Construct validity ensures that the measures and metrics used in the replicated

study accurately capture the intended concepts. Our confirmatory replication study

inherits limitations from the original studies, such as not analyzing Stateflow blocks

or MATLAB code, which can contribute to the project’s complexity. Also, SC’s

heuristic used to identify test harnesses may have limitations, as manual inspection

revealed 10% of such models are test harnesses. Upon noticing issues with SC20’s

code generation heuristic, we proposed new methods after consulting with the original

authors.

Reliability refers to the replicability of a study for obtaining same or similar

results. To mitigate reliability risks, we distribute our analysis tool and complete
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replication package as open-source via permanent storage locations [125, 126]. We

encourage replication of our findings.

5.9 Conclusions and Future Work

The study investigated the reproducibility of previous empirical studies of Simulink

models and evaluated the generalizability of their results to the larger SLNET corpus.

The SLNET study confirmed and contradicted earlier findings, highlighting its po-

tential as a valuable corpus for model-based development research and also provided

actionable insights for future research. We found that open-source Simulink models

generally follow good modeling practices and that few open-source models are com-

parable in size and properties to proprietary models. To that end, we proposed a

heuristic to determine code generating Simulink models. We also provided 208 Git

repositories to facilitate model evolution studies.

While this paper only analyzes Simulink model metrics focusing on reproducibil-

ity and replication, future work includes examining if the model metrics can be used

to make predictions of process metrics such as defect prediction.
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CHAPTER 6

EvoSL: A Large Open-Source Corpus of Changes in Simulink Models & Projects

This chapter was originally published in 2023 ACM/IEEE International Con-

ference on Model Driven Engineering Languages and Systems (MODELS), Väster̊as,

Sweden, 2023, pp. 273-284, doi: 10.1109/MODELS58315.2023.00024. It is repro-

duced here with permission from IEEE without revision [194].

6.1 Abstract

Having readily available corpora is crucial for performing replication, repro-

duction, extension, and verification studies of existing research tools and techniques.

MATLAB/Simulink is a de-facto standard tool in several safety-critical industries

for system modeling and analysis, compiling models to code, and deploying code to

embedded hardware. There is no commonly used corpus for large-scale model change

studies because there is no readily available corpus. EvoSL is the first large corpus of

Simulink projects that includes model and project changes and allows redistribution.

EvoSL is available under a permissive open-source license and contains its collection

and analysis tools. Using a subset of EvoSL, we replicated a case study of model

changes on a single closed-source industrial project.

6.2 Introduction

There is currently no well-packaged, single source of open-source Simulink

projects suitable for studying changes in Simulink models or projects. This is pri-

marily due to the overhead associated with mining open-source repositories for such
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projects. For instance, GitHub’s API does not readily facilitate filtering Simulink

projects. Additionally, many open-source projects have been rendered inactive, adding

another layer of complexity to the task of filtering out unwanted noise [9]. So creating

a centralized and diverse set of Simulink projects is currently challenging.

This is a significant problem, as Simulink is a powerful tool that is widely used

in several safety-critical industries such as automotive, aerospace, healthcare, and

industrial automation for system modeling and analysis, compiling models to code,

and deploying code to embedded hardware. As models become increasingly com-

plex, understanding the impact of changes on the overall system becomes challenging

and maintaining the consistency between models becomes harder. To alleviate the

problem, researchers often collaborate with industry to study evolution patterns and

develop tools and techniques [87, 195, 196]. But this has significantly hampered the

advancement of the research as the software artifacts they used are generally not

made available due to confidentiality agreements hindering replication, reproduction,

extension, and verification of results.

In software engineering research, there has been steady progress towards mak-

ing research artifacts publicly available, which in turn has increased the impact of the

research [197]. The full adoption of the open-source mindset in model-based devel-

opment research has been limited, due to a prevailing view that publicly accessible

models have limited research utility or because of non-disclosure agreements between

researchers and industry partners [33]. Recent work has created increasingly larger

corpora of open-source Simulink models [22,31,85,198]. A recent empirical study has

shed light on the potential of using open-source Simulink models in model evolution

studies [89]. However to date these corpora do not contain Simulink model or project

change data.
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To address the issue, we present EvoSL, a curated corpus of 924 Git reposi-

tories consisting of over 140k commits. EvoSL is self-contained and redistributable,

automatically (apart from occasional license reviews) collected from GitHub. We

demonstrate EvoSL’s usefulness by replicating on a EvoSL subset a model evolution

study originally performed on an industry project. Our results share several simi-

larities, while also bringing to light significant differences. For instance, our analysis

found that engineers spend a substantial amount of time managing signal data rather

than implementing algorithms and documentation is often neglected. To summarize,

the paper makes the following major contributions.

• We created EvoSL, a corpus of 924 Simulink repositories. We mined GitHub

to extract and filter Simulink-based Git repositories that permit redistribution.

To the best of our knowledge, EvoSL is the first corpus of third-party Simulink

projects to perform model change studies.

• To assess EvoSL’s usefulness, we tried to replicate a prior study that analyzed

changes of closed-source industrial models. We found several of the original

findings could be observed on the open-source models.

• All artifacts of the paper including tools and mined data are open sourced on

Zenodo [199,200] and Figshare [201].

6.3 Background

Simulink [69] is a popular model-based development tool that allows scientists

and engineers to design, analyze, and implement complex systems. For example, it is

widely used in the aerospace, automotive, healthcare, and robotics industries.

A Simulink user designs a system via a graphical modeling environment as a

block diagram, by connecting parameterized blocks that represent components, sig-

nals, and mathematical operations. Figure 6.1 shows a tiny example. Each block
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Figure 6.1: Two tiny example Simulink models: The left model (a) reuses the func-
tionality of the referenced model (b).

processes the input it receives via input ports and passes its outputs via output ports

via signal lines to subsequent blocks.

Simulink users can pick blocks from a wide variety of libraries and create cus-

tom blocks. A block mask [202] can add user-defined constraints and user-interface

elements to a block. A Simulink user can annotate a model using annotations and

alter its behavior via configurations [203].

Simulink’s built-in Model Comparison Tool [204] compares two model versions

at various levels of granularity—from blocks to the overall model structure. The

example in Figure 6.2 shows the differences between two versions of a Simulink tutorial

model (sf car [3]), i.e., the addition of an Output block (Out1) and the corresponding

update of the Vehicle-to-transmission connection line (partially highlighted in yellow).

6.3.1 Studies of Changes in Simulink Models & Projects

Despite the importance of Simulink in practice, to the best of our knowledge

there are only a few studies of how practitioners develop Simulink projects and how

Simulink models change during development [4,89,205]. While studying the develop-

ment history of large Simulink projects in both closed-source industrial [4, 205] and

open-source development [205], such work has mostly consisted of case studies of one

or two projects.
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The one exception we are aware of is the recent study [89] that collected the

commit histories of 35 open-source Simulink projects of an earlier corpus [31] that

were still online. Besides the limited number of projects, the study also remained

focused on high-level project history change data and thus did not analyze changes

within a model file, e.g., which model elements are changed and how the elements are

changed.

6.3.2 State of Open-source Simulink Corpora

While several services provide open-source Simulink models, to the best of

our knowledge, none of these services can currently be used directly as a corpus

of Simulink project repositories. For example, GitHub does not list Simulink as a

separate language, has many projects that are unclearly licensed or are duplicates,

and over time many projects disappear. Similarly, Software Heritage is not set up for

frequent public download of full repositories and MATLAB Central File Exchange

does not support commit-level project histories.

The lack of a corpus of Simulink repositories has been partially addressed by

recent efforts to create ever-larger corpora of open-source Simulink models [22,31,85,

89]. On the positive side, these corpora have been used as a training set for machine-

learning based approaches [176,198] and to evaluate a variety of novel techniques [60,

198,206–208]. Unfortunately, these corpora do not contain model changes.

To gauge the promise of open-source projects for studying Simulink project and

model changes, Boll et al. [89] studied the Git repositories of 35 GitHub projects of

Chowdhury et al.’s corpus [31]. With a Simulink expert many of these 35 projects

were found to not mirror industrial Simulink projects for various reasons (i.e., under

50 day project duration, single author, and few merge commits). On the positive side,
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the study mentions three projects as promising for—due to their low total number—

case study research.

While we could add model changes to one of the above corpora (e.g., by adding

Git commits from GitHub), the maximum size of such a complemented corpus would

still be relatively limited. Specifically, the corpus with the by-far most potentially

available project histories is SLNET with its 225 GitHub projects [85].

6.3.3 Available Open-source Simulink Project Histories

As of March 2023, the major non-GitHub services we are aware of hosting code

repositories, GitLab and SourceForge, host orders of magnitude fewer open-source

Simulink repositories than GitHub. Specifically, before removing projects that are

empty, forks, duplicate, or have an unclear license, a quick search for “Simulink”

yields 52 SourceForge projects and one GitLab project.

While Software Heritage preserves many important open-source code reposito-

ries long-term, we do not use it for the following reasons. First, Software Heritage is

not meant as a primary source, downloading Software Heritage repositories is expen-

sive and should only be done if the primary source becomes unavailable [209]. Second,

it contains fewer repositories (i.e., missing over a third of the 14k EvoSL+ Simulink

root repositories we located on GitHub). Finally, Software Heritage currently does

not provide GitHub project data such as issues, comments, and pull requests.

Beyond centralized project hosting services, a recent study [210] found the three

most-used decentralized code repository sources GitLab Community Edition, Gogs,

and Gitea to provide over 45k public open-source Git repositories, which tend to be

longer-running, more academic, and more collaborative than GitHub projects. We

did not attempt to mine these services as overall they had three orders of magnitude
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fewer projects than GitHub and do not provide uniform project data such as issues,

comments, and pull requests.

6.4 Corpus of Simulink Model & Project Changes

Downloading Simulink projects from GitHub is not straightforward, as GitHub

does not label Simulink projects. To heuristically address this issue, EvoSL-Miner

queried GitHub’s public REST API (via PyGitHub [97]) in February and March 2023

to first download root repositories (i.e., not forks) that (a) are marked as using the

MATLAB programming language or (b) match when searching their repository name,

description, or README file for “Simulink”. EvoSL-Miner extends SLNET-Miner,

by downloading the full Git repository instead of a snapshot, while still satisfying the

GitHub REST API limits (30 search requests per minute per authenticated user, yield-

ing 1k results per request; 5k other requests per hour per authenticated user) [211].

This yielded over 360k such MATLAB/“Simulink” projects.

Figure 6.3: Overview of EvoSL collection and cleaning steps: EvoSL-Miner downloads
EvoSL+ (Git projects and metadata), from which EvoSL-Cleaner removes certain Git
repositories.
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In the second step (labeled “2” in Figure 6.3), we only keep a MATLAB /

“Simulink” project in EvoSL+ (and download from the GitHub API its summary

data, issues, pull requests, and comments) if the project’s latest default-branch ver-

sion has at least one mdl or slx file we can open with Simulink 2022b (Simulink’s

default file format changed with the R2012b release from the proprietary ASCII mdl

file to the (binary) zip container slx). This yielded EvoSL+’s 13,919 root Simulink

Git repositories with metadata. (3) Third, we use the root project metadata to sim-

ilarly download all (transitive) project forks, yielding EvoSL+’s 13,786 Simulink fork

GitHub repositories and their metadata.

Table 6.1: Data cleaning steps: Root = project with 1+ Simulink models; Li-
cense = has a license; Permissive = license allows re-distribution; MC = has 2+
model commits; ND = no duplicates; EvoSL = has model with 2+ commits.

Root License Permissive MC ND EvoSL

13,919 2,323 2,282 1,081 1,071 924

Table 6.1 summarizes the further pre-processing, which adds to EvoSL+’s meta-

data but for license and storage space reasons only includes the EvoSL subset (Git

repositories and all metadata including issues, comments, pull requests, etc.) in the

EvoSL distribution. (4) Fourth, EvoSL-Cleaner only includes an EvoSL+ root project

in EvoSL if the project has a license (2,323/13,919 projects) and the license allows

redistribution. GitHub has a structured way for authors to set their project’s license,

which GitHub then converts into a corresponding license file (and subsequently ex-

poses via an API). For the 291 project licenses GitHub did not understand (i.e., the

API returns “Other”), we realized on manual review that many of them just ap-

pear to be common open-source licenses applied manually—without using GitHub’s
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structured license settings. We conservatively judged 250/291 projects to allow re-

distribution.

While for many applications (e.g., as a machine learning training set) a larger

corpus is better, we also had to satisfy long term storage size limitations. We thus (5)

prioritized the projects with the most changes to Simulink model files (as opposed to

changes to other files). Specifically, we extract commit metadata via PyDriller [212].

While EvoSL contains the full Git repositories and all issues, pull requests, and com-

ments, we configure PyDriller to only process the commits of each project’s default-

branch. We then only keep a Git repository in EvoSL if it has at least two commits

across its (default-branch) Simulink model files, yielding 1,081 Git repositories with

Simulink model commits.

After removing forks, the dataset may still contain other duplicates [213], which

we remove heuristically. In step (6) we first mark two EvoSL Git repositories as po-

tential duplicates if they have the same Figure 6.4 Project Commit Summary metric

values (e.g., the same number of default-branch commits, same number of default-

branch merge commits, etc.) and confirm this if they also have the same commit

hashes. We keep the Git repository with the smaller GitHub project ID, yielding

1,071 Git repositories. (7) Finally, we remove Git repositories that do not change any

default-branch Simulink model after that model file’s initial (“check-in”) commit,

yielding EvoSL’s 924 Git repositories.

Finally, we compare the size of EvoSL to the largest open-source Simulink cor-

pus to date—SLNET (which does not contain project histories). To ease comparison,

we focus on the 36 EvoSL projects we could open with Simulink R2019a that have the

most commits of mdl/slx files (“EvoSL36”). The latest version of the main branch of

the projects in this EvoSL subset alone contains 714k Simulink blocks, significantly

more than all of SLNET’s 190k blocks in its 225 GitHub projects.
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6.4.1 EvoSL Long-term Storage and Metadata

At writing we were aware of three permanent storage options that are publicly

accessible, easy to cite, and offer free data deposit and download. Since Dataverse’s

2.5 GB per-file limit [214] conflicts with some EvoSL projects and Figshare’s free

20 GB per-user limit [215] restricts EvoSL’s overall size, we upload EvoSL into Zen-

odo’s 200 GB hard limit [199].

What EvoSL adds to the repositories (bundling, some metadata, etc.) has the

permissive CC BY 4.0 license. The distribution contains EvoSL’s 924 full Simulink

Git root repositories (last updated in early March 2023). The size of the distribution

is some 73 GB. Each of the 924 projects is in a zipped folder named after the project’s

GitHub project ID.

Figure 6.4: EvoSL’s metadata relational database schema with multiplicity con-
straints, e.g.: each (default-branch) project commit is broken down into one model
commit per Simulink model file change and each model commit is part of one project
commit; bold = primary key; forked projects do not contain their parent project’s
commits (except for one initial commit).
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In addition to the 924 full Simulink Git root repositories, EvoSL also contains

the Figure 6.4 metadata. Specifically, the metadata is in a SQLite1 database. The

metadata mainly records the information EvoSL-Miner downloaded from the GitHub

API, e.g., project popularity and engagement, issues, pull requests, and comments

associated with issues and pull requests. To make it easier to select projects with

certain Simulink model changes, we derive and add metadata.

First, for each project’s default-branch we break down every commit that changes

Simulink models into one model commit per model changed by that (project) com-

mit. Specifically, we process each Git repository’s default-branch commits to cre-

ate one model commit per Simulink model whose slx or mdl file was touched by a

given project commit (Figure 6.4 Model Commits). A commit belonging to a merge

commit is distinguished by listing more than one parent commit. We further sum-

marize commits, e.g., the total number of default-branch commits, their number

of authors, and a Simulink model’s lifetime—i.e., the difference between a model

file’s first and last default-branch commit (Figure 6.4 Project Commit Summary and

Model Commit Summary).

Table 6.2: Simulink root projects before (EvoSL+) and after filtering (EvoSL): Issues,
pull requests (PR), comments on issues and pull requests, and default-branch com-
mits.

Projects Commits Issues PR Comments

EvoSL+ Root 13,919 419,404 5,973 7,490 14,923
EvoSL (Root) 924 143,571 3,228 1,933 10,290

1SQLite is widely used, free, self-contained, server-less, zero-configuration, backwards compatible,

and cross-platform.
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Finally, Table 6.2 compares the amount of metadata for EvoSL+ and EvoSL.

From a project change data perspective, EvoSL is clearly an interesting (but non-

representative) sample of the full EvoSL+ root projects. For example, while EvoSL+

contains over 15 times of the root projects of EvoSL, EvoSL contains over one third

of all EvoSL+ default-branch project commits and over two thirds of all EvoSL+ issue

and pull request comments.

6.4.2 Overview of EvoSL’s Simulink Model and Project Changes

It is well-known that for the entirety of GitHub the distribution of commits

over projects is heavily skewed toward a few very active projects, with a long tail of

projects having under 50 commits [9]. It is thus no surprise that GitHub’s Simulink

projects default branches follow a similar long-tail distribution (Figure 6.5). For

example, in EvoSL+ the median number of default-branch project commits is six and

the median number of model commits per project default-branch is one. Further,

91% of projects have under 50 total default-branch commits and 56% of projects only

have one model default-branch commit.

To better understand model change timing and the share of Simulink models

that is changed during the project, Figure 6.6 breaks each project default-branch’s

duration into 10 buckets of equal length (normalized to each project default-branch’s

duration). Here project duration is the duration from a project default-branch’s first

to last commit as recorded by the timestamps assigned by the committers’ machines.

While this approach has its pitfalls, the more-active projects are usually less affected

and we performed the basic recommended sanity checks to ensure there are no im-

possible outliers (e.g., commits with Unix time zero) [182].

Specifically, if a project only has one default-branch commit then Figure 6.6

assigns this commit (only) to the last bucket (90–100%). This explains Figure 6.6a’s
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Figure 6.5: Root project percentage (y-axis) with up to the given number of default-
branch commits, default-branch commits of 1+ mdl/slx files, issues, and pull requests
(x-axes).

spike in the 90–100% bucket, as EvoSL+ is skewed towards projects with few default-

branch commits. Similarly, the spike in its 0–10% bucket says that many EvoSL+

projects commit (or “dump”) much of their changes (and especially changes to Simulink

model files) together around the time of the initial default-branch commit.

The last-bucket concentration of commits, commits of 1+ mdl/slx files (commitsMS),

and share of mdl/slx files in a commit (“models under development”) all decrease in

EvoSL, again when looking at the subset of EvoSL projects with 10+ default-branch

commitsMS (Figure 6.6c), and yet again when looking at the 36 top-commitsMS EvoSL
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projects we could open with Simulink R2019a (Figure 6.6d). At the same time, these

measures trend upward for the non-start/finish buckets. For example, for EvoSL

projects with 10+ default-branch commitsMS, each bucket contains commits that

overall include at least 10% of the default-branch mdl/slx files.

Table 6.3: Default-branch metrics: Commits, commits per day during project dura-
tion, merge commits (≻), and commits of 1+ mdl/slx files (MS); commit authors and
commitMS authors; l = low; h = high; med = median; std = standard deviation.

EvoSL+ (root) EvoSL (root) EvoSL36 (root)
Default-branch: l h avg med std l h avg med std l h avg med std

Commits 1 15,060 30 6 305 2 15,060 155 22 992 102 1,452 499 381 349
Commits / day 0 91 2 1 4 0 50 1 0 3 0 1 0 0 0
Commits≻ [%] 0 55 2 0 6 0 48 5 0 7 0 17 9 9 5
CommitsMS [%] 0 100 43 33 31 0 100 36 31 25 6 88 35 27 19
Authors 1 103 2 1 3 1 103 4 2 8 1 45 14 11 11
AuthorsMS [%] 1 100 84 100 25 2 100 73 67 28 25 100 62 56 21
Durations [days] 0 5,909 116 4 326 0 5,909 443 135 703 264 5,909 1,553 1,207 1,076

The Figure 6.6 distributions over normalized project lengths further resemble

traditional software development projects (rather than file dumps) when putting them

into context of the Table 6.3 project metrics. First, EvoSL’s, EvoSL+’s, and EvoSL36’s

absolute project lengths range up to 16 years, with average project lengths of 116,

443, and 1,553 days and median project lengths of 4, 135, and 1,207 days. Finally,

EvoSL and EvoSL36 projects have a median of two and 11 authors, of which more

than half also commit slx/mdl files.

6.5 Replicating an Industrial Study With EvoSL

Our main contribution is the EvoSL corpus itself, as it allows exploring vari-

ous research questions on Simulink model and project changes, including commits,

GitHub issues, pull requests, other project metadata, and their correlations. While

open-source projects will never be exactly like industrial closed-source development
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in all aspects, here we are asking if studying open-source projects can yield

results that are comparable to studying closed-source Simulink projects.

At a minimum, this would allow the research community to develop hypothe-

ses and tools that could then be tested and validated more easily in an academic-

industrial collaboration. This may lead to faster progress than relying on all the heavy

lifting of developing hypotheses and tooling from scratch being done in closed-source

academic-industrial collaborations.

To explore this question, we pick one recent representative empirical study

of the changes in a closed-source Simulink project and replicate the study using

EvoSL projects. Jaskolka et al. [4] examined changes across different model versions

of a proprietary industrial software repository of an automotive control system to

understand how Simulink models evolve over time. Their analysis shows that well-

accepted software engineering principles (such as low degree of change to interfaces)

are not practiced and engineers spend significant amounts of time in non-value added

work such as migrating the project to new Simulink versions. Specifically, we are

investigating the following three research questions, all copied verbatim from Jaskolka

et al. [4].

RQ1 What basic elements change the most?

RQ2 Which blocks are involved in changes most frequently?

RQ3 Which are identified categories of change?

6.5.1 Experimental Setup Following C-study

To replicate the earlier study [4] (which we call C-study, where C may stand

for closed-source or car industry), we try to follow C-study’s setup and procedures

as closely as possible, using both the same conceptual framework of Simulink model

changes and tooling for collecting change data.
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For the conceptual framework, Figure 6.7 summarizes the relevant parts of C-

study’s meta-model of Simulink models. Here a block diagram is composed of six

element types—block, line, port, mask, annotation, and configuration. For each of

these six element types, C-study collects four change types—add, delete, rename, and

(otherwise) modify.

C-study detects a change by comparing two snapshots of a model. An added

element does not exist in the before- but in the after-model. A deleted element exists

in the before- but not in the after-model. A renamed and modified element each exist

in both the before- and the after-model but have their name or another parameter

changed.

On the tooling side, Figure 6.8 gives an overview of how we adapted C-study’s

model change computation. C-study queried a Rational Synergy commercial issue

tracking system to extract before- and after- model file versions from a Rational

Change commercial change management system [216, 217]. Given EvoSL’s use of

standard Git repositories and its inferred model commit metadata, it is straight-

forward to similarly extract such before- and after- model file versions from EvoSL.

Since we do not know how C-study treated merge commits (or commits from

non-default branches) we focus on non-merge default-branch commits. C-study’s

open-source Model Comparison Utility [4,5] passes each pair of before- and after- file

versions to Simulink’s built-in model comparison tool and breaks its output down

into individual model element changes. Due to Simulink API limitations, C-study’s

Model Comparison Utility discards non-functional changes (such as layout) and block

defaults. We store and distribute the remaining derived element changes in a SQLite

database.

For this replication study we had to make a trade-off between model selection

and replication accuracy. The key reason is that using two different Simulink ver-
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sions and their built-in model comparison tools on the same before- and after- model

pair can produce vastly different results, even when both Simulink versions directly

support the model file versions.

Concretely, as C-study used Simulink R2019a we passed random Simulink mod-

els developed with R2019a to both Simulink R2019a and the (ostensibly backward-

compatible) R2022b. Despite the tool documentation being silent on this, about a

quarter of changes were only reported by one of the two Simulink versions, with no

report being a superset of the other. As we cannot run R2022b on the closed-source

C-study repository we are stuck with Simulink R2019a and (as Simulink is not directly

forward-compatible) we exclude from this study model files developed with R2019b

or later that Simulink R2019a refuses to open.

6.5.2 Simulink Model Changes From EvoSL Sample: EvoSL36

As C-study focuses on Simulink model changes we pick the 50 EvoSL projects

that have the most default-branch changes to mdl/slx files (“commitsMS”). Due to

our experimental setup constraints, we remove 9 (newer) projects Simulink R2019a

cannot open. We remove five additional projects who have a subset of the default-

branch commitsMS of another project. (EvoSL removed all explicit fork projects and

exact non-fork duplicate project histories but not such non-forked almost-duplicates.)

We are thus left with 36 EvoSL projects (“EvoSL36”). Following C-study, we ran

its Model Comparison Utility [4, 5] on each default-branch before- and after-commit

model pair of EvoSL36, yielding 590,300 Simulink model changes (C-study analyzed

2.8M such changes).

Table 6.4 puts EvoSL36 in context of C-study’s published basic project char-

acteristics [4]. While EvoSL36 has default-branch changes in fewer mdl/slx files

(some 900 in total vs 3,945), has fewer total default-branch commitsMS in a sin-
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Table 6.4: Basic project metrics copied from C-study [4] and EvoSL36’s default-branch
distributions; l = low; h = high; med = median; std = standard deviation; m = model
size.

[4] EvoSL36 (default branches)
l h avg med std

Largest m. [blocks] 37,814 6 51,655 2,368 357 8,642
Avg m. [blocks] 1,200 5 8,366 424 113 1,438
CommitsMS 1,354 60 598 141 111 105
Duration [months] 75 9 197 52 40 36
Changed model files 3,945 1 176 25 13 37

gle project (598 vs 1,354), and has a lower average default-branch model size (424

vs 1,200 blocks), on all the measures, except changed model files, EvoSL36 is within

the same order of magnitude as C-study. On the flip side, EvoSL36 has a larger

maximum default-branch model size (52k vs. 38k blocks), longer maximum default-

branch project duration (16 vs. 6 years), and more total default-branch commits with

mdl/slx file changes in total (5k vs 1,354 commitsMS)—again all within the same order

of magnitude.

To further gauge EvoSL36’s suitability, we checked the criteria recently laid out

with the help of a Simulink expert [89] when analyzing the suitability of an earlier

corpus [31]. Of these criteria, we did not reach a conclusion on a steady increase of

commits towards project end (as we do not know EvoSL36 projects’ future timelines)

and a non-low percentage of commits being merge commits (it is unclear if EvoSL36’s

median 9% of commits meets this bar).

That paper’s remaining provided metrics and example values [89] all largely

align with EvoSL36 (Table 6.3), i.e., a high project duration (2.3k vs. EvoSL36’s

median 1.2k days in the default-branch), many authors (16 vs. median 11), many

project commits (589 vs. median 381), and many default-branch commits affecting

mds/slx files (44% vs. median 27%). Together with our manual sampling of commit
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messages, we conclude that EvoSL36 projects are not synthetic outliers generated by

a random generator, but represent suitable human development activity.

6.5.3 RQ1: What Basic Elements Change the Most?

Breaking EvoSL36’s 590,300 default-branch element changes down by element

and change type as C-study did yields Table 6.5’s right columns. To ease comparison,

we normalize each element type’s change count (e.g., EvoSL36’s 30k block renames) by

dividing that element type’s total changes (e.g., EvoSL36’s 300k total block changes—

yielding EvoSL36’s 10.1% block rename rate).

Table 6.5: Types of Simulink model element changes in C-study and EvoSL36 (de-
fault branches); normalized = element type’s specific changes divided by that element
type’s total changes; Re = rename; Mod = modify; Del = delete; EC/TC = element
type’s total changes divided by total changes; Anno = annotation; Conf = configu-
ration.

C-study (normalized) EvoSL36 (normalized) EvoSL36 (absolute)
Re Mod Del Add EC/TC Re Mod Del Add EC/TC Re Mod Del Add Total

Block 12.0 24.9 22.9 40.2 55.3 10.1 35.4 23.4 31.1 50.7 30,183 106,093 69,985 93,295 299,556
Line 0.2 2.0 39.2 58.6 38.9 0.2 1.8 43.3 54.6 41.6 558 4,385 106,575 134,340 245,858
Port 0.3 27.6 27.6 44.5 3.2 0.0 0.5 43.4 56.1 4.2 0 124 10,774 13,951 24,849
Mask 0.0 19.8 16.9 63.2 1.8 0.0 43.7 23.7 32.5 1.2 0 3,148 1,709 2,343 7,200
Anno 4.0 10.4 34.2 51.4 0.8 6.3 7.4 44.3 42.0 1.1 407 482 2,871 2,723 6,483
Conf 0.0 98.5 0.0 1.5 0.0 2.2 65.0 3.5 29.3 1.1 142 4,130 220 1,862 6,354

All 6.7 15.9 29.4 48.0 100.0 5.3 20.1 32.5 42.1 100.0 31,290 118,362 192,134 248,514 590,300

C-study makes several observations about this element change breakdown and

draws two main conclusions, all of which could equally be done with EvoSL36’s cor-

responding (default-branch) data, as follows. (1) First, C-study observes that the

most frequently changed element type is blocks, which aligns with 300k of 590k total

EvoSL36 changes being blocks. (2) Second, C-study finds that line changes follow

closely behind block changes, which again aligns closely with EvoSL36’s 246k line vs.

300k block changes.
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(3) Third, C-study notices that line changes are dominated by first add (59%)

and then delete (39%), which similarly occurs in EvoSL36 (55% add and 43% delete).

Combined with add- and delete-line having higher absolute numbers than add- and

delete-block, C-study explains how replacing a block triggers a deleting and adding a

line.

(4) Fourth, not directly referencing any additional data, C-study determines

that a similar dynamic is at play with ports. As all of the previous data observations

are equally true in EvoSL36, we could have equally used EvoSL36 to conclude to omit

both line and port changes from further analysis. (5) Finally, C-study observes that

masks, annotations, and configurations have the least changes (some 3% overall),

which again aligns with some 3% in EvoSL36.

Beyond C-study’s observations, there are several other similarities. For exam-

ple, in both data sets the most common change type is add, followed by (in order)

delete, modify, and rename. The one big outlier in both datasets is configuration,

which is dominated by modify and followed by add. In both datasets blocks have

the highest rename rate, followed by annotations, and lower rates for the remaining

element types.

Finding 8: Besides additional similarities, all observations C-study makes about

its change data are equally true for EvoSL36. We thus assume researchers could

draw the same conclusions C-study drew.

6.5.4 RQ2: Most Frequently-changed Block Types

To analyze which blocks change most frequently, C-study aggregates blocks

by their block type (as given by the block’s BlockType parameter). C-study’s five

block types with the most changed block instances are Inport (11.8% of all C-study
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changes), Outport (9.2%), From (5.4%), Constant (4.4%), and SubSystem (4.2%).

These five block types are also in EvoSL36’s top-six block types by most block instance

changes. The one exception is the Reference block type, which dominates EvoSL36

likely because it represents custom blocks we did not load from one of EvoSL36’s

custom libraries.

Figure 6.9 shows all block types whose block instances have over 50 changes

across the EvoSL36 default branches. The frequency of the six block types with the

most block instance changes are Reference (16% of all EvoSL36 changes), SubSys-

tem (7.3%), Inport (4.9%), Outport (3.5%), Constant (1.8%), and From (1.5%).

Besides Reference, EvoSL36 also has a higher rate of Subsystem changes. Sub-

system blocks are typically used to modularize and organize a large model into smaller

and more manageable components. We assume C-study’s slightly lower rate of Sub-

system block changes stems from each project tending to become relatively more

stable over time. This progression playing out for each EvoSL36 project would ex-

plain EvoSL36’s overall higher rate of such structural changes. EvoSL36’s next two

most frequently changed block types, Inport and Outport, appear in this order also

in C-study.

Finally, we examine the ordering of block types by most-changed total block

instances with Kendall’s rank and p-value less than 0.05. Based on this test, the trend

of most-to-least frequently changed block types in C-study and EvoSL36 are strongly

positively correlated (τ = 0.99).

Finding 9: EvoSL36 mimics several characteristics of C-study’s block type change

distribution, including the most-changed block types and a strong correlation be-

tween the order of block types by block changes.
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6.5.5 RQ3. Which Are Identified Categories of Change?

Table 6.6: C-study’s 13 Simulink block categories [4].

Category Example Blocks

(Model) Interface root-level Inport/Outport, global DataStor-
eRead/DataStoreWrite, FromFile/ToFile,
FromSpreadsheet, ToWorkspace/From-
Workspace

Signal Routing non-root Inport/Outport, Goto/From, local
DataStoreRead/Write, BusCreator, Merge,
Assignment

Signal Attributes RateTransition, DataTypeDuplicate, Signal-
Conversion, DataTypeConversion

Structural SubSystem, Reference
Conditional If, Switch, SwitchCase, ManualSwitch
Discrete Delay, UnitDelay, Filter, Integrator
Math Sum, MinMax, Rounding, Abs, Gain
Logic RelationalOperator, LogicalOperator
Trigger TriggerPort, EnablePort, ActionPort
Sources Ground, Step, Clock, Constant
Sinks Terminator, Scope, Display
Documentation ModelInfo, DocBlock
Custom S-Function

The standard Simulink language block libraries categorize blocks pertaining to

their purpose or a common quality. However, block types in these groups overlap

with the other groups. To categorize each block type to a non-overlapping category,

Jaskolka et al. created a new category scheme in which each block type falls under a

single category according to their purpose. They also introduced new categories such

as Documentation and Interface. Table 6.6 shows the list of categories with some

example blocks, and full details can be found in their work [218]. We adopted the

new category scheme and analyzed the changes according to it. Block types not listed

in Jaskolka’s category scheme we marked as “Others”.
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Table 6.7: EvoSL36’s block changes by C-study’s Table 6.6 categories; Others = all
newer and uncategorised blocks types.

Block Category % Block Category %

Structural 49.55 Signal Routing 28.90
Math 6.18 Sources 3.96
Others 3.10 Discrete 2.80
Sinks 2.08 Signal Attributes 1.03
Conditional 0.97 Logic 0.85
Custom 0.75 Interface 0.62
Trigger 0.19 Documentation 0.01

Table 6.7 shows the ratio of (default-branch) block changes by block category.

Most EvoSL36 changes are on structural blocks, followed by signal routing, math, and

source blocks. Unlike C-study where interface changes contributed to over one-third

of block changes, in EvoSL36 interfaces are stable with under 1% of block changes,

indicating good modeling practices. We delve into a few categories below.

6.5.5.1 Changes to Signal Routing and Structural Blocks

In Simulink, data produced and processed by blocks is routed via signal lines.

Rather than analyzing the signal lines (as discussed in Section 6.5.3), analyzing

changes to the blocks that are responsible for routing, combining, creating, and se-

lecting data is more revealing. Table 6.7 shows that engineers spend a substantial

amount of time managing signal data, as 29% of block changes are signal routing

changes.

The many changes to signal routing blocks go hand in hand with the most

frequently changed block category, i.e., Structural. In model based development,

complexity is abstracted through creating hierarchical models. The many changes to

SubSystem and Reference blocks (Figure 6.9), contributed to significant changes to

signal routing between the models’ hierarchical layers.
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6.5.5.2 Changes to Documentation Blocks

Simulink provides various options for documenting models. Similar to code

comments for understanding textual programs, in Simulink one can use annotations

including text and images embedded in the model. Users can also embed plain text or

a document via a DocBlock [219], which may contain a more thorough description of

the design. Finally, Simulink’s Model Info [220] block shows (automatically updating)

revision control information such as creator and the last modified date.

Compared to block changes overall, EvoSL36 has significantly fewer changes

to documentation-related blocks. The low documentation change frequency is inline

with existing software documentation for Simulink models [221] and most other soft-

ware systems [222,223]. 99% of the documentation-related changes are made through

annotations. Unlike in industrial development where Model Info is encouraged to keep

track of the original model’s creator and other metadata, the EvoSL36 open-source

projects do not follow the practice.

Finding 10: As in C-study, EvoSL36 engineers made much more changes to

signal routing and structural blocks than to implementing algorithms, leading to

the same key conclusion as C-study.

6.6 Threats to Validity

One threat to validity is that we do not know if C-study analyzed model

changes from production and all development branches. As C-study does not mention

branches at all [4,218], our replication focuses on model changes that are either direct

commits to the default branch or added to the default branch via merging. By skip-

ping analysis of commits from branches not ultimately merged back into the default

branch (including those that got removed via squashing before merging to the default
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branch), we missed 1,084 commitsMS (and their 2,540 model commits), beyond the

5,070 commitsMS (and their 9,845 model commits) we analyzed for EvoSL36.

EvoSL is curated from GitHub and may not be representative of all open-

source Simulink repositories. GitHub does not recognize Simulink as a programming

language. We did a thorough search via GitHub’s API, filtering GitHub projects

written in MATLAB on top of a “Simulink” keyword search. Note that projects

that only contain Simulink models are not tagged with a programming language, so

our search may have missed them. It is impractical to search 330 million GitHub

repositories to filter Simulink projects.

C-study’s Model Comparison Utility captures Stateflow block changes in the

model snapshots but did not label any of the EvoSL36’s change with Stateflow. To

assess EvoSL’s potential to facilitate research on Stateflow changes, we ran the util-

ity using MATLAB/Simulink 2022b on EvoSL, which yielded no Stateflow-related

changes. Our attempts to identify relevant projects were also unsuccessful, despite

finding at least 15 projects that mentioned Stateflow in their descriptions in our meta-

data. While EvoSL may not be suitable for Stateflow change studies, a few EvoSL

projects could still contain Stateflow-related blocks. Also, we provide the EvoSL

element change data with its metadata for further analysis.

6.7 Related Work

Simulink models have largely been curated with manual or semi-automated

approaches [22, 31, 89, 169]. Sánchez et al. used Google’s BigQuery to filter and

extract the largest open-source Simulink models to test their tool [169]. Chowdhury

et al.’s SLforge project performed the first large-scale study of 391 Simulink models,

whose primary focus was to test the Simulink tool chain [22]. The authors later

extended their corpus to 1071 publicly available models [31]. Boll et al. reproduced
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the corpus developed by Chowdhury et al., providing deeper insights on the models

and modeling characteristics [89]. Shrestha et al. pioneered fully automated mining

of some 400 non-hierarchical models to train a deep learning model for Simulink tool

chain testing and later curated the first self-contained corpus of Simulink models,

addressing limitation of earlier corpora [85,198]. Unlike EvoSL, none of these corpora

offer projects with full revision history.

Existing work in the field of model evolution is focused on clone detection,

variant management, and studying the synchronous co-evolution of models and tests.

To detect clones, Stephen et al. developed the SIMONE algorithm, which has been

used to track the evolution of model clones and refactor cloned fragments into a

library [87, 195]. Haber et al. proposed delta operations, including add, remove,

modify and replace elements, to obtain desired variant models [224]. Schlie et al.

focused on improving variability mining approaches by adding blocks and hierarchical

levels [165]. Rapos et al. employed Simulink’s built-in comparison tool to extract

change information and investigate the synchronous co-evolution of models and tests

in closed-source industrial models [196]. Jaskolks et al.’s case study stands out for

its comprehensive classification of changes to model elements, which we replicated in

this study using EvoSL.

Mining source code from software repositories has yielded rich information re-

searchers have leveraged for code-based research [225–227]. GitHub especially has

emerged as a primary source of open-source repositories for empirical research. Conse-

quently, researchers have developed several tools to facilitate mining from GitHub [97,

212, 228, 229]. In this study, we used PyDriller and PyGitHub to curate EvoSL [97,

212]. In recent years, there has been increasing interest in mining model-based arti-

facts. The MAR search engine [230,231] has been developed to facilitate model-driven

engineering efforts, i.e., the tool searches existing corpora for Simulink models. On
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the other hand, tools such as ModelMine allow for artifact searches directly from

GitHub by searching based on file extensions. However, the tool incorrectly labels

the Simulink model file extension as “.simulink”.

6.8 Conclusions

In this study, we emphasize the importance of readily accessible corpora for per-

forming replication, reproduction, extension, and verification studies. Several safety-

critical industries use MATLAB/Simulink as a standard tool for system modeling

and analysis, necessitating large-scale model evolution studies. However, there has

been no readily accessible corpus for such studies. To address this gap, we introduced

EvoSL as the first large corpus of Simulink projects, including model and project

changes, which is available under a permissive open-source license and included its

collection and analysis tools. On a EvoSL subset we successfully replicated a case

study of model changes in a closed-source industrial project.
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(a) All 13,919 EvoSL+ Simulink root projects.
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(b) All 924 EvoSL Simulink (root) projects.
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(c) The 292 EvoSL Simulink (root) projects with 10+ commitsMS.
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(d) The 36 EvoSL36 (root) projects.

Figure 6.6: Across projects’ normalized duration on x-axis: Total default-branch com-
mits, default-branch commitsMS, and percentage of mdl/slx files included in bucket’s
commits.
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Figure 6.7: Simplified Simulink meta-model: 6 element types [4].

Figure 6.8: Using C-study’s Model Comparison Utility [4,5] to mine Simulink model
changes in EvoSL.
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CHAPTER 7

ScoutSL: An Open-source Simulink Search Engine

This chapter was originally published in 2023 ACM/IEEE International Confer-

ence on Model Driven Engineering Languages and Systems Companion (MODELS-

C), Väster̊as, Sweden, 2023, pp. 70-74, doi: 10.1109/MODELS-C59198.2023.00022.

It is reproduced here with permission from IEEE without revision [34].

7.1 Abstract

Simulink is one of the most widely used modelling languages in safety-critical in-

dustries. Most models created in industrial settings are valuable intellectual property

to their companies and are thus often not publicly available. But to study Simulink

software engineering processes or to develop new Simulink tools, access to models

with relevant properties is vital for researchers. We conducted a community survey

to find out what kind of models and model metrics are of interest to researchers. With

these results, we implemented ScoutSL (http://scoutsl.net), a tool that gives re-

searchers easy online access to over 100k open-source Simulink models from which

they can select a subset according to their needs. A short video demonstration is

available online at https://youtu.be/HwsHL8LrVCM

7.2 Introduction

Searching for Simulink models presents challenges due to the absence of a conve-

nient method for finding such models beyond text-based searches. Traditional textual

programming language search attributes such as lines of code do not apply to Simulink
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models, which are developed via graphical block diagrams. So the requisite search

attributes for Simulink models are not adequately addressed.

Despite the proliferation of open-source repositories that have accelerated em-

pirical study of code [232,233], there is a dearth of such studies on MATLAB/Simulink.

This can be attributed to the lack of easily accessible model corpora and user-friendly

tools that cater to novice users. Researchers have encountered difficulties in discov-

ering third-party Simulink models suitable for utilization in their studies, particu-

larly for stress testing their developed tools or validating the generalizability of novel

techniques they are attempting to address. The absence of an easily accessible and

user-friendly tool remains the primary hindrance [28,112,119,176,198,234,235].

Popular code hosting platforms such as GitHub and GitLab lack the capability

to filter attributes specific to Simulink models, and the identification of Simulink

projects is challenging as these platforms do not label projects with Simulink as a

programming language. Moreover, utilizing the APIs of these platforms for research

purposes is time-consuming due to API rate limits. For instance, GitHub’s API

restricts authenticated users to 30 search requests per minute, yielding 1k results per

request and 5k other requests per hour. Considering that GitHub currently hosts

over 330 million repositories, obtaining results, excluding downloading and further

analysis, would require at least 330k requests (around 180 hours) [236,237].

Few existing model-based search tools, like MAR [238], require a deep under-

standing of the metamodel, while others, such as ModelMine [239], offer a user-friendly

search engine but rely on the GitHub API, which inherently imposes limitations on

the number of search results it can retrieve. Furthermore, GitHub is not the sole

source of Simulink projects. Simulink vendor MathWorks also provides a platform,

which serves as a repository for community-developed projects.
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Recent efforts on developing large collections of Simulink models have focused

on carefully curating corpora of Simulink models manually [31] and later automati-

cally [240] and maintaining metadata of commonly used attributes. Such corpora are

either maintained in non-permanent locations though or packaged as a single non-

divisible set, making them difficult to sample [240,241]. Downloading a large corpus

to sample a small subset of models is also often inconvenient.

To gain insight into attributes of Simulink models that are of interest to the

research community, we conducted a survey involving researchers. The survey con-

firmed their struggles in getting suitable (e.g., size, publishable) models for their

research as seen in Figure 7.2. Consequently, we developed a web-based search tool

that allows users to easily sample models. Our tool, ScoutSL, expands upon the

existing SLNET [240] and EvoSL [194] infrastructure to extract Simulink project at-

tributes, collect model metrics and compute derived metrics. The tool offers advanced

fine-grained filtering attributes, enabling users to efficiently sample desired models.

We have indexed over 18k projects containing more than 100k Simulink models. To

the best of our knowledge, ScoutSL is the first tool specifically designed for searching

Simulink projects and models, offering filtering attributes not available through other

search engines. To summarize, the paper makes the following major contributions.

• Our survey results show that researchers often struggle to get relevant models

for their research and would likely benefit from a Simulink search engine.

• We developed a Simulink search engine deployed in a tool called ScoutSL whose

search interface and ranking scheme are based on survey responses.

• The tool and all artifacts are open-source [242,243].

• The search engine is accessible through its web component available online at

http://scoutsl.net.
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7.3 Background: Simulink, SLNET, and EvoSL

Simulink is a cyber-physical system (CPS) design and simulation tool that is

a de-facto standard in many safety-critical industries. Engineers design a CPS as

a model that contains interconnected blocks, where each block may accept data,

perform some operation on the data, and transmit its output to other blocks, as

depicted in Figure 7.1. Simulink provides an extensive library of blocks and toolboxes

to design and simulate complex multi-domain systems.

Figure 7.1: Two tiny example Simulink models.

To enable empirical studies on Simulink models, researchers have curated large

corpora of open-source Simulink models. The most extensive corpus available to

date is SLNET [240], which contains Simulink models from two popular hosting sites.

SLNET has 3k Simulink projects with their 8k Simulink models (excluding library and

test harnesses), collectively featuring over 1M blocks. Boll et al. [89] confirmed large

open source corpora to be suitable for empirical research. SLNET is complemented

by mining and metric tools. However, as SLNET primarily consists of Simulink model

snapshots, it does not support evolution studies.

To address this issue, EvoSL [194] extended SLNET-Miner and curated Simulink

repositories from GitHub. EvoSL consists of 924 projects with over 140k default-

branch commits. SLNET and EvoSL are self-contained and redistributable.
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Often 8

Sometimes 5

Never 2

Figure 7.2: Responses to “Do you have difficulties finding adequate Simulink models
or projects for your research?”

Self-made 5

Open-source 4

Industry (non-publishable) 4

Simulink distribution 2

Synthetically generated 1

Figure 7.3: Responses to “Where do you usually obtain your Simulink artifacts from?”

7.4 Survey of Simulink Users

We aimed to assess the potential need for a Simulink model search engine by

asking Simulink researchers. We then used the survey results to develop ScoutSL.

From a literature review of Boll et al. [244] we extracted 215 academic papers’

co-authors that report on Simulink tools and their empirical evaluation. In July and

August 2022 we invited them to our Google Forms based anonymized online survey.

16 researchers participated in our survey, from which we discarded one participant

(who responded “not applicable” to every question), leaving 15 participants. While

all questions and responses are available online [243], we provide a brief summary of

the questions and responses in the sequel.

n ≤ 5 7

5 < n ≤ 9 0

10 ≤ n ≤ 20 5

10 ≤ n ≤ 100 1

n ≈ 100 1

500 ≤ n 1

Figure 7.4: Responses to “How many models would you need for your typical research
project?”
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Size metrics 12

Model properties 11

Model context 11

License type 7

Complexity metrics 5

Simulink version 4

Git-based 2

Time since last update 1

Libraries/Add-ons used 1

Figure 7.5: Responses to “What are Simulink model metrics that are relevant for
your research?”

In our first question of the survey, we asked the researchers, “what is the pur-

pose of Simulink models in your research?” Of 15 participants, six reported that

their main use-case for Simulink models was tool evaluation. Other use-cases like

scalability evaluation, performance evaluation, model co-simulation, industrial pro-

cess modelling, prototyping, test automation, testing, verification, code generation

optimization, compilation, model deployment, and replication were mentioned by

one participant each. All the following questions and their detailed results are shown

in Figures 7.2 to 7.7.

Over 85% of participants (13/15) faced difficulties finding appropriate mod-

els for their research projects (cf. Figure 7.2). When it came to acquiring models,

one third of the participants created their own Simulink artifacts, followed by using

closed-source and open-source models, see Figure 7.3. Figure 7.4 illustrates that the

majority of participants said they require 20 or fewer models for their research—the

unconventional ranges follow the responses. Figure 7.5 breaks down the model metrics

of interest reported by the participants.

In response to our questions regarding the adoption of open-source Simulink

models, participants showed overwhelming support for both potential usage of the

dataset (cf. Figure 7.6) and the need for a search engine (cf. Figure 7.7).
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Yes 11

Don’t know 2

No 2

Figure 7.6: Responses to “We collected 9,117 open-source models from GitHub. In-
tuitively, do you think this collection can provide you with suitable Simulink models
for your research?”

Yes 12

Don’t know 1

No 1

Figure 7.7: Responses to “Would you use ScoutSL for your research, in the future?”

7.5 Tool Architecture

Figure 7.8 illustrates ScoutSL’s architecture, which consists of two main com-

ponents: An (offline) mining component and an (online) web application component.

The miner retrieves Simulink projects from the repository hosting sites and stores

project, model, and commit metrics in a SQLite database.

An intermediate component queries the SQLite database, computes derived

attributes such as a model’s code generation capability, and calculates a “relevance”

project score. A subset1 of the primary and derived attributes are then stored in

a cloud-hosted NoSQL database, as NoSQL databases typically have flexible data

models and scale horizontally. The online web interface of ScoutSL facilitates user

searches for Simulink projects, allowing filtering based on various attributes.

7.6 Mining Component

To mine from GitHub and MATLAB Central we use the existing SLNET [240]

and EvoSL [194] infrastructure. Unlike SLNET or EvoSL, our focus is primarily on

curating a comprehensive database of publicly available Simulink projects, and thus

we do not prioritize the analysis of license files as the goal is to allow users to sample

1Due to unclear project licenses not all SQLite data are exposed.
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Figure 7.8: Architecture of the ScoutSL tool.

from all available open-source Simulink models. Our search yielded 18k projects

comprising 109k Simulink models having 15M+ blocks (≥ 15× SLNET).

7.6.1 GitHub

Our extension of SLNET-Miner efficiently manages GitHub’s API rate lim-

its. Initially, we query for projects created within a specific time frame, such as

“q=simulink&created:2008-01-01..2009-01-01”. To exhaustively search for projects

using the GitHub API, we employ a divide-and-conquer strategy when the query re-

turns 1k results. We split the time interval in half until the number of results returned

is less than 1k.

From the query results we then iteratively download each project and check

if it contains a Simulink model by checking for files with MDL or SLX extensions.

We extract 80 attributes [243] from the projects’ metadata, commits, issues, and pull

requests. We only include each GitHub project’s commits from its default-branch.

Over a one-month period we thereby downloaded some 14k Simulink projects. To
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mitigate redundancy we currently do not collect metrics from forked projects (but

plan to add this in the future).

7.6.2 MATLAB Central

As SLNET we parse MATLAB Central’s RSS feed (which does not impose any

parsing restrictions), but the feed does not offer a structured method for download-

ing projects. We extended SLNET-Miner to enhance its heuristic for constructing

download links for MATLAB Central projects. Despite these improvements, 7.9k of

46k MATLAB Central projects remained inaccessible for automated download.

While the GitHub API exposes a project’s license name, MATLAB Central

projects are bundled with license files that require further analysis. To automate

this process, we utilized an open-source library employed by GitHub [245]. Mining

MATLAB Central took about two and a half days and yielded 4.2k projects with 18

attributes [243].

7.6.3 Model Metrics

To facilitate searching based on Simulink model metrics, we extended the exist-

ing SLNET-Metrics tool to add more metrics, including the presence of a TargetLink

blocks, toolbox dependencies, and system target files. Responding to survey responses

(which highlighted researchers’ interest in filtering models based on block categories),

we further enhanced the tool to support the categorization of block types into non-

overlapping categories, as employed in our recent work [194]. We analyzed models on

MATLAB R2022b and collected 39 model metrics [243] overall.
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7.7 User Interface

ScoutSL has simple and advanced search. The latter offers three distinct user

interfaces: Simulink model search, repository search, and commit search (catering to

various dataset research requirements, including model evolution studies and subject

models for tool evaluations).

Figure 7.9: Example simple Simulink project search for “car”.

7.7.1 Simple Search

In the simple search users enter a text-based query, which ScoutSL matches

with the project descriptions in the database. An example search of “turbine” pro-

duces 50+ project results. ScoutSL then sorts the results in descending order based

on a ranking score. To compute the ranking score, we adapted a strategy inspired by

previous work [246] that aimed to classify engineered and toy projects. We selected

the common Table 7.1 attributes shared by GitHub and MATLAB Central projects
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and scored them based on survey responses. To prioritize Git-based attributes high-

lighted by the survey, we assigned lower weight scores to model revision and model

contributors, while MATLAB Central projects received zero for these attributes.

Table 7.1: Project scoring scheme; CC = cyclomatic complexity.

Attribute Survey Weight Scoring Scheme

Blocks Size (12) 15 Continuous
Block types Property (11) 15 Continuous
Code generation Property (11) 15 Discrete (0,1)
Test harness Property (11) 15 Discrete (0,1)
Documentation Property (11) 15 Discrete (0,1)
License License type (7) 10 Discrete (0,1)
CC Complexity (5) 5 Continuous
Model revision Git (2) 2 Continuous
Model contributors Git (2) 2 Continuous
Toolbox Add-ons (1) 1 Discrete (0,1)

We scored each attribute either via a binary (0 or 1) or a continuous scheme.

For the latter we considered the distribution of data attributes, filtered out outliers,

and normalized the scores to between 0 and 1. The final project score was calculated

by summing the weighted Table 7.1 scores. While the scoring scheme is based on

our survey responses, we do not make claims regarding the projects’ engineering

quality [246]. Evaluating and improving the scoring scheme is future work.

7.7.2 Advanced Search: Simulink Model

To cater to the goal of facilitating Simulink model sampling, Figure 7.10 illus-

trates ScoutSL’s model search UI. The page highlights the specific model metrics that

users expressed interest in, as determined through our survey. Users can input nu-

meric values or select attribute options from drop-down menus to refine their search
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Figure 7.10: Example search for Simulink models that contain over 1k blocks, includ-
ing some discrete blocks.

criteria. For example, they can search for Simulink models with over 1k blocks hav-

ing discrete blocks. This search query generates a list of over 650 projects as search

results.

7.7.3 Advanced Search: Simulink GitHub Repository

Figure 7.11: Example search for Simulink GitHub repositories that have over 10 pull
requests.

In order to support studies on model evolution and changes, ScoutSL incor-

porates GitHub-based selection criteria focused on version control and project man-

agement, as seen in Figure 7.11. Specifically, users can employ search criteria such

as the number of project issues, pull requests, commits, and contributors. With our
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emphasis on Simulink models, users can also search for model-specific commits and

contributions, which are subsets of project commits and contributors.

Additionally, ScoutSL enables users to filter projects based on a specific number

of model revisions or model files with a certain number of authors. These model-

specific search criteria are a unique ScoutSL feature not available on other online

web-based tool. While other tools may offer project-level commit information and

allow to search for commits per project [239], ScoutSL offers to search over the entire

project database. As an example, researchers investigating model development can

efficiently identify relevant projects by using a search query that filters for those with

a significant number of model revisions. By using a search query for projects with

more than 10 model revisions, ScoutSL yields over 500 relevant projects.

7.7.4 Advanced Search: Simulink Project

Figure 7.12: Example search for pre-2010 Simulink projects.

A commonly employed strategy in mining software repositories for exploratory

studies is to sample projects based on popularity metrics. ScoutSL provides the capa-

bility to filter projects based on such metrics, as depicted in Figure 12. Additionally,
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users are able to query projects created within specific date ranges. Another feature

we offer is the ability to filter projects based on license type, as it was identified as

a requested feature in the survey responses. Since a Simulink project is often accom-

panied by complementary scripts written in other programming languages, users can

also perform searches involving such criteria. For instance, researchers interested in

studying projects Simulink projects with JAVA and C code can use ScoutSL to get

250+ relevant projects. While the most up-to-date project attributes may be avail-

able through the primary hosting sites, our database exclusively comprises Simulink

projects, which are not easily sampled using existing tools or the primary hosting

sites from which we mine our projects.

7.8 Related Work

While several tools have been developed to facilitate sampling of open-source

projects from platforms like GitHub, they primarily focus on textual programming

languages [247, 248]. To obtain model artifacts, a web-based search tool, Mod-

elMine [239], queries GitHub API to narrow down results with file extension. However,

the tool mistakenly identifies “.simulink” as a Simulink model file extension and is

inherently limited by GitHub API’s 1k results per request limit.

A recent study examining forums of modeling tools including MATLAB/Simulink

highlighted the potential benefits of model repositories, particularly for novice users

who may encounter difficulties when attempting to model something specific [234].

The study emphasizes the importance of establishing and maintaining a diverse repos-

itory of example models. To that end, MAR [238] is a web-based search engine

that maintains metamodels for various types of models, including UML models. For

Simulink, the tool analyzes the pre-curated corpus to extract their metamodel using a
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third-party tool. As such, using MAR requires knowledge of modelling languages like

EMF to get relevant models, and the search space is limited to 200 Simulink models.

7.9 Conclusions and Future Work

ScoutSL (http://scoutsl.net) is the first search engine geared towards Simulink

users’ needs. ScoutSL allows searching over 18k Simulink projects containing over

100k Simulink models.

Future works include extension of mining tool to enlarge and augment the

dataset with new primary as well as derived project/model attributes such as project

domain, Simulink model version. We intend to improve the search engine performance

and conduct a thorough evaluation.
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CHAPTER 8

Conclusions

In summary, this dissertation proposes novel approaches to random Simulink

model generation and presents the largest corpora of Simulink models and projects.

DeepFuzzSL proved applicability of language models to generate random Simulink

models and SLGPT leveraged recent advancements of natural language processing

technique to limit the size of training samples required to learn a language mod-

els while improving the fidelity of the generated models to realistic Simulink model.

SLNET and EvoSL addressed the need for easily accessible third-party Simulink mod-

els and projects. Our search engine, ScoutSL further lowered the barrier for sampling

Simulink models and projects from open-source domain. Much of the work in this

dissertation is aimed at promoting open science and encouraging research on the

Simulink models by lowering the barrier to entry by providing large datasets. Given

all the aspects of the research presented in this dissertation are publicly available,

we hope that future work can build upon our work by enlarging the dataset, make

further improvement on random model generation and use the dataset themselves to

explore new and untapped research avenue with Simulink models.
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